Robotics

Chapter 25
Outline

Robots, Effectors, and Sensors

Localization and Mapping

Motion Planning

Motor Control
Mobile Robots
Configuration of robot specified by 6 numbers

⇒ 6 degrees of freedom (DOF)

6 is the minimum number required to position end-effector arbitrarily. For dynamical systems, add velocity for each DOF.
A car has more DOF (3) than controls (2), so is non-holonomic; cannot generally transition between two infinitesimally close configurations.
Sensors

Range finders: sonar (land, underwater), laser range finder, radar (aircraft), tactile sensors, GPS

![Sick sensor image](image)

Imaging sensors: cameras (visual, infrared)

Proprioceptive sensors: shaft decoders (joints, wheels), inertial sensors, force sensors, torque sensors
Localization—Where Am I?

Compute current location and orientation (pose) given observations:

\[X_{t+1} = X_t + A_t \]

\[Z_{t+1} = Z_t + A_t \]

\[Z_{t-1} = Z_t - A_{t-1} \]

\[X_t = X_{t-1} + A_{t-2} \]
Assume Gaussian noise in motion prediction, sensor range measurements
Localization contd.

Can use particle filtering to produce approximate position estimate
Localization contd.

Can also use extended Kalman filter for simple cases:

Assumes that landmarks are identifiable—otherwise, posterior is multimodal
Mapping

Localization: given map and observed landmarks, update pose distribution

Mapping: given pose and observed landmarks, update map distribution

SLAM: given observed landmarks, update pose and map distribution

Probabilistic formulation of SLAM:
 add landmark locations L_1, \ldots, L_k to the state vector,
 proceed as for localization
Mapping contd.
3D Mapping example
Motion Planning

Idea: plan in configuration space defined by the robot’s DOFs

Solution is a point trajectory in free C-space
Configuration space planning

Basic problem: ∞^d states! Convert to finite state space.

Cell decomposition:
- divide up space into simple cells,
 each of which can be traversed “easily” (e.g., convex)

Skeletonization:
- identify finite number of easily connected points/lines
 that form a graph such that any two points are connected
 by a path on the graph
Cell decomposition example

Problem: may be no path in pure freespace cells
Solution: recursive decomposition of mixed (free+obstacle) cells
Skeletonization: Voronoi diagram

Voronoi diagram: locus of points equidistant from obstacles

Problem: doesn’t scale well to higher dimensions
A probabilistic roadmap is generated by generating random points in C-space and keeping those in freespace; create graph by joining pairs by straight lines.

Problem: need to generate enough points to ensure that every start/goal pair is connected through the graph.
Can view the motor control problem as a search problem in the dynamic rather than kinematic state space:
- state space defined by $x_1, x_2, \ldots, \dot{x}_1, \dot{x}_2, \ldots$
- continuous, high-dimensional (Sarcos humanoid: 162 dimensions)

Deterministic control: many problems are exactly solvable esp. if linear, low-dimensional, exactly known, observable

Simple regulatory control laws are effective for specified motions

Stochastic optimal control: very few problems exactly solvable

⇒ approximate/adaptive methods
Motor control systems are characterized by massive redundancy

Infinitely many trajectories achieve any given task

E.g., 3-link arm moving in plane throwing at a target
 simple 12-parameter controller, one degree of freedom at target
 11-dimensional continuous space of optimal controllers

Idea: if the arm is noisy, only “one” optimal policy minimizes error at target

I.e., noise-tolerance might explain actual motor behaviour

 explains eye saccade velocity profile perfectly
Setup

Suppose a controller has “intended” control parameters θ_0 which are corrupted by noise, giving θ drawn from P_{θ_0}.

Output (e.g., distance from target) $y = F(\theta)$;
Simple learning algorithm: Stochastic gradient

Minimize $E_\theta[y^2]$ by gradient descent:

$$
\nabla_{\theta_0} E_\theta[y^2] = \nabla_{\theta_0} \int P_{\theta_0}(\theta) F(\theta)^2 d\theta \\
= \int \frac{\nabla_{\theta_0} P_{\theta_0}(\theta)}{P_{\theta_0}(\theta)} F(\theta)^2 P_{\theta_0}(\theta) d\theta \\
= E_\theta[\frac{\nabla_{\theta_0} P_{\theta_0}(\theta)}{P_{\theta_0}(\theta)} y^2]
$$

Given samples (θ_j, y_j), $j = 1, \ldots, N$, we have

$$
\nabla_{\theta_0} \hat{E}_\theta[y^2] = \frac{1}{N} \sum_{j=1}^{N} \frac{\nabla_{\theta_0} P_{\theta_0}(\theta_j)}{P_{\theta_0}(\theta_j)} y_j^2
$$

For Gaussian noise with covariance Σ, i.e., $P_{\theta_0}(\theta) = N(\theta_0, \Sigma)$, we obtain

$$
\nabla_{\theta_0} \hat{E}_\theta[y^2] = \frac{1}{N} \sum_{j=1}^{N} \Sigma^{-1}(\theta_j - \theta_0) y_j^2
$$
What the algorithm is doing
Results for 2-D controller

![Graph showing the relationship between velocity (v) and angle (\phi).]
Results for 2–D controller

![Graph showing Velocity v vs Angle phi]
Results for 2-D controller

<table>
<thead>
<tr>
<th>E(y^2)</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0055</td>
<td>0</td>
</tr>
<tr>
<td>0.006</td>
<td>2000</td>
</tr>
<tr>
<td>0.0065</td>
<td>4000</td>
</tr>
<tr>
<td>0.007</td>
<td>6000</td>
</tr>
<tr>
<td>0.0075</td>
<td>8000</td>
</tr>
<tr>
<td>0.008</td>
<td>10000</td>
</tr>
</tbody>
</table>

![Graph showing the trend of E(y^2) vs. Step](image-url)
Summary

The rubber hits the road

Mobile robots and manipulators

Degrees of freedom to define robot configuration

Localization and mapping as probabilistic inference problems
 (require good sensor and motion models)

Motion planning in configuration space
 requires some method for finitization