Problem-solving agents

Restricted form of general agent:

```python
function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
    static: seq, an action sequence, initially empty
    state, some description of the current world state
    goal, a goal, initially null
    problem, a problem formulation
    state ← UPDATE-STATE(state, percept)
    if seq is empty then
        goal ← FORMULATE-GOAL(state)
        problem ← FORMULATE-PROBLEM(state, goal)
        seq ← SEARCH(problem)
        action ← RECOMMENDATION(seq, state)
        seq ← REMAINDER(seq, state)
        return action
```

Note: this is offline problem solving; solution executed "eyes closed."

Online problem solving involves acting without complete knowledge.

Reminders

Assignment 0 due 5pm Thursday 1/27
Assignment 1 posted, due 2/8 (online or in box in 283)

Outline

- Problem-solving agents
- Problem types
- Problem formulation
- Example problems
- Basic search algorithms

Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
to actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
Problem types

Deterministic, fully observable \(\Rightarrow\) single-state problem
Agent knows exactly which state it will be in; solution is a sequence

Non-observable \(\Rightarrow\) conformant problem
Agent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable \(\Rightarrow\) contingency problem
Percepts provide new information about current state
solution is a contingent plan or a policy
often interleave search, execution

Unknown state space \(\Rightarrow\) exploration problem (“online”)

Example: vacuum world

Single-state, start in #5. \(\text{Solution}??\)

Conformant, start in \(\{1,2,3,4,5,6,7,8\}\)
e.g., \(\text{Right} \) goes to \(\{2,4,6,8\}\). \(\text{Solution}??\)

Contingency, start in #5
Murphy’s Law: \(\text{Suck}\) can dirty a clean carpet
Local sensing: dirt, location only.
\(\text{Solution}??\)

Example: vacuum world

Single-state, start in #5. \(\text{Solution}??\)

Conformant, start in \(\{1,2,3,4,5,6,7,8\}\)
e.g., \(\text{Right} \) goes to \(\{2,4,6,8\}\). \(\text{Solution}??\)

Contingency, start in #5
Murphy’s Law: \(\text{Suck}\) can dirty a clean carpet
Local sensing: dirt, location only.
\(\text{Solution}??\)

Example: vacuum world

Single-state, start in #5. \(\text{Solution}??\)
Conformant, start in \(\{1,2,3,4,5,6,7,8\}\)
e.g., \(\text{Right} \) goes to \(\{2,4,6,8\}\). \(\text{Solution}??\)

Contingency, start in #5
Murphy’s Law: \(\text{Suck}\) can dirty a clean carpet
Local sensing: dirt, location only.
\(\text{Solution}??\)

Example: vacuum world

Single-state problem formulation

A problem is defined by four items:

\textbf{initial state} \quad e.g., “at Arad”

\textbf{successor function} \(S(x)\) = set of action–state pairs
e.g., \(S(\text{Arad}) = \{\text{Arad} \rightarrow \text{Zerind}, \text{Zerind} \rightarrow \ldots\}\)

\textbf{goal test}, can be
\text{explicit}, e.g., \(x = \text{“at Bucharest”}\)
\text{implicit}, e.g., \(\text{NoDirt}(x)\)

\textbf{path cost} (additive)
e.g., sum of distances, number of actions executed, etc.
\(c(x,a,y)\) is the step cost, assumed to be \(\geq 0\)

A solution is a sequence of actions
leading from the initial state to a goal state
Selecting a state space

Real world is absurdly complex
⇒ state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions
 e.g., “Arad → Zerind” represents a complex set
 of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state “in Arad”
 must get to some real state “in Zerind”

(Abstract) solution =
 set of real paths that are solutions in the real world
Each abstract action should be “easier” than the original problem!

Example: vacuum world state space graph

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??
path cost??

Example: vacuum world state space graph

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt
path cost??

Example: vacuum world state space graph

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??
goal test??
path cost??

Example: vacuum world state space graph

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt
path cost??: 1 per action (0 for NoOp)
Example: The 8-puzzle

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Start State

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Goal State

- **States**: integer locations of tiles (ignore intermediate positions)
- **Actions**: move blank left, right, up, down (ignore unjamming etc.)
- **Goal Test**: = goal state (given)
- **Path Cost**: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]
Tree search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states
(a.k.a. expanding states)

function Tree-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
end

Tree search example

Implementation: states vs. nodes
A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost $g(x)$
States do not have parents, children, depth, or path cost!

The Expand function creates new nodes, filling in the various fields and
using the SUCCESSORFn of the problem to create the corresponding states.

Implementation: general tree search
Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
- completeness—does it always find a solution if one exists?
- time complexity—number of nodes generated/expanded
- space complexity—maximum number of nodes in memory
- optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
- \(b \)—maximum branching factor of the search tree
- \(d \)—depth of the least-cost solution
- \(m \)—maximum depth of the state space (may be \(\infty \))

Uninformed search strategies

Uninformed strategies use only the information available in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search
Iterative deepening search
Breadth-first search

Expand shallowest unexpanded node

Implementation: fringe is a FIFO queue, i.e., new successors go at end

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

Space?? $O(b^{d+1})$ (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec so 24hrs = 8640GB.
Uniform-cost search

Expand least-cost unexpanded node

Implementation:
\(fringe = \text{queue ordered by path cost, lowest first} \)

Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost \(\geq \epsilon \)

Time?? \# of nodes with \(g \leq \text{cost of optimal solution}, O(b^{C^*/\epsilon}) \)
where \(C^* \) is the cost of the optimal solution

Space?? \# of nodes with \(g \leq \text{cost of optimal solution}, O(b^{C^*/\epsilon}) \)

Optimal?? Yes—nodes expanded in increasing order of \(g(n) \)

Depth-first search

Expand deepest unexpanded node

Implementation:
\(fringe = \text{LIFO queue, i.e., put successors at front} \)
Depth-first search

Expand deepest unexpanded node

Implementation:

\[fringe = \text{LIFO queue, i.e., put successors at front} \]
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? \(O(b^d)\): terrible if \(m\) is much larger than \(d\)
but if solutions are dense, may be much faster than breadth-first

Space?? \(O(m)\), i.e., linear space!

Optimal?? No
Depth-limited search

= depth-first search with depth limit \(l \),
i.e., nodes at depth \(l \) have no successors

Recursive implementation:

```python
function Depth-Limited-Search(problem, limit) returns soln/fail/cutoff
    Recursive-DLS(Make-Node(Initial-State(problem)), problem, limit)

function Recursive-DLS(node, problem, limit) returns soln/fail/cutoff
    cutoff-occurred? ← false
    if Goal-Test(problem, State[node]) then return node
    else if Depth[node] = limit then return cutoff
    else for each successor in Expand(node, problem) do
        result ← Recursive-DLS(successor, problem, limit)
        if result = cutoff then cutoff-occurred? ← true
        else if result ≠ failure then return result
        if cutoff-occurred? then return cutoff else return failure
```

Iterative deepening search

```python
function Iterative-Deepening-Search(problem) returns a solution
    inputs: problem, a problem
    for depth ← 0 to ∞ do
        result ← Depth-Limited-Search(problem, depth)
        if result ≠ cutoff then return result
    end
```

Limit = 1

Limit = 2

Limit = 3
Properties of iterative deepening search

Complete?
Yes

Time?
\((d + 1)b^d + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d)\)

Space?
\(O(bd)\)

Optimal?
Yes, if step cost = 1

Can be modified to explore uniform-cost tree

Numerical comparison for \(b = 10\) and \(d = 5\), solution at far right leaf:

- \(N(\text{IDS}) = 50 + 400 + 3,000 + 20,000 + 100,000 + 123,450\)
- \(N(\text{BFS}) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 + 1,111,100\)

IDS does better because other nodes at depth \(d\) are not expanded

BFS can be modified to apply goal test when a node is generated

Summary of algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes(^*)</td>
<td>Yes(^*)</td>
<td>No</td>
<td>Yes, if (l \geq d)</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>(b^{l+1})</td>
<td>(b^{\lceil C/C^\epsilon \rceil})</td>
<td>(b^m)</td>
<td>(b^l)</td>
<td>(b^d)</td>
</tr>
<tr>
<td>Space</td>
<td>(b^{l+1})</td>
<td>(b^{\lceil C/C^\epsilon \rceil})</td>
<td>(b_{min})</td>
<td>(b_l)</td>
<td>(bd)</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes(^*)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes(^*)</td>
</tr>
</tbody>
</table>
Repeated states

Failure to detect repeated states can turn a linear problem into an exponential one!

Graph search

```plaintext
function Graph-Search(problem, fringe) returns a solution, or failure

closed ← an empty set
fringe ← Insert(Make-Node(Initial-State(problem)), fringe)
loop do
    if fringe is empty then return failure
    node ← Remove-Front(fringe)
    if Goal-Test(problem, State[node]) then return node
    if State[node] is not in closed then
        add State[node] to closed
        fringe ← InsertAll(Expand(node, problem), fringe)
end
```

Summary

Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored.

- Variety of uninformed search strategies
- Iterative deepening search uses only linear space and not much more time than other uninformed algorithms
- Graph search can be exponentially more efficient than tree search