S2W: Verification using Small and Short Worlds

Rohit Sinha, Cynthia Sturton, Petros Maniatis, Sanjit Seshia, David Wagner

http://uclid.eecs.berkeley.edu/s2w

University of California, Berkeley

October 23, 2012
Hypervisors and Emulators

Hypervisor (or Virtual Machine Monitor):
- Virtualization layer that runs at the highest CPU privilege level
- Enables concurrent and isolated execution of multiple guest OSes

CPU Emulator
- Emulates a target CPU's behavior on a host CPU platform
Why verify hypervisors?

Virtualization is important for:
- Cloud computing
- Hosting legacy applications

Can we trust hypervisors?
- Virtualization code is complex
- Exploits demonstrated (e.g. Xen, Xbox 360)
Verification Challenges

- Large data structures
 - e.g. TLB, page tables, interrupt descriptor table, etc.

- Highly optimized implementation in C/C++
 - Need to generate and validate abstract model

- Deep properties such as equivalence and refinement
 - Need to reason about control and data
Verification Challenges

Example: **Bochs TLB + Paging**
Translates virtual to physical address

- Large data structures: TLB, 2-level page tables
- Equivalence Property
 - Without TLB: Invoke page walk to retrieve translation
 - With TLB: first check TLB for cached translation. Invoke page walk on TLB miss. (Bochs implementation)
S2W: Overview

- Construct a term level model of the C++ implementation
 - Large tables modeled as unbounded arrays, operations modeled using uninterpreted functions

- Bounded Model Checking (BMC) finds counter-examples up to a certain bound
 - Sound if reachability diameter known

- S2W: An abstraction based methodology
 - Construct abstract model
 - Compute reachability diameter of the abstract model
 - BMC until reachability diameter
S2W: Contribution

- Semi-automatic procedure for verifying systems with unbounded data structures
 - (Term-level) abstraction-based model checking
 - Heuristics for creating an abstract model
 - Heuristics for bounding the reachability diameter

- Evaluation: Bochs x86 paging, Shadow Paging, SecVisor, CAM, etc.
Related Work

<table>
<thead>
<tr>
<th>Work</th>
<th>Application</th>
<th>Technique</th>
<th>Expressiveness</th>
<th>Guarantee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkassar et al: Verification of Microsoft Hyper-V</td>
<td>Hypervisors</td>
<td>Deductive (VCC)</td>
<td>general</td>
<td>Sound, not complete</td>
</tr>
<tr>
<td>Franklin et al: Scalable Parametric Verification</td>
<td>Hypervisors</td>
<td>Small Model Theorem</td>
<td>restricted</td>
<td>Sound, complete</td>
</tr>
<tr>
<td>Klein et al: seL4: Formally Verified OS kernel</td>
<td>Microkernel</td>
<td>Theorem Proving (Isabelle)</td>
<td>general</td>
<td>Sound, not complete</td>
</tr>
<tr>
<td>Per Bjesse: Word-Level Sequential Memory Abstraction</td>
<td>Hardware</td>
<td>Small Model + CEGAR</td>
<td>restricted</td>
<td>Sound, not complete</td>
</tr>
<tr>
<td>Steve German: Theory of Abstraction for Arrays</td>
<td>Hardware</td>
<td>Static analysis + Model checking</td>
<td>restricted</td>
<td>Sound, complete</td>
</tr>
<tr>
<td>S2W</td>
<td>Hypervisors, Emulators</td>
<td>Abstraction + BMC</td>
<td>general</td>
<td>Sound, not complete</td>
</tr>
</tbody>
</table>
Problem Definition

- **System** S
 - Booleans, predicates, bit-vectors, uninterpreted functions, arrays
- **Environment** E
 - provides inputs from S and consumes its outputs
 - arbitrary inputs to S at each step
- **Model under verification** $M = S || E$
- **Safety property** $G \Phi$
 - Φ of the form $\forall x_1, x_2, \ldots x_n. \Phi(x_1, x_2, \ldots x_n)$
 - bitvectors $x_1, x_2, \ldots x_n$ too large to exhaustively case split

Large Data Safety Verification

Does M satisfy $G \Phi$?
S2W: Methodology

Model \mathcal{M} → **Term level model** → **Property** Φ

- Φ inductive invariant? → yes
- no → small world
 - short world
 - BMC
 - Φ?
 - valid → $\mathcal{M} \models G \Phi$
 - cex → Spurious?
 - yes → update abstraction
 - no → $\mathcal{M} \not\models G \Phi$

1. Induction
2. Small world abstraction
3. Compute short world bound
4. BMC

Verification with S2W is sound, but not complete
S2W first attempts 1-step induction on \mathcal{M}.

Base case

$$\text{Init}(s) \rightarrow \Phi(s) \quad (1)$$

Induction

$$\Phi(s) \land \mathcal{R}(s, s') \rightarrow \Phi(s') \quad (2)$$
Toy Example

Inputs: addr

State: mem, cache

Transition:
next(cache.addr) = addr
next(cache.data) = ITE(addr = cache.addr, cache.data, mem[addr])

Property \(\Phi \)

\[
\Phi \equiv \forall x. (addr = x) \rightarrow (\text{cache.addr} = addr \land \text{cache.addr} \neq 0) \rightarrow \text{cache.data} = \text{mem}[addr])
\]
Small World Abstraction

Localization Abstraction: Abstract away some state

Dependence Set \mathcal{U}

\mathcal{U} is a set of expressions over state variables and inputs such that ϕ depends only on expressions in \mathcal{U}.

Derive \mathcal{U} syntactically by traversing the expression graph of ϕ

Abstract Model $\hat{\mathcal{M}}$ where:

- Terms in \mathcal{U} are precisely modeled
- All other state havoced at each step

No spurious counter-example in our case studies.
Step 1: Fresh parameter a for x

$$\phi(a) \triangleq (addr = a) \rightarrow ((cache.addr = addr \land cache.addr \neq 0) \rightarrow cache.data = mem[addr])$$ (4)

Step 2: Derive \mathcal{U} syntactically

$$\mathcal{U} = \{cache.addr, cache.data, mem[a]\}$$ (5)
Computing Short World bound of \hat{M}

Reachability diameter k

For every trace s_0, \ldots, s_{k+1} via input sequence a_1, \ldots, a_{k+1},

there exists a trace s'_0, \ldots, s'_k via input sequence b_1, \ldots, b_k

such that $s_{k+1} = s'_k$.

Alternating quantifiers!
To verify a hypothesized bound k:

For every trace s_0, \ldots, s_{k+1} via input sequence a_1, \ldots, a_{k+1},

there exists a trace s'_0, \ldots, s'_k via k-length subsequence of a_1, \ldots, a_{k+1}

such that $s_{k+1} = s'_k$.

Reachability bound
Toy Example [Subsequence Heuristic]

Reachability diameter
k = 2

Example:
- cache.addr_3 = cache.addr_2'
- cache.data_3 = cache.data_2'
- mem[a]_3 = mem[a]_2'
Another approach to instantiating existentially quantified variables in the reachability check

What is a gadget?
A sequence of symbolic state transitions that reaches a subset of all reachable states

Universal gadget set
Any reachable state of \mathcal{M} is reached by at least one gadget in the universal gadget set.

Length of longest gadget bounds reachability diameter k.
Computing Short World bound via Gadget Heuristic

Reachability bound

For every reachable state, there exists a gadget that reaches it.

k is length of the longest gadget
Toy Example [Gadgets]

1. Gadget g_1:
 \[\text{init}(\text{mem}[a]) = 0\]
 followed by 1 step transition of \hat{M}

2. Gadget g_2:
 \[\text{init}(\text{mem}[a]) = 1\]
 followed by 1 step transition of \hat{M}

Reachability diameter $k = 1$
Bounded Model Checking

- Short world computes reachability diameter k of \hat{M}

- Run BMC for k steps:
 - If \hat{M} satisfies Φ for k steps, then $M \models G\Phi$.
 - Else counter-example...
 - If valid counter-example, then $M \not\models G\Phi$.
 - If spurious counter-example, then refine abstraction (expand U) and restart.
S2W can verify components of real hypervisors and emulators.

All experiments are performed using UCLID verifier with Plingeling SAT solver backend.
Bochs TLB + Paging unit

Property Φ

$$\Phi_6 \equiv \forall v, p, r. \ (vaddr = v \land pl = p \land rwx = r) \rightarrow$$

legal $\rightarrow ((\text{pagefault}_{\text{TLB}} \Leftrightarrow \text{pagefault}_{\text{noTLB}}) \land$\n
$$\neg \text{pagefault}_{\text{noTLB}} \rightarrow (paddr_{\text{noTLB}} = paddr_{\text{TLB}}))$$

Dependence set \mathcal{U}

$$\mathcal{U} = \{\text{legal}, \text{TLB}[v], \text{mem}[v], \text{mem[mem[v]]}\}$$ (7)

subsequence check takes 1.5 hours, BMC takes 28 minutes
Shadow Paging

Property Φ

$$\Phi_1 \doteq \forall i. (sPDT[i].p \land sPDT[i].pse) \rightarrow sPDT[i].addr < \text{LIMIT} \quad (8)$$

$$\Phi_2 \doteq \forall i, j. (sPDT[i].p \land \neg sPDT[i].pse \land sPT[j].p) \rightarrow sPT[j].addr < \text{LIMIT} \quad (9)$$

Dependence set \mathcal{U}

$$\mathcal{U} = \{sPDT[a_i], sPT[a_j]\} \quad (10)$$

diameter $k \leq 4$
gadget check takes 60 seconds, BMC takes 5 seconds
Property Φ

$$
\Phi \equiv \forall a. \ (addr = a) \rightarrow legal \rightarrow \\
(out_{cam}^{\text{present}} \rightarrow (out_{cam}^{\text{data}} = out_{mem}^{\text{data}}))
$$ \hspace{1cm} (11)

Dependence set U

$$
U = \{ \text{legal}, \ cam[map[a]], \ mem[a], \ map[a] \}
$$ \hspace{1cm} (12)

$\text{diameter } k \leq 5$

subsequence check takes 5 seconds, BMC takes 4 seconds
And Some Other Hypervisors...

SecVisor
- Execution integrity: Only approved code runs in Kernel mode
- Proved via 1-step induction in 2 seconds

sHype
- Chinese Wall policy as implemented in Xen hypervisor
- Proved via 1-step induction in 6 seconds

Summary

• Contribution: S2W, a semi-automatic procedure for verifying systems with unbounded data structures
 • Abstraction-based model checking
 • Heuristics for creating an abstract model
 • Heuristics for computing the reachability diameter bound

• Ongoing work:
 • Model Validation
 • Generating term level models from C++
 • Automatic construction of gadgets

• Case studies available for download at uclid.eecs.berkeley.edu/s2w