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Abstract

A force strategy developed by Fearing [1986b], for automatically
grasping two dimensional polygonal objects with a dextrous hand
with point contact with friction is shown to be applicable to three
dimensional polyhedral objects. The algorithm essentially con-
sists of position control of one finger and force control of the other
along the internal force directions. Basic geometric constraints on
the object are obtained for feasible grasping with two fingers. It
is observed that when an ob ject is rotated about the line passing
through soft finger contacts, the fingers slip on the object in a
simple predictable trajectory.

1 Introduction

The dexterity required for many assembly operations is not met
by parallel-jaw type hands. To meet this need, various dextrous
hands have been developed, e.g. Salisbury [1982] and Jacobsen
et al [1985]. Most proposed grasping algorithms for these hands
require detailed knowledge of the object’s shape, location, and
orientation. A grasp acquisition algorithm is a method of con-
trolling the fingers which leads to a stable grasp of the object. A
grasp is defined as stable if the object is in equilibrium and there
is no slip any of the fingers.

The use of sliding in manipulation tasks was promoted by
the 1982 work of Mason [1986] and later by Peshkin [1986, 1987].
An algorithm for automatic stable grasping of polygonal ob jects,
in the absence of local information, with two fingers with point
contact with friction was developed by Fearing [1986]. The cen-
tral idea was to squeeze along the internal force directions. That
paper shows how the object motion occurs upon such grasping,
starting from any initial condition, and determines the geometric
constraint on the polygonal object that has to be satisfied for a
stable grasp. An automatic grasping technique based on push-
ing with line contacts is discussed by Brost [1986]. Trinkle [1988]
looked at grasp acquisition while lifting objects against gravity.
Brock [1988] discusses reducing grasp constraints to allow slipping
in preferred directions.

To constrain an object we need six independent forces. Each
finger, if point contact with friction is assumed, can produce three
forces, with the constraint that the normal force is always posi-
tive, and the force is within the friction cone. If enough friction
force can be achieved (by, for instance, increasing the internal
forces), and if the object is convex, then with two fingers we can
counter any force/moment except the moment about the line pass-
ing through the contact points. If we assume soft fingers, even this
restriction is removed. (Soft fingers [Salisbury and Craig, 1982]
can in addition resist a moment about the axis between two fin-
gers. Thus two soft fingers can completely restrain the object.)
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The precondition for achieving any frictional force is that the
internal force lie within the friction cone. If rotation of the object
occurs during squeezing, then the internal force will lie on the
friction cone. Then there will be a certain amount of slipping
before any external force can be resisted. This is discussed in
section 3.

It is worthwhile to determine the geometric constraints that
have to be satisfied to acquire any object into a grasp. This is
done for the case of two fingers with point contact friction for
polygonal objects in [Fearing 1986b]. In the present paper that
constraint is shown to be valid for convex polyhedral objects as
well. If the surface normals at contacts form an angle less than or
equal to twice the friction cone angle the object can be acquired
and grasped with only two fingers. It is intuitively apparent that
with more fingers this constraint will be relaxed. Extra fingers are
costly, so it behooves us to study acquisition with the minimum
number. Extra fingers can be used for regrasping.

Section 2 analyses the behaviour of the object under the
internal-force-algorithm. Section 3 explains limiting or marginal
stability of the resulting grasp. Section 4 describes the phe-
nomenon of fingers walking about, as a polyhedron is rotated in a
two finger grasp.

2 The Grasp Acquisition Method

2.1 Nomenclature and representation

We denote the normal to the surface at finger 1 by fi; and that
at finger 2 by —fig. (The unit vector at the second finger is
directed into the object- this simplifies the geometry). The unit
vector along the line from finger 2 to finger 1 is denoted by F.
The directions of the forces on the object at finger 1 and finger 2,
respectively, are —f; and +f3.

The angle between © and fj is «;, where i = 1,2 is the
finger number. v is the angle between Ay and fiz, which is the
angle between the two contacting surfaces. It is a constant for
polyhedral objects during the grasping operation as long as the
contacts remain on the same faces. The friction cone angle is
denoted by ¢,. For simplicity the difference between kinetic and
static friction coefficients is neglected. The angle between f; and
f is 7;. Because the forces on the object must be within or at
the edge of the friction cone, 71,72 < ¢, always.

In this paper the analysis is done geometrically, using
spherical triangles to represent angles beiween unit vectcrs —
Lakshminarayana [1976]. In this representation the direction of a
unit vector is mapped to its corresponding point on a unit sphere.
The point on the surface is the location where a unit vector at
the origin intersects the surface of the sphere. {For example, 2 is
mapped to the north pole of the sphere). The angle between two



Figure 1: Polyhedral Representation
1 is the angle between the two faces, and 7 is the skew of the line
between the fingers from the polygonal case.

Figure 2: Spherical Triangle Representation
Great circles connect points (representing directions) on the sur-
face of the unit sphere.

vectors is represented by the arc of the great circle containing the
two vector ends (Figure 2).

2.2 Graspability

For any stable grasp we need equilibrium of forces and moments.
This necessitates that the forces be equal and opposite, and that
the lines of action of the forces coincide (Figure 3a). ie f; = f =
#. Thus a; = 71, and az = v, at equilibrium.

Now for a stable grasp ay,71,a2 and v, < @, (i.e. fa - 0ig <
cosgs.) Graphically this restricts the location of t to within the
shaded area shown in Figure 3b. It shows spherical circles of
spherical radius ¢,.

As 1 increases, for a given ¢,, the shaded region (the possible
directions of # for stable grasping) decreases, and in the limit
vanishes. This limit for ¥ is obtained when the two spherical
circles touch each other, wherein we obtain ¥,nar = 205,.

This can be shown rigorously using the spherical triangle for-
mulae developed by Lakshminarayana [1976]. We denote the angle
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Figure 3: Spherical Triangle for Stable Grasp
a. Finger forces are coincident with the line between the two
fingers. b. Range of # for no sliding is shown in the shaded
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Figure 4: Maximum Angle Between Two Planes
At the limiting angle, ¥4z, the object can barely be grasped.
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between the plane of ( fig, # ) and ( #,ii; ) as . Then we have
COS Y = COS (1 COS (xg — Sin @y sin g cos €

For a stable grasp a; and a; < ¢, < 90deg. Therefore
cos v1,c0s ap,8in @ and sinag > 0. ¥ is maximized when cos ¢ is
minimized. Considering the first term we see that cos o cos ay is
minimum when @ = @mar = @, and similarly as = @omar = @s.
This also maximizes the sin oy sin a5 part of the second term. The
only variable is £. For any given £, we have maximum ¢ given by

cos L/:maz|5 = cos? ¢, — sin? @, cos & + sin® o,

€08 Vmaz|e = €0S 204 + sin® ¢,(1 — cos €)
13

Thus ¥ynaz, over all € is obtained when 1 — cos ¢ is minimum, ie,
& = 0, wherein we get
Umaz = 20,

Thus the graspability condition for a polyhedral object
with two fingers with point contact with friction is that
the angle between the two contacted planes be less than
or equal to twice the friction cone angle. (Also shown by
[Nguyen 1987] for two soft fingers).

It is also to be noted that at the maximum angle between
planes, © is forced to be on the spherical line from hj to ng —
that is #,ii; and fip are in a plane as in the polygonal case.

2.3 Grasp Forces

We shall consider only those objects that are graspable as defined
in Section 2.2. We now apply the algorithm proposed by Fearing
1986a : assuming that finger 1 has a controllable stiffness, we
write the force at finger 1, in spherical coordinates, as:

Fro+ ke(Ar) ]

kor sin o( A8)
ker(Dg)

F =

where r,0,¢ are the spherical coordinates of finger 1 with respect
to finger 2 which is at the origin. We set kg,ky — o0, and k, —
0. Thus the line of action of the fingers does not change during
grasping, that is the # in the spherical triangle representation
remains fixed. The object, however, moves, and hence so do iy
and fig. Note that finger 2 is fixed in space, thus the force at
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Figure 5: Forces for Slipping at Finger 1
a. Reaction force at finger 1. b. Reaction force at finger 2, on
edge of friction cone. If finger 1 is not slipping, f; would be inside
the small circle representing the friction cone.

finger 2 is due only to the reaction force arising out of the position
constraint.

We first identify the relative positions of ¥ with respect to
the normals for the three cases of no slip at both fingers, slip
at one finger alone, or slip at both fingers. These cases of slip
or sticking at fingers are determined by reaction forces produced
when applying a force at finger one alone.

2.3.1

If finger 1 is slipping, the direction of the force on the object
at finger 1 (f; ) is on the edge of the friction cone, represented
as the small circle of spherical radius ¢, with fi; as its center. In
other words, fy lies in the plane of # and fy represented by the
great circle through # and fi;. Thus the location of f; is on the
intersection of the two circles (Figure 5a).

For equilibrium, the reaction force at finger 2 will be in the
fy direction (direction of force at finger 1). Thus fa lies in the
plane of f; and fig, represented by the great circle arc from fig to

f; in Figure 5b.

Reaction force at finger 1 and finger 2

2.4 Which Fingers Slide?

We can now identify the regions of  where we would haveslip at a
finger. In Figure 6, the shaded region shows the allowed directions
of ¥ for the 4 slip combinations. The regions are referred to by
the corresponding letter label.

Note that region B, that is slip at finger 1 alone, does not
include the whole friction cone at finger 2. Because f; is slipping,
f; will be on the edge of its friction cone, not pointed along f.
The force at finger 2, Tz is a reaction force, which must be on a
great circle between f; and fig, and inside the friction cone at the
second finger.

Now we consider the behavior of the object with each of the
regions as the starting region. In the analysis we assume quasi-
static behavior of the object.

2.4.1

This is the trivial case when we start in a stable grasp right
away. Both finger forces are within the friction cone.

No Slip (Starting from region A)

2.4.2 Slip at Finger One (Starting from region B)

In this section we have equilibrium of forces, though not mo-
ments, i.e. f; and fy are the same, but not colinear. ( f; is at
the intersection of the great circle from fj to © with the fric-
tion cone circle. This intersection point gives the instantaneous
direction for sliding. f3 is a reaction force that will be opposite
in direction from f; for quasi-static equilibrium, and thus at the
same point on the unit sphere). For sliding at finger 1, the force
angles y1 = ¢, and v, = some 7 < ¢,—Figure 7b. We note that
the moment about finger 2 is perpendicular to the plane of # and
f1,f2 — which is the same as the plane of # and fy. This tends to

Figure 6: Location of # for Slip
a. region A: no slip at both fingers. b. Region B: slip at finger 1
alone. c. Region C:slip at finger 2 alone. d. Region C: slip at both
fingers. The boundary lines in b. are great circles passing through
fiy and the intersections of the two small circles of spherical radii
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Figure 7: Rotation of Object Being Grasped with Slip at
Finger 1

a. For slipping at finger 1 but not Finger 2, force must be on
edge of friction cone, in region B. b. As finger 1 slips, # rotates
along great circle towards f; point. c. Final grasp. d. Spherical
triangle representation.



rotate the object so that fy,f3 coincide with . Every point on the
spherical line between fi; and fiz moves along circles containing
the point and parallel to the great circle containing # and fiy. In
fact, the spherical triangle of fig,i; and f rotates as a whole, to
align f with #. The final position is shown in Figure 7c.

Denoting the angle between the plane of #, fi; and fiy,f3 by
n as in Figure 7d, spherical triangle solutions give

Ng.F = cosag = cos ay cos Y — sin ay sin Y cosn (1)
At the final position, the force at finger 1 will be at the edge of

the friction cone, (with ay = 4, = ¢,), and the force at finger two
is

COS Y2 = COS ¢4 COS Y — Sin P, sin ¥ cos N (2)

If we write ay/ = oy — 3, where 3 is the rotation of the object
about the axis (# X ny), @/ is the instantaneous a:

COs g/ = COS @1/ oS Y — sin ay/sin Y cos n
simplifying,
cos ap! = cos 3 cos ag + ¢1 sin 3

where ¢; = sinaj cos ¥ + cosag sin cosn = a constant. c; is a
constant because 7 does not change during rotation. Thus

cos arg/ = cos(é — ,’3)\/c052 ¥ 4 sin? 4 cos2 g

, where tand = ¢,/ cos
We note that the relation between s/ and 3 is not linear
except for n = 0, the case of a polygon as shown in [Fearing 86].

2.4.3 Slip at Finger 2 (Region C)

With slip at finger 2, there will be a moment in the ( #,iig )
plane. Since there is no slip at finger 1, it must be the rotation
center. The rotation about finger 1 brings # closer to the friction
cone about fig.

2.4.4 Slip at Both Fingers (D)

Only a geometric analysis of the behavior is presented here as
the equations become complex. We first note that the forces at the
two fingers cannot be equal (because the reaction force at Finger 2
is outside the friction cone), and thus we have nonequilibrium of
forces and moments. Thus f; and fy are distinct. Therefore we
have two components of the moments. One is perpendicular to
the plane of ( #,iiy ), and the other is perpendicular to the plane of
( fig,fy )—Figure 8. The first moment tends to rotate the object
so that f; moves towards £, while the second moment tends to
rotate f such that it moves towards f1. Depending on the relative
weights of the two component moments we would end up in either
region A, B, or C. From region B or C we would eventually end
up in the desired region A as discussed previously.

Once slip stops at one finger, the acquisition will not return to
the two finger sliding case. The trajectory taken by  will depend
heavily on the stiffness and friction properties of the fingers. The
important consideration is the endpoints, that is eher the object
will become securely grasped. The acquisition will be successful
if ¥ < 2¢,.
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Figure 8: Rotation with Slip at Both Fingers
3 Marginal Stability

What is the ability of the grasp resulting from the squeezing al-
gorithm to resist external forces and moments? Except when the
starting grasp is stable, the grasp acquisition ends up with & be-
ing aligned with the friction cone at finger 1 (neglecting dynamic
effects). With one finger force at the edge of the friction cone, a
moment that pushes the force outside the friction cone can not
be resisted. Thus not all external forces can be resisted by simply
increasing the internal force. (In our case we need to increase the
radial force, or k,).

However this is not as serious as it seems to be. Whenever
there is an external force / moment that produces a reaction that
is outside the friction cone at any finger, there is sliding at that
finger. If the disturbance force is of a limited magnitude, the re-
sulting rotation of the object brings the reaction force back into
the friction cone. Thus if a certain amount of slipping at the
fingers is acceptable we would be able to resist external forces /
moments other than the moment about #. It is because of this
slipping that we call this grasp marginally stable. If the distur-
bance force is removed, the object will rotate back to a stable
grasp, probably in a new position.

Thus the squeezing algorithm is sufficient to achieve a stable
grasp of polyhedral objects, in the absence of disturbance forces,
as long as the geometric constraint is satisfied, ie 1» < 2¢,. With
truncated vertices, it is possible for the fingers to slip totally off
the sides and touch each other. When that is recognized — based
on, for instance, a threshold for the distance between the two
fingers, we would need to start over again with a different initial
grasp.)

By increasing the radial force arbitrarily any external force
can be taken care of — the marginal stability is ensured if a small
amount of further slipping can be tolerated.

4 Slip during Yaw Motion

Fearing[1986a] mentioned object rotation relative to the fingers
about the line passing through the contact points, a so called yaw
motion. With point contacts one foresees no problem in this — we
use the a third finger to provide the turning moment. However,
in practice it is difficult to have a point contact. Therefore we
examine the effect of soft fingers on the yawing motion.

The stable grasp algorithm with point contacts is applicable
with soft fingers if the area of contact is not unreasonably large.
The rotation about #, however,is interesting. If the ob ject is ro-
tated, the fingers siip and translate on the object. The direction
of the translation depends on the force applied to cause rotation
of the object. An intuitive explanation is given for this walking
about of the fingers on the object follows.
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Figure 9: Contact Tangential Stress Assumptions
The figure shows the tangential stress distribution on the object
due to: a. Radial force, the force being directed into the object.
b. Superposition of the rotational and tangential stress fields.

4.1 Soft finger contact

A soft finger tends to assume the shape of the contacting surface.
If we have a spherical finger tip the area of contact will be a circle
on the planar surface of the object by Hertzian contact modelling.
If we have only a normal force, by symmetry we When there is
a tangential force there might be a skew in the circle, but we
neglect it here (the actual nature of the contact would require a
very complicated elastic analysis).

The soft finger is made, in general, of a material like rubber.
For ease of analysis we will assume a constant pressure distribu-
tion on the contact. This constant pressure hypothesis is called
the very-soft-finger approximation [Howe et al 1988].

Consider a polyhedron grasped with two soft fingers. We
assume Coulomb friction, thus we have a uniform tangential stress
in the direction of f in the plane of the contact. (The exact
distribution is again a complicated elasticity problem).

Consider a single soft finger tip pressed against a plane.
When a pure torque is applied by the finger, the resulting tangen-
tial stress is distributed symmetrically about the contact radius,
and proportional to the distance from the center of contact. (The
tangential stress could be considered proportional to the virtual
displacement about the rotation center). This is true when there
is no slip. However, once slip starts the stress becomes constant
and equal to the shear slip limit slip, and starting from the cir-
cumference of the contact circle the slip region progresses towards
the center of contact, until the magnitude of the stress becomes
the same ( = pg,p) throughout the contact area [Cutkosky and
Wright, 1986].

4.2 The Contact Trajectory

When the normal force, the tangential force, and the applied
torque act together, we superimpose the effect of each of these
to obtain the combined effect. (This is a coupled shear and mo-
ment assumption. See Jameson [1985] and Howe et al [1988] for
more accurate approximations). Without loss of generality, we
shall analyze the case when stress due to the pure radial force is
along the positive X direction(as in Figure 9a). From the super-
posed stress distribution (Fig. 9b) we see that the bottom most
point ( B ) has the minimum tangential stress and the top most
point ( 7' ) has the maximum tangential stress. If there is relative
rotation, the rotation center has the minimum tangential stress,
and all the other points have stress in directions perpendicular to

Figure 10: Rotation of Object Grasped with Soft Fingers
The fingers slide down the object as it rotates.
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the radius from the rotation center.

We observe that by superposition we have the center of ro-
tation to be on the line perpendicular to the plane of & and n.
Let us call the line L. The rotation center can not be outside the
contact circle because if it were, it would imply that all the points
on the line L inside the contact circle are slipping. For all points
on L to slip, they would need to have a tangential stress greater
than what they had before the pure torque was applied. But that
is not possible because we started with the tangential stress at
all points within the friction cone (a stable grasp), and the ad-
dition of a pure torque about the center of contact can not add
tangential stress in the same direction throughout the line L.

The exact location of the center of rotation within the cir-
cle needs a more elaborate analysis, which is not attempted here.
We will assume a worst case condition, that is, the instantaneous
rotation center at the edge of the circle of contact. Future elastic
analysis should be done to determine the location more exactly.
Let us look into the equation of motion of the center of the fin-
ger with respect to the surface of the object. ‘O, the center of
the circle of contact, rotates at every instant about the point B,
defined by the intersection of the line L and the circle of contact.
L itself is defined as the line on the surface of contact and pass-
ing through O and perpendicular to the plane of f and f. In a
stable grasp, without the presence of disturbance forces, f=t
and hence L is just perpendicular to the plane of # and fn. This
is kinematically equivalent to a circle rolling on a straight line
parallel to the plane of f and f, at a distance equal to the radius
of contact. (Fig. 10). Thus as the object rotates, the fingers have
net slip down the slope of the polyhedron. (This is kinematically
equivalent to rotation about the center of contact and a tangential
slip, effectively due to a reduced tangential coefficient of friction
when a moment is applied [Howe et al 1988]).

Now in practice if we use the third finger to apply a torque
we also have a disturbance force. This disturbance force causes
the direction of f and # to differ and therefore we get a line that is
not parallel to the plane of  and f. The deviation depends upon
the force applied by the third finger. As the moment required to
cause rotation is fairly constant for a constant normal force, the
location of the third finger assumes importance.

We notice in experiments that the first finger travels towards
the third finger, with increasing slip as it nears the third finger
(that is, as the moment arm becomes shorter). Thus we have the



Figure 11: Sliding Trajectory with Two human Fingers
Results from preliminary experiment, as pyramid is rotated, fin-
gers slid on surface in pattern shown. Fingers were coated with
copy machine toner.
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walking about of the fingers on the object. An initial experiment
with a human grasping a truncated pyramid gave rise to an in-
teresting pattern of finger sliding and rotation along the object
surface. See Figure 11. Since a varying magnitude force and not
a pure torque was applied, the trajectory is not a straight line.

5 Conclusions and Discussions

The grasp acquisition algorithm proposed by Fearing[1986] for
polygonal objects seems to be a natural grasping algorithin, where
the same algorithm results in a grasp which can resist external
disturbances. This algorithm was examined with respect to poly-
hedral objects, and is valid when sides adjoin or are long enough
such that fingers don’t slip off, and the angle between faces is less
than twice the friction angle.

The manipulations such as rolling that were discussed for
the polygonal case [Fearing 1986a] have not yet been analyzed for
three dimensional objects. However it is expected that the flavor
of the analysis should be the same.

Rotation of the object about the axis between two fingers,
the yaw motion, was discussed. This led to the observation that
the fingers walk about on the object if soft fingers are used. In
this paper, an intuitive explanation of the phenomenon is given,
which agrees reasonably with experiments.

There were quite a few assumptions made to preserve the
simplicity of the analysis. First of all, we had the quasi-static
behavior assumption. Though this assumption is pretty much in
vogue, future work may remove this assumption advantageously.
Similarly, the uniform pressure distribution under the very soft
finger assumption is quite inaccurate. A more elaborate elas-
tic/plastic analysis of the fingers could be made.

In this paper, a step has been made towards stable acquisition
and manipulation of polyhedral objects with minimum number of
fingers and minimum sensory information.
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Figure 12: Sliding Trajectory on 20 degrees Plane
An approximate pure moment is applied by hand, as object is
grasped with two circular rubber grommets.
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