INFORMED SEARCH ALGORITHMS

CHAPTER 4, SECTIONS 1–2

OUTLINE

♦ Best-first search
♦ A∗ search
♦ Heuristics

Review: Tree search

function Tree-Search(problem, fringe) returns a solution, or failure
 fringe ← Insert(Make-Node(Initial-State[problem]), fringe)
 loop do
 if fringe is empty then return failure
 node ← Remove-Front(fringe)
 if Goal-Test(problem) applied to State(node) succeeds then return node
 fringe ← InsertAll(Expand(node, problem), fringe)
A strategy is defined by picking the order of node expansion

Best-first search

Idea: use an evaluation function for each node
 – estimate of “desirability”
⇒ Expand most desirable unexpanded node
Implementation:
 fringe is a queue sorted in decreasing order of desirability
Special cases:
 greedy search
 A∗ search

Greedy search

Evaluation function h(n) (heuristic)
 = estimate of cost from n to the closest goal
E.g., h_SLD(n) = straight-line distance from n to Bucharest
Greedy search expands the node that appears to be closest to goal
Greedy search example

Properties of greedy search

Complete??

Complete?? No-can get stuck in loops, e.g., with Oradea as goal,

Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking

Time??
Properties of greedy search

Complete: No—can get stuck in loops, e.g.,
Iasi → Neamt → Iasi → Neamt →
Complete in finite space with repeated-state checking

Time: $O(b^m)$, but a good heuristic can give dramatic improvement

Space: Keeps all nodes in memory

Optimal: No

A* search

Idea: avoid expanding paths that are already expensive

Evaluation function $f(n) = g(n) + h(n)$

- $g(n)$ = cost so far to reach n
- $h(n)$ = estimated cost to goal from n
- $f(n)$ = estimated total cost of path through n to goal

A* search uses an admissible heuristic
i.e., $h(n) \leq h^*(n)$ where $h^*(n)$ is the true cost from n.
(Also require $h(n) \geq 0$, so $h(G) = 0$ for any goal G.)

E.g., $h_{SLD}(n)$ never overestimates the actual road distance

Theorem: A* search is optimal

A* search example

A* search example

Properties of greedy search

Complete: No—can get stuck in loops, e.g.,
Iasi → Neamt → Iasi → Neamt →
Complete in finite space with repeated-state checking

Time: $O(b^m)$, but a good heuristic can give dramatic improvement

Space: Keeps all nodes in memory

Optimal: No
A* search example

Optimality of A* (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1.

\[
f(G_2) = g(G_2)
\]

\[
> g(G_1)
\]

\[
\geq f(n)
\]

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion.

Optimality of A* (more useful)

Lemma: A* expands nodes in order of increasing f value

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers)

Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$.
Properties of A^*

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

Time?? Exponential in $[\text{relative error in } h \times \text{length of soln.}]$

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

Properties of A^*

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

Time?? Exponential in $[\text{relative error in } h \times \text{length of soln.}]$

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

Proof of lemma: Consistency

A heuristic is consistent if

$$h(n) \leq c(n, a, n') + h(n')$$

If h is consistent, we have

$$f(n') = g(n') + h(n')$$

$$= g(n) + c(n, a, n') + h(n')$$

$$\geq g(n) + h(n)$$

$$= f(n)$$

I.e., $f(n)$ is nondecreasing along any path.
Admissible heuristics

E.g., for the 8-puzzle:

\[h_1(n) = \text{number of misplaced tiles} \]
\[h_2(n) = \text{total Manhattan distance} \]

(i.e., no. of squares from desired location of each tile)

\[
\begin{array}{ccc}
7 & 2 & 4 \\
5 & 6 & \\
8 & 3 & 1 \\
\end{array}
\quad
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & \\
\end{array}
\]

\[h_1(S) = ?? \]
\[h_2(S) = ?? \]

Start State

Goal State

Dominance

If \(h_2(n) \geq h_1(n) \) for all \(n \) (both admissible)
then \(h_2 \) dominates \(h_1 \) and is better for search

Typical search costs:

\[d = 14 \quad \text{IDS} = 3,473,941 \text{ nodes} \]
\[A^*(h_1) = 539 \text{ nodes} \]
\[A^*(h_2) = 113 \text{ nodes} \]

\[d = 24 \quad \text{IDS} \approx 54,000,000,000 \text{ nodes} \]
\[A^*(h_1) = 39,135 \text{ nodes} \]
\[A^*(h_2) = 1,641 \text{ nodes} \]

Given any admissible heuristics \(h_a, h_b, h_c \),

\[h(n) = \max(h_a(n), h_b(n)) \]

is also admissible and dominates \(h_a, h_b \)

Relaxed problems

Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then \(h_1(n) \) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then \(h_2(n) \) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP)

Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in \(O(n^2) \)

and is a lower bound on the shortest (open) tour

Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest \(h \)

– incomplete and not always optimal

\[A^* \text{ search expands lowest } g + h \]

– complete and optimal

– also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems