Game-Theoretic Models of Electricity Theft Detection in Smart Utility Networks
Saurabh Amin, Galina A. Schwartz, Alvaro A. Cárdenas, and S. Shankar Sastry
“Historically, widespread energy theft is characteristic for developing countries, with theft of electricity reaching up to 50% in some jurisdictions.”
Types of Electricity Theft, or “Nontechnical Losses”

- Errors of utility personal or an operator (human error, honest mistakes)
- Customer theft
- Customer non-payment
- Theft by noncustomers
Ways of Recovering Nontechnical Losses

• Imposing higher electricity tariffs on paying customers
• Decreasing profit margins of the distributor (usually a regulated monopoly, due to the physical requirements of distributing electricity)
• Distributing the burden to the entire society using taxes
Meter Data Management (MGM)

- Span the range of very simple (this paper) to complex machine learning techniques
- Does not have the capability of catching illegal line-taps, just meter tampering
 - Paper did not acknowledge this
This Paper’s Goal

- Goal of this paper is not to develop an advanced learning technique, but to evaluate the monitoring choices for any given detection technique.
- Uses game theoretic models to model the adversarial nature of consumers and distributors regarding theft detection.
- The game is a leader-follower game in which the distribution authority is the leader chooses the prices and how much to spend on theft pursuit, given
The Game

• Leader-follower game

• Leader: Distribution authority
 – know just the percentage of its customers that are fraudulent
 – Chooses the prices, penalties, and how much to spend on theft pursuit

• Follower: Customers who are in a position to be fraudulent due to meter quality, network defects
 – Know prices, penalties, and how much utility is spending on theft pursuit
 – Choose how much power to buy and/or steal

• Considers two environments:
 – Unregulated Monopoly
 – Perfect Competition
Explicit Assumptions

• All customers are either f-type or g-type
 – f-type customers are in a position where it is easy to steal (cheap meter, unprotected grid)
 – g-type customers are not in a position where they can steal electricity
• g-type customers all share utility function, f-type customers all share a utility function
• Every customer has the same u preferences
• Distributor knows the percentage of f-type to g-type for the whole network, but not can’t distinguish on an individual basis
• Monitoring and enforcement cost $
• Meter measurements for g-type customers are i.i.d. exponentially distributed (also looks at gaussian distribution)
• f-type could be subject to fines unfairly if they are a false positive (charged for power they didn’t steal)
 – So it is not necessarily better to be an f-type or g-type
Implicit Assumptions

• All customers have the same ethics and are utility maximizers → no ethics
• Behavior is only a product of the market, no other factors (e.g. peer pressure, fear) are relevant
Exponential Distributions and ROC Curves

FIGURE 2 The computation of detection probability ρ_D and false alarm probability ρ_F.

FIGURE 3 Received operating characteristic curves (ρ_D versus ρ_F) for different levels (that is, $q_i^s/q_g \times 100\%$) of stealing by type-f customers.
Better to be f-type or g-type?

FIGURE 5 Isolines of 60% and 67% stealing levels and favorable regions in which type-f customers obtain higher surplus, relative to type-g customers. For $F_p > 1.1$ and $\rho_F(\ell) < 0.265$, the (solid-boxed) isoline for 60% stealing level is inside the region bounded by the dashed-boxed line, that is, the region where type-f customers obtain higher surplus, relative to type-g customers. The corresponding ranges for 67% stealing level, that is, the intersection of the (solid-oval) isoline with the (dashed-oval) favorable region boundary, are $F_p > 0.9$ and $\rho_F(\ell) < 0.34$.
Optimal Monopolist Distributor Behavior

- Reminder that increasing pursuit investment also increases the number of false positives
Optimal Monopolist Distributor Price, Profits

FIGURE 7 Optimal (equilibrium) choices of a monopolist distributor: per unit price p^* and l (or, equivalently, $\rho_D(l^*)$) for $\beta = 1.0, 1.5, 2.0, 2.5,$ and 3.0 and $F = 2.0$.

FIGURE 8 A monopolist distributor’s optimal profit $\pi_{\ell}^{m^*}(p^*, l^*)$ versus $\rho_D(l^*)$ for $\beta = 1.0, 1.5, 2.0, 2.5,$ and 3.0 and $F = 2.0$.
Optimal Distributor Price, Perfect Distributor Competition

• Profits = 0

\[\pi^c = A + (p - c)q_g(p) + \lambda(-pq_f^S + F\rho D(\ell, q_f^S)) - \psi \ell = 0, \]

• Optimal percentage to steal:

\[q_f^{st} = \frac{1}{(p^t)^2} (1 - y(p^t, \ell^t)), \]
Comparing Monopoly vs. Competitive Market

• For both, stealing level increases as electricity charge increases (expected)
• For both, stealing level increases as fines imposed decrease (expected)
• Monopolist distributor environments have larger portions of electricity stolen (f-types are going to steal more electricity) as the distributors theft pursuit investment decreases than Competitive distributive environments
• For scenarios where the false alarm rate is limited (and therefore limits theft-pursuit investment)
 – For cases when optimal investment levels are lower, the monopolist distributor chooses a higher electricity price
 – For a given marginal cost of monitoring and fixed fraction of fraudulent customers, the distributor’s equilibrium profit increases with level of investment
Questions?