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Abstract

This paper describes determining curvatures using a
cylindrical tactile sensor. The finger touches an unknown
convex surface. Principal curvatures, normal force and
location are determined from a 4 by 4 window of strain
measurements. Sensor strains are predicted by convolv-
ing the spatial impulse response of the rubber skin with
the assumed surface pressure distribution derived from a
Hertz contact model. Gradient search finds the parame-
ters of the convex second-order shape and the force that
best fit the sensor data. Experiments show radius estima-
tion within 109, orientation within 2.5 degrees, and sub-
tactel localization 3% of the element spacing. We derive
accuracy limits due to sensor noise.

1. Introduction

Local contact information is important for dextrous mani-
pulation with multifingered hands. Surface features useful for
grasping, such as edges and corners, can be identified by their
high curvatures. Curvature also provides useful information
for object identification and shape description. There has been
little work in determination of curvature using tactile sensors.
Speeter [1987] simulates using second differences of the strain
profile to determine radius of a sphere. Montana [1986] sug-
gests finding surface curvature by rolling a sensor without slip-
ping about a contact. Driels [1986] and Shekhar et al [1986]
found line orientation on a flat array. Brock and Chiu [1985]
found surface patch orientation using repeated location meas-
urements with a force sensor. The only tactile array curvature
experiment found in the literature is Gurfinkel et al [1974] who
used a 3X3 tactile sensor to find curvature using second
differences of deflection.

Fearing [1987a] described sub-tactel localization, recover-
ing normal and tangential forces, and determining line orienta-
tion on a cylinder. Inverse filtering strain measurements to
determine surface deflection was considered in [Fearing,
1987b], but is limited by the low-pass nature of the elastic
medium. Curvature is available from surface deflection by
fitting a second order surface. This paper uses a non-linear
inversion of sensed strain to obtain surface shape, which is
constrained to be a paraboloid.
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Figure 1. Tactile Sensing Finger for the Stanford/JPL Hand

2. Sensor Implementation

A tactile sensor array was packaged in a molded rubber
finger tip (Fig. 1). The finger tip sensor uses an array of capa-
citors formed at junctions of perpendicular copper strips,
spaced at 3.3 mm along the length and 18° around the cir-
cumference, of which an 8X8 subset is used. 3.8 mm of
rubber covers the core and is essential to increase contact
areas and reduce aliasing [Fearing and Hollerbach, 1985]. The
rubber dielectric layer is a molded hollow structure (the
inverse of [Siegel 1986]). Details of finger construction are in
[Fearing et al, 1986 and Fearing 1987b]. Other cylindrical
fingers are described by [Allen and Bajczy, 1985] and [Begej,
1986).

After calibration, the sensor output is normalized to
determine equivalent strain at each tactel. The mean sensi-
tivity of the tactels is 0.4 gram with a 3 mm diameter probe,
and they are very linear up to 50 grams.
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Figure 2. Coordinate System for Cylindrical Sensor



3. Impulse Response Model

We use the plane stress approximation of Fig. 2. Con-
sider a slice of elastic material in the -z plane, with the
applied force constant in the y direction, and stresses on the

face ¢, = 0. For a normal line load on a linear isotropic
medium, the strain is [Timoshenko and Goodier 1951]:
_2Pd 2 9
e, (2) = d“-vz“|, 1
(o) = 2B 0 0

where P is the pressure per unit thickness of the slab in
Nm~! E is the elastic modulus, v is Poisson’s ratio, d is the
sensor depth, and r2 = d? + z2 Eq. (1) is the one dimen-
sional tmpulse response.
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Figure 3. Plane Stress Model and Experimental Data

An approximate line load was applied normally at 0.6
mm steps along = while recording one tactel (dots in Fig. 3).
Depth and Poisson's ratio parameters in (1) were adjusted to
best fit the normalized samples in the least-squares sense,
obtaining d = 3.8 mm and v = 0.4. The solid curve in Fig.
3 is the plane-stress model with these parameters, not an arbi-
trary best fitting curve. The root-mean-square (RMS) fitting
error is 1.3% of full scale. The sensor agrees closely to the
model, in spite of violating the small deflection assumption of
linear elasticity.

p(y)

Figure 4. Sensor Geometry Around Finger Circumference

To find the two-dimensional impulse response, the
cylinder is approximated by a plane (Fig. 4). The equivalent
sensor spacing in the y direction is r; sinAf = 3.9 mm, for
angular spacing of 18°, where r; = 12.7 mm is the finger
radius. The measured response is not circularly symmetric.
We do not have a theoretical model for the strain in the
cylinder, thus an empirical separable impulse-response is used:

h(zvy)———hz(x)hy(y)' (2)
We assume a plane stress model in 2 and y directions,

dzz(dz2—uzx2)

hy (z) = rwE (3)
dz?(d 2_y,y?)

h(y) = Nist L7 SRR SO (4)

Y (y2+ dyZ)Z

where d,,d, and v, v, are equivalent depth and Poisson’s
ratio parameters along the cylinder axis and around the cir-
cumference. 12X11 measurements were taken with a small
probe at 0.635 mm X 0.835 mm spacing along the 2 and ¥y
axes. Depth and Poisson’s ratio parameters were adjusted to
minimize mean square error between (2) and the normalized
samples, obtaining d, = 4.3 mm, v, = 0.5, d, = 6.0 mm,
and v, = 0.7. From [Gladwell, 1980, v, = 0.7 with plane
stress corresponds to Vy'= 0.4 with plane strain. Fig. 5
shows deflection contours over the centralized 8 X8 samples
comparing normalized model and experimental data. The
RMS error of the sample fit was 2.0% of full scale.
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Figure 5. 2D Model and Experimental Impulse Response

4. Determining Contact Shape

We want to determine curvature of a rigid indentor
pressing into a compliant finger. This section determines the
shape of the contact region. Using Hertz contact approxima-
tions [Timoshenko and Goodier, 1951], (bodies are locally
smooth and large with respect to deformation) the finger
cylinder is approximated by:

7 ~Cry? (5)



where 'y = -1/2R; , with R, the finger radius (12.7 mm).
(The finger axes are shown in Fig. 2). The body indenting the
finger is represented by

ZB =ABIL' 2+Cﬁy 2+5 (6)
where z , y are principal curvature plane axes, § is the

indentation depth, Ap = 1/2Rp and Cp = 1/2R'j, with
Rp and R'p principal radii of curvature of the body.

Figure 8. Cylinder Contact on Finger (Top View)

Rotating by the angle ¥ from indentor to finger coordi-
nates in (6), where % is defined in Fig. 6, and setting
z; = z2p (the two surfaces are intersecting), we obtain

2Ag ey + Cp s%Y] + 22y c ¥ syY[Ap - Cp]

+y%Cpe®+ Ags®-Cp| =46, (7)
where c® = cos¥, and st =siny.  Substituting
A =ABC2’¢+ CB 82’(,/). B=AE—CB' and

C = Cp ¢+ Ap %) — C} , we see that (7) is an ellipse:
Az? 4+ Bry + Cy*=1D . (8)

This contact ellipse has its major axis at the angle given by 0
[Thomas, 1968] (Fig. 6) where

B (Ap — Cp)sin2y

tan(20) = 1-C = (AB - C’B )00521/; +C’f

(9)

For a cylindrical indentor, Ap = 0. (8) is rotated by  to
obtain the major and minor axes of the contact ellipse:

z/ =A’II2+ ClyIZ (10)
with

A' = Ac20 + Bsfc 0+ Cs?0

C' = As%0 - Bsfc 0+ Cc20.

As Rp increases, the orientation of the contact ellipse no
longer corresponds to the orientation of the contacting
cylinder.

5. Contact Pressure
The pressure distribution corresponding to a frictionless

paraboloid indentation is an ellipsoid [Gladwell, 1980]:
2 2

3F - Yy ’

2mab a B b 2

plz' y')=

where @ and b are the major and minor axis of the ellipsoid

at z =0, F' is total force, and p( z',y') = 0 outside the

contact area. Fig. 4 shows this pressure distribution in cross

section. The length of the major axis of the contact ellipse
[Timoshenko and Goodier, 1951] is:

1

3F (1-4%) 3

¢ =m(A%) | Ao g

(12)

where E; and Ep are the elastic modulus of the finger and
indenting body respectively, and it is assumed that
Ep >> E; . The factor m(A', C') is determined from the
solution of the elastic deflection equation [Gladwell, 1980
which gives the contacting ellipse size. The solution uses the
complete elliptic integrals of the first and second kind, and are
tabulated in [Cooper, 1969], as a function of eccentricity of the
contact ellipse.

The elliptical contact can now be determined for a rigid
cylinder pressed into the cylindrical finger which has
E/ ~ 2.5%X10° Nm~2. For example, a 10 mm radius
cylinder with its axis at 45° to the sensor, pressed with F' =
IN gives a contact ellipse of 11.4 mm X 3.5 mm, oriented at
26° from the z axis. Fig. 7 plots contact ellipses at 15°
increments in cylinder orientation and 6 different radii for 1 N
of force. A line is drawn to show scale.

Note that this representation breaks down for parallel
axes, and a different formulation is needed [Gladwell, 1980].
Another limitation is that a predicted contact ellipse may be
longer than the finger, because the analysis assumes an infinite
length cylinder. When the contact becomes very long com-
pared to the finger length, the surface stress will be approxi-
mately constant along any cross section orthogonal to the
finger axis, and a two dimensional plane strain analysis should
be valid. The contact stresses for a cylinder pressing against a
plane were discussed in [Fearing and Hollerbach, 1985].
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8. Curvature from Strain

Estimated sensor strain in the model is obtained from
convolution of the sensor impulse response with the ellipsoidal
pressure distribution of eq. (11):

&z, y)="h(z,y)*p(z,y) (13)

where the planar approximation from section 3 is used. The
equations are outlined as:

RI!R,l»va a, b, 6, P\
contact — ellipsoid — (14)
parameters parameters
hz,y)
impulse | = ¢, (z,y)
response

where €, is the predicted strain. Using the a priori constraint
that the contact is a paraboloid, we want to invert (14) to
obtain contact parameters from measured strain values.

The tactile sensor discrete samples are represented by
e.[mn]=¢,(mAz,nAy) (15)

where Az & 3.3mm and Ay =2 3.9 mm are the sensor spac-
ing. The Mean Square Error (MSE) between model and exper-
imental values is calculated for a 4X 4 region of the array that
contains the peak strain value:

MSE = ¢ = (16)
1 1

— ¥ (& - 2,
4X4 max e, nm(ez (o]~ m])

This expression is normalized by the maximum strain meas-
ured on the sensor, so VMSE corresponds to the standard
deviation of each element’s fit to the model as a percentage of
the peak strain.

The MSE is minimized by a gradient search technique,
where the set of parameters for a cylinder including the center
position of the contact z,,y, is:

a7=[R1F"t‘r)a:o yo]T' (17)

The search is started from the interpolated center of pressure,
which corresponds to the peak strain location [Fearing et al
1986]. The interpolation error due to aliasing is +£0.4 mm
along z and +0.5 mm along y. The gradient adjustment of
position eliminates this position error.

The main point is to recover curvature from the cylindri-
cal tactile sensor, not to extract it in the most computationally
optimal manner, so slow convergence of the gradient method is
not a major issue. The error surface was examined for several
cases, and found to be bowl shaped locally, so techniques such
as Newton's Method could give faster convergence. In experi-
ments, the gradient search converges to the global minimum,
albeit slowly in some trials.

7. Sensitivity to Error

We examine cylinder radius and orientation estimation
limits due to sensor noise. Impulse response modelling errors
and limitations from the planarity and frictionless indentation
assumptions are neglected. We define 2 error vectors:

T
AR = [ARI, Ay, AF ] 5 (18)
the parameter estimation error, and the sensor error

T
A, = (Ae,qy, Acyg, - o0y Dby, A yy) (19)

We want to determine max AR , the maximum expected error
in the radius, force, and orientation estimates as a function of
max Ag,, the worst case strain sensor error. The measured
normal strain is represented as a vector function f ():

& = L(R,, ¥, ,F,). (20)

For small strain errors, f is expanded in a Taylor's
series about nominal values:

£ R, +A¢ =g, +J AR, (21)

where J is the Jacobian of f (). For a 4X4 array of sensors,
J is a 16X3 matrix. The least-squares matrix solution
[Strang, 1980] for AR is:

AR = (JTJU)Y1JT Ae, = A Ag, (22)

where A = (JTJ)'JT. JTJ is well-conditioned for the

measurement range used here.
With i.i.d. noise, the covariance matrix is:

Ap =A oI AT =AATe2 =0c2(JTJ)? (23)

where 0'62 is the individual sensor noise variance. We found
that sensor noise with no load is due to quantization [Fearing,
1987b]. The strain signal has quantization steps of 0.1%
(6, = +0.05%), corresponding to 0.3 gram sensitivity with
a 3 mm diameter probe.

Given bounds on expected sensor error (Ag, ), the worst
case expected error for each parameter is found independently.
Examining the rows of A, the maximum parameter change in
each element of AR will occur when Ag, is aligned with A;,
the 7 th row of A . That is

1

i
Similarly, maxAy = [44JA¢,| and maxAF =|A JAe,].

The length of the sensor error vector is simply

A, | = /AeTAe, < VN e, (25)

with N the number of tactels in the window. Thus
|Ag¢| < 0.2%. Note that error sensitivity may not be uni-
form. That is, the rows of A could be
AT =1[000 -+ 100], with all parameter sensitivity due to
error at a single tactel. However, the rubber skin spreads
strain to all sensor sites, and thus in practice error sensitivity
is well distributed over the central tactels in the window.

||>>

maxAR = AT Ae, = AT 1Aa¢,| =14 |Ae, | (29)

P~



Maximum bounds on each parameter are directly related
to the covariance matrix. That is, max AR, A%, and AF
are the diagonal elements of AA T, the covariance matrix (23).
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Figure 10. Strain Contours for 25 mm Cylinder at 70°

7.1. Error Dependence on Applied Force

Parameter estimation error bounds are evaluated using
quantization noise. Predicted errors in radius and orientation
estimation were numerically calculated as a function of force
for cylinders at 90° to the finger axis, with the contact loca-
tion half way between tactels (Fig. 8 and 9). Better perfor-
mance is obtained with increased contact force (improved S/N
ratio), and thus greater tactel output and larger contact area.
Radius estimates are not usable unless the force is greater than
about 50 grams. Angle error is reduced with a smaller diameter
cylinder, which is expected because the contact ellipse becomes
more eccentric, making orientation less ambiguous.

The bound on force error AF' was calculated as a func-
tion of applied force and cylinder radii (not shown). Interest-
ingly, force error is relatively independent of force, radius, or
angle of the contacting cylinder, and is < +1.5 gram. Error
bounds as a function of indenting cylinder orientation in the
range 30° to 150°, were determined for 1 Newton force. In
the central region (axes perpendicular), we expect less than
10% error in radius for a 12.5 mm radius cylinder. Errors
increase as the cylinder and finger axis get closer to alignment.
Localization error Az < 0.03 mm for a 14 mm diameter
cylinder pressed against the finger at 90°. This position error
is just 1% of the tactel spacing along the finger length.

8. Experimental Results

Curvature estimation was tested by pressing a cylindrical
probe normally into the finger, and measuring the 8 X8 tactel
array. The strains were linearized by a look-up table. The
residual sensor strain (hysteresis) was zeroed before each meas-
urement. A Delrin or aluminum probe is attached to a balance
beam, and the applied force is controlled to 5% by the weight
on the beam. The finger is mounted on a machinist’s table
and is positioned under the stationary probe. The table is
accurate to 25 pm in translation, and about 0.1° in rotation.

The low pass property of the skin complicates extracting
angle and radius information from strain. Fig. 10 shows con-
tours of constant strain for a 25 mm diameter cylinder applied
at 70° with 1 N force. It is apparent from this pattern that
heuristic methods of curvature or direction estimation are not
likely to be very successful.

The 4 impulse response parameters (d,,d, v, Wy ), the
modulus of elasticity, and the sensor spacing (determined from
design parameters 3.3 mm and 18°) are not adjusted by the

gradient search.

8.1. Cylinder Diameter

Cylinders were applied orthogonally to the finger above
tactel [2 4] to eliminate cell variation effects. Sect. 8.3 shows
that force and radius estimation are position independent.
Fig. 11 plots sensed versus actual cylinder diameter (details in
Table 1). Radius errors are < 1 mm, which agrees with the
error bound of Fig. 8, except for the 66 mm diameter cylinder.
The 66 mm cylinder contact ellipse is 9.9X 5.5 mm, which may
be too large for the planar assumption. Force is estimated to
about 10% except for larger diameters, but the error analysis
predicts AF < 0.015N. Gain variations from calibration may
cause this error. If estimates are close to the “maximum”
error then systematic error in the sensor model has more effect
than quantization.



Meosuring Cylinder Diometer
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Figure 11. Estimated Cylinder Diam. for ¢ = 90°

Table 1. Determining Cylinder Diameter for Contact at 90°

Diam. Force (N) | Est. Diam. Est. Force VMSE
0.3 0.5 1.1 0.42 3.00%
3 0.5 4.5 0.49 2.78%
7 1.0 7.0 0.96 2.15%

10 1.0 11.6 1.09 2.95%
14 1.0 14.2 0.91 1 1.56%
25 1.0 27.0 1.02 1.78%
32 1.0 30.8 1.07 1.69%
38 1.0 37.7 1.19 2.11%
66 1.0 60.6 1.18 2.16%

The RMS error (= VMSE ) in Table 1 suggests how well
gradient search fit a paraboloid indentor to measured strain.
RMS error of < 3% of full scale is good compared to the 2%
RMS fitting error for the impulse response of Sect. 3, and here
there are additional error sources. Better fit (lower RMS error)
seems to be correlated with better radius estimation.

The estimated ellipsoid width a = 2.25 mm for the 10
mm diameter cylinder contact is smaller than the 3.3 mm sen-
sor spacing. This sub-tactel “resolution’ is possible because
the surface deflection is a second-order function, and thus the
space of possible strain functions is constrained.

8.2. Cylinder Orientation

Good angle estimation was obtained with a 25 mm diam-
eter cylinder (Fig. 12). The cylinder was applied with 1N force
at a random position, not above element [2 4]. The random
position did not reduce accuracy; angle error Ay (£3° near
90°) is within predicted bounds of Fig. 10. Radius estimates
are unreliable as the cylinder axis gets close to the finger axis.
Here the predicted contact ellipse extends beyond finger
cylinder ends, but is still aligned with the tactile samples.
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8.3. Position Independence

A 14 mm diameter cylinder perpendicular to the finger
was moved along the z axis in 0.381 mm steps. The gradient
search (eq. 16) here includes position, and the plot of sensed
and ideal location is shown in Fig. 13. Residual errors are
< +0.1 mm, or just 3% of the tactel spacing. Since the sensor
is hand fabricated, the sensor spacing may be 3.2 mm instead
of the ideal value. Note that the cylinder indents into the
finger about 0.4 mm, which is a significant position change
when compared to the localization.

The radius estimate for this experiment seems to have
random fluctuations (< +0.5mm) as a function of position.
The force estimate has little variation (< +0.05 N) and is con-
sistently low, which may be due to a balance beam or model
error. Contact location dependencies were not seen.

8.4. Determining Both Principal Curvatures

The previous sections used the cylinder-contact con-
straint. We now find both curvatures, R, and R,'. Since
there is one more parameter to find, we might expect noisier
estimates, because our measurement set is statistically less
adequate. Note that the ellipsoid space (two axes, one orienta-
tion, one amplitude) has enough dimensions to be unique for
every curvature and force combination. The contact ellipse
may be the same for different surfaces, but the amplitude of
the ellipsoid will distinguish between them.



Experiments with three spheres are summarized in Table
2. The contact ellipse is aligned with the z and y axes, as
expected. The curvature error was greater in the circumference
direction (R'), as expected due to the lower frequency response
along y. R' for the large sphere was estimated rather poorly.
Radius error bounds for the 28.5 mm radius sphere in the y
direction, AR, was found to be 8 times the radius error AR
in the z direction. With a 1 N load, AR is about 1.5 mm,
which explains some of the R' error. Another error source is
the Hertz contact assumptions when contacts are large com-
pared to finger size. The cylinder constraint is not necessary
for proper convergence; as seen in Table 2 for a 25 mm
cylinder, we found R within 25% and R' >> R.

Edges and vertices are interesting features which provide
secure grasping points and can be characterized by a very
small radius of curvature in at least one direction, (see Table
2). For a plane we sensed two large contact radii, but the con-
tact is parallel to the finger axis, and therefore suspect. This
is the same as a large cylinder aligned with the finger.

Table 2. Determining Both Principal Curvatures.

Object R R! Est. R Est. R' +MSE
sphere 1.5 1.5 11 0.1 2.03%
sphere 18.5 18.5 20.3 22.2 1.77%
sphere 28.5 28.5 25.7 52.8 3.30%
knife 0.2 >>1 0.5 41.0 3.30%
cyl. edge ~0 125 0.8 220 4.65%
cylinder 125 >>1 15.5 2003  1.67%
plane >>1 >>1 150.0 11.7 5.18%
vertex ~0 ~0 0.0 0.0  5.08%

9. Summary and Future Work

Experimental results show accurate angle determination
to £3°, for cylinders. Radius estimation is fairly good, +2mm
or so when the cylinder is at right angles to the finger. Force
sensing is the least accurate, although 10% is usable. It would
not be easy to servo on the force estimates because of elastic
hysteresis, and the computational complexity.

The experimental conditions tend to give a best case per-
formance. The cylindrical probe was aligned horizontally and
normally to be directly above the finger. The forces were large
enough to be outside the quantization level, but small enough
to be close to the sensor linear range. The probes were smooth,
thus the frictionless indentation assumption is reasonable.

There are many modelling errors. Gain calibration is
only accurate to 5%. Copper strip positioning during fabrica-
tion causes sensor position errors. The measured ‘‘strains’ are
really large scale deflections, not infinitesimal quantities. The
separable impulse response model is wrong, and can cause
problems for contacts that are not along one axis.

The sensor sensitivity and density is adequate for
estimating cylinder diameters and orientation, and diameters
of small spheres. The algorithm should be expanded to handle
cylinders in alignment with the finger axis, and any case where
the contact goes to the end of the finger. A new rubber
material would reduce hysteresis and increase stability. When
the curvature sensing runs in real time, it will be quite useful
for high-level tactile feedback with the Stanford/JPL hand.
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