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Abstract— In this paper we address the problem of multi-
robot localization with a heterogeneous team of low-cost mobile
robots. The team consists of a single centralized observer with
an inertial measurement unit (IMU) and monocular camera,
and multiple picket robots with only IMUs and Red Green Blue
(RGB) light emitting diodes (LED). This team cooperatively
navigates a visually featureless environment while localizing
all robots. A combination of camera imagery captured by
the observer and IMU measurements from the pickets and
observer are fused to estimate motion of the team. A team
movement strategy, referred to as inchworm, is formulated
as follows: Pickets move ahead of the observer and then
act as temporary landmarks for the observer to follow. This
cooperative approach employs a single Extended Kalman Filter
(EKF) to localize the entire heterogeneous multi-robot team,
using a formulation of the measurement Jacobian to relate
the pose of the observer to the poses of the pickets with
respect to the global reference frame. An initial experiment
with the inchworm strategy has shown localization within 0.14
m position error and 2.18◦ orientation error over a path-
length of 5 meters in an environment with irregular ground,
partial occlusions, and a ramp. This demonstrates improvement
over a camera-only localization technique that was adapted
to our team dynamic which produced 0.18m position error
and 3.12◦ orientation error over the same dataset. In addition,
we demonstrate improvement in localization accuracy with an
increasing number of picket robots.

I. INTRODUCTION

The size of a robot can greatly affect what it can do
and where it can go. Advantages of small robots include
increased accessibility and a wider range of capabilities such
as crawling through pipes, inspecting collapsed buildings,
exploring congested or complex environments, and hiding in
small or inconspicuous spaces. However, these benefits also
bring along challenges in the form of reduced sensing abili-
ties, lower communication capability, limited computational
resources, and tighter power constraints.

One way to overcome these limitations is to employ a het-
erogeneous team [1] of collaborative robots. This approach
marks a design shift away from the traditional simultaneous
localization and mapping (SLAM) ground robots that have
expensive sensors and powerful processors, but less mobility
in disaster environments. The goal is to have small, mobile,
disposable robots with limited capabilities collaborate and
share information to accomplish a larger task. Since each
robot is expendable, reliability can be obtained in numbers
because even if a single robot fails, few capabilities are
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Fig. 1: The above diagrams compare the leapfrog and inch-
worm strategies. Arrows are drawn to show motion that
happens during a time step. In the Leapfrog method (a-c),
all robots are the same type and at each time step one robot
moves while the other two remain stationary. For example
during (a) at t = 1, robots 2 and 3 remain stationary while
robot 1 moves. This process repeats where the moving robot
cycles at each time step. In our approach, the inchworm
method, at least one robot remains stationary while two
move. In addition the picket robots generally remain in front
of the observer. For example during (d) the pickets move
in front of the observer and during (e) the observer catches
up to the stationary pickets. At (f) picket-1 and the observer
both move leaving picket-2 stationary.

lost for the team. Hierarchical organization and the idea of
a heterogeneous team allows for robots to have different
specializations, such as larger robots with higher computation
power, smaller robots with increased maneuverability, and
robots with different sensor modalities. Another advantage
of a team of less capable robots, rather than one extremely
capable robot, is that it allows sensing from multiple view-
points and hence achieves a wider effective baseline. This
is helpful for tasks such as surveillance, exploration, and
monitoring. Furthermore, physically traversing an area con-
veys much more information than simply looking at it from
a distance. For example, an expensive scanner can scan the
rubble of a disaster site from the outside, but cannot enter
and inspect the inside. Knowledge that cannot be gained
without physical presence includes detection of slippery
surfaces, hidden holes, and other obscured hazards; these
can completely incapacitate robots despite their state-of-the-
art SLAM algorithms, expensive cameras, and complex laser
range finders. Instead, these same hazards can be detected
through sacrifice of highly mobile disposable picket robots
that scout the area [2].

Localization is a central problem in many robotic applica-



tions. It is particularly important in collaborative situations
where without position and orientation information of each
robot, there is no global context in which to meaningfully
share information between the robots. In this paper, we
focus on the localization problem and consider a heteroge-
neous multi-robot team consisting of two types of minimally
equipped robots. A single, central, and more capable observer
robot is equipped with a monocular camera and a 6-axis IMU
consisting of a gyroscope and accelerometer. Multiple picket
robots, which are expendable and less computationally capa-
ble, are equipped with no sensors other than 6-axis IMUs. A
limited communication interface between the observer robot
and individual picket robots is assumed. We consider a multi-
robot team with a single observer and multiple picket robots
in an unknown environment. We present a method for using
a single EKF, which the observer uses to localize the entire
multi-robot team, including itself, in six degrees of freedom
(6-DOF) by fusing IMU measurements and relative pose
estimates of the pickets. Relative pose estimation refers to
the process of estimating the position and orientation of a
picket’s body frame with respect to the camera frame on the
observer. This relative pose estimation is done using RGB
LEDs that are mounted at known positions on the picket
robots.

The datasets discussed in this paper include one observer
working together with two pickets to traverse given areas.
Even with minimal sensors, the inchworm method is shown
to work in dark environments with visual occlusions such as
walls or obstacles, instances when line of sight between the
robots is lost, and nonplanar settings without external visual
features or landmarks. The camera and IMU fusion approach
employed by the inchworm method demonstrates improved
performance over a camera only approach. In addition, we
show that the localization accuracy of the inchworm method
improves with an increasing number of picket robots.

II. RELATED WORK

Existing localization strategies with stationary robots have
been explored [1]. A stationary robot is defined as a robot
that remains at rest while other robots move. Stationary
robots and leapfrogging strategies build on the ideas from [1]
and have shown promise in 3-DOF environments in [3] [4].
These previous approaches have a stronger condition than
our approach because they require two or three stationary
robots at any given time. Our inchworm strategy relaxes these
constraints to require only a single stationary robot at any
given time, as shown in Figure 1.

A similar approach, cooperative positioning system (CPS),
to inchworm is presented in [5]. The CPS approach focuses
on 4-DOF (x,y,z,yaw) environments and partitions the robots
into two groups, with each group consisting of at least one
robot. Under the CPS system, the team alternates between
which group moves: Either group A moves or group B
moves. For the purposes of comparison we can consider
group A to be the observer and group B to be the picket
robots. An example of the CPS motion is shown in Figure 1
(d-e) where either the pickets more or the observer moves.

Our inchworm strategy improves on CPS by allowing the
observer and picket robots to move at the same time. An
example of this is found in Figure 1(f) where both picket-1
and the observer move while picket-2 is stationary. Previous
approaches and variants of leapfrogging strategies were fo-
cused on team dynamics with high redundancy where each
robot produces relative pose estimates of all other robots.
Our inchworm approach relaxes the sensor constraints to
accommodate teams where only a single observer robot
is required to have relative pose estimation capabilities.
This leaves the picket robots with more flexibility and less
computational burden.

Haldane et al. [2] use a heterogeneous team to detect
slippery terrain by sending out a small picket robot and
having it walk around the area of interest. The large robot is
capable of accurately estimating it’s own pose, and it uses
an augmented reality (AR) tag on the picket robot to localize
it. Then, features of the picket’s motion are used to train a
terrain classifier that is capable of detecting slippery terrain.

A follow-the-leader approach in [6] demonstrates a team
composition similar to picket-observer. The leaders and
children setup in [7] provides a relative localization scheme
in 3-DOF; it assumes accurate localization of the leaders
from an external source and localizes the children robots.
This approach is extended in [8] to localize the leaders.
The problem is subdivided into leader localization and then
children localization. The localization of the leaders in [8]
requires multiple leaders to maintain line of sight between
each other. We extend the approach in [8] to jointly solve the
leader and children localization problem without requiring
multiple leaders.

A more recent approach [9] uses range-only sensors with a
team of aerial vehicles for SLAM and builds on the limited
sensor approach of [10]. These drones are equipped with
on-board computers and expensive lasers. In contrast, our
approach uses inexpensive and disposable picket robots in a
6-DOF environment.

Odometry-based propagation method have been successful
in 3-DOF fusion architectures [1] [11]. However, in 6-DOF
non-planar environments, wheel slippage causes systematic
biases from encoders. Cell phone quality IMUs are a low
cost alternative to wheel encoders in 6-DOF environments
because they provide a motion model even under slippage.
Extensive work in IMU-based propagation in visual-inertial
systems has been explored in [12] [13] [14]. Additionally,
monocular pose estimation has been explored in [15] [16].

Many algorithms and approaches exist for multi-robot
localization. Graph based approaches have been used [17]
[18], and the graph optimization algorithm in [17] relies
on the locations of static landmarks and exploits the sparse
nature of the graph. Existing EKF [19] [20] [11] or particle
filter methods [21] [22] [23] demonstrate the capability of
fusing data to provide accurate multi-robot localization.

The noted previous works have extensively and success-
fully explored multi-robot localization, but their experiments
were conducted with access to significantly more capable
robots, availability of GPS or beacons of known pose, 3-DOF



Algorithm 1: Cooperative Inchworm Localization (EKF)
Propagation: For each IMU measurement:
• buffer previous IMU measurements received from

other robots
• propagate state and covariance for the team using the

time-step, buffer and new IMU measurement (cf.
Section III-B).

Update: For each camera image:
• identify RGB LEDs (cf. Section III-C).
• estimate the relative pose between the visible picket

robots and the observer frame with P3P and Gauss
Newton minimization (cf. Section III-C).

• propagate the state and covariance for the team using
the time-step, and most recent IMU measurements

• perform state and covariance update for the team (cf.
Section III-D, III-E).

Inchworm requirement: At least one stationary robot

settings with planar environmental assumptions and accurate
wheel odometry, requirements of additional stationary robots,
assumptions of light, and existence of landmarks or visual
features. In this paper, we relax these assumptions to localize
a team consisting of a single observer robot and multiple
picket robots. This is accomplished using an EKF approach
with the inchworm strategy requirement of at least a single
stationary robot at all times. IMU measurements are used for
EKF propagation and relative pose estimates are used as an
EKF update.

III. METHODS

The purpose of the multi-robot EKF is to localize all of the
robot team’s body frames with respect to a global reference
frame. An overview of the EKF is provided in Algorithm 1
and can be described as follows: IMU measurements from
both types of robots are used to propagate the state and
covariance of the team with the same IMU motion model.
RGB LEDs are placed with a known configuration on each
picket robot such that images captured on the observer can
be used to estimate the relative pose of the robots using [24]
[25] and Gauss-Newton minimization [15]. Relative pose is
defined as the estimation of a picket’s body frame, position
and orientation, with respect to the camera frame on the
observer. The coordinate frames of the team and example
LED placement scheme are depicted in Figure 2. The relative
pose estimates are subsequently used in the EKF update step.

A team movement strategy called inchworm is adopted,
where the picket robots move ahead of the observer to scout
and then the observer robot catches up. This movement
strategy requires at least one stationary robot. This turn-based
approach significantly reduces IMU dead-reckoning error
and increases the robustness of the localization algorithm
to temporary line of sight. An inchworm increment is a set
of motions where the observer and picket robots all move
at least once. An example inchworm increment is shown
in Figure 1 (d-e). A stationary robot does not propagate

Fig. 2: Coordinate frame overview for a sample team con-
sisting of two robots. The observer, (a), is mounted with a
camera and the picket, (b), with multi-color LED markers.

Fig. 3: Block diagram of the asynchronous multi-robot
team performing real-time cooperative localization algo-
rithm. Asynchronous sensor data from the robots is sent over
WiFi, sorted into a measurement buffer, and then used in the
EKF propagate and update step. Currently, the host system
is an external laptop.

its corresponding states or covariances, thus bounding the
uncertainty of the entire team. This enables the stationary
robot to function as a temporary visual landmark and serves
as a functional substitute to external visual features. Al-
though external visual features are used in traditional visual
odometry or visual SLAM systems, they are not consistently
available in low light environments.

One benefit of a stationary picket robot is in situations of
complete line of sight failure, where none of the picket robots
are visible to the observer. In this case, a single future re-
observation of a stationary robot, i.e. loop-closure, corrects
the IMU dead-reckoning error of the non-stationary robots.

The following sections describe the EKF propagation and
update steps in detail.

A. State Vector

The EKF state and accompanying error-state vector stores
the state of each single-robot in the multi-robot team. The
state vector components with respect to ith picket robot are:

xi = [BGq̄T
i ,

GpT
i ,

GvT
i ,b

T
ig ,b

T
ia ]T ∈ R16×1 (1)

where B
Gq̄T

i ∈ R4×1, is the unit quaternion representation of
the rotation from the global frame {G} to the body frame



{B}, Gpi,
Gvi ∈ R3×1 are the body frame position and

velocity with respect to the global frame, and big ,bia ∈
R3×1 are the gyroscope and accelerometer biases.

The corresponding error-state components with respect to
ith picket robot are:

x̃i = [Gθ̃
T

i ,
Gp̃T

i ,
GṽT

i , b̃
T

ig , b̃
T

ia ]T ∈ R15×1 (2)

where Gθ̃
T

i is the minimal representation from the error
quaternion δq̄ ' [ 12

Gθ̃
T
, 1]T [13] [14]. The non-quaternion

states use the standard additive error model.
The observer robot is also a component in the EKF state

and error-state vector:

xo = [OGq̄T
o ,

GpT
o ,

GvTo ,b
T
og ,b

T
oa ]T ∈ R16×1

x̃o = [Gθ̃
T
,Gp̃T

o ,
GṽT

o , b̃
T

og , b̃
T

oa ]T ∈ R15×1
(3)

where {O} denotes the observer frame.
Combining the states in Eqns. 1, 2, and 3, the augmented

EKF state vector and error-state vector with respect to the
multi-robot team with n pickets becomes:

x = [xTo , x
T
1 , x

T
2 , ... xTn ]T ∈ R16(n+1)×1

x̃ = [x̃To x̃T1 , x̃
T
2 , ... x̃Tn ]T ∈ R15(n+1)×1 (4)

where n is the total number of picket robots.

B. IMU Propagation Model

The EKF propagation step occurs each time a new IMU
measurement from any single-robot or a camera image is
captured on the observer robot. The continuous dynamics of
the IMU propagation model for a single-robot are [13] [14]:

B
Gq̇ =

1

2
Ω(ω)BGq̄, Gṗ = Gv, Gv̇ = Ga

ḃg = nwg, ḃa = nwa

(5)

where nwg,nwa are Gaussian white noise vectors for the
gyroscope and accelerometer respectively and

bω×c =

[
0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

]
,Ω(ω) =

[
−bω×c ω
−ωT 0

]
(6)

The discrete time linearized model and the error-state
model are derived and discussed with detail in [13] [14].

Critically, stationary robots receive no state or covariance
propagation. This prevents IMU dead-reckoning drift from
moving a temporary landmark and maintains a bounded
covariance block pertaining to the stationary robot.

C. Relative Pose Estimation

Four (or more) RGB LEDs are placed at known config-
urations position on the picket robots to allow relative pose
estimation on board the observer. Each picket robot receives
a unique configuration with LEDs of various colors. Color
and intensity thresholds are used to find the LED centroids,
and these LED detections are passed into separate pose
estimators (one pose estimator for each robot).

From the centroid detections, the approach from [15] is
used to perform relative pose estimation. Pose correspon-
dence is computed with the perspective-3-point (P3P) [24]

[25] algorithm for each picket. Using different colors for the
LEDs reduces the computational load by allowing the P3P
correspondence search to search fewer possible configura-
tions. Gauss-Newton minimization refines the initial solution
from the P3P algorithm by minimizing reprojection error
[15]:

P ∗ = arg min
P

∑
<l,d>∈C

||π(l,P− d)||2

where P is pose estimate, l is the set of LED configurations,
d is the set of LED centroids, C is the LED correspondences,
and π projects an LED from R3 into R2 (camera image).

The pose estimate covariance (Q) is calculated with the
Jacobian (J) from the Gauss-Newton minimization [15]:

Q = (JT Σ−1J)−1 where Σ = I2×2 pixels2 (7)

D. Camera Measurement Model

In this section we describe how the relative pose estimates
are used to compute the EKF update. We derive the residual
and observation matrix that relates the relative pose estimates
to the state vector as described in Section III-A. The residual
and the observation matrix are used to calculate the Kalman
gain and correction.

An example overview of the multi-robot teams coordinates
frames is shown in Figure 2. A static camera transform is
defined as:

[COq̄T ,COpT ]T ∈ R7×1 (8)

With respect to a single visible picket robot, i, a relative
pose estimate from the camera frame on board the observer
is defined as:

zi = [BC q̄T
iz
,BCpT

iz
]T ∈ R7×1 (9)

In an EKF framework, a residual, r, and a measurement
Jacobian, H are used to compute the EKF update. The
standard relationship between the residual and measurement
Jacobian is:

r = z− ẑ ≈ Hx̃ + n (10)

where n is noise. A prediction of the observation, ẑi, is used
to compute a residual in an EKF. This observation corre-
sponds to a relative pose for each visible robot. Additionally,
the quaternion states in x use the rotational error definition,
δq = q⊗q̂−1 rather than the standard linear error, p̃ = p−p̂.

To compute ẑi, the state vector estimate is updated with
the EKF propagation step. The poses of the picket robots
are then converted from the global frame converted to the
camera coordinate frame, {C}, in Eq. 8 to match the relative
pose estimate:

ẑi =

[
B
C

ˆ̄qi
B
C p̂i

]
=

[
B
G

ˆ̄qi ⊗ G
O

ˆ̄qO ⊗ O
C

ˆ̄qO
C
ORO

GR̂(BGp̂i − O
Gp̂O − C

Op)

]
(11)

where ⊗ represents quaternion multiplication.
The single-robot residuals with respect to each visible

pickets robots are calculated according to the definition Eq.
10:



ri = zi − ẑi =

[
2 · π(BC ˆ̄q−1i ⊗ B

C q̄iz
)

B
Cpiz

− B
C p̂i

]
(12)

where π is defined as π([qx, qy, qz, qw]T )T = [qx, qy, qz]T

and utilized as a small angle approximation for the orienta-
tion difference between zi and ẑi.

The ith measurement Jacobian, Hi, is calculated by ap-
plying small angle approximations and taking the partial
derivatives of the ith single-robot residual with respect to
the error-state. The non-zero entries are shown below:

ri ' Hix̃

Hi =
[

−C
GR̂ 0 0 . . . C

GR̂ 0 0 . . .
C
GR̂b(BG p̂i −

O
G p̂O −

C
Op)×c −C

GR̂ 0 . . . 0 C
GR̂ 0 . . .

]
x̃ =

[
Gθ̃o

Gp̃o
Gṽo · · · Gθ̃i

Gp̃i
Gṽi · · ·

]
(13)

where C
GR̂ = C

ORO
GR̂ and bq×c is the quaternion skew

operator from Eq. 6. The higher order and cross terms are
dropped from Hi to satisfy the linear requirement of the EKF.

The states of all picket robots become correlated with the
observer robot through the measurement Jacobian. This en-
ables an individual pose estimate of a picket robot to improve
the state estimate of each picket robot. The correlation is
essential to localizing the observer robot because it is unable
to observe itself directly from camera imagery.

E. EKF Update

From the camera measurement model the EKF update
is performed. To utilize the standard equations, the overall
measurement Jacobian is calculated by vertically stacking
the single-robot measurement Jacobians from the camera
measurement model in Eq. 13:

H = [HT
1 ,H

T
2 , ... HT

n ]T ∈ R6n×16(n+1) (14)

Accordingly the measurements, zi, are stacked identically:

z = [zT1 , z
T
2 , ... zTn ]T ∈ R7n×1 (15)

The corresponding overall observation noise is calculated
by diagonalizing the uncorrelated relative pose estimate
covariances from Eq. 7:

Q = diag(Q1,Q2, ... Qn) ∈ R6n×6n (16)

From Eqs. 14, 15, and 16, the procedure to update an EKF
with quaternion states is described in [13] [14].

IV. RESULTS

A. Experimental Approach

We apply the localization technique described above to
data collected from a team of three small, low-cost, mobile
robots. The Zumy robot1 is a decimeter-scale tracked robot
running ROS on board a Linux computing system with
networking and vision processing capabilities. The observer
Zumy supports a Microsoft Lifecam 3000 webcam with

1https://wiki.eecs.berkeley.edu/biomimetics/Main/
Zumy

640× 480 pixels2 at 30 Hz, InvenSense MPU-6050 MEMS
IMU at 30 Hz, and supports WiFi wireless communication.
This robot is designed to be easily built from commercially
available off-the-shelf parts for a total cost of ≈ $350.

The robotic team consists of one observer and two picket
robots shown in Figure 2. A Zumy robot with a camera serves
as the observer, and to represent the inexpensive and less
capable picket robots, we use Zumy robots without cameras.
Each picket robot is outfitted with an LED “hat” so that it can
be visually tracked by the observer robot. Infrared markers
are also attached to each Zumy in order to obtain ground
truth from a VICON motion capture system. The robots are
manually driven for these datasets.

B. Planar Base Case

The baseline experimental task was a cooperative U-turn
in planar 3-DOF with one observer and two pickets. The
robots were manually driven in the dark. Although the dataset
was recorded in a 3-DOF environment, the filter was not
constrained with environmental priors. A direct comparison
between the LED pose tracker system setup in [15] and our
system setup is in Table I.

TABLE I: Pose Tracker Comparison

Faessler et al. [15] Our System

Resolution (pixels2) 752x480 640x480
Baseline Radius (cm) 10.9 10.6

LEDs/Robot 5 5
LED Type Infared RGB

≈ error at 2 m depth 5 cm, 1-2 deg 5-8 cm, 1-4 deg

Fig. 4: A plot of the XY projection of the team’s pose esti-
mates from the EKF along with the ground truth trajectories.
Shown for the base case of the planar U-turn where a single
picket is used to perform localization.

In Figures 4 and 5, we show the resulting trajectories
from the localization of all team members during this U-turn
dataset and we compare to ground truth. We plot the results
of using only one picket while discarding the measurements
from other, and then the results of using both pickets. Note
that the observer trajectory is not as smooth as that of



Fig. 5: A plot of the XY projection of the team’s pose esti-
mates from the EKF along with the ground truth trajectories.
Shown for the base case of the planar U-turn where both
pickets are used to perform localization.

Fig. 6: Camera-only approach: A plot of the XY projection
of the team’s pose estimates along with the ground truth
trajectories, using a camera-only approach. Performs notably
worse in yaw drift than the IMU-camera fusion approach
shown in Figures 4, 5.

TABLE II: Planar Drift Analysis

Camera-only Fusion Fusion
Two Pickets One Picket Two Pickets

O
bs

er
ve

r x (cm) -8.14 0.67 -0.80
y (cm) 16.64 2.58 -1.46
z (cm) 4.09 -5.42 3.07

Angle (◦) 9.33 1.89 1.54

Pi
ck

et
-1 x (cm) -13.38 -4.25 -6.23

y (cm) 28.97 -1.79 -1.70
z (cm) 4.53 -7.91 4.39

Angle (◦) 4.72 2.64 1.36

Pi
ck

et
-2 x (cm) -1.35 - 9.92

y (cm) 25.40 - -5.65
z (cm) 4.56 - 5.18

Angle (◦) 4.56 - 1.88

picket-1 or picket-2, because the motion of the observer
has un-modeled vibration effects that cause motion blur and
temporary changes to the “static” camera transform.

This dataset consisted of 10 inchworm increments. An
inchworm increment is defined as the minimal set of team
motions where each robots has moved once. End-position

drift for using a single picket vs. using two pickets are shown
in Table II. The angular drift, which causes propagates error
into the future, for the two picket fusion case was less than
the one picket case. Although unconstrained to a plane, the
angular drift was almost exclusively in yaw. Performing right
or left turns with the robot team introduces more rotational
drift than forward or backwards motions. Without external
features or global correction, the yaw errors persist until the
end of experiment, but adding more picket robots helps to
mitigate these effects. The jagged regions of the trajectory
correspond to the observer and picket robots starting or
stopping motion, and they are due to The LED mounts and
the robots shaking during these transient motions.

A camera-only filtering approach was evaluated in Figure
6 as a baseline. The camera-only approach uses the same
formulation of the measurement derived in Section III-D
but without a motion model. This method performed sig-
nificantly worse with four times as much yaw drift than the
IMU plus camera fusion approach. Without the gyroscope,
the inchworm localization performs significantly worse in
orientation estimation.

C. Non-planar Terrain with Ramp

Fig. 7: 6-DOF environment for testing: Robot team is on the
right, rock garden is center-right), a “hole” is shown on the
bottom-left, and the ramp is on top left.

The second experiment was conducted in an environment
featuring non-planar terrain, obstacles, and occlusions. The
robots were manually driven in the environment shown in
Figure 7. The 6-DOF non-planar dataset consisted of 10
inchworm increments: 3 for the rock garden and 7 for
the right turn and ramp. Temporary line of sight failure
of both pickets occurred during the rock garden because
the pose estimator failed to converge, as the observer was
moving on the rocks. Wheel slippage also occurred during
the rock garden section. After the rock garden, picket-2 was
deliberately left behind to simulate a hole in the environment
and a loss of a robot.

The ground truth trajectories and the EKF pose estimates
of the dataset are shown in Figures 9 and 10. The end point
drift analysis is shown in Table III with a comparison against
a camera-only approach. The fusion approach outperformed
the camera-only for the observer and picket-1. The most



Fig. 8: Starting position of the robot team with view of the
rock garden section. The origin is defined as the starting
position of the observer.

critical improvement is the orientation error of the observer,
which persists without correction. Picket-2 traveled mostly
in a straight line except during the rock garden, and the
endpoint errors of both approaches are almost identical. The
drift is predominantly in pitch for each robot. Temporal plots
with ground truth are in Figures 11 and 12.

Fig. 9: Ground truth trajectories of the multi-robot team are
compared against the estimates of the EKF for the non-planar
environment. Axes are scaled equally

.

TABLE III: Non-Planar Drift Analysis

Camera-only Fusion
Two Pickets Two Pickets

O
bs

er
ve

r x (cm) -4.03 -5.35
y (cm) 13.36 12.67
z (cm) 1.01 0.04

Angle (◦) 3.12 2.18

Pi
ck

et
-1 x (cm) -2.11 -4.48

y (cm) 17.9 16.76
z (cm) 1.72 0.10

Angle (◦) 6.22 4.29

Pi
ck

et
-2 x (cm) 0.28 0.32

y (cm) -0.20 0.15
z (cm) 5.37 5.37

Angle (◦) 3.58 3.59

Fig. 10: 2D projection of ground truth trajectories of the
multi-robot team are compared against the estimates of the
EKF for the non-planar environment.

Fig. 11: Position along the x-axis versus time.

Fig. 12: Orientation error versus time.

V. CONCLUSION

A heterogeneous team which consists of a single observer
and multiple picket robots is able to navigate a visually
featureless, unknown, non-planar environment as a unit,
using only relative pose observations and IMU measurements
to estimate the motion of the entire team. The IMU and
camera fusion approach presented in this paper has clear



advantages over a simpler camera-only approach (Figures
4, 5, and 6) and its benefits outweigh the cost of having
asynchronous communication. Although calibration of an
IMU adds many complications, it is a natural choice for
environments in which wheel encoders are unreliable. A
camera-only approach heavily relies on line of sight at all
times, which is restricting and potentially impractical to
maintain. In addition, motion-model based approaches for
EKF propagation allow for the rejection of errant camera
pose estimates from faulty LED detections or P3P cor-
respondence matching. Most importantly, with a camera-
only approach, each inchworm increment has an associated
positional and rotational drift in 6-DOF. The calibration of
the IMU allows the fusion based approach of using the
stationary robots’ gravity vectors to reduce and bound the
pitch and roll drift leading to drift in only 4-DOF.

In the future, we will create exploration strategies for
larger robot teams of more than 10 robots. With this in-
creasing number of robots, autonomous control is far more
effective than manual driving. An advanced control scheme
that factors in terrain, obstacles, and collaboration of robots
will be developed for effective exploration in hazardous
environments.
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