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Precision Robotic Leaping and Landing Using
Stance-phase Balance

Justin K. Yim1, B. Roodra P. Singh2,3, Eric K. Wang4, Roy Featherstone2, and Ronald S. Fearing1

Abstract—Prior work has addressed control of continuous
jumping using touchdown angle from flight, but greater precision
can be obtained by directing individual leaps using liftoff angle
from stance. We demonstrate targeted leaping as well as balanced
landing on a narrow foot with a small, single leg hopping robot,
Salto-1P. Accurate and reliable leaping and landing are achieved
by the combination of stance-phase balance control based on
angular momentum, a launch trajectory that stabilizes the robot
at a desired launch angle, and an approximate expression for
selecting touchdown angle before landing. Dynamic transitions
between standing, hopping, and standing again are now possible
in a robot with a narrow foot. We also present approximate
bounds on acceptable velocity estimate and angle errors beyond
which balanced landing is infeasible. Compared to a prior Spring
Loaded Inverted Pendulum (SLIP)-like gait, the jump distance
standard deviation is reduced from 9.2 cm to 1.6 cm for particular
jumps, now enabling precise jumps to narrow targets.

Index Terms—legged robots, dynamics, jumping

I. INTRODUCTION

JUMPING can cross large distances and heights to clear
gaps and obstacles, but it necessitates accurate control.

During launch and landing, a locomotor must balance on
its feet while quickly accelerating its body. Accurate launch
velocity is required to jump to a small target, while accurate
landing balance is required to remain on the target without
tumbling. Exemplary demonstrations of these motions among
animals include arboreal leaps between branches by squirrels,
rapid traversals of sheer cliffs by mountain goats, and acrobatic
jumps on balance beams by human gymnasts. Robots capable
of similar high performance leaping and landing could better
approach the mobility of animals in complex environments.
In this work, we combine high performance balance control
developed in [14] and [10] with high-power jumping to achieve
two behaviors: precise leaping to targets and balanced landing
as shown in Fig. 1. This is demonstrated on the jumping robot
Salto-1P developed in [16] and [17].
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Fig. 1: Salto-1P leaps and lands.

A. Related Work

We organize our overview of related work into statically
stable jumpers, dynamic runners, robots with many degrees of
freedom, and platforms for investigating balance control.

Many robots aim their jumps from a statically stable initial
posture [32], [8], [1], [39]. A similar approach uses steady
running before launch to aim jumps [19]. These strategies
can effectively direct extremely large jumps. However, to the
best of the authors’ knowledge, these robots do not attempt
to control their landing posture unless by using additional
multimodal aerodynamic appendages as in [21]. A righting
maneuver may be required before another jump can be per-
formed; furthermore, uncontrolled landing could cause a robot
to bounce or tumble off of its target.

Running robots incorporate jumping into dynamic gaits.
This motion is often described by the Spring Loaded Inverted
Pendulum (SLIP) model [7]. Marc Raibert experimentally
demonstrated impressive balanced SLIP-like hopping with
simple heuristic control [26]. Many SLIP-like models and
robots have followed. Boom-mounted robots have demon-
strated precise step control [38], [33]. Deadbeat hopping over
varying terrain is demonstrated in simulation by [34], [12],
[2]. Deadbeat hopping can also be achieved using approximate
solutions to the SLIP equations [27]. In previous work [36],
aerial control sets touchdown angle and leg length to achieve
desired takeoff velocities after one open-loop stance phase for
Salto-1P. However, these works do not address the problem of
landing and stopping.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/LRA.2020.2976597

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2020

Quadrupeds and hexapods with many degrees of freedom
have demonstrated impressive acrobatic leaping and landing
including hurdles over obstacles and flips [18], [24], [20].
However, these robots usually land on multiple contacts over a
broad base of support and not a narrow area. Whole-body con-
trollers, hybrid zero dynamics, and other optimization-based
methods from [9] [31] [35] can execute complex maneuvers
including leaping, landing, and gait transitions due to their
algorithmic generality, but they require significant computation
online or in pre-planning. On the other extreme, the severely
under-actuated Acrobot can hop and land, but its motions are
limited as shown in simulation by [5].

In walking robots, capture regions describe how to place a
foot in order to arrest a robot’s motion [25]. In this work, we
derive a similar landing leg angle strategy to arrest a jumping
robot and bring it close to a balanced posture.

After landing, the major challenge is balance on a small
base of support. Balancing, as considered in control literature,
is often regarded purely as a control exercise, ignoring the
balancing ability of the plant. However [13] and [14] recently
presented a different approach to balancing based on more
thorough analysis of the physics of the plant.

Some interesting results were already available in the bal-
ancing of under-actuated robots such as Acrobots [30], [6]
and the Pendubot [28] two decades ago; however, the per-
formance was limited to swing-up control or tracking certain
special trajectories while remaining balanced. Similar to the
approach in [14], the controllers in [30] and [23] employed
angular momentum as the state variables for a Reaction Wheel
Pendulum (RWP) in [29] and for an output zeroing controller
in [23]. In [29], the controller used feedback linearization
of the dynamics of a RWP and then pole-placement for the
resulting linear chain of integrators, while [23] relied on output
zeroing of the angular momentum L that results in the robot
being balanced. Another interesting balancing result based on
the control of angular momentum for graphical simulations is
given in [22]. In this paper, we present an angular momentum
based leaning controller following from the high-performance
balancing control in [14] and [10] combined with launch and
landing strategies.

II. MODELS AND CONTROL DESIGN

A. Motivation and Principles

We aim to produce large, accurate leaps and reliable land-
ings on a narrow support. This is relevant to jumpers with one
or two small feet or any jumper that must contact the ground
only in a small region (on a ledge, for example).

While the robot is on the ground in stance phase, we
consider its motion in two parts: leaning motion of the center
of gravity (CG) as it rotates over its support, and radial motion
of the CG towards and away from the support. We split
control of these motions into leaning control and leg control
respectively. The robot’s ballistic flight trajectory always lies
in a vertical plane and we assume that the robot confines its
stance motions to this same plane.

During launch stance phase, leaning control and leg control
follow a leaning trajectory so that the robot launches on

rc 
. 

Mc ,Mc ,Mc ,Mc 
. .. ... 

Leg 
control 

Leaning 
control 

q3c 

τ 

Leaning 
Trajectory PD angle 

control 

θc 
vx , vz 

θ, θ 
. 

q3c 

τ 

Launch stance phase Flight phase 

M, M, 
. 

M 
.. 

x, z, xc ,zc  
T, vzc , 

Mc = 0 

Leg 
control 

Leaning 
control 

q3c 

τ 

Leaning 
Trajectory 

Landing stance phase 

M, M, 
. 

M 
.. 

q3, q3 
. 

r, r,  

Liftoff Touchdown 

Touchdown 
plan 

Fig. 2: Control block diagram for launch, flight, and landing.
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Fig. 3: a) Planar model of the robot in stance phase. The foot behaves
like a pin joint when the robot is on the ground. b) Image of Salto-1P
with its components labeled.

a desirable flight path. In flight phase following liftoff, the
touchdown plan sets the posture for landing. In landing stance
phase after touchdown, leaning control balances the robot and
leg control slows it (Fig. 2).

A jumping robot with a ballistic flight phase (i.e., one
without large aerodynamic forces), has no control over its CG
motion in the air, making launch conditions critical to accurate
landing. In order to improve launch angle accuracy, we choose
a launch condition with zero angular velocity of the CG about
the support on liftoff and net zero angular momentum on
liftoff. This limits the achievable launch angles, but partially
decouples lean and leg control. In section II-G, we analyze
the sensitivity of launch velocity to launch angle errors using
this strategy and show that it is more accurate than SLIP-like
running for similar leg angle errors.

To make a balanced landing on a narrow foot and avoid
tumbling, the robot must touch down with acceptable angles
and velocities. In section II-F, we derive approximate limits
for balanced landing.

Both launch and landing depend critically on lean angle.
This section focuses on lean angle, while development of leg
control is detailed in section III.

B. Robot Model and Parameters

The robot Salto-1P consists mainly of three rigid bodies: the
chassis, reaction wheel, and leg motor rotor with moments of
inertia about the y axis of I1, I2, and I3 respectively (Fig. 3).
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Pin joints parallel to y join the chassis to the reaction wheel
and leg motor through the latters’ CGs so that their rotations,
q2 and q3 respectively, do not move the CG. The straight-
line leg linkage is considered to be a massless prismatic joint
connecting the chassis and foot along axis er. We replaced
Salto-1P’s previous point foot with a bar parallel to y so that
it behaves as a pin joint with angle θ as long as ground reaction
forces remain inside the friction cone. The robot’s total mass is
m and its CG lies on er a distance r from the foot. rmin is the
minimum length of r in full crouch and rmax is the maximum
at full extension. Bars over ( ) and under ( ) variables denote
values at liftoff and touchdown respectively.

The robot has two main actuation inputs: a torque τ at the
q2 joint and a command for the series-elastic leg motor. The
leg motor is attached through a 25:1 gearbox to a torsional
spring on the leg linkage input crank (gear, spring, and linkage
depicted as lever arm, linear spring, and slider in Fig. 3).
Proportional Derivative (PD) control of the leg motor fol-
lows a commanded angle q3c. Additionally, two aerodynamic
thrusters produce torques used only to stabilize the robot’s
motion to the x− z plane in both flight and stance.

C. Leaning Plant Model

For leaning, we use the plant given in [14] based on the
angular momentum L of the robot about its foot. Its complete
dynamics is a chain of integrators that makes the controller
design a simple pole-placement feedback problem. We also
retain from [10] the use of scaled angular momentum M =
L

mrg instead of L where g is the acceleration due to gravity
(a positive quantity). For Salto-1P, if r and q3 are locked,
it is equivalent to a RWP conveniently characterized by two
parameters: the time constant of toppling of the entire robot
considered as one rigid body Tt and the angular velocity gain
of the reaction wheel Gω as in [14] and [13] respectively:

Tt =

√
mr2 + I1 + I2 + I3

mrg
, Gω = − I2

mr2 + I1 + I2 + I3

and the robot’s rotational dynamics are described by the RWP
equations of motion:

H11θ̈ +H12q̈2 = mrg sin(θ)

H21θ̈ +H22q̈2 = τ
(1)

where H11 = mrgTt
2 and H12 = H21 = H22 = −GωH11.

Another important quantity derived in [11] is the largest angle
for which a RWP can recover a balanced position starting from
rest. We will call this θmax (φmax|I in [11]).

D. Leaning Control

The leaning control is responsible for the angular momen-
tum and body angle of the robot during its launch and landing
stance phases. Based on the theory of balancing given in [14]
and experimentally verified on a RWP named Tippy in [10],
a modified planar balance controller for the lean of the robot
is presented in this subsection. This leaning controller tracks
an angular momentum command instead of the position of
the actuated joint as in [14], [10]. The state variables for this

TABLE I: Notation

Coordinates Symbol Units
CG distance from foot r m
lean angle θ rad
reaction wheel angle q2 rad
leg motor angle q3 rad

Variables Symbol Units
Ang. momentum about foot L N m s
Scaled angular momentum M rad s
Reaction wheel torque τ N m

Parameters Symbol Units Value (crouch)
Total mass m kg 0.111
Chassis MoI I1 kg m2 1.2× 10−4

Reaction wheel MoI I2 kg m2 3.3× 10−5

Leg motor rotor MoI I3 kg m2 5× 10−7

Min (crouched) r rmin m 0.090
Max (extended) r rmax m 0.234
Time constant of toppling Tt s 0.10
q2 angular velocity gain Gω — -0.032
q2 stall torque τstall N m 0.045
q2 free-running speed ωfree rad/s 120
Max recovery angle [11] θmax rad 0.218

controller are chosen to be M , Ṁ , M̈ . They are calculated
using only Tt and Gω as follows:

M = Tt
2(θ̇ −Gω q̇2), Ṁ = θ, M̈ = θ̇ (2)

The leaning control law, similar to the controller in [14], can
then be formulated based on full state feedback as:

...
M = kddM̈ + kdṀ + km(M − u) (3)

where u is the commanded angular momentum. The closed
loop equation of motion for the control input (2) is: ...

M
M̈

Ṁ

 =

kdd kd km
1 0 0
0 1 0

M̈Ṁ
M

−
kmu0

0

 . (4)

The feedback gains kdd, kd, km in (2) can now easily be
determined using closed loop poles λi of the system.

kdd = λ1 + λ2 + λ3

kd = −(λ1λ2 + λ2λ3 + λ1λ3)

km = λ1λ2λ3

The transfer function from the commanded angular mo-
mentum input to the output differs from that of the balance
controller that tracks q2 in [10]. Here the transfer function is:

M

Mc
=
−km(1− α1s+ α2s

2 − α3s
3)

(s3 − kdds2 − kds− km)
(5)

where α1, α2 and α3 are the feedforward gains. The zeros in
the transfer function in (5) make u the combination of Mc and
its first three derivatives:

u = Mc − α1Ṁc + α2M̈c − α3

...
Mc

where the gains for the three zeros at µ1, µ2 and µ3 are:

α3 =
1

µ1µ2µ3
, α2 =

µ1 + µ2 + µ3

µ1µ2µ3

α1 =
µ1µ2 + µ2µ3 + µ1µ3

µ1µ2µ3
.
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Even though the placement of zeros is not necessary for
tracking the angular momentum command, it aids in the closed
loop control action being equivalent to a linear filter due to
stable pole-zero cancellation. In launch, the Mc trajectory is
provided by the launch trajectory plan in section II-E, while
on landing, Mc and its derivatives are set to 0 to command
the robot to balance upright.

Although the output of the leaning controller is
...
M (where...

M = θ̈), this output can easily be converted to a torque
command τ for the actuated joint using the robot’s equation
of motion given by (1):

q̈2c = (mrg sin(θ)−H11

...
M)/H12

τ = H21

...
M +H22q̈2c .

As mentioned in [3], [4], the balance controllers are sensi-
tive to the estimate of vertical, and [10] introduced a balance
offset observer to correct this estimate. These offsets can arise
due to drift in sensors such as IMUs. During stance phase,
the balance offset observer estimates and compensates for
sensor drift assuming it varies slowly. The estimated drift θo
is subtracted from the reading of θ from the sensor, θ̂. Hence
the Ṁ state in (3) uses an updated value of θ = θ̂ − θo. The
balance offset estimator is disabled just prior to the robot’s
brief launch motion since the robot occasionally bumps its
leg linkage on the ground during aggressive launch leans; this
would perturb the offset estimator were it active.

E. Leaning Trajectory

The robot must achieve liftoff vertical and horizontal CG
velocities v̄z and v̄x respectively that will launch it on a
ballistic parabola from which it can land on its target.

We choose a stance trajectory in which θ leans to a desired
angle θ̄c while the leg remains fixed at r = rmin, after which
θ remains fixed at θ̄c while r rapidly extends to desired liftoff
velocity ¯̇rc. Thus v̄x = ¯̇r sin(θ̄) and v̄z = ¯̇r cos(θ̄). This
trajectory decouples lean and leg control by sequencing them
one after the other.

We would like this trajectory to achieve the following
qualities: 1) θ̄ = θ̄c, 2) ¯̇

θ = ¯̇q2 = 0, 3) L̄ = 0, and
4) the q2 reaction wheel motor avoids saturation. It can be
shown that any trajectory with these qualities is limited to
angles |θ| ≤ |θmax|. We hand-designed a θc(t) = Ṁc(t)
launch trajectory as a sequence of piecewise cubic functions
(segments of constant

....
M c). It is parameterized by an angular

acceleration scale a in rad/s2 and a time scale T in seconds
(shown in Fig. 4). While many trajectories could achieve the
four desired qualities, this trajectory was selected for its simple
analytical solution and range of valid parameters.

This trajectory dwells at θ̄c = 9aT 2

8 rad starting at 8.5T s.
Liftoff should occur when M = q̇2 = 0, which is slightly later
at 317

36 T s. Due to the lean angle dwell, mistimed liftoff will
perturb L̄ and ¯̇q2 away from zero, but θ̄ will remain at θ̄c.

To launch to a target, a jump planner takes as input the
current foot location (x, z), desired foot location (xc, zc),
desired vertical velocity v̄zc, and trajectory time scale T . The
planner solves for the required lean angle and value of a using
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Fig. 4: Leaning trajectory for launch with parameters a = 30 rad/s2
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small angle approximation for the position of the CG on liftoff
and assumes r̄ is close to rmax:

v̄xc =
(xc − x)gv̄zc

2rmaxg + v̄zc
√
v̄2
zc − 2(zc − z)g + v̄2

zc

(6)

θ̄c = atan

(
v̄xc
v̄zc

)
(7)

a =
8

9T 2

(
θ̄c
)

(8)

F. Touchdown Plan

Flight control sets the initial conditions for landing. Its two
components, touchdown angle and leg length, must be adjusted
for the velocity at touchdown since an incorrect touchdown
could be unrecoverable for the leaning controller.

1) Touchdown leg length: After the robot reaches apex, its
leg should extend as it falls. Ideally, at any velocity, r should
be just long enough so that r quickly reaches rmin without
violently striking the end of its leg stroke. This maximizes the
robot’s physical ability to balance [13]. This relationship was
found experimentally in Salto-1P and is described with other
leg control details in section III-A.

2) Touchdown angle: Appropriate selection of touchdown
leg angle θ is critical to successful landing. Impact with the
ground sets the initial angular velocity of the landing phase.
An ideal post-impact angular velocity would carry the robot
close to vertical with a minimum of control effort in order to
maximize the recovery margin. This is equivalent to zeroing
the effective offset angle from [11] after impact:

θ+
eff = θ + θ̇

+
Tt = 0 (9)

where + denotes a value immediately after transition, and Tt
is the time constant of toppling. The conservation of angular
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momentum for touchdown is:(
mr2 + I1

)
θ̇

+
= −mr

(
v−z sin(θ)− v−x cos(θ)

)
+ I1θ̇

−

(10)
where − denotes a value immediately before transition.

These expressions can be simplified with several assump-
tions: 1) We assume θ̇

−
is negligible due to flight-phase

attitude control. 2) We assume I1 << mr2 and neglect I1.
This assumption is good for robots with long, light limbs
(often advantageous for jumping). 3) We make a small angle
approximation.

With the above assumptions, (10) simplifies to:

θ̇
+

=
−θv−z + v−x

r
(11)

Solving (9) and (11) for θ produces the desired angle θc:

θc = − Ttv
−
x

r − Ttv−z
(12)

For simplicity, we set r = rmin. This final approximation
creates a θ̇

+
with magnitude slightly too small to zero θ+

eff .
(12) can also be used to find approximate bounds on θ

outside of which the robot cannot balance. Combining (9) and
(11), then substituting ±θmax for θ+

eff and solving for θ yields
the maximum acceptable error θe:

θe = ± rθmax

r − Ttv−z
(13)

This is the approximate maximum allowable touchdown angle
error due to the combination of estimator error and flight-
phase attitude control error. For Salto-1P with r = rmin and
v−z = −4 m/s, θe = ±0.040 rad (only ±2.3◦).

Velocity estimate error will also contribute to touchdown
angle error through (12). Equating (12) and (13) we solve for
the maximum acceptable horizontal velocity error v−e :

v−e =
rθmax

Tt
(14)

At r = rmin and with otherwise perfect state estimation and
control, Salto-1P’s horizontal velocity estimate error must be
less than than approximately 0.20 m/s to avoid falling over.

G. Precision

Both stance-phase control presented here and prior flight-
phase control use leg angle to control jump velocity: liftoff
angle θ̄ for stance-phase control and touchdown angle θ for
flight-phase control. Consequently, errors in angle control
will propagate to velocity errors with consequences for the
precision of targeted jumps.

Using small angle approximation, the gain from variation
in θ̄ to horizontal velocity v̄x using stance control is simply

∂v̄x
∂θ̄

= v̄z (15)

which ranged from 2.0 to 4.0 m/s per rad in Results IV-A.
We derive a similar approximate expression for the sensi-

tivity of flight-phase control from [36] to touchdown angle
for comparison (Fig. 5). Many works provide approximate
solutions to the SLIP dynamics, such as [15], [27]. As in [15],

θ 

Land & Launch SLIP-like Bounce 

θ 

vx 

vx 

vxc 

θc θc 

vx error vxc 
vx error 

θ error 

θ error 

Fig. 5: Comparison of angle error sensitivity of flight-phase control
in [36] and stance-phase control in this work.

by setting r̄ = r, neglecting gravity, and using conservation of
energy, only the angle change from touchdown θ to liftoff θ̄
need be solved for. As a simple underestimate, we approximate
θ̄−θ = θ̇

+
ts with stance time ts (0.07 s for Salto-1P). Together

with (11) and a small angle approximation, v̄x as a function
of touchdown conditions becomes:

v̄x = v−x − θv−z − (v−z + θv−x )

(
θ +

ts(v
−
x − θv−z )

r

)
(16)

Taking the partial derivative with respect to θ and evaluating
for hopping in place at v̄x = v−x = θ̄ = θ = 0 produces:

∂v̄x
∂θ

= −2v−z +
ts
r

(v−z )2 (17)

Since v−z is negative for usual running and v−z = −v̄z at this
operating point, stance-phase control v̄x sensitivity to θ̄ error
in (15) is less than half the flight-phase control v̄x sensitivity
to θ error in (17). Therefore, for small θ and similar angle
errors and jump heights, stance-phase control should achieve
more precise jumps than flight-phase control.

III. EXPERIMENTAL SETUP

The testbed for launching and landing is Salto-1P, a
monopedal robot with maximum body length 0.313 m and
parameters given in Table I. Salto-1P uses onboard encoders
and gyroscopes to estimate q2, q3, r, and θ. It also uses them to
estimate liftoff velocity as described in [37] with a horizontal
error standard deviation of about 0.1 m/s, about half of the
II-F error limit. To evaluate the reliability of the leaning
control, leg control, and touchdown plan with less disruption
by estimator noise, we augment velocity estimation with
motion capture. Velocity measurements and lean trajectory
commands streamed at 100Hz from a ground station computer
radio. Salto-1P’s onboard DsPIC33FJ128MC706A microcon-
troller computed estimation, leaning control, leg control, and
touchdown plan at 500Hz.

A. Series-elastic Leg Control

CG motion along r is equivalent to the motion of a mass
on a linear rail. However, Salto-1P uses nonlinear series-elastic
power modulating leg actuation [16]. We control this nonlinear
leg actuation with an energy-based leg controller.

During launch, leg control accelerates the robot to the
desired radial velocity at liftoff, ¯̇rc, by rotating the leg motor
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a fixed angle, q3c. Approximating Salto-1P’s torsional spring
as linear, q3c and ¯̇rc are related by energy:

1

2
k

(
1

G
(q3c − qo)

)2

=
1

2
m¯̇r2

c (18)

where G = 25 is the transmission ratio and k and qo are
effective spring stiffness parameters considering transmission
losses and spring nonlinearity. Solving for q3c yields:

q3c = G

√
m

k
¯̇rc + qo (19)

For Salto-1P’s experimentally measured parameters: q3c =
17
(

rad s
m

)
¯̇rc + 18.5 rad.

Salto-1P lifts off approximately 0.14 s after activation of its
leg motor, so the leg motor is activated slightly before intended
liftoff time at 317

36 T − 0.14 s.
In flight phase after apex, leg length is set by

q3c = −10vz + 25 (20)

increasing r as |vz| increases.
During landing, Salto-1P uses closed-loop force control of

its series-elastic leg actuator to emulate a damper with damp-
ing coefficient 1.5 N s m−1 so that jump energy is smoothly
removed as r rapidly compresses to rmin. This coefficient and
the force control gains were found experimentally.

B. Leaning and Leg Coupling

Leaning and leg control are coupled by Coriolis and cen-
trifugal fictitious forces as well as gravity. We mitigate these
couplings by selection of launch trajectory, but the leg motor
action also perturbs leaning control.

When active, the leg motor applies torque to the chassis
at q3. For negative θ̄c, this torque acts in the same direction
as τ and generates little deviation from the leaning trajectory.
However, it saturates the q2 motor and generates a negative
deviation of θ̄ for positive θ̄c. To reduce this disturbance, the
leg motor pre-winds 30 rad and θ̄c is increased by ∆θ to an
adjusted lean angle for forward jumps:

∆θ = −sign(v̄xc)Gω3(q3c − 30) (21)

Gω3 = − I3
mr2

min + I1 + I2 + I3
≈ −5× 10−4 (22)

Since touchdown q3 rotation for leg retraction perturbs θ
forwards during landing (as it does backwards during launch),
the planned touchdown angle θc is offset by −1◦.

In addition, extension of r changes Tt and Gω , requiring
a change in leaning controller gains. On Salto-1P, we chose
λ1 = λ2 = λ3 = µ1 = µ2 = µ3 = −12 when r = rmin and
−9 when r is at least partially extended.

IV. RESULTS

A. Launch and Landing

We tested Salto-1P’s ability to launch at a grid of desired
velocities and then land, shown in Fig. 6. Commanded launch
angles ranged from -75% to +75% of θmax = 0.218 rad: θ̄c =
0, ±0.110, and ±0.165 rad (T = 0.07 s and a = 0,±20,±30

-1-0.500.511.5
vx (m/s)

2

2.5

3

3.5

v z (m
/s

)

success
failure
target

Fig. 6: Launch and landing tests at a grid of liftoff velocities. 95%
success in 60 trials (failures shown in red).

rad/s2). The action of the leg motor reduced the adjusted lean
angles by 5×10−4(q3−30) rad for positive lean angles due to
reaction wheel saturation. Commanded leg velocities ¯̇rc were
1.88, 2.88, and 3.88 m/s. Each combination of launch angle
and leg velocity was tested four times for a total of 60 trials.

For these launches, Salto-1P achieved launch angle errors
with a standard deviation of 0.023 rad (1.3 degrees) across
this range. The horizontal and vertical velocity error means
were 0.041 m/s and -0.048 m/s respectively and the standard
deviations were 0.079 m/s and 0.047 m/s respectively. When
fully crouched, Salto-1P’s lowest leg link makes a 0.15 rad
angle with the horizontal from the foot to the joint labeled
“heel” in Fig. 3. Launches at −0.165 rad caused the heel to
bump the ground. This may explain the consistent positive v̄x
error for trials at −0.165 rad. Salto-1P landed 57 out of 60
trials, falling over forwards once each at 0.110 rad and 1.88
m/s, 0.110 rad and 2.88 m/s, and 0.110 rad and 3.88 m/s. In
five trials Salto-1P did not fall over, but came to rest on its
heel rather than on the point of its foot alone.

B. Launch Accuracy

To evaluate launch precision, we tested a moderately large
jump with trajectory parameters a = 30 rad/s2, T = 0.07 s,
and ¯̇rc = 3.38 m/s, corresponding to an unadjusted launch
angle of 0.166 rad (0.147 rad adjusted angle). The apex is
0.571 m above liftoff (just under two bodylengths) and the
horizontal displacement on flat ground is 0.326 m (just over
one bodylength). The leaning trajectories are shown in Fig. 7
and the resulting ballistic flight paths are shown in Fig. 8.

TABLE II: Jump Capabilities

Previous Results Results
[36] IV-B IV-A

Can land and stop no yes
Largest tested |v̄xc| (m/s) 1.68 0.64 0.48
Tested v̄zc range (m/s) 2.4 - 3.9 1.9 - 3.9 3.3
θ error STD (rad) 0.010 0.019 0.010
Sensitivity ∂v̄x

∂θ
(m/s per rad) 7 - 17 2 - 4 3.3

x error STD (cm) 9.2 5.6 1.6

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/LRA.2020.2976597

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



YIM et al.: LEAPING AND LANDING 7

-0.1

0

0.1

-1

0

1

-0.02
-0.01

0
0.01

Launch Trajectories

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0

20
40
60
80

0.05

0.1

0.15

0.2

r

Fig. 7: 10 launch trajectories to unadjusted launch angle 0.166 rad,
adjusted angle 0.147 rad (red). Reference in blue, trajectories in grey.
Duration of leg motor rotation shown as light grey.
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Fig. 8: 10 jumps testing accuracy at nominal distance 32.6 cm;
achieved mean 35.1 cm, standard deviation 1.6 cm. a) Launch stance
trajectory. b) Resulting flight trajectories (desired in blue).

The achieved θ̄ angles had a mean of 0.137 rad and standard
deviation of 0.010 rad. The achieved launches had standard
deviations in v̄z of 0.010 m/s and v̄x of 0.023 m/s. The mean
jump distance was 0.351 m and its standard deviation was
0.016 m. Table II compares this performance to flight-phase
control in [36] which could not land and stop.

Attitude error was similar for both stance-phase control
and flight-phase control; liftoff attitude error of the balance
controller in this work and touchdown attitude error of the
aerial attitude control in [36] both had standard deviations of
0.010 rad. Therefore, lower sensitivity to attitude error may
explain the higher accuracy of stance control.

The stance-phase control achieves jump precision between
1.6 and 5.8 times better than the flight-phase control, in reason-

Fig. 9: Salto-1P leaps to and lands on consecutive narrow targets
marked on the floor.

able agreement with the approximate relationships described
in section II-G. The launch angle error for the full range of
jumps in IV-A was worse than for the 10 moderate jumps in
IV-B due mostly to lower accuracy at negative angles and two
outliers at a = 30.

C. Multiple jumps to targets

Chaining together consecutive launches and landings, Salto-
1P can land on smaller targets than was possible using flight-
phase control in [36]. In Fig 9, the ground station computer
uses motion capture to track Salto-1P and commands liftoff
velocities that direct Salto-1P to points at 0 cm, 10 cm, and
40 cm. Starting at -23.4 cm, Salto-1P jumped to 0.8 cm, 11.0
cm, and 38.0 cm for errors of 0.8 cm, 1.0 cm, and -2.0 cm.

V. CONCLUSION

We demonstrate accurately targeted jumping and balanced
landing on a narrow support. First, this work demonstrates
higher precision jumping to a target than that achieved in [36].
The higher precision is likely due to the lower sensitivity to
angle error associated with stance phase leaning control of
launch compared to flight-phase attitude control of SLIP-like
bouncing.

Second, we demonstrate balanced landing on a narrow
support and present approximate limits on touchdown angle
error and velocity estimate error in which balanced landing is
possible. The tight error limits reveal why it is difficult to land
a jump like a gymnast on a small base of support. This landing
ability provides a transition from running to standing still and
allows perching on small footholds. High-performance leaning
control is critical to both accurate jumping and balanced
landing since both depend on control of the robot’s angle.

There are several areas for future improvement. Derivations
of touchdown angle and balance limits assume small angle
approximation and ignore leg inertia which make them inexact.
Salto-1P can launch and land using only onboard processing
and sensing, but it is less reliable without motion capture due
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to the tight error limits. Instead of a line foot, Salto-1P can
also land on a point foot, but its aerodynamic thrusters struggle
since they were sized for aerial reorientation. More powerful
roll actuation and improved velocity sensing can enable fully-
autonomous jumping and stopping on more varied terrains.

There are also many possible future extensions to this work.
The presented control can jump up or down ledges but this was
not demonstrated for brevity. The selected leaning trajectory
cannot exceed the maximum recovery angle (12.5◦ for Salto-
1P). Other strategies could tilt and jump farther by forgoing
zero angular velocity on liftoff with a potential tradeoff
between accuracy and distance. Integrating leaning control
with earlier flight-phase hopping control and coordinating out-
of-plane motions in stance could produce 3D motions faster
than stance-phase launching and more accurate than SLIP-like
bouncing. Investigations of difficult surfaces with compliance
and sliding can help expand operation out of the lab.
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