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1. Introduction

Dextrous robot hands need to able to determine the position and orientation of
objects to reliably grasp and manipulate them. Fingertip-mounted tactile sensors are an
attractive means for providing this feedback since, in addition to reliably supplying the
contact location and surface normal (in our case, also the curvature directions and magni-
tudes), the force applied can be determined at each contact, and this is important for
grasping.

It is easiest, initially, to seek a method in which the position and orientation are
determined from a single grasp. This avoids the problem of the object changing position
while the fingers move to explore new contacts. On the other hand, this means that the
position and orientation must be computed from relatively sparse data, and therefore,
algorithms for vision systems which assume a rich set of sensory data are not directly
applicable.

We will ignore for now the problems of finding the object in the workspace and
achieving a stable grasp and concentrate instead on the problem of determining the posi-
tion and orientation of a fixed object from the sensory information at a few contacts.

There have been two main methods of determining the shape and properties of an
object from sensory data. We distinguish here between model matching and shape

description without specific models.

Model matching can localize and identify objects by comparing relations between
sensed features and features on particular object models. A consistent combination of
features in the world and in the model determines the object and its position and orienta-
tion but not necessarily uniquely. For example, Gaston and Lozano-Perez [1983] and
Faugeras and Hebert [1986] assume known objects and determine object shape, location,
and orientation by matching features in the world to specific object models, keeping all
consistent matches. Ellis [1987] has extended this work by developing a planning system
to choose tactile sensor paths, using prior sensed data, that will prune an interpretation



tree more efficiently.

Shape description uses measurements and geometric constraints to derive a
representation of the object and does not require prior object models. It has been the
focus of much research lately since it enables a sensory system to deal with many more
objects than is practical for model matching. Typically, the objects to be dealt with are
assumed to be of a certain class. There is a tradeoff, however, in using an object class
versus specific object models: In general, the less that is assumed about the object, the
less that can be said about the object from the same amount of sensory data. It is impor-
tant, then, to choose an object class that adequately covers the objects to be dealt with,
yet is not so general as to make it difficult to say anything about the object. In tactile
sensing this is especially important since we wish to determine as much as possible from
only the few contacts made during a single grasp. Brady et al [1984] use range finder
data to describe surfaces in terms of bounding contours, surface intersections, lines of
curvature, and asymptotes. Also, they demonstrate findin g the axis of a surface of revolu-
tion using lines of curvature, which is relevant to this work. Allen [1986] describes
objects in terms of surface patches (Coons’ patches) and builds up a representation of the
object with a tactile sensor, in combination with vision, by exploration over the whole
object. Cole and Yap [1987] assume polygonal objects and describe algorithms which -
determine the shape using "probes" that determine only the contact location. Rao and
Nevatia [1988] use a class of linear straight homogeneous generalized cylinders and,
using both synthetic data and real data from a fcature—bésed stéreo system, solve for the
representations of cones and cylinders of various cross sections. Notably, they allow
noisy edge detector data (e.g., broken and false edges). Allen and Roberts [1989] assume
that objects can be adequately represented by superquadrics and, using the points of con-
tact that a Utah/MIT hand makes with the object, calculate the superquadric and
rotation/position parameters. Printz [1987] presupposes cones or cylinders of circular or
elliptical cross section and finds the generating axis by analyzing the Extended Gaussian
Image of the object. Grimson [1987] assumes all objects to be encountered are in a
model database but allows certain parameters to be "free," e.g., the length of the object or
the angle of a joint.

This paper is another example of the shape description method. The particular
object class that we have chosen is the surface of revolution. While not a very general
class of objects, they are common in man-made environments. Unlike most of the work
presented above, we assume sparse sensing. Nevertheless, our method for determining
the axis is applicable to any surface of revolution with sweeping rule in C2. This is due

to the special properties of this particular class of objects.
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In section 2 we describe two possible methods for determining the axis. The first
uses the contact location, surface normal, and principal curvature magnitudes at three
contacts, while the second uses the contact location, surface normal, and principal curva-
ture directions at three contacts. All possible singular configurations are then derived in
section 3 for the latter method. Section 4 is a simple error analysis for both of the
methods based on the errors of the tactile sensor of [Fearing and Binford, 1988]. Section
5 contains experimental results for our method. Section 6 contains our conclusions, and
section 7 is an appendix with some comments on the curvature from strain problem.

This paper extends previous work [Fearing, 1990] which showed how the axis and
orientation of unknown simple cones (linear straight homogeneous generalized cylinders)
could be determined from a minimum of three independent curvature measurements.

2. Surface of Revolution Geometry

In this section we derive the basic equations for the curvature magnitudes and cur-
vature directions for a surface of revolution. Two methods for determining the axis of a

surface of revolution are also described.

2.1. Notation
We will use the following notation:
P, a vector to the point of contact on the surface of revolution.
ks k}, unit vectors of the two principal directions of curvature.
K1, Kz, magnitudes of the curvature along the two above principal directions. K is
along k1, and K, is along 152.
A, the unit surface normal at the contact point.

Our tactile sensor is capable of determining each of these parameters at a point on an
object [Fearing and Binford, 1988].

2.2. Basic Equations

For simplicity, we choose a coordinate system such that the z-axis coincides with
the axis of the surface of revolution under consideration.
The surface of revolution can be described by the vector equation [Ponce, 1987]
r(z)cosH
x(©,2)=]|r(z)sinB| , (1

b4

where r () is a function describing the curve which is rotated about the z-axis to generate



the surface of revolution.

We first calculate the unit surface normal directed out of the surface of revolution.

Xa XX cosf
R e Sk S : sin@ | | Q)
o %% |~ Vr2G) 41 | )

Next, we calculate the first (£, F, G) and second (L, M, N) fundamental coefficients
[Lipschutz, 1969]

E=x¢ x9=r(z) 3)
F=xg-x = ' @
G=x,% =r'%z)+1 (5)
% r(z)
L =xge (—)= =2 (©)
” Nr2(z)+1
M=xg,  (-i)=0 (7
N:x_zz-(_‘)=\/—;#, (8)
r'“(z)+1
where we have used the notation
d | |
Xo= 55X 0,2) )
(similarly for x, ),
aZ
Xog = 5?)_6 (8,2) (10)
(similarly for x,, and xg, ), and
r’(z)=dizr(z). (11)

Notice we have taken the dot product with (—=#) instead of # in equations (6) - (8). Thus,
a positive principal curvature will correspond to a convex curve on the surface of revolu-
tion. kl and kz, the two principal directions, are of the form

k" =,19d9[+£dz,-, i=1,2, (12)
where d©; and dz; are the solutions to the equation [Lipschutz, 1969]
(EM ~LF)d®;* + (EN LG ) d6;dz; + (FN -MG)dz;*=0, i=1,2. (13)

Since F and M are zero, it follows that the two solutions are
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dzy=cy, d0;=0, (14)
and
de'—'O, d92=C2, (15)
where ¢ and ¢, are arbitrary constants. Substitution into (12) and normalizing gives |
) 1 r’(z)cosO
k, = ——=——=——=| r’(z)sin@| , (16)
Vr2z)+1] 1
where we have chosen to use k, instead of £  since the direction is simply x,. Similarly,
’ —sinf
kg=| cosO | , (17)
0

where we have again chosen a more descriptive subscript for the principal direction. To
solve for the magnitudes of the principal curvatures we will use the equation [Lipschutz,
1969]

Ld ;> +2Md 6;dz; + Ndz;> _
K; = 5 = i=1,2. (18)
Ede, +2Fd9,-dz,-+Gdz,-

Again using the fact that F =M =0

N -r”(z
== (2)

— 1
[r%(z)+1'3 L
Ke=£= ! (20)

E r(z)‘/r’z(z)+ 1
where K, is the curvature along k, and &g is the curvature along ky.

The lines of curvature which have kAe as tangent vectors are parallels, and meridians

have £, tangent vectors. Figure 1 illustrates these curves.

2.3. Finding a Point on and a Plane Through the Axis

The information calculated from each contact on a surface of revolution is

A

{Ke’KzakAeykAz3n,E }

[Fearing and Binford, 1988]. Notice that this set is defined by eight independent parame-
ters. Three are needed to define p, two are needed to define 7 (since it has unit length),
~ one is needed for k; and /59 once ; is defined (since they have unit length and are perpen-
dicular to one another and to i), and one is needed for each of the curvature magnitudes.

Figure 1 illustrates g, kg, k,,and ri. Notice that g 1s the distance from the surface to
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the axis measured normal to the surface, not normal to the axis, as one might first
assume.

X Parallel

Meridian

Figure 1. A Surface of Revolution

Given several contacts on an unknown surface of revolution, we want to use contact

information at these points to determine the axis of the surface of revolution. We can find
a point on the axis by

1 r(z)cosO 1 cosf
p——n=|r()sind| —r@)WVr2z)+l —— | <ino
- Ko z Vr2(z)+1 -r’(z)

0
[ 0 J | o
ry’(z)+z

We can find a plane which includes the axis by



=Fs

{[r(z)\/r’z(z)+l+s +tr’(z)] cosO
1

p +sn‘+tk; = [r(z)\/r'z(z)+1+s +tr’(z)] sinf| (22)

V)1 -
z r’2(z)+1-sr’(z)+t

where s and ¢ are free variables which parameterize the plane. A more useful represen-

tation is in the form of the plane equation
ax +by +cz =d , (23)

where (a, b, ¢) are the components of a unit vector perpendicular to the plane and 4 is
the perpendicular distance to the plane from the origin. First, notice that kg is a unit vec-
tor perpendicular to the plane, so we have a, b, and c. Now, notice that the plane (22)
passes through the origin since by equating (22) to the the zero vector we have a con-
sistent set of two equations and two unknowns (This can also be seen by substituting
(x,y,z) from equation (1) into the plane equation with (a , b, ¢) determined by /59).
Therefore, we can represent the plane as

—sinBx +cosby =0. (24)

Clearly, any point on the axis of the surface of revolution (z -axis) satisfies this equation.
(21) and (24) can be used in principle to determine the axis of a surface of revolution
from several contacts. Notice that the equation for the point on the axis involves the cur-
vature magnitudes but not the directions, while the equation for the plane through the
axis involves the curvature directions but not the magnitudes.

2.4. Determining the Axis

We consider two methods for determining the axis. The first uses the curvature
magnitudes but not the directions, while the second uses the curvature directions but not
the magnitudes. An intuitive explanation of the methods is the following: From equation
(1), Kg, along with ' and p, determine a point on the axis. Therefore, the axis can be
determined simply by constructing a line through two axis points determined from a pair
of contacts. From equation (22), k;, along with A and p, determine a plane which
includes the axis. The intersection of two of these planes is a line which is the axis of the
surface of revolution. Note that at least three contacts are actually needed to determine
the axis using either of these two methods. The reason is that a priori we do not know
the correct labeling of the curvature data (i.e., we have no way of distinguishing K, from
K, and k g from k; ). In order to label or match the two directions and two magnitudes, we

need a third contact so that we can find a common line generated by all pairs of contacts.
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Note also that it is theoretically possible to determine the axis of a surface of revolution
from only two contacts if we consider both the curvature magnitudes and the curvature
directions at each contact point. In this section we look at information from two con-
tacts, assuming that the principal directions and magnitudes are correctly matched. In
section 3 we solve for conditions (singular configurations) on the contact placement
which will prevent the matching from being done for the curvature direction method.

2.4.1. Determining Axis Using Curvature Magnitudes

When considering only the magnitudes of curvature, we can specify the axis by

1 1
(I=s)[py = —h,| +5 Po—~—1,y| ., (25)
= Ko1 : - Ke2

where s parameterizes the axis and subscripts 1 and 2 denote parameters associated with
the first and second contacts, respectively. We can determine the axis using curvature
magnitudes if and only if

1 1
I po——riy| =|p,———n #0. (26)
I e

Thus, a necessary condition is that the two contact points are not in the same cross-
section plane, i.e., '
This is not a sufficient condition, however. From (21) we see that a sufficient condition is

{r(zz)r'(22)+zz] —[r(zl)r’(zl)+zlJ =0, (28)

which means that the surface normals must not intersect on the axis. An example of
where (28) is violated but (27) is not can be seen in Figure 1.

2.4.2. Determining Axis Using Curvature Directions

Now consider the problem of determining the surface of revolution axis using only
the curvature directions. The axis is determined by the intersection of planes defined by
k;, i, and p. From (24) the two planes can be written as,

—sin6,x +cosf,y =0 (29)
—sinfyx +cosb,y =0 . (30)

We can represent the intersection line as a point plus a direction multiplied by a free
8 : —_

parameter, 5. Since both planes pass through rigin, 0 will be our point. The direction



of intersection is obtained from

—sin6, —sinB, 0
cosb; | x [ cosB, | = 0 : (31)
0 0 sin(6, — 6,)

Therefore, the line of intersection can be simply written as

0
s 0 : (32)
Sin(92 = 91)

The necessary and sufficient condition for being able to determine the axis is thus
sin(0,—6,) # 0, (33)
or

|6,-6,]#1180°, n =0,1,2, ... (34)

3. The Matching Problem

Recall that we have no way initially of distinguishing kAe from k; We must there-
fore cénsecutively assume particular labels for our curvature directions and then check
for global consistency (with the surface of revolution constraints) at all three contacts for
each possibility (This was why we needed three contacts instead of just two). We show
that, similar to the general position assumption made in edge matching problems in
vision work [Nevatia, 1982], assuming the contacts are not in particular singular
configurations, we will be able to match the curvature directions (i.e., label the principal
directions as lfe or k; ). Like the edge matching problem, local information alone cannot
provide the solution, but when independént local information is combined and considered
globally, the solution emerges. Assuming perfect data, we now derive conditions for
singular configurations which prevent us from labeling the curvature directions uniquely.
Singular configurations imply that the axis cannot be determined uniquely, or in some

cases, that it cannot be determined at all.

From the previous section, we know that matched curvature directions enable us to
~determine the axis of an arbitrary surface of revolution except for certain singular
configurations (i.e., equation (34)). In this section we must consider the intersection of
three planes, each plane being determined from a contact. Since each contact defines two
such planes (the desired plane, perpendicular to /59, and the undesired plane, perpendicu-
lar to k; ), there will be a total of 2° = 8 different possible intersections. We show that,

assuming the contacts are not in particular singular configurations and assuming perfect
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data, one of the intersections is a line (which is the axis) while the other intersections are

not lines.

3.1. Intersections of Three Planes

Three arbitrary planes in space will intersect in one of eight ways (See Figure 2,

noting that in cases 1 through 7 the planes are viewed edge on).
£y

L. P,P,P, 5.%%1)2
Py
7, — P
: Py, Py /PIP
2
P, S 7 b,
3 P, /
P
P P,

Figure 2. Possible Intersections of Three Planes

The equations for three planes can be written as

a by c, 4 [4,
a, b2 Cy [yJ = d2 o0 (35)
as b3 C3 d3
or
Ax =d, (36)

where (a;, b;, ¢;) are the components of a unit vector perpendicular to plane i, and 4; is
the perpendicular distance to plane i from the origin. The rank of A and [A 4] are listed
for each of the possible intersections in Table 1.
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Case | Rank A | Rank [A d]

0 N N LT AW N
W N N NN = =
W W WD NN DN —

Table 1. Conditions on Intersections of Three Planes

Our procedure of analysis will be the following: First we look at the possibilities for
the intersections of three correctly matched planes (i.e., planes defined by # and k; at
each contact). Then we derive conditions under which a combination of incorrectly and
correctly matched planes could also yield these same types of intersections. These, in
. addition to intersections of correctIyAmatched planes which do not intersect in lines, will
be our singular configurations since in these cases there will be no way to determine the
axis of the surface of revolution. Figure 3 is a simple example of a singular
configuration. Incorrectly matched planes Py, Py, and P5 (which are viewed edge on)
intersect in a line perpendicular to the page. Notice also that the correctly matched planes
are coincident (they are in the plane of the page), and thus the actual axis could not be
determined by this configuration. Any set of data where one labeling produces three
coincident planes will require additional tactile data.

3.2. Intersection of Correctly Matched Planes

Consider the following three planes (see equation (24)):

P: —sinx +cosb;y =0 (37)
P: —sinByx +cosb,y =0 (38)
P3: —sinByx +cosbyy =0 . (39)
Therefore, we have
—sin6, cosB; 0 0
A = | —sinb, cosB, 0|, d = {8} ) (40)

—sinf; cosb; 0



false axis

(out of page)

Figure 3. A Singular Configuration

By using Gauss_ian elimination we can determine the rank of A and [A 4].

-sin;  cosB; 0 0
[Ad]->| 0 sin(6,-6,) 0 0| . (41)
0 sin(6;-65) 0 0

Therefore, rank A = rank [A d], and we have the possibilities listed in Table 2. Notice
that we have made the assumption that —sin®, # 0. This assumption is always valid since
by a simple rotation of the surface of revolution about its axis, we can obtain any value
for 0.

The condition sin(6, — 62) =sin(8; - 63) = 0 can be stated in words as the following:
Either all contacts are on the same meridian, or two of them are on the same meridian,
and the other is on a meridian displaced 180° from the first.

Since Table 2 gives all the possibilities for correctly matched planes, when consid-
ering the intersection of three planes where one or more of the planes is not correctly
matched, we need only concern ourselves with the two situations above, namely, case 1
and cases 4 and 5. Any other type of intersection will obviously be the result of
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Conditions Rank A | Rank [A 4] | Case(s) Conﬁguratibn Type

sin(el - 92) =0
and 1 1 1 Singular
sin(B; —65) =0

otherwise 2 | 2 4.5 Nonsingular

Table 2. Possibilities for 3 Correctly Matched Planes

incorrectly matched planes. Consider case I first (coincident planes). If this occurs
among any of our eight plane labeling combinations, then we have insufficient informa-
tion to solve for the axis of the surface of revolution. Otherwise, case 4 or 5 will occur at
least once, and if it occurs only once, then the axis of the surface of revolution will be the
~ line intersection (see section 2.4.2). However, if a case 4 or 5 intersection (i.e., a line
intersection) occurs more than once among the eight combinations, then, again, we have
a singular configuration and it is not possible to solve for the axis, although the axis will
be one of the multiple line intersections.

Although eight different matchings are possible, we need only look at three separate
cases since the subscripts we use to denote parameters associated with particular contacts
are arbitrary (i.e., the contact we label as 2 could just as well have been called 1 or 3).

The cases we will examine are

1. Planes 1 and 2 correctly matched (i.e., determined by p, A, and k;); Plane 3
incorrectly matched (i.e., determined by p, ', and /59).

2. Plane 1 correctly matched; Planes 2 and 3 incorrectly matched.
3. Planes 1, 2, and 3 incorrectly matched.

First, though, we need to find the equation for an incorrectly matched plane.

3.3. Equation for an Incorrectly Matched Plane

From equation (16) we have (a, b, ¢) for an incorrectly matched plane since the
plane is perpendicular to Ic2 Since the point of contact (equation (1)) is included in the

plane, we can determine d by substitution into the plane equation,
| ax+by +cz =d | (23)

The perpendicular distance from the plane to the origin is therefore
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d=r(z)r (Z)+Z=IC;’p- (42)

Vr2z)+1 &
Multiplying through by the common denominator gives us the equation for an incorrectly
matched plane:

r’(z)cosO x +r'(z)sin®y +z =r(z)r'(z)+z . (43)

3.4. Situation 1: Planes 1 and 2 Correctly Matched; Plane 3 Incorrectly Matched
We have

—sin@; cosf; 0 5
A=| -sing, cosd, Of, d= 0 . 44)
r '(Z 3)C0$93 r '(23)Sin63 1 r (Z 3)’ (Z 3) + Z3

By applying Gaussian elimination we obtain the result in Table 3.

Condition Rank A | Rank [A d] | Case

sin(6;-6,) =0 2 2 4

Table 3. Singular Configurations for 1 Incorrectly Matched Plane

The condition in Table 3 implies that planes 1 and 2 are the same. Then, plane 3
must intersect planes 1 and 2 in a line since it can be shown that it is not possible for the
plane of equation (24) to be parallel to the plane of equation (43).

3.5. Situation 2: Plane 1 Correctly matched; Planes 2 and 3 Incorrectly Matched

Now, we have

—sinB, cosB; 0 0
A= r'(22)00892 r,(Zz)Sinez 1 y 4 = r.(zz)r ,(22)+22 s (45)

r'(23)cos03 r'(z3)sinf; 1 r(z3)r'(z3)+24

Applying Gaussian elimination we arrive at the result in Table 4.

Condition 2 in Table 4 requires that the surface normals at contacts 2 and 3 intersect
on the surface of revolution axis (see equation (21)). This will automatically occur if
contacts 2 and 3 are on the same parallel (since zp=123). Figure 1 shows a situation
U two contacts intersect on the axis, but the two contacts are

where th

~
i i
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Conditions Rank A | Rank [A d] | Cases

1: r'(zp)cos(6, - 0)=r “(z3)cos(85 — 01)
and 2 2 4,5

2:r(zr'(zg)+z,= r(z3)r'(z3)+ 24

Table 4. Singular Configurations for 2 Incorrectly Matched Planes

not on the same parallel.

Whether the second condition can be satisfied for contacts not on the same parallel
is entirely dependent on the sweeping rule. For a circular cylinder or cone, for example,
the only way that the second condition in Table 4 can be satisfied is if contacts 2 and 3
are on the same parallel. Assume that we have two parallels, possibly the same, such that
the second condition is satisfied. Then r’(z,) and r’(z 3) are defined. By rotational sym-
metry, we can choose 6, = 0. Then the first condition becomes

: k_r'(zz)cos()z:r‘,’(z3)cose3. i . (46)

If both r’(z,) and r’(z3) are zero, then there are no restrictions on 6, and 65 (i.e., the
solution is the entire 6,-0; plane). If at least one of r’(z) and r’(z3) is not zero, then

there exists a continuum of solutions for (62, 03) (i.e., the solution is a set of curves in the

8,-65 plane).

3.6. Situation 3: Planes 1,2,and 3 Incorrectly Matched

For this last case we have

r'(z1)cos8, r'(zy)sin®, 1 rpri(z)+z,
A=r"(z9)cos8, r'(zy)sind, 1|, d = r@riz)+z,) . Gt

r'(z3)cos03 r'(z5)sind; 1 r(z3)r'(z3)+z4

First, let r'(z)) =r"(z,) = r’(z3) = 0. Now, rank A = rank [A d]l=T1onlyifz =z,= z3.
This corresponds to a case 1 intersection.

Next, let r’(z,) # 0. Now, since the upper left element of A is not 0 we may proceed
using Gaussian elimination to obtain conditions for a case 1 and/or a case 4 or 5 intersec-

tion which are singular configurations. We obtain



r'(zy)c, r'(zy)s, 1 (@),
O r'(zl)r ’(ZZ)S(I—Z) r'(zz)cz—r'(zl)cl r'(zz)c2(g1)z ¥r'(21)61@2)z (48)
0 r’(zl)r’(z3)s(1_3) r'(zz)es3—r'(zy)c, r'(z3)cs(a,), —r'(zy)c (ay),

where we have used
@), =r(z)r'(z;)+z,i=1,2,3 ,
¢; =cos(6;), 5; =sin(6;), i =1,2,3 ; (49)
C(i-jy=cos(6; -6,), 8 i - jy=sin(; -6,),i=1,2,3,
Now, for rank A = rank [A d]=1, we must have '
sin(6; - 0,) = sin(6;-65)=0, (50)
r'(zy)cos, =r "(z9)cos8, = r "(z3)cos65 , (51)

and
r'(z 1)cosd;  r(z 2)c0s6,  r'(z 3)C0s0;
@), (@), (@)

We can assume that (@), #0, i =1, 2, 3 since the origin of our object-oriented coordi-

(52)

nate system can be chosen to be anywhere on the axis. Notice that combining equation
(51) with equation (50) implies
r'(zy))=+r'(z 1) r'(z3)=+r'(z D

Similarly, the combination of equations (52) and (50) allows cancellation of the cosines
in equation (52). This is a result of the fact that the surface of revolution is invariant with
respect to rotations about its axis, and therefore, conditions cannot depend on 9y, 0,, and
05 separately.

Next, let r’(z 28in(B; - 6,) = r’(z3)sin(61 —83) = 0. The conditions for rank A =rank
[A d]=2 are now

r'(zy)cos0, # r'(z 1)cosO; or r'(z3)cosfs # r'(zy)cosh, , (53)

and

r'(zl)cl[(z:;)z —(g2)z:’ +r’(22)62[(g1)z —(43)2] +r'(23)63[(gz)z —(Ql)ZJ =0.(54)

Although it appears that these conditions depend on the angles 0;, 6,, and 05 indepen-
dently, which does not make sense since the surface of revolution is invariant with
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respect to rotations about its axis, by examining the individual cases, we see that this is
not the case (this is similar to equations (50) - (52), although not quite as obvious). Con-

sider the following situation:

r'(z) =0, r'(zy) =0, 6, =0;. (55)
Combining these conditions with those from equations (53) and (54) results only in the
condition

)| @), ~@y),] +r'ey)| @), ~@,| =0, (56)

which does not depend on the angles independently.
Finally, consider the case where r’(z5)sin(8; —6,) # 0. We can then row reduce one

more time to obtain the conditions

1 . 1 =
78 sin(6,—6) + ) sin(6;—0,) + = sin(0,—-6,) =0, (57)
and
(g )z . (Q )z . (Q )z ]
T ’(;1) sin(0,—0;) + ﬁsm(% -0+ —,ﬁsm(el -8,)=0. (58)

A summary for the case of three incorrectly matched planes appears in Table 5.

The first condition for a singular configuration is easy to understand: All three con-
tacts are on the same parallel, and on this parallel, the sweeping rule has its first deriva-
tive equal to zero. This clearly gives us three coincident planes. The second condition in
Table 5 is already contained in a previous singular configuration and therefore does not
add a new type of singular configuration (see Table 2). Also, the third condition is con-
tained in previous singular configurations. If either sin(6;—6,) =0 or sin(6;—6) =0
then we have a previously mentioned singular configuration (see Table 3). In order for
the second condition to hold and not have sin(6; - 0,) =0 or sin(8; —6,) =0, we must
have r(zy) =r’(z4) = 0. Substituting this into equation (54) gives us (a3), = (ay),, and
the combination of this with r’(z2)=r’(z3) =0 is already contained in Table 4. The
fourth condition is not contained in any previously mentioned conditions for a singular
configuration. We can get an idea of the types of solutions that exist for equations (57)
and (58) by considering the intersection of the following surfaces represented by the

equations:
1
oy Xt Sy +———2=0, (59)
rizy)  r'z) T ri(zs)
a a a :
(_I)z 3 o (_2)2 (_3)2 _ O , (60)

’ ’ y + ’ z
ri(zy) r'(z,) r(zs)
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Condition(s) Rank A | Rank [A d] | Case(s)

r'(z) = ri(za)= r'(z3)=0
and 1 1 1

217 23=12z3

r'z)#0
and

sin(8, - 8,) = sin(6; —6;) = 0 1 1 1
and

(50) - (52)

r'(z;))#0
and
r’(z)sin(8; —8,) = r"(z3)sin(6, - 03)=0 2 2 4,5
and '
(53) and (54)

r'(zy), r'(z,), r'(z;)#0
and :
sin(B;-6,) # 0 2 2 4,5

and
(57) and (58)

Table 5. Singular Configurations for 3 Incorrectly Matched Planes
and

Y| =|sin(6;-0,)| . (61)

[XJ Sin(82 = 63)
2 | sin(6; - 6,)

Equations (59) and (60) are planes which pass through the origin, while equation (61) is a
complicated surface. Since the planes represented by equations (59) and (60) have the
origin in common, they either intersect in a line, or they are the same plane. Clearly, if

@), =(ay), =(ay), , (62)

then the planes are the same. This can only be true if the normals at all three contacts
intersect at the same point on the axis. This can happen, for example, when all three
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contacts are on the same parallel. In this situation the intersection of the coincident
planes of equations (59) and (60) and the surface defined by equation (61) is typically a
curve. This implies that given these conditions, the solution for (8; =0, 6y, 83) is a curve
in the 6,-65 plane. If the normals at the three contacts do not intersect at the same point
on the axis, the intersection of the planes defined by equations (59) and (60) is a line. The
intersection of this line with the surface of equation (61) is typically two points. Under
these conditions, the solution for (8, =0, 6,, 85) is a set of points in the 0,-65 plane.

3.7. Umbilical Point

At an umbilical point all directions are principal directions [Lipschutz, 1969] and
hence we cannot uniquely determine Ifel and &, . If any of our contacts is on an umbili-
cal point, therefore, we have a singular configuration since the other two contacts do not
provide enough information to determine the axis. The conditions for an umbilical point
can be found simply by equating K;1 10 Kg;. From equations (19) and (20) we obtain the

condition

—r@EIr”@z)=r%@z)+1. (63)

 3.8. Singular Configuration Summary

For an arbitrary set of three contacts, there are three possibilities:

1. Of the eight possible matchings of curvature directions, only one match has rank

A =rank [A d]=2, and no match has A = rank [A d] = 1. This match, then, deter-

mines the axis.

2. Of the eight possible matchings, more than one match has rank A = rank [A d]=

2, but no match has rank A = rank [A d] =1. There will be multiple possibilities

for the surface of revolution axis; however, the correct axis will be among the possi-

bilities.

3. Of the eight possibilities, at least one match has rank A =rank [A d] = 1. Then,

we assume that this is the correct matching, and therefore the axis is not determined

at all.

Because of the fact that several of the singular configurations given in Tables 2
through 5 are redundant, we include Table 6 which lists all of the unique singular
configurations. In words, the types of configurations that prevent us from performing the
matching and/or determining the axis are contacts on the same meridian or meridians

separated by 180° and contacts on the same parallel or contacts on different parallels
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Condition(s) Rank A | Rank [A 4] Case(s)
r'z)=r’(zy)=r'(z3)=0
and 1 1 1
Zl = 22 = 23
sin(6,-6,) =0
and 1 1 1

sin(B; —65) =0

sin(8, —6,) = 0 2 2 4,5

r’(zy)cos(8,—0,) =r'(z 3)cos(63—6,)
and 2 2 4,5
rEriz)+z,=r(z)r'(z3)+z; |

r'(z1),r'(zy), r'’(z5) %0
and
sin(8; —06,) = 0 2 2 4,5
and
(57) and (58)

—r(zl)r”(zl)=r;2(zl)+1 — — s

(umbilical point)

Table 6. Summary of Unique Singular Configurations
where the surface normals intersect at the same point on the axis.

4. Error Analysis

By considering the propagation of errors of the sensed tactile parameters

A

{ Kev Kz? kAea k;’hp }

through the equations derived in section 2, we can derive bounds on the uncertainty in
the calculated position and orientation of the axis. Specifically, we will consider the axis
position error, which is defined to be the minimum distance between the true axis and the
calculated axis and the axis orientation error, which is the angle between the calculated
axis and the true axis. We assume here that we have successfully matched the principal
curvature direction and magnitude data (we showed that this is possible for nonsingular
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configurations for the curvature direction method in the last section) and therefore need
only consider the error propagation as a function of two contacts (This is also much
simpler). In comparing the propagation of the errors using the curvature magnitudes
versus curvature directions, we need to consider both the magnitude of the resulting axis
position and orientation error for typical experimental parameters, as well as the manner
in which the magnitude of the error varies as a function of the variables present in experi-

ments.

4.1. Notation

Our notation for this section is summarized in Table 7.

Symbol Description Upper Bound
d Minimum Axis Position Error Equation (64)
(0] ~ Axis Orientation Error Equation (71), Equation (72)
[ Ag || Axis Position Uncertainty Equation (68)
lAp || Contact Position Uncertainty 0.01 in.
[l A4 || Surface Normal Uncertainty ol b
IAK, II,I|Akg ]l | Curvature Direction Uncertainties $2°.+3°
n A
_% Relative Radius Estimate Error 25 %
)

Table 7. Error Analysis Notation

The values in Table 7 were based on experiments by Fearing and Binford [1988]. Notice
that since all three of the direction vectors (ie., n, k‘e, and /f ) are of unit length, and
since the orientation uncertainty can be assumed to be small, the uncertainty angle in
radians is approximately equal to the magnitudes of the error vectors. Therefore, we will
introduce a slight abuse of notation by expressing the magnitude of the error vectors in

degrees (e.g., || Ar H% is approximately the uncertainty angle of # in degrees). Also

note that pg (= L) is different from r (which is the generating curve).
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4.2. Axis Uncertainty Using Magnitudes of Curvature

Here we derive approximate bounds on the axis error when it is calculated from the
magnitudes of curvature at a pair of points.

4.2.1. Axis Position Error, §

To determine the axis of a surface of revolution using magnitudes of curvature, two
points on the axis are calculated using equation (21). The maximum position error will
occur when both measurements are in error by the upper bound on || Az |land Ag, is in the

same direction as Ag, (see Figure 4).

! Estimated Axis
lag,ll & | A, | _
‘,‘ Actual Axis

Maximum Position Error

Estimated Axis

L X, m”é\%ﬂal Aiis
”AQIW (sz

Maximum Orientation Error

Figure 4. Maximum Position and Orientation Errors

Therefore, we have the result

d<Aa . (64)

4.2.2. Calculation of || Ag ||
Recall from equation (21) that a point on the axis is given by
a=p-pyi. (65)
Calculating the first-order expansion yields an approximate value for llAa ||:
Aa = Ap —Apgi — pgAri (66)
Now, using the triangle inequality twice,

le+y -zl<lzl+ly [+1z1, (67)
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we have

) |
Al <llap n+pe[—p"—°+nmf uJ . (68)
0

Figure 5 shows a plot of the axis position error for the curvature magnitude method.

Axis Position Error Using Magnitudes Axis Orientation Error Using Magnitudes
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Figure 5. Axis Error Using Curvature Magnitudes:

4.2.3. Axis Orientation Error, ¢

The maximum orientation error occurs when g 1 and g, are anti-parallel (see Figure

4). From equation (21), the distance between the actual two points on the axis,

P1—Ln‘1 andpz——l—n‘z is
- Kp - Ky
|z2+r(z9rxz2)—[zl+r(zorleﬂ [. (69)
Using the simple geometry from Figure 4 and letting
@), =z;+rz)r'(z;), i=1, 2, (70)

we have the following result:

¢ < sin~! 71

This agrees with our intuition. From equation (28) we know that if the points calcu-

lated on the axis are coincident (i.e., | (a,), —(ay), |=0), we cannot determine the axis.
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Therefore if | (a,), - (a,), | is small, we would expect that there would be a relatively
large possibility for error, and this is exactly what we see in equation (71). In words,
when deterrhining the axis from curvature magnitudes, the least amount of orientation
error is possible when the points on the axis are as far apart as possible (Recall that these

points on the axis are —KI: from the contact point along the surface normal). In Figure 6

contacts 1 and 3 have the least amount of orientation error possible, while contacts 1 and

2 have the most.
Large Orientation Error Possible

Small Orientation Error Possible

Figure 6. Good and Bad Pairs of Contacts for Determining Orientation

Figure 5 shows the orientation error for the method of axis calculation using curva-
ture magnitudes.

4.3. Axis Uncertainty Using Directions of Curvature

In this subsection we calculate bounds on the axis error using the directions of cur-

vature, instead of the curvature magnitudes.

4.3.1. Axis Position Error, §

Recall from Section 2 that the axis can be determined by the intersection of the
planes at two contacts perpendicular to kael and lclez. To find an upper bound on the
minimum distance between the actual axis and the experimentally determined axis using
this method, it is sufficient to examine the cross section plane at the contact where r(z)is
largest. By considering the region in the cross section where it is possible for the surface
normals to intersect due to the orientation error |A7 || and the contact position error,
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| Ap ||, we can determine the maximum possible error. The geometry is illustrated in Fig-

ure 7.
Contact 1

Contact 2

Figure 7. Geometry for Axis Position Error

The small circles mark the vertices of a quadrilateral determined by the angle between
the contacts, 8,6, the surface normal error, | A7t ||, the contact position error, HAp I,

and the radius of the cross section, r(z). Due to the errors, it is possible for the results of
experimental data to show that the axis is anywhere within the boundaries of the quadri-
lateral. Therefore, by computing the distance from the center to the vertex that is the
furthest away, we obtain bounds on the position error of the axis determined from experi-
mental data. We can see that a bad situation is 92—'61 small, for then, d, can become
arbitrarily large. As 6,—8, increases, d 1 becomes shorter; however, d, increases. At
approximately 6,-6, =90°, d, becomes longer than dy and will continue to increase
without bound until 6,—6; = 180°. This agrees with the singular configuration of Table

2. Figure 8 contains a plot of 8.

4.3.2. Axis Orientation Error, ¢

Recall that the orientation of the axis is computed from the cross product

(see equation (31)). Ellis [1989] has determined the bound on this error by using the



Axis Position Error Using Directions ‘ Axis Orientation Error Using Directions

0.3 T T T T 60.0 T T T T

L 2
reos 40.0

.

[
y—
1

@
o
(=]

Error (in.)
poErTor (deg.)

L4
-
T
1
(o4
o

10.0

0.0 L L s L 0.0 s 1 1

)
0.0 50.0 100.0 150.0 200.0 0.0 50.0 100.0 150.0 200.0
Theta 2 — Theta | (deg.) Theta 2 - Theta 1

Figure 8. Axis Error Using Curvature Directions

-Gaussian sphere, which we use here. 1591 and kg, become points on the Gaussian sphere.
The set of vectors perpendicular to kel 1s a great circle, as is the set of vectors perpendic-
ular to kez Their cross product is then represented by the intersection of these two great
circles. When there 1s uncertainty in kel and kez, the points representing the vectors
become small circles on the sphere, while the great circles become bands of uncertainty.
The intersection of the two bands is a curvilinear rhombus (see Figure 9). From Ellis
[1989] the uncertainty is given by

r -1 Sln“AkAg" (72)
fisaig sin[(0,—0,)/2] | -

This is plotted in Figure 8. Note that, similar to the position error in the section above,
the minimum error sensitivity occurs when the contacts are 90° apart.

5. Experimental Results

Experiments were performed on a RobotWorld system built by Automatix. This
system consisted of suspended modules with x, Y, z, and 0 degrees of freedom. Our test
object was a wooden surface of revolution cut on a lathe with a sweeping rule modeled
by a second-degree polynomial. The object was bolted to the ROBOTWORLD work sur-
face at an angle, and a module equipped with the tactile sensor was commanded to probe
the object at various locations (see Figure 10).

Recall from section 3 that if the contacts do not form a singular configuration, the
three planes defined by p, k; »and 7 at each contact intersect in a line, and rank A = rank
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- Figure 9. Gaussian Sphere for Cross-Product Error

[A d] = 2. However, this assumes we have perfect data. With experimental errors, the
planes will usually intersect in a point instead of a line, and thus we will have rank A =
rank [A d] = 3. This problem can be solved by calculating the singular values of A and
[A d]. The number of singular values greater than a preset tolerance then determines the
rank. Now, the three correctly matched planes form a pyramid with the intersection point
being the apex, and the three planes being the side faces. The estimated axis is then
defined by the point at the apex and the point which is the centroid of the pyramid’s base
(see Figure 11).

S5.1. Preliminary Experiment

The preliminary experiment serves to illustrate our method. Table 7 includes results
for the three contacts and the axis determined by these contacts. Figures 11 and 12 show
the planes and curvature directions for the experiment. The position and curvature infor-
mation derived was sufficient to determine the axis using a tolerance for singular value
decomposition of 0.1. However, these contacts were chosen carefully to avoid singular
configurations. A more comprehensive set of experiments were performed to examine

the effects of contacts close to singular confi gurations.



=28 -

Figure 10. RobotWorld Experimental Set-Up

5.2. Comprehensive Experiment

Table 8 shows the curvature information and positions derived from 12 contacts.
The curvature information for contacts 9 and 10 was badly corrupted. Contacts 11 and 12
were taken at approximately the same point as contact 10 in an attempt to improve the
results. Contact 12 had the best overall result of these 3, and so it was used to represent
this position on the object. Notice that groups (1,2,3), (4,5,6), (7,8), and (9,12) have close
to the same value for 6. Thus, configurations containing two contacts from any one group
will be close to singular.

Given 10 contacts, there are 120 different combinations of 3 contact groups. When
tested with tolerances of 0.005, 0.01, and 0.05, very few of the combinations were non-
singular. Of those which were nonsingular, many gave a false axis. This poor perfor-
mance can be attributed to the relatively large orientation errors, the gradual sweeping
rule of our object (r'(z) close to zero), and similar values for 8 for several groups of con-
tacts. Figure 13 shows the results of the experiments. Note that there tend to be clusters
around 0° angle error and around 100° angle error. The cluster around 100° was due to
wrongly matched planes (which were almost perpendicular to axis) intersecting correctly
matched planes. For those combinations which gave the correct axis, the angle error was
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Feature Vector Estimate Actual Error
Axis Position | [35.35 26.04 2.83] | [35.32 26.1 2.82] | .07 in.
Direction [-.29 .06 .95] [-.40 0 .92] 7.3°
Contact 1 P [35.64 25.12 2.69] | [35.63 25.19 2.68] | .07 in.
0 = 283.7° k, [.28 -.17 -.95] [43 -.15 -.89] 8.7°
z =435 in. s [-.94 -.26 -.23] [-.89 -.23 -.39] 9.4°
Contact 2 p [36.18 25.76 3.04] | [36.16 25.76 3.04] | .01 in.
6 = 338.5° k, [.54 -.12 -.84] [.54 -.06 -.84] 3.0°
z =4.47 in. 2 [-.31 -.95 -.06] [-34 -.93 -.15] 5.2°
Contact 3 P [35.72 26.42 3.55] | [35.76 26.44 3.58] | .05 in.
0 =25.9° k, [.59 .10 -.80] [.60 .11 -.79] .8°
z =5.13in. A [.46 -.86 .23] [.40 -.90.17] 4.9°

Table 7. Preliminary Experimental Results

Figure 11. Experimental Planes
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Figure 12. Experimental Curvature Directions

usually below 10° and the position error below 0.3 in. Also, notice the apparent trend:
As the tolerance was decreased, the number of nonsingular combinations went down;
however, the ratio of correct matches to incorrect matches went up.

Error in our experiments was greater than in Fearing and Binford [1988]. Some of
this error can be attributed to imprecise fixtures. Most of the equipment was "home
made," and we believe this could Cause errors up to a few degrees.

Another source of error was in the manner forces were applied to the sensor. Our
current model for the sensor assumes that forces are applied normally to the sensor’s sur-
face. Unfortunately, with our RobotWorld System, this was not the case since the motions
Wwere position controlled rather than force controlled. One possible solution is to subtract
off the odd portion of the strain response. Fearing, Rise, and Binford [1986] showed that
the odd portion of the strain response was due to the tangential force, while the even por-
tion was due to the normal force. See the appendix for a more complete error discussion.

6. Conclusions

In general, three contacts with a tactile sensor are sufficient to determine an arbi-
trary surface of revolution’s orientation and location. However, singular configurations
exist which can prevent the axis from being determined uniquely, or possibly, from being
determined at all. Basically, these involve contacts on the same meridian or meridians
separated by 180° and contacts on the same parallel or contacts on different parallels
where the surface normals intersect at the same point on the axis.

The bounds on the orientation and position error were calculated as a function of
parameters for two contacts. Optimal angular spacing for the curvature direction method
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A

ko

p (in.) n k, p. (in.) | pg (in.)
Contact 1 || Est. || [35.1925.362.76] | [-28-95.14] | [-44 26.86] | [85-.18.49] | 6000 71
6=-99.4° || Act. || [35.1625.282.78] | [-24-96.14] | [-35.22.91] | [91-.16 .39] 7.4 .86
z=5.58in. || Err. .09 2.7° 5.8° 6.2° = 17 %
Contact2 | Est. || [35.0525453.23] | [-26-94.20) | [-44.30.85] | [.86-.13.50] | 15000 63
6=-95.6° | Act. || [35.0425403.25] | [-20-95.23] | [-35.29.89] | [91-.10.40] 7.8 74
z2=6.07in. || Err. .05 3.9° 5.7° 6.9° — 15 %
Contact3 || Est. || [34.9225.623.69] | [-22-93.30] | [-46.36.81] | [.86-.05.51] | 16000 43
6=-90.2° || Act. || [34.9125.563.71] | [-14-94.32] | [-37.35.86] | [.920.0.40] 8.3 58
z=6.5in. | Err. .07 5.0° 5.7° 7.5° = 25 %
Contact4 | Est. | [364125.862.61] | [.84-31.45] | [-49-05.87] | [24.95.19] | 16000 1.1
=-14.6° || Act. || [364025.862.60] | [.83-25.50] | [-51.03.86] | [.23.97.10] 7.0 96
2=4.93in. || Err. 01 4.4° 4.9° 5.2° s 15 %
Contact5 || Est. || [35.8025953.52) | [.76-.18 .63] | [-64-03.77] | [12.98.14] | 16000 .80
6=-11.7° || Act. || [35.7725953.50] | [.75-.19.63] | [-63.06.77] | [.19.98.08] 7.8 75
2=6.00in. || Err. 04 1.2° 5.0° 5.1° — 6 %
Contact6 || Est. || [36.1625933.07) | [81-25.53] | [-57-.14.81] | [13.96.25] | 17000 .90
6=-10.7° | Act. || [36.1225943.04] | [80-.18.57) | [-57.04.82] | [.17.98.07] 7.3 .88
z=545in. | Err. 04 4.4° 10.2° 10.8° s 2 %
Contact7. || Est. || [359926.782.88] | [.54.73.41] | [-40-21.89] | [-74 .65-.18] | 14000 1125
6=46.0° | Act. || [35.9526.742.85] | [.55.71.45] | [-.51-.14.85] | [-.66 70 -.29] 73 .90
z=534in. || Err. .06 2.6° 835 8.2° 3 39 %
Contact8" || Est. || [35.6926.703.35] | [49 .73 47 | [-46-24 .86) | [-74 .64-22] | 14000 1.1
0=46.6° || Act. | [35.6526.653.31] | [.50.70.51] | [-55-.19.81] | [-.67.69 -29] 7.6 79
z=589in. || Err. 07 2.9° 6.4° 6.5° — 36 %
Contact9 || Est. || [35.6026.962.93] | [19.93.31] | [-23-26.94] | [-95.25-17] | 12000 1.3
0=69.3° | Act. | [35.5926.8929] | [23.91.34] | [-46-20.87] | [-86.35-37] 7.4 87
z=553in. | Err. .08 2.9° 13.9° 14.2° s 55 %
Contact 10 || Est. || [35.8027.04 2.48] | [21.95.21] | [-23-16.96] | [-95 25 -.18] | 10000 1.3
0=70.6° || Act. || [35.7926.982.46] | [24.93.27] | [-44-14 .89] | [-87 33-37] 7.1 95
2=5.05in. | Err. .06 3.9° 13.0° 13.0° — 41 %
Contact 11 || Est. | [35.8027.042.47) | [21.95.22] | [-27-16.95] | [-94 26-22] | 10000 1.3
0=712° | Act. || [35.7826.99 2.46] | [23.94.27) | [-44-14 89] | [-87 32-.38] 7.1 95
2=5.05in. || Err. .06 3.0° 10.4° 10.4° - 37 %
Contact 12 || Est. || [35.7927.042.47) | [21.95.22] | [-29-15.95] | [-93.26-24] | 11000 1.27
0=71.2° || Act. || [35.7826.992.46] | [23.94.26] | [-44-.14 .89] | [-87 32-.38] 7.1 95
2=5.05in. || Err. .06 3.0° 9.2° 9.3° = 34 9

Table 8. Contacts for Comprehensive Experiment
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Figure 13. Comprehensive Experimental Results

was seen to be 90°, whereas for the magnitude method, a small Pe and contacts which
were far apart produced the smallest error bound. Experiments showed that our method
indeed worked for many cases, even in the presence of significant error. Angle error was
usually less than 10° and position error less than 0.3 in.
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7. Appendix - Notes on the Curvature from Strain Problem

Fearing and Binford [1988] described the algorithm which is used to determine cur-
vature information from the strain response of the sensor. Here we describe the
algorithm’s theoretical performance when determining 1 curvature (object is a cylinder)
versus determining 2 curvatures (e.g., our surface of revolution). Specifically, we are
interested in the reliability of the angle estimate given some amount of sensor noise. The
angle, of course, was what was used in the surface of revolution axis finding experiments
(Note that Fearing and Binford [1988] used the angle estimates from only the 1 curvature
algorithm). We also describe attempts to improve the model for the sensor. Finally, we
consider the errors which occurred in our surface of revolution experiments (see section
5).

7.1. Sensitivity to Error

We use the strain response of 16 tactels (4 x 4 window) for the algorithm. Thus, the

S€nsor error can be written as

T
Ag, = [Aez 11> A& 12, + -, Ag, 43, A8244] i (73)

For the algorithm which determines only one curvature, the parameter estimation error is .

AR,
AR =] Ay |, (74)
AF

while for the two-curvature algorithm, the error is
AR |
AR,

AF

(75)

It is desired to find the relation between max AR, the maximum expected error in the
radii, force, and orientation estimates as a function of max Ag,, the worst case variation
in strain sensor measurements, The measured normal strain is represented as a vector

functionf_
Ezo =[_(Ro’ Vo ’Fo) ’ (76)

where R, could be either Ry, orRy,,R,,. For small strain errors, f is expanded in a

Taylor’s series up to first order about nominal values
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4 = 20 +A82 = 20 +J AW ’ (77)

where J is the Jacobian of f . The least-squares matrix solution for AR is
AR =TI Ae, = AAe, (78)

where the matrix A is an abbreviated notation for the least-squares inverse. The max-
imum parameter change in each element of AR will occur when Ag, is aligned with A‘-T.

For example,
maxAR; =ATAe, =AT—— 1ae, 1 = 1A, 1A, | . (79)

The sensor noise due to quantization is [Fearing and Binford, 1988]
lAg, | =4(0.05)% . : (80)

Figure 14 shows the results for this value of sensor noise. For the one curvature algo-
rithm we used 1 inch for the radius. For the two curvature plot we used radii of 1 and 7
inches. These two radii are close to those for our surface of revolution. The model used
for the impulse response was the same as used'by Fearing and Binford [1988] except for
small parameter changes. Notice the large error sensitivity for the two curvature algo-
rithm.. This is because we are trying to obtain more information from the same amount of
data. For the axis finding experiments the object angle was in the -25° to 25° range.
Thus, an upper bound on the angle error would be 20.5°, not 2° as was assumed in the
Error Analysis section. These plots provide a comparison between the two algorithms;
however, they do not necessarily predict the actual error that would be encountered. First
of all, we assumed a uniform distribution of noise due to quantization and plotted the
sensitivity due to the upper bound on the noise. In practice, it would be quite unlikely
that the noise would be at this maximum and that it would also be in such a direction so

as to produce the value shown in the plot.

7.2. Model Improvements

For strains up to 15%, or so, the sensor is approximately linear. We may also hope
the sensor is position-invariant, and thus the sensor can be characterized by its impulse
response as a function of position. In an attempt to improve the performance of the sen-
sor we have tried several new impulse response models. We also consider a simple

modification to the elasticity model.
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Angle Dependence of Angle Error Sensitivity
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Figure 14. Angle Error Sensitivity

7.2.1. Improved Pr.obing Technique

In Fearing and Binford [1988] the impulse response was determined by probing the
sensor with a force balance by hand. This technique limited the number of probes, due to
operator fatigue, to about 150 or so. Also, since the probe was dropped by hand, the
momentum of the probe striking the sensor was probably different for each contact. The
same RobotWorld used to probe our surface of revolution was set up to apply impulse
probes to a tactile sensor. Thus we were able to cover the whole surface of the sensor
(about 3500 probes) in a consistent manner.

7.2.2. Adding More Parameters

Fearing and Binford [1988] used the following separable model for the impulse
response model:

hx,y)=h,(x)h, () (81)
where
d2(d2-v x?) df (d?-v,y?)
hx)= =Z—F X °  py= 2D Ty 82
x) 2+ d 2P y ) o2 dD? 82)
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dy 4, and Vy,Vy are depth and Poisson’s ratio parameters along the cylinder axis and
around the circumference respectively. Each tactel was assumed to have the same values
for the different parameters. They also assumed the tactels were positioned uniformly at
intervals of 3.3 mm along the axis and 18° around the axis. The first attempt we made to
improve the model was to allow each tactel to have its own parameters. This is much
more realistic since the sensor was made by hand with relatively large tolerances. Next,
we got rid of the uniform spacing assumption by adding x and y position parameters for :
each element. Fitting the data from the RobotWorld probing measurements and then plot-
ting the positions showed us that the bands were not laid down perfectly straight. For this
reason we next added rotation parameters to allow the x and y directions to be altered

independently for each tactel:
X—=xcos(p,)—y sin(9, )

and (83)
y—=ycos(9,)+xsin(d,) .

The last parameter we added to the models was to allow the shape of the response in the
y direction (around axis) to be unsymmetric (Plots of the data showed the shape was
roughly symmetric in the x direction but unsymmetric in the y direction.) This was done
with

hy ) = (1+ay)h, (). (84)

The result of our new model was a fit to the RobotWorld data of about 1-2% of full scale

rms.

7.2.3. Deconvolution of Impulse Data

The probe used in producing the impulse response was, of course, not a real
impulse. It had a finite width and amplitude. Thus, our next attempt at improving the
model was to deconvolve the RobotWorld data with the probe response. This had the
expected effect: the shape of the impulse response became slightly sharper and the ampli-
tude increased. Reversing the process and convolving our new model with the probe
response gave a slightly better fit to the RobotWorld data than the previous model. The
ability of the new model to predict curvature magnitudes and directions was not

significantly better than the previous model, however.
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7.2.4. Linear Interpolation on Impulse Data

Since the separable model described above had no real theoretical justification, and
since the data from the RobotWorld experiment was quite dense (samples were taken at
0.02 inch spacing along the axis and 3° around the axis), it made sense to try to use the
data as a direct look-up table. Our first attempt used a 0-order interpolation between sam-
ples. Thus, the value for the impulse response as a function of an arbitrary position was
taken to be the response of the closest location where a measurement was taken. This did
not work well with our fitting program, presumably because the gradient search routine
could not handle the discontinuity of the model with respect to position. Next, we tried
linear interpolation on the RobotWorld data. This impulse response model behaved
almost identically to the complicated models discussed in the previous subsections when
determining curvature magnitudes and directions. We chose to work with linear interpo-
lation scheme due to its simplicity.

After improving the impulse response model, we considered a simple change to the
elasticity model of the sensor as described in the next subsection.

7.2.5. Increasing the Modulus of Elasticity Parameter

The half space model used in Fearing and Binford [ 1988] was only an approxima-
tion. In their work the modulus of'elasticity was determined by a crude measurement on a
thick cube of the same type of rubber used in making the tactile finger. They used a
value of 2.5 x 10° N-m™2 However, Gobel [1974] includes another approximate model
(the bonded spring) in which the modulus of elasticity is replaced by an effective
modulus which turns out to be larger. This is due to the fact that the rubber is "bonded"
to the surface of the indenter above and to a hard substrate below. This agrees with a sim-
ple experiment: the thick cube of rubber feels much softer than the tactile sensor. By trial
and error, we found that a value of 4.0 x 10° N-m™2 gave more accurate curvature predic-

tions.

Figure 15 shows a plot of the angle estimated by the 2 curvature algorithm for vari-
ous angles of a 0.5 inch cylinder contacting the sensor. The plotfor £ =2.5 x 10° N-m~2
shows a consistent error in that a line fit to its points has a slope of 0.79 instead of 1.
However, the plot for £ = 4.0 x 105 N-m=2 has a slope of 0.99. The intercept (2° for the
E =25x%x10° case, 2.5° for the £ =4.0 x 10° case) on the Estimated Angle axis was not
a concern since on our setup the absolute angle was uncertain while the relative angle

was precise.
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Comparison of Algorithm with Different E
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7.2.6. Remaining Pfoblems
Despite our attempts to improve the model for the sensor, there still are significant
problems to be solved.

The curvature algorithm using the linear interpolation on RobotWorld data and a
larger modulus of elasticity parameter worked quite well at determining curvature direc-
tions, however, there appeared at times an offset of as much as 10° in the estimated
angle. This was consistent, however, for a given set up, and all angles measured would
exhibit the same offset (see Figure 17). It was at first thought that the offset was due to
large tolerances in our testing apparatus. However, this theory could not be justified.

Another problem was the fact that the sensor exhibited highly position-dependent
behavior (e.g., the estimated angle of an object with respect to the sensor depended on
where the object touched the sensor). The change in the estimated angle was as much as
12° in some cases as we varied the contact location. Thus, it was necessary to take all
measurements at a specific location on the sensor. Unfortunately, position-independent
behavior is necessary in order for the sensor’s response to be characterized by its impulse
response. The presence of copper bands beneath the surface of the rubber is one possibil-
ity for the position-dependent behavior. This could cause the effective modulus of
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elasticity (see Section 7.2.5) to be larger near copper bands since the rubber might be
adhering to the bands. Other possibilities include a nonuniform rubber thickness and
nonuniform frictional properties of the outside surface of the sensor.

One likely source of error was in the approximations and assumptions we made in
our model for the sensor. For simplicity, the half space model (Figure 16A) was used.
However, there were different ways that the half space model could be applied to a
cylindrical tactile sensor. Basically, these affected how distance in the circumferential
direction was calculated and how the impulse probing was done. The first method we
considered was that shown in Figure 16B. Here we assumed that the curvature of the
finger was small enough so that the finger was like a plane. With this assumption, we
had to probe the sensor for its impulse response by parallel probes which were normal to
the sensor at a particular line along the finger axis. Distances in the circumferential
direction from this line would then be computed as r sin(8) where 6 was the angular dis-
placement from the line. The main disadvantage of this assumption was that all contacts
had to be made in the vicinity of the line where normal probing occurred. The other
method was to assume normal forces as is shown in Figure 16C. Thus we assumed that
the half space was "wrapped around" an axis. For this assumption, we probed the sensor
normal to its surface. Distances in the circumferential direction from some line along the
axis were calculated as 70 where § was the angular displacement from the line. We chose
this method since the model was valid all over the finger and not just in a small region.
Since the contact areas were small (e.g., major and minor axes of the contact ellv.ipse were
around 2-4 mm for our surface of revolution), we were able to obtain decent performance
from the sensor with our approximation. Although the difference between the vertical
force and normal force methods may seem small for these dimensions (e. g., r= 12.7 mm,
0= 13.7° gives rsin(8)= 3.01 mm, 7 6= 3.04 mm), it was found that the curvature estima-
tion algorithm was extremely sensitive to differences of this order.

As evidence of some problems with our model, impulses (for which the curvature
estimation algorithm should return two radii of zero and an exact force estimate) did not
fit perfectly. Radii for impulses were in the 0-1 mm range, and forces were estimated too
high. The rms fit was in the range of 1-3% of full scale. Perhaps finite element modelling
techniques could be used to understand how the use of the half space model for a cylindr-
ical tactile sensor affects the estimated strains. As a first attempt, we might see what
effect the curved geometry of the sensor has. Next, the effect of including copper bands

beneath the rubber’s surface could be simulated.
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Figure 16. Contact Forces and Elasticity Models

7.3. Surface of Revolution Experimental Errors
shows a plot of both the experimental and ideal angles returned by the

Figure 17
curvature estimation algorithm for the surface of revolution data shown in Table 8.
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Figure 17. Experimental Angle Error
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Note the apparent consistent offset that was mentioned in section 7.2.6. The average

error was about 8°. The reason for this behavior was unknown.

The rms error between the model strains and actual strains on our RobotWorld setup
was significantly worse than data taken from our s€tup on a machinist’s table. Error on
RobotWorld was in the 3-4% of full scale range, while data on the machinist’s table was
in the 1-3% range. Possibilities for this difference include the fact that the sensor could
not be applied to the object with a normal force. The strain response to a non-normal
force is significantly different than the response to a normal force. Also, the objects we
touched on RobotWorld were made of wood while the objects we used with the
machinist’s table were plastic (different friction properties). In addition, the surface of
revolution used on RobotWorld had larger radii than our other test objects. Thus, the con-
tact ellipse was larger for the surface of revolution, and possibly the direction of the con-
tact forces and the differences in the half space and cylindrical geometry could have had
more of an effect (see section 7.2.6). The speed of impact of the tactile sensor on the sur-
face of revolution (using RobotWorld’s slowest possible motion) was higher than on the
machinist’s table. Finally, the RobotWorld motors were a potential noise source. Stray
magnetic fields could have corrupted the measurement of the capacitive elements.



w2

8. References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

(9]

[10]

(1]

Peter K. Allen, "Sensing and Describing 3-D Structure," IEEE International
Conference on Robotics and Automation, San Francisco, CA, April, 1986.

Peter K. Allen and Kenneth S. Roberts, "Haptic Object Recognition Using a
Multi-Fingered Dextrous Hand," JEEE Conference on Robotics and Automation,

Phoenix, Arizona, 1989.

Michael Brady, Jean Ponce, and Alan Yuille, "Describing Surfaces," Proceedings
of the 2nd International Symposium on Robotics, Kyoto, Japan, August, 1984,

Richard Cole and Chee K. Yap, "Shape from Probing" Journal of Algorithms, vol.
8, pp. 19-38, 1987.

RE. Ellis. "A Tactile Sensing Strategy for Model-Based Object Recognition,"
COINS Technical Report, pp. 87-96, University of Massachusetts, Amberst, 1987.

R. E. Ellis, "Uncertainty Estimates for Polyhedral Object Recognition," JEEE
Conference on Robotics and Automation, Phoenix, Arizona, 1989.

O.D. Faugeras and M. Hebert, "The Representation, Recognition, and Positioning
of '3-D Shapes from Range Data," International Journal of Robotics Research,
vol. 5, no. 3, Fall, 1986.

Ronald S. Fearing, A. Rise, and T.O. Binford, "A Tactile Sensing Finger Tip for a
Dextrous Hand," 5th SPIE Intelligent Robotics and Computer Vision, Cambridge,
MA, October, 1986.

R.S. Fearing, "Tactile Sensing for Shape Interpretation,” -in Dextrous Robot
Hands edited by S.T. Venkataraman and T. Iberall, New York: Springer-Verlag
1990.

Ronald S. Fearing and T.O. Binford, "Using a Cylindn’cal Tactile Sensor for
Determining Curvature," /EEE International Conference on Robotics and Auto-
mation, Philadelphia, PA, April 1988.

P. C. Gaston and T. Lozano-Perez, "Tactile Recognition and Localization Using
Object Models: the Case of Polyhedra on a Plane," M.I.T. AJ. Memo, vol. 705,
March, 1983.



[12]

[13]

[14]

[15]

[16]

[17]

(18]

-43 -

E.F. Gobel, Rubber Springs Design, London: Newnes-Butterworths 1974,

W. Eric L. Grimson, "On the Recognition of Parametrized Objects," International

Symposium on Robotics Research, 1987.
Martin M. Lipschutz, Differential Geometry, New York: McGraw-Hill 1969.

Ramakant Nevatia, Machine Perception, Englewood Cliffs, NJ: Prentice-Hall,
1982.

Jean Ponce, David Chelberg, and Wallace Mann, "Invariant Properties of Sfraight
Homogeneous Generalized Cylinders and their Contours,"” /EEE Transactions on
Pattern Analysis and Machine Intelligence, September, 1989.

Harry Printz, "Finding the Orientation of a Cone or Cylinder," Proceedings of the
IEEE Computer Society Workshop on Computer Vision, Miami Beach, Florida,
November, 1987. :

Kashipati Rao and Ramakant Nevatia, "Computing Volume Descriptions from
Sparse 3-D Data," International Journal of Computer Vision, vol. 2, no. 1, pp.
33-50, 1988.



