Logic and propositional logic

Chapter 7.1–7.4
Outline

- Knowledge-based agents
- Wumpus world
- Logic in general—models and entailment
- Propositional (Boolean) logic
- Equivalence, validity, satisfiability
- Inference by exhaustive model checking
Knowledge bases

Knowledge base = set of sentences in a **formal** language

Declarative approach to building an agent (or other system):

Tell it what it needs to know

Then it can **Ask** itself what to do—answers should follow from the KB

Agents can be viewed at the **knowledge level**

i.e., **what they know**, regardless of how implemented

Or at the **implementation level**

i.e., data structures in KB and algorithms that manipulate them
A simple knowledge-based agent

```plaintext
function KB-Agent(percept) returns an action
    static: KB, a knowledge base
            t, a counter, initially 0, indicating time
    TELL(KB, Make-Percept-Sentence(percept, t))
    action ← Ask(KB, Make-Action-Query(t))
    TELL(KB, Make-Action-Sentence(action, t))
    t ← t + 1
    return action
```

The agent must be able to:
- Represent states, actions, etc.
- Incorporate new percepts
- Update internal representations of the world
- Deduce hidden properties of the world
- Deduce appropriate actions

⇒ sound and complete reasoning with partial information states
Wumpus World PEAS description

Performance measure
gold +1000, death -1000
-1 per step, -10 for using the arrow

Environment
Squares adjacent to wumpus are smelly
Squares adjacent to pit are breezy
Glitter iff gold is in the same square
Shooting kills wumpus if you are facing it
Shooting uses up the only arrow
Grabbing picks up gold if in same square
Releasing drops the gold in same square

Actuators Left turn, Right turn,
Forward, Grab, Release, Shoot

Sensors Breeze, Glitter, Smell
Wumpus world characterization

Observable??
Wumpus world characterization

Observable: No—only local perception

Deterministic
Wumpus world characterization

Observable?
No—only *local* perception

Deterministic?
Yes—outcomes exactly specified

Episodic?
Wumpus world characterization

Observable? No—only local perception

Deterministic? Yes—outcomes exactly specified

Episodic? No—sequential at the level of actions

Static?
Wumpus world characterization

Observable Yes—only local perception

Deterministic Yes—outcomes exactly specified

Episodic No—sequential at the level of actions

Static Yes—Wumpus and Pits do not move

Discrete
Wumpus world characterization

Observable? No—only local perception

Deterministic? Yes—outcomes exactly specified

Episodic? No—sequential at the level of actions

Static? Yes—Wumpus and Pits do not move

Discrete? Yes

Single-agent?
Wumpus world characterization

Observable? No—only local perception

Deterministic? Yes—outcomes exactly specified

Episodic? No—sequential at the level of actions

Static? Yes—Wumpus and Pits do not move

Discrete? Yes

Single-agent? Yes—Wumpus is essentially a natural feature
Exploring a wumpus world
Exploring a wumpus world
Exploring a wumpus world
Exploring a wumpus world

A

P?

B OK P?

A OK S OK A

A

A
Exploring a wumpus world
Exploring a wumpus world
Exploring a wumpus world
Exploring a wumpus world
Other tight spots

Breeze in (1,2) and (2,1)
⇒ no safe actions

Assuming pits uniformly distributed,
(2,2) has pit w/ prob 0.86, vs. 0.31

Smell in (1,1)
⇒ cannot move

Can use a strategy of coercion:
shoot straight ahead
wumpus was there ⇒ dead ⇒ safe
wumpus wasn’t there ⇒ safe
Logic in general

Logics are formal languages for representing information such that conclusions can be drawn.

Syntax defines the sentences in the language.

Semantics define the “meaning” of sentences; i.e., define **truth** of a sentence in a world.

E.g., the language of arithmetic

$x + 2 \geq y$ is a sentence; $x^2 + y >$ is not a sentence

$x + 2 \geq y$ is true iff the number $x + 2$ is no less than the number y

$x + 2 \geq y$ is true in a world where $x = 7, y = 1$

$x + 2 \geq y$ is false in a world where $x = 0, y = 6$
Entailment means that one thing follows from another:

\[KB \models \alpha \]

Knowledge base \(KB \) entails sentence \(\alpha \)
if and only if
\(\alpha \) is true in all worlds where \(KB \) is true

E.g., the KB containing “the Giants won” and “the Reds won”
entails “Either the Giants won or the Reds won”

E.g., \(x + y = 4 \) entails \(4 = x + y \)

Entailment is a relationship between sentences (i.e., syntax)
that is based on semantics

Note: brains process syntax (of some sort)
Models

Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated.

We say m is a model of a sentence α if α is true in m.

$M(\alpha)$ is the set of all models of α.

Then $KB \models \alpha$ if and only if $M(KB) \subseteq M(\alpha)$.

E.g. $KB = \text{Giants won and Reds won}$

$\alpha = \text{Giants won}$
Entailment in the wumpus world

Situation after detecting nothing in \([1,1]\), moving right, breeze in \([2,1]\)

Consider possible models for ?s assuming only pits

3 Boolean choices \(\Rightarrow\) 8 possible models
Wumpus models

Chapter 7.1–7.4
$KB = \text{wumpus-world rules} + \text{observations}$
\(KB = \text{wumpus-world rules + observations} \)

\(\alpha_1 = \text{“[1,2] is safe”, } KB \models \alpha_1, \text{ proved by model checking} \)
$KB = \text{wumpus-world rules} + \text{observations}$
\[KB = \text{wumpus-world rules} + \text{observations} \]

\[\alpha_2 = \text{“[2,2] is safe”, } KB \not\models \alpha_2 \]
Inference

$KB \vdash_i \alpha$ means “sentence α can be derived from KB by procedure i”

Consequences of KB are a haystack; α is a needle. Entailment = needle in haystack; inference = finding it

Soundness: i is sound if
whenever $KB \vdash_i \alpha$, it is also true that $KB \models \alpha$

Completeness: i is complete if
whenever $KB \models \alpha$, it is also true that $KB \vdash_i \alpha$

Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure

That is, the procedure will answer any question whose answer follows from what is known
Propositional logic: Syntax

Propositional logic is the simplest logic—illustrates basic ideas

The proposition symbols P_1, P_2 etc are sentences

If S is a sentence, $\neg S$ is a sentence (negation)

If S_1 and S_2 are sentences, $S_1 \land S_2$ is a sentence (conjunction)

If S_1 and S_2 are sentences, $S_1 \lor S_2$ is a sentence (disjunction)

If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)

If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)
Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

E.g. \(P_{1,2}, P_{2,2}, P_{3,1} \) (3 symbols \(\Rightarrow 2^3 = 8 \) models)

\(\text{true} \text{ true} \text{ false} \)

Rules for evaluating truth with respect to a model \(m \):

\[
\begin{align*}
\lnot S & \quad \text{is true iff} \quad S \quad \text{is false} \\
S_1 \land S_2 & \quad \text{is true iff} \quad S_1 \quad \text{is true and} \quad S_2 \quad \text{is true} \\
S_1 \lor S_2 & \quad \text{is true iff} \quad S_1 \quad \text{is true or} \quad S_2 \quad \text{is true} \\
S_1 \Rightarrow S_2 & \quad \text{is true iff} \quad S_1 \quad \text{is false or} \quad S_2 \quad \text{is true} \\
\text{\quad i.e., is false iff} \quad S_1 & \quad \text{is true and} \quad S_2 \quad \text{is false} \\
S_1 \iff S_2 & \quad \text{is true iff} \quad S_1 \Rightarrow S_2 \quad \text{is true and} \quad S_2 \Rightarrow S_1 \quad \text{is true}
\end{align*}
\]

Simple recursive process evaluates an arbitrary sentence, e.g.,

\[
\lnot P_{1,2} \land (P_{2,2} \lor P_{3,1}) = \lnot \text{true} \land (\text{true} \lor \text{false}) \\
= \text{false} \land \text{true} = \text{false}
\]
Wumpus world sentences: symbols

$P_{i,j}$ has intended meaning “there is a pit in $[i, j]$”
$B_{i,j}$ has intended meaning “there is a breeze in $[i, j]$”

This means we connect sensors and actuators to symbols, and write axioms, in such a way that this meaning is respected.

$R_1: \neg P_{1,1}$ (given)
$R_2: \neg B_{1,1}$ (percept)
$R_3: B_{2,1}$ (percept)
An *axiom* is just a sentence asserted to be true about the domain (typically *general* rather than specific to a particular situation)

E.g., “Pits cause breezes in adjacent squares”
Wumpus world sentences: axioms

An axiom is just a sentence asserted to be true about the domain (typically general rather than specific to a particular situation)

E.g., “Pits cause breezes in adjacent squares”

\[R_4 : \quad B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1}) \]
\[R_5 : \quad B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1}) \]

I.e., “A square is breezy if and only if there is an adjacent pit”

Notice that we need one such sentence for every square!

For shooting, movement, etc., we need axiom sets for every time step!!!!
Truth tables for inference

<table>
<thead>
<tr>
<th>$B_{1,1}$</th>
<th>$B_{2,1}$</th>
<th>$P_{1,1}$</th>
<th>$P_{1,2}$</th>
<th>$P_{2,1}$</th>
<th>$P_{2,2}$</th>
<th>$P_{3,1}$</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
<th>R_5</th>
<th>KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
</tr>
<tr>
<td>true</td>
</tr>
<tr>
<td>true</td>
</tr>
<tr>
<td>true</td>
</tr>
</tbody>
</table>

Enumerate rows (different assignments to symbols),
if KB is true in row, check that α is too
Inference by enumeration

Depth-first enumeration of all models is sound and complete

function: TT-ENTAILS?(KB, α) **returns** true or false

inputs: KB, the knowledge base, a sentence in propositional logic
α, the query, a sentence in propositional logic

$symbols \leftarrow$ a list of the proposition symbols in KB and α

return TT-CHECK-ALL$(KB, \alpha, symbols, [])$

function: TT-CHECK-ALL$(KB, \alpha, symbols, model)$ **returns** true or false

if EMPTY?$(symbols)$ **then**

if PL-TRUE?$(KB, model)$ **then** return PL-TRUE?$(\alpha, model)$

else return true

else do

$P \leftarrow$ FIRST$(symbols)$; $rest \leftarrow$ REST$(symbols)$

return TT-CHECK-ALL$(KB, \alpha, rest, EXTEND(P, true, model))$ **and**

TT-CHECK-ALL$(KB, \alpha, rest, EXTEND(P, false, model))$

$O(2^n)$ for n symbols; problem is co-NP-complete
Two sentences are logically equivalent iff true in same models:
\[\alpha \equiv \beta \text{ if and only if } \alpha \models \beta \text{ and } \beta \models \alpha \]

\[
\begin{align*}
(\alpha \land \beta) & \equiv (\beta \land \alpha) & \text{commutativity of } \land \\
(\alpha \lor \beta) & \equiv (\beta \lor \alpha) & \text{commutativity of } \lor \\
((\alpha \land \beta) \land \gamma) & \equiv (\alpha \land (\beta \land \gamma)) & \text{associativity of } \land \\
((\alpha \lor \beta) \lor \gamma) & \equiv (\alpha \lor (\beta \lor \gamma)) & \text{associativity of } \lor \\
\neg(\neg\alpha) & \equiv \alpha & \text{double-negation elimination} \\
(\alpha \Rightarrow \beta) & \equiv (\neg\beta \Rightarrow \neg\alpha) & \text{contraposition} \\
(\alpha \Rightarrow \beta) & \equiv (\neg\alpha \lor \beta) & \text{implication elimination} \\
(\alpha \leftrightarrow \beta) & \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) & \text{biconditional elimination} \\
(\neg(\alpha \land \beta) & \equiv (\neg\alpha \lor \neg\beta) \text{ De Morgan} \\
(\neg(\alpha \lor \beta) & \equiv (\neg\alpha \land \neg\beta) \text{ De Morgan} \\
(\alpha \land (\beta \lor \gamma)) & \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) & \text{distributivity of } \land \text{ over } \lor \\
(\alpha \lor (\beta \land \gamma)) & \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) & \text{distributivity of } \lor \text{ over } \land
\end{align*}
\]
Validity and satisfiability

A sentence is valid if it is true in all models,

\[True, \quad A \lor \neg A, \quad A \Rightarrow A, \quad (A \land (A \Rightarrow B)) \Rightarrow B \]

Validity is connected to inference via the Deduction Theorem:

\[KB \models \alpha \text{ if and only if } (KB \Rightarrow \alpha) \text{ is valid} \]

A sentence is satisfiable if it is true in some model

\[A \lor B, \quad C \]

A sentence is unsatisfiable if it is true in no models

\[A \land \neg A \]

Satisfiability is connected to inference via the following:

\[KB \models \alpha \text{ if and only if } (KB \land \neg \alpha) \text{ is unsatisfiable} \]

i.e., prove \(\alpha \) by \textit{reductio ad absurdum}
Logical agents apply inference to a knowledge base to derive new information and make decisions.

Basic concepts of logic:
- **syntax**: formal structure of sentences
- **semantics**: truth of sentences wrt models
- **entailment**: necessary truth of one sentence given another
- **inference**: deriving sentences from other sentences
- **soundness**: derivations produce only entailed sentences
- **completeness**: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.

Propositional logic does all this (but lacks expressive power)

Inference by enumerating models: sound, complete, $O(2^n)$