
This paper is included in the Proceedings of the
17th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2023 • Boston, MA, USA

978-1-939133-34-2

Open access to the Proceedings of the
17th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Cilantro: Performance-Aware Resource Allocation
for General Objectives via Online Feedback

Romil Bhardwaj, UC Berkeley; Kirthevasan Kandasamy, University of Wisconsin-Madison;
Asim Biswal, Wenshuo Guo, Benjamin Hindman, Joseph Gonzalez, Michael Jordan,

and Ion Stoica, UC Berkeley

https://www.usenix.org/conference/osdi23/presentation/bhardwaj

Cilantro: Performance-Aware Resource Allocation for
General Objectives via Online Feedback

Romil Bhardwaj*1, Kirthevasan Kandasamy*2, Asim Biswal1, Wenshuo Guo1, Benjamin Hindman1,
Joseph Gonzalez1, Michael Jordan1, and Ion Stoica1

1UC Berkeley
2University of Wisconsin-Madison

Abstract
Traditional systems for allocating finite cluster resources
among competing jobs have either aimed at providing fair-
ness, relied on users to specify their resource requirements,
or have estimated these requirements via surrogate metrics
(e.g. CPU utilization). These approaches do not account for
a job’s real world performance (e.g. P95 latency). Existing
performance-aware systems use offline profiled data and/or
are designed for specific allocation objectives. In this work,
we argue that resource allocation systems should directly ac-
count for real-world performance and the varied allocation
objectives of users. In this pursuit, we build Cilantro.

At the core of Cilantro is an online learning mechanism which
forms feedback loops with the jobs to estimate the resource
to performance mappings and load shifts. This relieves users
from the onerous task of job profiling and collects reliable
real-time feedback. This is then used to achieve a variety of
user-specified scheduling objectives. Cilantro handles the un-
certainty in the learned models by adapting the underlying
policy to work with confidence bounds. We demonstrate this
in two settings. First, in a multi-tenant 1000 CPU cluster with
20 independent jobs, three of Cilantro’s policies outperform 9
other baselines on three different performance-aware schedul-
ing objectives, improving user utilities by up to 1.2−3.7×
and performs comparably to oracular policies. Second, in a
microservices setting, where 160 CPUs must be distributed
between 19 inter-dependent microservices, Cilantro outper-
forms 3 other baselines, reducing the end-to-end P99 latency
to ×0.57 the next best baseline.

1 Introduction
The goal of cluster resource managers is to allocate a finite
amount of scarce resources to competing jobs. When doing
so, we should ensure that the allocations fulfill the users’
and the organization’s overall goals. Traditionally, resource
allocation policies have aimed to provide fairness [16, 24],
maximize resource utilization [61], maximize the amount of

* Co-primary authors.

0 20 40 60 80 10050
CPUs Allocated

0

50

100

150

200

Qu
er

ie
s p

er
 S

ec
on

d
(Q

PS
)

U1 SLO:
120 QPS

U1 Demand:
 40 CPUs

U2 SLO:
62 QPS

U2 Demand:
60 CPUs

Resource-fair allocation:
50 CPUs

U1 Throughput U2 Throughput

Figure 1: Two users, U1 and U2, serving TPC-DS benchmark
queries with different resource-throughput mappings and perfor-
mance goals (SLO). A user’s demand is the amount of CPUs needed
for her SLO.

work done [24], or minimize queue lengths [47,66]. However,
these policies miss, or at best are imperfect proxies for what
matters most to the users: the performance of their jobs in
terms of real-world metrics that impact business (e.g. P99
latency or throughput for a serving job). Barring some re-
cent exceptions [10, 18, 35, 64], resource allocation systems
have traditionally focused on the resources requested by a job
rather than the job’s real-world performance from using those
resources (henceforth, simply performance).

To illustrate the pitfalls of performance-oblivious scheduling,
consider an example where two users, U1 and U2, are sharing
a cluster of 100 CPUs. They are each serving different sets of
TPC-DS [43] queries and care about their throughput: U1’s
service level objective (SLO) is 120 queries per second (QPS),
while the U2’s SLO is 62 QPS. If the goal is to satisfy all
user’s SLOs, how should CPUs be allocated? If it were known
that the resource-to-throughput curves of the two users’ jobs
were as shown in Figure 1, a scheduler can allocate 40 CPUs
to the first job and 60 to the second. However, in practice, this
mapping is usually not available and performance-oblivious
scheduler will likely be suboptimal. For instance, a CPU-
based fair allocation algorithm would allocate 50 CPUs to
each user, which would result in U2 getting just 59 QPS, thus
missing its SLO.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 623

Despite extensive theoretical work [16, 24, 28, 37, 38],
performance-aware scheduling has remained challenging
since the resource-to-performance mappings are usually
unavailable in practice. To obtain these mappings, past
work [15, 58, 64] profile their workloads before execution.
Such profiling has three limitations. First, offline profiled
resource-to-performance mappings may not reliably reflect a
job’s performance in a production environment, as it may not
capture the interference from other jobs [14] and the server’s
performance variability [19]. Second, jobs’ resource require-
ments change with time due to varying load (e.g., arrival rate
of external queries) and profiling typically cannot account
for these changes. Third, such profiling is burdensome for
users and expensive for organizations as it requires a large
pool of resources to exhaustively profile a wide range of re-
source allocations. This informs the first requirement for this
work: obtain the resource-to-performance mappings in the
production environment where the job will be run.

Even if the resource-to-performance mappings are known, the
choice of scheduling policy depends on the objective of the
end-users (e.g. organization, developers). For instance, sup-
pose in Figure 1, we wished to maximize the total throughput
of the cluster, instead of trying to satisfy each user’s SLOs.
In this case, we would allocate ∼64 CPUs to U1 and ∼36 to
U2 for a total throughput of ∼212 QPS. As more realistic ex-
amples, in multi-tenant clusters, we may wish to use policies
which balance between performance and fairness [16, 24, 38].
In contrast, when we provision resources to different microser-
vices of the same application, we are more interested in some
end-to-end performance objective, such as application latency,
and may wish to allocate more resources to critical microser-
vices which bottleneck performance. These objectives can
vary from organization to organization and optimizing for
such different objectives requires different allocation policies.
However, while end users may find it relatively easy to state
their objective (e.g., satisfy all SLOs, maximize throughput),
it is harder to design a policy to achieve it. This informs
our second requirement: support a diverse set of user-defined
scheduling objectives.

To address these requirements, we introduce Cilantro, a frame-
work for performance-aware allocation of a single fungible
resource type (e.g. CPUs, containers) among competing jobs
(Figure 2). In Cilantro, end users first declare their desired
scheduling objective. To satisfy the first requirement, a pool
of performance learners and load forecasters analyzes live
feedback from jobs and learns models to estimate resource-
performance curves and load shifts for each job. To satisfy the
second requirement, Cilantro’s scheduling policies, which are
automatically derived based on the users’ objectives, leverage
these estimated models to compute allocations for each job.
As the learned models become accurate over time, Cilantro
is able to eventually achieve the users’ objectives. This ob-
viates the need for an offline model to estimate the required

Cilantro Scheduler

Job
1

Job
2

Shared Cluster

Online Learners

Policy

User-defined ObjectiveJob 1 40

Job 2 60

Per-Job Feedback

Resource
Allocations

Performance Model
(Job 1)

Performance Model
(Job 2)

 P95_SLO: 100ms
P95_actual: 125ms

2

 P95_SLO: 100ms
P95_actual: 125ms

1

Figure 2: Cilantro overview. Cilantro uses continuous feedback
to dynamically learn each job’s resource-to-performance mappings.
An uncertainty-aware resource allocation policy, instantiated for the
user’s objective, uses these mappings to determine allocations.

resource allocation for a given performance target, and allows
Cilantro to optimize for custom objectives, such as various
fairness or performance criteria. This is a marked departure
from performance-oblivious policies, those based on unreli-
able proxy metrics such as CPU utilization and queue lengths,
and other heuristic-based policies (using either surrogates [51]
or performance metrics [10, 18]) which are designed for very
specific scheduling objectives. Cilantro seamlessly enables
the implementation of performance-aware policies in two
settings: (i) multi-tenant resource allocation for independent
jobs, and (ii) resource allocation for inter-dependent jobs (mi-
croservices) within an application.

Our proposed solution solves two key challenges. First, esti-
mating resource-to-performance mappings online can be no-
toriously difficult due to highly stochastic nature of real-time
production environments, unexpected load shifts, especially
in the early stages when there is insufficient data. To oper-
ate without accurate estimates, Cilantro informs scheduling
policies with confidence intervals of its estimates. Policies
are designed to account for this uncertainty when making
allocation decisions until the estimates become more accurate.
Accounting for this uncertainty helps Cilantro conservatively
explore the space of allocations making it robust to environ-
ment stochasticity and also to the idiosyncrasies specific to
the performance models used.

Second, supporting a diversity of objectives in the same frame-
work is challenging. The monolithic design of end-to-end
feedback-driven approaches [34,49,64] restricts them only the
objective they were originally designed for. Instead, Cilantro
achieves generality in supporting custom objectives by de-
coupling the learning mechanisms from the allocation policy.
This decoupling is necessary as it allows us to account for
the effect of each job’s performance and load shifts on the
objective individually. Moreover, this decoupling has other in-
tangible benefits: it leads to a more transparent design which
is easy to debug than monolithic systems which directly opti-
mize for end-to-end performance, and if online job feedback
cannot be obtained for a particular job, it is easy to swap the
learners with profiled information or other sensible defaults.

624 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

We have implemented Cilantro as an open-source ex-
tension to the Kubernetes core scheduler, available
at https://github.com/romilbhardwaj/cilantro. To
evaluate Cilantro, first we deploy it on a 1000-CPU multi-
tenant cluster which includes a diversity of real-world, latency
and throughput-sensitive jobs. On three different allocation
objectives, Cilantro’s policies are able to outperform 9 other
baselines, and is able to compete with oracular policies which
know the resource-to-performance mappings a priori on re-
source efficiency and fairness. When compared to resource-
fair allocation, it is able to increase the performance of 1/3
of users in the clusters by 1.2−3.7×. Second, we evaluate
Cilantro on a 160 CPU cluster where we wish to allocate
CPUs to constituent microservices of an application. Here,
Cilantro is able to minimize the end-to-end P99 latency of the
application to ×0.18 the latency of a resource-fair scheduler
and to ×0.57 of the next-best performance-aware baseline.

2 Background & Related Work
In this section, we compare Cilantro with prior work. Ta-
ble 1 summarizes the key differences of Cilantro against other
resource allocation systems and methods.

Performance oblivious methods: The simplest, yet popular
approach to allocating finite resources among competing jobs,
is to adopt a resource fair policy, which simply divides the
resource equally (or proportional to weights) [2, 30, 32, 42].
As this does not account for jobs’ resource requirements, it is
inadequate in all but the most trivial settings.

Several scheduling frameworks, such as Kubernetes [9],
Mesos [29] and YARN [57], relies on users to submit their
own resource demand. To execute resource allocations from
policies, Kubernetes and YARN use resource reservations
while Mesos negotiates through resource offers. This requires
users to estimate their jobs’ resource needs, which can be
difficult. They focus on one-way resource allocations and do
not provide any mechanisms for the policy to get feedback on
application performance. However, recognizing that end users
may have varied scheduling objectives, these frameworks sup-
port and implement multiple policies.

Methods based on proxy metrics: The most common
approach to account for resource requirements relies on
proxy metrics (e.g. CPU utilization, work-queue lengths).
Quasar [15] offline profiles jobs’ proxy metrics, and has
a fixed operator-centric policy to maximize cluster utiliza-
tion. Paragon [14] accounts for resource heterogeneity and
inter-job interference to achieve performance guarantees. AG-
ILE [46] models the resource pressure, and uses demand pre-
diction to minimize SLO violations. The above works do not
directly account for users’ performance goals and optimize
for singular objectives.

Methods which use offline profiling: Some work has ex-
plored directly incorporating job performance via profiled his-

torical data. Morpheus [33] aims to mitigate performance un-
predictability by defining SLOs and satisfying their resource
demands by using models based on historical data. Ernest [58]
provides methods for estimating performance curves using
limited amount of data, but does not study using these esti-
mates for resource allocation under scarcity. Sinan [64] partly
uses profiled information for auto-scaling in a cloud envi-
ronment. Quincy’s [30] min-cost flow formulation aims at
providing fairness, but relies on offline estimates of data move-
ment costs. For reasons explained in §1, offline profiling can
be problematic and it is desirable to rely on real-time feedback
to determine resource allocations.

Methods which use online feedback: Among related work,
some feedback-driven systems account for performance met-
rics and SLOs in resource allocation. Jockey [18] focuses
on meeting latency SLOs for a single job by modeling inter-
nal job dependencies to dynamically re-provision resources.
Henge [35] defines new utility functions for stream process-
ing workloads and aims to maximize a singular objective –
the sum of utility of all jobs. [48] uses application hints in
for prefetching disk blocks in the OS kernel. Gavel [44] is a
scheduler for ML training workloads in heterogeneous envi-
ronments with varying objectives. Since Gavel is focused on
ML training, it’s policies are designed for throughput and a
greedy optimizer computes the optimal allocation for each
round. On the other hand, Cilantro supports any metric spec-
ified by the user and employs online learning to eventually
converge on the optimal allocation. Finally, in a video stream-
ing application, Minerva [45] studies methods for resource
allocation so that all end users have the same quality of ser-
vice. The highly customized policies used in the above works,
while adequate to the allocation objectives set out by the au-
thors, are not applicable for diverse cluster objectives which
is our goal here.

Variable resource amounts: In other related work, PAR-
TIES [10] allocates resources to jobs within the same server
while always satisfying SLOs. If the SLOs of all jobs cannot
be met, it evicts one of them to a different server; thus, it
does not apply to our setting where there is a fixed amount of
resources and eviction is not possible. Indeed, in §7 we show
that a straightforward adaptation of PARTIES does not work
as well. Sinan [64], DS2 [34], Autopilot [51] and FIRM [49]
consider performance-aware resource allocation using on-
line feedback when there is elasticity in resource availability,
e.g. the cloud. Because these works can scale up to more
resources than originally provisioned, they are not directly
comparable to Cilantro which operates in a fixed cluster set-
ting. While the cloud is an emerging use case, traditional fixed
resource cluster management remains pertinent for privacy
and cost reasons. Moreover, the above work focus on specific
goals and are not designed to handle general allocation ob-
jectives. As an example, FIRM [49] focuses on autoscaling
resources for single applications deployed as microservices to

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 625

https://github.com/romilbhardwaj/cilantro

Cilantro
PARTIES [10]

Henge [35]

Autopilot [51]

Jockey [18]

Paragon [14]

Morpheus [33]

DS2 [34]
Quasar [15]

FIRM [49]

Sinan [64]

YARN [57]

Mesos [29]

Performance awareness RW RW RW RW RW RW RW RW PM PM PM PO PO
Works without apriori
performance model? Y Y Y Y N N N N Y Y N NA NA

Supports multiple
allocation objectives? Y N N N N N N N N N N Y1 Y1

Cluster size Fix Var Fix Var Fix Fix Fix Var Fix Var Var Fix Fix

abbr. RW = Real-world metrics, e.g., latency, PM = Proxy metrics e.g., CPU util., PO = Performance oblivious, Fix = Fixed size, Var = Variable size
1 Supports multiple objectives, but only performance oblivious ones

Table 1: Cilantro and related work. Cilantro uses real-world metrics (e.g., latency) to build performance models online, which can be used
to derive custom policies for different objectives.

minimize end-to-end SLO violations, Cilantro operates differ-
ently, reallocating a fixed number of resources according to
user-specified objectives, which can include fairness consid-
erations. Additionally, FIRM uses Reinforcement Learning
with anomaly injection, in contrast to Cilantro, which focuses
on resource-allocation under uncertainty and is agnostic to
the learning method used.

3 Cilantro Architecture
Cilantro is a performance-aware scheduling framework that
can optimize for various scheduling objectives without re-
quiring any a priori knowledge of the resource-performance
mapping of the workloads. The design of Cilantro is informed
by the following two key insights.

[I1] Offline profiling of resource-performance is insuffi-
cient. Performance-aware policies rely on accurate estimates
of resource-to-performance mappings and load shifts. Of-
fline profiling of these resource-performance mappings can
be inaccurate due to unpredictability in server and application
performance [19] and changing traffic patterns [50]. Adapt-
ing to these changes necessitates continuously learning and
predicting these unknowns in an online manner.

[I2] Decoupling learning mechanisms and policies en-
ables diverse scheduling objectives. As different schedul-
ing policies optimize different criteria, it may be challenging
for a scheduling framework to generally support different
policy types. Prior work on feedback-driven resource allo-
cation [34, 49, 64] uses an end-to-end model for allocating
resources for a fixed objective, such as total utility or cost.
Optimizing for a different objective in these systems may
require a complete redesign of the system and policy, or at the
very least an expensive retraining of their models. Decoupling
learning mechanisms from policies allows the model to be
learned once and applied to multiple allocation objectives.
This decoupling also increases transparency in the allocation
decisions made by the scheduler and facilitates debugging.

We leverage these learnings to build Cilantro (Figure 3).
Cilantro is composed of two key components: the central-

Cilantro Scheduler

Performance Learners Load Forecasters

Data
Loggers

Learning Modules

Resource Allocator

Res-Perf
Confidence

Bounds

Load
Confidence

Bounds

Res-Perf
Data

Physical
Resources

Job 1

Job
Server

Cilantro Client

Job
Server

More Jobs

Load Data

Resource Manager (Kubernetes)

Resource Allocations

Perf
Data

Uncertainty-aware Policy

User-defined Objective

Figure 3: The Cilantro scheduler and client architecture. The sched-
uler generates resource allocations for jobs and the clients collect
performance feedback to report to the scheduler.

ized Cilantro scheduler, which is responsible for generating
resource allocations, and the Cilantro clients—lightweight
sidecars co-located with each job—which fetch a job’s per-
formance metrics and send them to the Cilantro scheduler.
Informed by [I1], the Cilantro scheduler employs online learn-
ing to create increasingly accurate models of job performance
and load. Guided by [I2], the policy optimizes a user-defined
objective by polling these models for a resource-performance
estimates to produce a resource allocation.

Assumptions & terminology. In this work, we will focus
on jobs which can scale elastically with the number of re-
sources with corresponding gains in performance. Examples
of such workloads include stateless or stateful distributed

626 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

services (e.g., prediction serving [13], memcached [21], Cas-
sandra [40]), distributed computation (ML training, MPI jobs)
and distributed frameworks (e.g. Hadoop [52], Spark [62]).
Some of these can be viewed as a collection of several tasks
whose job size may vary with time, such as in serving jobs.
Each task may refer to a query whose arrival rate may change
with time. For jobs with such varying query rates, we will
refer to the instantaneous rate of external query arrival as the
load (measured in queries per second (QPS)). Finally, we
assume there is a fixed amount of a single, fungible resource
type that must be allocated.

Cilantro scheduler: The Cilantro scheduler is designed
as a centralized asynchronous event driven system. Event
sources include timers, performance updates received from
the Cilantro clients, and cluster state updates from the under-
lying resource manager. Below, we describe the scheduler’s
modules. Specific implementation details are available in §6.

1. Data loggers. Application metrics pushed from Cilantro
clients are stored in memory-backed tables. They relay these
metrics to the performance learners and load forecasters.

2. Performance learner. The performance learner learns a
job’s performance as a function of the resource allocation and
the load using an associated model. It periodically polls the
data logger for new data and updates the model. The learner’s
update frequency is constrained only by the velocity at which
the model can be updated. One instance of a performance
learner is maintained per application. A performance learner
provides get-perf-ucb and get-perf-lcb interfaces for
a policy, which return upper and lower confidence bounds for
the performance as a function of the resources and load.

3. Load forecasters. In many real-world deployments, the job
size could vary with time depending on the real-time traffic,
which should be accounted for when allocating resources.
The goal of the load forecaster is to estimate this load for the
duration of a future allocation based on past observed loads
via an associated time series model. It offers get-load-ucb
interface for a policy which returns an upper confidence bound
for the future load. Load forecasters are periodically updated
by polling from the data loggers.

4. Uncertainty-aware Policy. Policies compute allocations
in order to optimize for a user-specified scheduling objective.
In an online setting, using direct estimates of the performance
may fail as it does not reflect the uncertainty in the model.
Therefore, Cilantro’s policies leverage confidence intervals of
these estimates to account for this uncertainty in a principled
manner when making allocation decisions (§4).

5. Resource allocator. The resource allocator is responsible
for executing the resource allocations by interfacing with the
underlying cluster manager. This module is driven via an
allocation expiry event, upon which it invokes the policy’s
compute-alloc method and allocates the resources. Alloca-

tion expiry events are raised based on a timeout, resulting in a
new round of allocations. In practice, the duration of an alloca-
tion round is limited by the agility of the environment. Since
scaling jobs requires time, changing resource allocations too
frequently can result in job thrashing (having to scale down
before it has a chance to utilize new resources).

Cilantro client: The Cilantro client is a lightweight side-car
container whose purpose is to to poll the job to get its cur-
rent performance, process it, and publish it to the scheduler’s
data loggers. The primary task for the client is to extract met-
rics from their assigned job. Many systems expose REST
endpoints to query system performance [3, 4], but often the
applications also use monitoring tools such as Prometheus
or Grafana. Depending on the job, the performance metric
extraction logic is specified by the users. In §5, we describe
built-in fallback options if job metrics are not available.

4 Policies
We now describe our policies for performance-aware resource
allocation in two settings: multi-tenant resource allocation
in a fixed cluster (§4.1), and allocating finite resources to
constituent microservices of an application (§4.2).

Set up & notation: We will denote the number of jobs (or
microservices) by n, the amount of resources by R, and an
allocation by a = (a1, . . . ,an), where a j is the amount of re-
sources allocated to job (or microservice) j. A scheduler
should allocate these resources so that ∑

n
j=1 a j ≤ R.

4.1 Resource allocation in shared clusters
Cilantro supports two classes of performance-aware alloca-
tion objectives in the multi-tenant setting: welfare-based, and
demand-based. Our primary contributions are in §4.1.2 where
we derive uncertainty-aware online variants of these policy
classes. But first, we will review some common examples of
such objectives in §4.1.1. For what follows, we will need to
define the performance, demand, and utility of a job.

Performance: The resource/load-to-performance mapping
(henceforth simply performance or performance mapping) p j
of a user’s job j refers to some raw metric of interest, which,
say, can be obtained from a monitoring tool. We write the
performance p j(a j, ℓ j) as a function of the resources received
a j and the load ℓ j. As we are allocating a single resource type,
a j is a single number, as is ℓ j. For example, in a serving job
with a P95, 100 ms latency SLO, the performance may be the
fraction of queries completed in under 100 ms, and the load
may refer to the external arrival rate of queries.

Demand: If a job has a well-defined SLO, we define the de-
mand d j to be the minimum amount of resources needed to
achieve this SLO. The demand depends on the job’s perfor-
mance curve p j, SLO, and load ℓ j.

Utility: The utility u j of a job is the practical value derived

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 627

Resources
0.0

0.5

1.0

Pe
rfo

rm
an

ce SLO

dj
Resources

0.0

0.5

1.0

Ut
ilit

y

SLO

dj

(a)
Resources

0.0

0.5

1.0

Ut
ilit

y

(b)

SLO

dj
Resources

0.0

0.5

1.0

Ut
ilit

y

SLO

dj

(c)

Performance Utility

Figure 4: Three candidates for SLO-based utility functions. The left-most figure shows a job’s performance p j as a function of the resources
(for fixed load). In (a), the utility scales linearly with performance until the SLO, i.e u′j(p) ∝ min(p,SLO), whereas in (b) it scales quadratically

u′j(p) ∝ min(p,SLO)2, and in (c) it scales with the square-root u′j(p) ∝ min(p,SLO)
1/2. Here, (b) captures settings where even small SLO

violations are critical while (c) captures settings where small SLO violations are not very significant.

due to its performance. Generally, u j is a non-decreasing
function of the performance and we can write u j(a j, ℓ j) =
u′i(p j(a j, ℓ j)) for some non-decreasing function u′j.

Examples of utilities. The simplest option is to set the
utility to be equal to the performance u j = p j, i.e., u′j is the
identity. However, we may also choose a utility which is more
applicable when there are well-defined SLOs. Fig. 4 illustrates
three candidates for u′j: the maximum utility for any job is
set to 1, which is achieved for any performance greater than
the SLO; for performances below the SLO, we may set the
utility to (a) decrease proportionally with SLO violation, (b)
decrease sharply in settings where small SLO violations are
critical (e.g., with external customers where SLO violations
can lead to penalties [1] and a loss of credibility), (c) decrease
gradually when small SLO violations are not critical (e.g., soft
SLOs internal to an organization). Such utility forms which
are ‘clipped’ at the SLO provide a simple way to compare
jobs with heterogeneous performance metrics and SLOs, such
as latency and throughput. Prior work have also used similar
forms of utility [23,35,60]. For these reasons, our experiments
also use these forms, although we emphasize that Cilantro can
handle any utility form which increases with performance.

4.1.1 Review of multi-tenant allocation when perfor-
mance mappings are known

We will first review two classes of multi-tenant allocation
objectives supported in Cilantro—welfare-based and demand-
based—and three examples of such objectives. In §4.1.2, we
will develop online learning policies that achieve the same
objectives when performance mappings are unknown.

Welfare-based objectives: These policies aim to maximize
a given cluster-wide welfare function W , which is a function
of the utility of each job, i.e., W =W (u1, . . . ,un). Below, we
describe two common welfare-based objectives.

(i) Social welfare (a.k.a. Kelly mechanism [38]): We choose
the allocation a which maximizes the social welfare (the aver-
age utility), i.e. a = argmaxWS, where,

WS =
1
n ∑

n
j=1 u j(a j, ℓ j) =

1
n ∑

n
j=1 u′j(p j(a j, ℓ j)). (1)

As we show in Figure 5, this notion of fairness allocates

more resources to “high-performing” users, i.e those who can
generate large utility with a small amount of resources.

(ii) Egalitarian welfare: Here, we choose the allocation a
which maximizes the egalitarian welfare (minimum of all
utilities), i.e. a = argmaxWE, where

WE = min
j∈{1,...,n}

u j(a j, ℓ j) = min
j∈{1,...,n}

u′j(p j(a j, ℓ j)). (2)

This allocates more resources to “struggling” jobs which need
more resources to achieve large utility (Figure 5).

Demand-based policies: These policies apply when jobs
have a well-defined SLO and it is possible to define its de-
mand d j. Such policies will compute allocations based on the
demands of all jobs. This requires knowledge of the demand,
which in turn depends on the performance mapping.

(iii) No justified complaints (NJC) fairness [16, 17, 28]: One
class of demand-based policies which adopt the NJC fairness
paradigm guarantee an equal share of R/n for each job. If
the job’s demand is larger than R/n, it is allocated at least
(but possibly more than) this share. But, if the job’s demand
is smaller, the excess resources may be allocated to other
jobs to improve overall resource usage. A user can have no
justified complaints since they are either guaranteed to satisfy
their SLOs or their utility will be larger than if they were to
have R/n resources. To quantify this, we define the following
metric. The term inside the minimum measures the utility
achieved by job j with allocation a j relative to the utility
when using its fair share of R/n resources.

FNJC = min
j∈{1,...,n}

u j(a j, ℓ j)

u j(R/n, ℓ j)
= min

j

u′j(p j(a j, ℓ j))

u′j(p j(R/n, ℓ j))
(3)

In contrast to metrics such as the Jain’s index [31], FNJC
accounts for users’ performance when evaluating fairness.
This metric has a maximum value of 1. Below, we describe
a demand-based policy [16] which achieves FNJC = 1 while
also using the resources efficiently as also shown in Figure 5.

An NJC policy: This policy proceeds iteratively. In the first
round, it sets each user’s “share” to be R/n. It allocates d j
to each user j for whom d j is smaller than the share. If n′

628 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

job 1 job 2

job 3

allocation (utility) metrics
Policy job 1 job 2 job 3 WS WE FNJC

Social welfare 10 (1.0) 50 (1.0) 0 (0.0) 0.67 0.0 0.0
Egalitarian welfare 4 (0.4) 20 (0.4) 36 (0.4) 0.4 0.4 0.4
NJC fair 10 (1.0) 25 (0.5) 25 (0.28) 0.59 0.28 1.0
Resource fair 20 (1.0) 20 (0.4) 20 (0.22) 0.54 0.22 1.0

Figure 5: Comparison of the three (oracular) fair allocation criteria described in §4.1.1 in a synthetic example with 60 CPUs. Left: Utility
curves for three jobs. The y axis is the utility and the x-axis is the number of resources. For simplicity, we have ignored the loads and assumed
that utilities increase linearly up to the demand. The total demand is 150, whereas only 60 resources are available. Right: The allocations and
utilities for each job under the three criteria. We have also shown the WS (1), WE (2), and FNJC (3) metrics for each policy.

users were allocated R′ resources in the first round, in the
second round it sets each user’s share to be (R−R′)/(n−n′).
It repeats this until all the remaining users’ demands are larger
than their share. It then divides up the remaining resources
equally among the remaining users. While this policy may
not maximize any welfare, it achieves Pareto-efficient user
utilities. Another advantage of this policy is that it is strategy-
proof, i.e a user does not gain additional utility by falsely
stating their demand [24, 28, 36].

This concludes our review of multi-tenant resource alloca-
tion objectives when performance mappings are known. We
mention that prior work have used these objectives in various
contexts with custom utilities. For instance, social welfare
has been used in stream processing [35] and wireless net-
works [55], egalitarian welfare in video streaming [45], and
several NJC policies are implemented in Mesos [29].

4.1.2 Online learning policies in Cilantro

We will now develop our online policies. Our policies will
operate on lower and upper confidence bounds obtained from
the load forecasters and performance learners instead of the
direct estimates; doing so accounts for the uncertainty in the
learned models and encourages a policy to conservatively
explore the space of allocations until the estimates become
accurate. Cilantro’s policies will proceed sequentially in al-
location rounds. On round r, Cilantro chooses an allocation
a(r) = (a(r)1 , . . . ,a(r)n) based on the feedback from all jobs up
to now and the specific scheduling objective.

Welfare-based online policies: For welfare-based policies,
Cilantro adopts the optimism in the face of uncertainty (OFU)
principle [7]. OFU stipulates that, to maximize an uncertain
function, we should choose actions which maximize an upper
confidence bound (UCB) on the function. Both theoretically
and empirically, OFU is known to outperform other strategies
which use direct estimates or those which are pessimistic (i.e.
maximize lower confidence bound). An in-depth exploration
of OFU is beyond the scope of this work, but we refer the
reader to relevant literature (e.g. [6, 8, 25, 53]).

While OFU is a well established design paradigm, most OFU
policies are designed for end-to-end systems which output

a single reward signal. Adapting OFU for general welfare-
based policies requires studying how the uncertainty in the
performance and load translate to a UCB Ŵ on the welfare
W which we wish to maximize. Since W is non-decreasing
in the utilities u j, we can obtain a UCB for W by plugging in
UCBs û j for the utility u j, i.e Ŵ =W (û1, . . . , ûn). Similarly,
since u j is non-decreasing in the performance we can obtain
a UCB by plugging in a UCB p̂ j for p j, i.e û j = u′j(p̂ j). This
leads to the following choice of allocation on round r.

a(r) = argmax
a∈A(r)

W
(

u′1
(

p1
(
a1, ℓ̂1

))
, . . . , u′1

(
p1
(
an, ℓ̂n

)))
(4)

Above, since the exact load cannot be known, we conserva-
tively over-estimate it via a UCB ℓ̂ j on the load. Here, A(r)

is the allocation space on round r which is defined by two
constraints: first, the total allocation cannot be larger than R,
i.e. ∑ j a j ≤ R; second, the current allocation cannot deviate

too much from the previous allocation, i.e. a(r−1)
j −B ≤ a j ≤

a(r−1)
j +B for all j, where B is a parameter to be specified. We

impose the second constraint since large changes to alloca-
tions can have unpredictable effects on a job’s performance;
moreover, they take a long time to actuate, resulting in unreli-
able feedback while resources are being scaled up/down.

To optimize (4), one can use any off-the-shelf optimizer such
as evolutionary algorithms, hill climbing, or integer program-
ming which can handle the linear constraints for A(r). In our
implementation, we used an evolutionary algorithm (details
in the appendix). Finally, we describe instantiations of this
principle for the two welfare-based policies we saw in §4.1.1.

(i) Cilantro-SW: To emulate the social welfare policy
in §4.1.1, on round r, we use the UCB for l̂ for load and
p̂ for performance. Thus, we choose an allocation

a(r) = argmax
(a1,...,an)∈A(r)

∑
n
j=1 u′j

(
p̂ j(a j, ℓ̂ j)

)
.

(ii) Cilantro-EW: To emulate the egalitarian welfare policy
in §4.1.1, on round r, we choose an allocation

a(r) = argmax
(a1,...,an)∈A(r)

min
j∈{1,...,n}

u′j
(

p̂ j(a j, ℓ̂i)
)
,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 629

SLO

Figure 6: Illustration of Cilantro’s uncertainty-aware demand-based
policies. We first obtain a UCB ℓ̂ j from the load forecaster, which
ensures that we have a conservative estimate on the job’s load. In
the figure, the x axis is the amount of resources a j that could be
allocated to job j. We show the SLO (pink), the slice of the unknown
performance curve (blue) when the load is ℓ̂ j, and the confidence
region obtained from past data (green). The LCB p̂ j and UCB p̂ j
on p j(a, ℓ̂ j) are given by the lower and upper boundaries of the
confidence region (solid green lines). A confidence interval for the
demand (orange) can be obtained by the region where p̂ j, p̂ j intersect
the SLO line. To obtain a recommendation, we compute a UCB d̂(r)

j
on the demand (where SLO intersects p̂ j) and d(r)

j via equation (5).

Demand-based online policies: For demand-based policies,
on round r, we will use the confidence intervals from the
performance learners and load forecasters to obtain conser-
vative recommendations d(r)

j for job j’s demand. Then, we
compute the allocations a(r) for this round by invoking the
same demand-based policy with the recommended demands
{d(r)

1 , . . . ,d(r)
n } instead of the true demands.

Our method for obtaining demand recommendations is based
on [36]. To describe this in more detail, observe that for
demand-based policies it is sufficient to accurately estimate
the demand well, i.e. it is not necessary to learn the entire
performance mapping well. We have illustrated our strategy
for obtaining the demand recommendation in Figure 6. First,
we will denote by d̂(r)

i , the UCB for the demand obtained as
shown in Figure 6. As a conservative choice for this demand,
we may wish to choose d̂(r)

i as the recommendation. However,
we found that in practice this was overly conservative and
the resulting allocations were very slow to adapt to feedback.
Therefore, we also wish to use a more aggressive exploration
strategy to reduce the uncertainty in our demand. We use:

d
(r)
j = argmax

a j

min
(

p̂ j(a j, ℓ̂ j)−SLO, SLO− p̂ j(a j, ℓ̂ j)
)

(5)

To illustrate this rule, consider Figure 6 where min(p̂ j −
SLO, SLO− p̂ j) is negative for large allocations when the
performance LCB p̂ j is larger than the SLO and for small
allocations where the performance UCB p̂ j is smaller than
the SLO. By maximizing (5), we are choosing points inside
the confidence interval for the demand where both p̂ j, p̂ j are

further away from the SLO; so if job j were to receive d
(r)
j

resources, then we are most likely to reduce the demand un-
certainty. However, choosing d

(r)
j as the recommendation can

lead to overly aggressive exploration so our final recommen-
dation d(r)

j is then obtained via,

d(r)
j = clip

(
βd̂(r)

j +(1−β)d
(r)
j , d(r−1)

j −B, d(r−1)
j +B

)
(6)

Here, β ∈ (0,1) is a parameter to trade-off between d̂(r)
i and

d
(r)
i . We clip this value between d(r−1)

j −B and d(r−1)
j +B

to control wide deviations in resource allocations (similar to
before). Next, we formally state Cilantro’s instantiation of the
demand-based NJC procedure described in §4.1.1.

(iii) Cilantro-NJC: Here, we simply compute the recom-
mended demand via (5), and then invoke the NJC procedure
described in §4.1.1, In §7.1 we show that Cilantro-NJC re-
tains some of the strategy-proofness properties of NJC.

4.2 Microservice resource allocation
Now, we will look another use-case for Cilantro, where we
wish to optimize an end-to-end performance metric p of an ap-
plication composed of several interdependent microservices
(jobs). Examples for p include the total throughput of the ap-
plication, the negative P99 latency, or even any combination
of the two. Here, the entire fixed set of resources is available
to the application and must be allocated between microser-
vices for to maximize p. There are two main differences in
this setting when compared to the multi-tenant setting which
introduces new challenges. First, while assuming jobs run by
different users are independent is reasonable when we aim to
optimize for fairness, this is no longer true now since microser-
vices within an application may have complex dependency
graphs (see Figure 12-Left). Second, while an application’s
performance is clearly tied to the performance of individual
microservices, it is not possible to write it explicitly, as we
did for the social or egalitarian welfare.

We overcome these challenges by modeling the end-to-end
performance p as a direct function of the allocation to each
microservice and the external load faced by the application.
That is, we write p(a, ℓ), where, a = (a1, . . . ,an) is a vector
of allocations for each microservice and ℓ is the external load
on the application. On allocation round r, our online learning
policy, which adopts the OFU principle, chooses an allocation
vector which maximizes an upper confidence bound p̂ on the
performance obtained from the performance learners:

a(r) = argmax
a∈A(r)

p̂(a, ℓ). (7)

While this circumvents accounting for individual microser-
vice performance and dependency graphs, we now face the
challenge of optimizing for an n–dimensional allocation with
just one feedback signal. In contrast, in the multi-tenant set-
ting we had more feedback (one for each job).

630 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5 Discussion
We now present a discussion on Cilantro’s operation under
various adversarial conditions that may occur in deployment.

When online job feedback is unavailable. Cilantro provides
three fallback options when online feedback is not available.
First, Cilantro allows a user to use a profiled model (using
historical data) instead of online feedback. Second, it allows
using proxy metrics from the Kubernetes API instead of real-
world performance. In such cases, a user should specify how
these proxies are tied to their utility and/or demand. Third, if
neither of these is possible, we allow the user to directly sub-
mit an estimate for their resource demand which will then be
fed to the policy when determining allocations. In such cases,
we assume that utility increases linearly up to the demand
when computing allocations. We evaluate this fallback option
in §7.3. Due to Cilantro’s decoupled design, these fallback
options can be effected with simple modifications to a job’s
performance learner.

Learning in unpredictable environments. Some situations,
such as unexpected load spikes for web services or inter-
ference between jobs, are fundamentally hard to predict.
Cilantro’s uncertainty-aware design provides a degree of re-
silience against these unpredictable changes, as we show in
it’s robustness to noise in load and resource demand estimates
in Section 7.3. However, continued extreme fluctuations in
the loads can negatively impact Cilantro’s performance. To
avoid hysteresis when reallocating resources, future work can
explore averaging loads over dynamically sized windows or
including rules to temporarily override Cilantro’s policy.

Limitations and Future Work. Cilantro currently supports
allocating only a single resource type. In our current im-
plementation, multiple resource types can be bundled into
grouping units, such as VM SKUs with a fixed ratio of CPU,
Memory and GPUs, which can then be scheduled by Cilantro.
However, such bundling is not always possible, especially
when different jobs have different resource requirements. Ex-
tending Cilantro to handle multiple resource types is possible
for welfare-based policies. However, learning and optimiza-
tion can be challenging since the search space is now very
large. Another related limitation is that Cilantro cannot handle
non-fungible resource types. Cilantro also does not support
online learning versions of market-based resource allocation
policies in the multi-tenant setting [39, 56, 63]. These are
avenues for future work to improve Cilantro. Cilantro also
assumes utilities increase with increasing resources, however
some workloads may demonstrate inverse scaling, especially
when allocated resources become fragmented across physical
nodes. Future work can relax this assumption by applying
learning techniques robust to non-convex utility shapes. We
also note that Cilantro can support multiple SLO parameters
(e.g., for an inference job, ensuring a minimum latency and
accuracy) by wrapping them in a single utility function, and

the design of such utility functions can be explored by future
work.

6 Implementation
The Cilantro scheduler is implemented in 7600 lines of Python
code, as a standalone scheduler for Kubernetes. Resource
reallocation events are triggered by a timer-based event, which
is raised every 2 minutes in our experiments. This window
was chosen based on the fact that Kubernetes pods could be
created and destroyed in 5-15 seconds. A 2 minute allocation
round is long enough for the pod to reach its steady state that
performance metrics from the job would be reliable, while at
the same time frequent enough to adapt to changes in the load
and learned performances.

To execute updated resource allocations received from poli-
cies, we horizontally scale the workloads by adding more
replicas to their Kubernetes deployment. Newly created pods
rely on the Kubernetes service discovery mechanism to con-
nect to the workload’s other servers. The workload is respon-
sible for load balancing queries onto the new servers. Work-
loads write logs to a volume shared with the sidecar cilantro
client. The client parses performance metrics and then pub-
lishes them to the scheduler over gRPC. These messages also
act as heartbeats to inform liveness to the scheduler.

The frequency of performance feedback depends on the ap-
plication and the environment. For instance, database serving
jobs may report feedback multiple times in a minute, while
ML training jobs may do so once every few minutes. To
avoid bottlenecks, we use an asynchronous design for Cilantro
where each component operates in a push or pull based frame-
work. This allows high frequency components to operate at
their maximum rate while allowing slower components, such
as learners for low-frequency jobs or cluster managers, to be
polled when required.

Specifying utilities and objectives. Utilities of jobs are cal-
culated based on the performance metrics collected by the
Cilantro clients in the last resource allocation round. To com-
pute the utilities, application developers specify utility as a
python method which operates on a list of floating point num-
bers representing the performance metrics observed in the
previous resource allocation round. Similarly, the scheduling
objective (e.g., social welfare from §4.1.1) is also defined by
the cluster operator as a python method operating on the list
of utilities from all jobs.

Learning models and load forecasters. For the multi-tenant
setting, we used a tree-based binning estimator [8,27,36] with
Lipschitz constant 10 for each job’s resource-to-performance
estimation. This is a simple and computationally efficient
estimator, but does not work well in high dimensions. There-
fore, for the microservices setting where we have a high di-
mensional estimation challenge, we use kernel ridge regres-
sion [59,65] with a Matern kernel with smoothness parameter

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 631

set to 2.5. In both settings, for the load forecasters, we use
an autoregressive moving average (ARMA) model [41] with
autoregressive order 1 and moving average order 1. Finally,
all confidence bounds were computed at the 90% level, mean-
ing that the probability that the true parameter lies between
the upper and lower confidence bounds is 90%. We used the
above learning models since they are simple and have few tun-
able hyperparameters. With Cilantro’s modular design, these
can be easily swapped with any other model as long as they
provide reliable uncertainty estimates.

Other policy parameters: For all our policies, we set the
parameter B which controls the deviation from the previous
allocation to 10. For demand-based policies, we set the param-
eter β which trades off between conservative and aggressive
exploration to 3/4. For the welfare-based policies in §4.1 and
the microservices use case in §4.2, we use evolutionary algo-
rithms to optimize the UCBs. The exact implementation is
described in the appendix.

7 Evaluation
We evaluate Cilantro in two settings described in §4.

1. In the multi-tenant setting, Cilantro’s online learning
policies, which do not start with any prior data, are com-
petitive with oracular policies which have access to jobs’
resource to performance mappings obtained after several
hours of profiling. Moreover, they outperform 9 other
baselines on the metrics outlined in §4.1.

2. In the microservices setting, Cilantro is able to support
the completely different objective of minimizing end-
to-end latency. It outperforms three other baselines and
reduces the P99 latency to ×0.57 that achieved by the
next best performance-aware baseline.

3. In our microbenchmarks, we show that Cilantro’s al-
location policies are inexpensive, evaluate its fallback
options when performance metrics are unavailable, and
demonstrate its robustness to errors in feedback and
choices for performance learner and forecaster models.

7.1 Multi-tenant cluster sharing
We first evaluate Cilantro’s multi-tenant policies (§ 4.1.2) on
a 1000 CPU cluster shared by 20 users.

Workloads. We use three classes of workloads—database
querying, prediction serving and machine learning training—
which are used to create multiple jobs. The database querying
workload runs TPC-DS [43] queries on replicated instances of
sqlite3 database and uses the query latency as the performance
metric. The prediction serving workload runs queries on a
ML model (random forest regressor) trained on the news pop-
ularity dataset [20]. The ML training workload trains a neural
network on the naval propulsion [12] dataset using stochas-
tic gradient descent. The database querying and prediction
serving workloads use the query latency as the performance

metric while ML training uses batch throughput to measure
performance. Resource-performance mappings for informing
the oracle baselines in §7.1 were obtained through offline pro-
filing of all workloads. These profiles are visualized in Figure
7. More details of the workloads, including workload-specific
parameters are available in the appendix.

Traces. Queries to the database and prediction serving work-
loads are dispatched by a trace-driven workload generator.
We use the Twitter API [5] to collect a trace of tweet arrival
rates at Twitter’s Asia datacenters; to bring to parity with our
cluster, we subsample the arrival rate by a factor of 10. For the
ML training workload, we draw queries from an essentially
infinite pool to create a constant stream of work.

Experimental set up. We use a cluster of 250 AWS m5.xlarge
instances (4 vCPUs each). The Cilantro scheduler runs on its
own dedicated m5.xlarge instance. We use the above 4 work-
loads to create 20 jobs as follows: 10 database jobs with P90,
P90, P90, P90, P95, P95, P95, P95, P99, P99 latency SLOs of
2s; 3 prediction serving jobs with P90, P90, and P95 latency
SLOs of 2s; 7 ML training jobs with throughput SLOs of
400, 400, 450, 450, 500, 500, and 500 QPS. To reflect settings
where small SLO violations may be either critical or inconse-
quential, we discount the utility via one of the three options
in Fig. 4 for each job. Detailed information on the users’ jobs
is given in the appendix. The estimated total amount of re-
sources based on the median demand was 1637 CPUs; hence,
even at full capacity, not all users can satisfy their SLOs. We
evaluate all baselines for 6 hours.

7.1.1 Baselines
Oracular policies. We implement the three policies in §4.1.1
with oracular access to the true performance mappings (ob-
tained by exhaustively profiling workloads for at least 4 hours).
They are Oracle-SW, Oracle-EW, for maximizing social/egal-
itarian welfare and the Oracle-NJC fairness policy.

Cilantro policies. We evaluate Cilantro-SW, Cilantro-EW,
and Cilantro-NJC, as described in Sec. 4.1.2.

Other heuristics. We implement four methods for fairness
and maximizing welfare. While not based directly off specific
prior work, such methods are common in the scheduling litera-
ture [13,26]. Resource-Fair simply allocates an equal amount
of resources to each job. EvoAlg-SW and EvoAlg-EW are
evolutionary algorithms for social and egalitarian welfare;
the same procedure used for Cilantro’s welfare policies, but
now operating directly on the performance metrics. Greedy-
EW starts by allocating resources equally; on each round, it
evaluates job utilities in the previous round and takes away
one CPU each from the top half of the users who had high
utility and allocates it to the bottom half.

Baselines from prior work. We adapt five feedback-
driven methods from prior work - Ernest [58], Quasar [15],
Minerva [45], Parties [10] and MIAD (Multiplicative-

632 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 7: Performance vs resource-allocation-per-unit-load obtained after profiling the database querying, predicition serving and ML training
workloads. The blue curve is the average performance value and the shaded region is the 2σ confidence interval. For the latency-based
workloads (DB-0, DB-1, and prediction serving), we show the number of resources per unit load (arrival QPS) on the x-axis and the fraction of
queries completed under 2s on the y-axis. For the ML training workload, we show the number of resources on the x axis the amount of data
processed per second on the y-axis. To obtain accurate estimates, we sampled low resources allocations more densely.

Increase/Additive-Decrease) [11]. In particular, we note that
applying the Parties notion of migration in our setting would
imply moving the job to a different cluster or increasing the
size of the cluster, both of which are beyond scope for this
fixed cluster setting. Details on the specific adaptations are
available in the appendix.

7.1.2 Results & Discussion

Evaluation on performance-aware fairness metrics. We
first compare all 15 baselines on the social welfare (1), egal-
itarian welfare (2), and the NJC fairness criteria (3). Fig. 8
illustrates the results by plotting the time-averaged NJC fair-
ness vs the two welfare criteria. Table 2 (in the appendix)
tabulates these values explicitly with error bars. While the
oracular methods perform best on their respective metrics, we
find that the online learning policies in Cilantro come close to
matching them. Resource-Fair achieves a perfect NJC score
by definition, but performs poorly on social and egalitarian
welfare as it is performance oblivious.

We found that Greedy-EW, Parties, and MIAD were sensitive
to the amount by which we changed the allocations based on
feedback; when tuning them, we found that they were either
too slow or too aggressive when responding to load shifts.
Next, the learning models used by Quasar and Ernest were
not able to accurately estimate the demands in our experiment.
Finally, the evolutionary baselines were inefficient, taking a
long time to discover the optimal solution. They, however,
were effective within Cilantro’s welfare policies when you
need to optimize a cheap analytically computable function as
they can be run for several iterations.

Despite our general approach, Cilantro’s policies are able
to outperform Minerva and Greedy-EW which are designed
specifically to maximize egalitarian welfare. It also outper-
forms generically designed evolutionary algorithms for the
social and egalitarian welfare. While it may indeed be pos-
sible to design more efficient fine-tuned policies for a given
objective, the flexibility provided by Cilantro’s approach is
beneficial to end users. It should not be surprising that Cilantro
outperforms other systems such as Ernest, Quasar, Parties,
and MIAD as our policies are designed to explicitly optimize

for these objectives. But this is precisely the goal of Cilantro.
End-users can declare their desired objective, and Cilantro
will automatically derive policies to achieve them.

To illustrate how Cilantro improves with feedback, in Fig. 9,
we have shown how the three objectives evolve over time for
Cilantro’s policies. Resource-Fair trivially achieves FNJC = 1
at start since our initial allocation is always 50 CPUs to each
job (i.e Resource-Fair). However, it does poorly on welfare
due to poor cluster usage. The goal behind Cilantro-NJC is
to achieve FNJC = 1 while also achieving good cluster us-
age. This causes the initial drop in performance for Cilantro-
NJC as it explores better allocations that still maximize FNJC.

Table 2 presents the detailed results of our multi-tenant cluster
resource sharing evaluation. This table adds a metric which
measures the useful resource usage.

Useful resource usage = ∑
m
j=1 min(a j,d j) (8)

Here, the d j is user j’s resource demand. This demand-based
metric, measures how much useful work is being done by
the cluster as allocations beyond the demand do not increase
a user’s utility (see Fig. 4). We find that Cilantro’s policies
achieve the maximum useful resource usage in their respective
classes. This is because learning resource demands allows
Cilantro to reallocate resources from jobs which have already
achieved maximum utility to jobs which can benefit from
increased resources.

Individual user utilities. To delve deeper into the trade-offs
of the three paradigms discussed in §4.1, we have shown the
individual user utilities achieved by these three policies in
Fig. 10. We see that both the social and egalitarian welfare
policies result in some users being worse off than receiving
their fair allocation of 1000/20 = 50 CPUs. This results in an
NJC fairness violation. In contrast, in Cilantro-NJC, users are
at most marginally worse off than their fair share. However, a
third of the users achieve a noticeably higher utility than their
fair share utility, with more than 3× for a few of them. We
also see that Cilantro-EW has maximized egalitarian welfare
by taking resources away from those who achieve high utility
and giving it to those who do not, while Cilantro-SW has

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 633

Figure 8: NJC fairness vs the social and egalitarian welfare (see §4.1.1) for all policies. We report the average value over the 6 hour period.
Higher is better for all metrics, so closer to the top right corner is desirable. The Oracle-SW, Oracle-EW policies optimize for the social and
egalitarian welfare when the performance mappings are known and Oracle-NJC achieves maximum fairness while improving cluster usage.
The corresponding Cilantro policies are designed to do the same without a priori knowledge of the performance mappings.

Figure 9: Convergence over time of social, egalitarian welfares and
NJC fairness for the three Cilantro policies.

maximized social welfare by allocating more resources to
jobs that can quickly achieve high utility.

Evaluating Strategy-proofness. We next evaluate Cilantro
policies for strategy-proofness. A policy is said to be strategy-
proof if an unscrupulous user cannot increase the utility of
their job by misreporting their performance metrics to the
scheduling policy. For this, we repeat the same experiment
set up; all jobs behave exactly as before except the db16 job
which lies about its performance by either under-reporting by
a factor ×1/2, or over-reporting by a factor ×2. By under-
reporting, the user gives the impression that more resources
are required to reach its SLO; in contrast, by over-reporting,
a user is deceiving the scheduler to prioritize their job as they
can achieve high utility with few resources. In Fig. 11, we
report the utilities achieved by db16 under these untruthful
behaviors. We see that for Cilantro-NJC, the job’s utility does
not increase when over-reporting and decreases when under-
reporting, leaving no incentive for the user to be untruthful.

In contrast, for Cilantro-EW, a user stands to gain by under-
reporting while for Cilantro-SW, they gain by over-reporting.
While a theoretical study of such strategy-proofness prop-
erties is beyond the scope of this work, it is interesting to
empirically observe that the strategy-proofness properties of
NJC fairness policies are retained in Cilantro.

7.2 Resource allocation for Microservices
We now demonstrate the use of Cilantro to allocate resources
for inter-dependent microservices serving an application. A
query to the application triggers multiple queries to differ-
ent microservices and the final result is returned to the user.
Cilantro must observe a single end-to-end metric, the end-to-
end query latency, and then allocate fixed cluster resources
to different microservices to minimize the P99 latency of the
application. We note that Cilantro does not require meta in-
formation about the microservices, such as their dependency
and control flow graphs; Cilantro directly optimizes the end-
to-end metric as described in §7.2.

Workload. We use the Hotel Reservation application from
DeathStarBench [22]. It has 19 microservices, including 6
MongoDB databases, 3 memcached kv-stores and a nginx
webserver running on a consul service mesh. The architecture
is shown in Fig. 12-Left. Collectively, these microservices
serve search, recommendation, rating, account management
and geolocation queries from users. We use wrk2 [54] to
process and submit the query workload provided in [22]. We
measure the end-to-end latency of queries submitted to the
frontend microservice. All microservices experiments are run
on a 160 CPU cluster with 20 AWS m5.2xlarge instances.

Baselines. We compare Cilantro’s end-to-end policy (§4.2)
against three baselines. Resource-Fair always equally allo-
cates the resources among microservices. EvoAlg is an evo-
lutionary algorithm which optimizes for the P99 latency. ε-
greedy randomly picks a new allocation with probability 1/3,

634 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 10: The average utility achieved by the 20 jobs for the three online learning methods in Cilantro and Resource-Fair. Here, db0x, mltx,
db1x, and prsx refers to jobs using the DB-0, ML training, DB-1, and prediction serving workloads from § 7.1.

Policy Social Welfare, (WS) Egalitarian Welfare (WE) NJC Fairness (FNJC) Useful resource usage

Oracle-SW 0.892±0.004 0.324±0.008 0.336±0.004 0.964±0.002
Oracle-EW 0.752±0.003 0.412±0.007 0.272±0.002 0.997±0.000
Oracle-NJC 0.828±0.002 0.373±0.008 0.999±0.000 0.991±0.000

Cilantro-SW 0.864 ± 0.006 0.337±0.013 0.513±0.020 0.818±0.012
Cilantro-EW 0.760±0.007 0.390 ± 0.020 0.426±0.037 0.954 ± 0.012
Cilantro-NJC 0.823±0.002 0.355±0.005 0.964 ± 0.006 0.931±0.003
EvoAlg-SW 0.649±0.017 0.131±0.016 0.182±0.048 0.671±0.021
EvoAlg-EW 0.687±0.011 0.158±0.012 0.387±0.040 0.700±0.009

Resource-Fair 0.611±0.002 0.151±0.006 1.000 ± 0.000 0.766±0.001
Greedy-EW 0.724±0.005 0.306±0.006 0.518±0.009 0.882±0.004

Ernest 0.675±0.002 0.214±0.005 0.891±0.013 0.774±0.002
Quasar 0.756±0.002 0.095±0.003 0.060±0.003 0.706±0.002
Minerva 0.555±0.017 0.082±0.006 0.034±0.005 0.407±0.023
Parties 0.661±0.002 0.285±0.006 0.645±0.000 0.766±0.001
MIAD 0.761±0.002 0.285±0.005 0.745±0.000 0.766±0.001

Table 2: The social welfare (1), egalitarian welfare (2), NJC fairness metric (3), and the effective resource usage (8) for all 13 methods. Higher
is better for all four metrics, and the maximum and minimum possible values for all metrics are 1 and 0. The values shown in bold have achieve
the highest value for the specific metric, besides the oracular policies. Resource-Fair has NJC fairness FNJC = 1 by definition.

Figure 11: The utility of db16 under the three online learning
policies, when they report truthfully, when they under-report, and
when they over-report. The plot normalizes with respect to truthful
reporting, but the bars are annotated with the absolute value.

or uses the allocation with the smallest observed P99 latency
with probability 2/3.

Results and Discussion. Fig. 12 shows how the instantaneous
and time-averaged P99 latency (computed in 30s intervals)
evolves with time during the course of the experiment. Both
Cilantro and EvoAlg explore early on (Fig. 12-Center), but
as they find better values, exploration shrinks as they focus

on testing more promising allocations. However, Cilantro’s
OFU-based online learning policy is able to do this more
effectively than EvoAlg. ε-greedy explores aggressively even
in later stages and is unable to adequately exploit good can-
didates it may have discovered in the early stages. Overall,
Cilantro achieves a mean P99 of 525ms, compared to 930ms
for EvoAlg, the next best baseline.

7.3 Microbenchmarks
Cilantro Overhead. Fig. 13-Left evaluates the time taken for
Cilantro to process the feedback and compute the allocations
for the three policies described in Sec. 4.1. This shows that
Cilantro is fairly light-weight. For comparison, the average
time it took to de-allocate a Kubernetes pod and assign it to a
different job was on the order of 5-15s.

Unavailable performance metrics. In real-world situations,
performance metrics of all users may not be available. We
evaluate Cilantro’s fallback defaults for such instances. We
re-run the same experiment in §7.1, but for users db01, mlt1,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 635

Frontend

Search

Recommend

Profile

Geo

Rating

Reserve

User

Geo
MongoDB

User
MongoDB

Profile
MongoDB

Rate
MongoDB

Reserve
MongoDB

Recommend
MongoDB

Profile
memcached

Rate
memcached

Reserve
memcached

`

Queries

Consul
Mesh

Jaeger

Figure 12: Left: Microservices architecture of the hotel reservation benchmark [22]. Blue boxes are business logic, red boxes are caching
services, yellow boxes are databases and purple boxes are networking services. Center: Results for the microservices experiment comparing
four methods on P99 latency over 6 hours, plotting the instantaneous P99 latency vs time. Right: The time-averaged P99 latency vs time.

Operation Call time (s)

Model Update 0.0413±0.0048

get-alloc call
Cilantro-SW 2.8823±0.3155
Cilantro-EW 2.1239±0.0212
Cilantro-NJC 0.0081±0.0016

Figure 13: Cilantro microbenchmarks. Left: Mean time taken (in seconds) by Cilantro to update the performance model and for computing
a new allocation for each of the three fixed cluster sharing policies. Center: Evaluation of Cilantro’s fallback option, where users provide
a demand value if they cannot report performance metrics. We evaluate Cilantro-NJC when 5 out of 20 users use this option. Since the
true demand cannot be known, we use either half or twice the true demand under the median load from our profiled data. Right: The three
performance metrics for Cilantro-NJC when we artificially introduce error to the confidence intervals of the performance and load.

mlt2, db11, and prs1, we manually set the demand as de-
scribed in §5. Since the true demands are not known a priori,
users might under- or overstate them. To reflect this, we first
compute the true demand for each user under the median
load from our profiled data. We evaluate Cilantro-NJC when
these five users report either half this value as their demand
or twice this value, when compared to providing feedback.
Fig. 13-Center presents results on the three criteria given in
§4.1. While the fallback options are worse than when report-
ing feedback, the failures are graceful. Cilantro is still able to
learn from the remaining 15 users and achieve efficient alloca-
tions with only relatively small drops in social and egalitarian
welfare. The NJC fairness criterion is significantly small when
under-reporting since these 5 users will have been allocated
at most half of their true demand and FNJC (3) depends on the
single worst fairness violation.

Robustness to choice of learners and feedback errors.
While Cilantro’s decoupled design aids with generality, it
may be susceptible to the idiosyncrasies of the specific mod-
els used for the performance learners and load forecasters.
Moreover, in many real environments, the feedback can be
very noisy. To show that Cilantro is robust to both these ef-
fects, we perform the following microbenchmark in a syn-
thetic 5 user environment (described in the Appendix) with
the Cilantro-NJC policy. As both feedback noise and model
idiosyncrasies can be modeled with inaccurate confidence
intervals, we introduce increasing levels of noise (5%, 10%,

20%, 50%) to the upper and lower confidence bounds returned
by the learners and forecasters. The results, given in Fig. 13-
Right, show that the social and egalitarian welfare decrease
gracefully with noise. Moreover, due to Cilantro-NJC’s con-
servative approach for demand recommendations, the NJC
fairness metric remains relatively high despite the noise.

8 Conclusion

We described Cilantro, a performance-aware framework for
the allocation of a finite amount of resources among com-
peting jobs. Our motivations were: (i) resource allocation
policies should be performance-aware and based on real-
time feedback in production environments, (ii) schedulers
should accommodate diverse allocation objectives. We de-
signed Cilantro to address these challenges by decoupling
the performance learning from the policies and informing the
policies of uncertainties in performance estimates, thus en-
abling the realization of several performance-aware policies
in multi-tenant and microservices settings.

9 Acknowledgements

We thank the OSDI reviewers and our shepherd, Tim Harris,
for their invaluable feedback. This work is in part supported
by NSF CISE Expeditions Award CCF-1730628 and gifts
from Astronomer, Google, IBM, Intel, Lacework, Microsoft,
Nexla, Samsung SDS, Uber, and VMware.

636 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Amazon Compute Service Level Agreement. https:

//aws.amazon.com/compute/sla/, 2022.

[2] Hadoop Fair Scheduler. https://hadoop.apache.
org/, 2022.

[3] Kubernetes api health endpoints | kubernetes.
https://kubernetes.io/docs/reference/
using-api/health-checks/, 2022.

[4] Ray dashboard — ray v1.7.0. https://docs.ray.io/
en/latest/ray-dashboard.html, 2022.

[5] Twitter Streaming API. https://developer.
twitter.com, 2022.

[6] Peter Auer. Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning
Research, 3(Nov):397–422, 2002.

[7] Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret
analysis of stochastic and nonstochastic multi-armed
bandit problems. arXiv preprint arXiv:1204.5721, 2012.

[8] Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and
Csaba Szepesvari. X-armed Bandits. arXiv preprint
arXiv:1001.4475, 2010.

[9] Brendan Burns, Brian Grant, David Oppenheimer, Eric
Brewer, and John Wilkes. Borg, omega, and kubernetes.
ACM Queue, 14:70–93, 2016.

[10] Shuang Chen, Christina Delimitrou, and José F Martínez.
Parties: Qos-aware resource partitioning for multiple in-
teractive services. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
107–120, 2019.

[11] Dah-Ming Chiu and Raj Jain. Analysis of the increase
and decrease algorithms for congestion avoidance in
computer networks. Computer Networks and ISDN sys-
tems, 17(1):1–14, 1989.

[12] Andrea Coraddu, Luca Oneto, Aessandro Ghio, Ste-
fano Savio, Davide Anguita, and Massimo Figari. Ma-
chine learning approaches for improving condition-
based maintenance of naval propulsion plants. Proceed-
ings of the Institution of Mechanical Engineers, Part M:
Journal of Engineering for the Maritime Environment,
230(1):136–153, 2016.

[13] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J
Franklin, Joseph E Gonzalez, and Ion Stoica. Clipper:
A low-latency online prediction serving system. In 14th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 613–627, 2017.

[14] Christina Delimitrou and Christos Kozyrakis. Paragon:
Qos-aware scheduling for heterogeneous datacenters.
ACM SIGPLAN Notices, 48(4):77–88, 2013.

[15] Christina Delimitrou and Christos Kozyrakis. Quasar:
resource-efficient and qos-aware cluster management.
ACM SIGPLAN Notices, 49(4):127–144, 2014.

[16] Alan Demers, Srinivasan Keshav, and Scott Shenker.
Analysis and simulation of a fair queueing algorithm.
ACM SIGCOMM Computer Communication Review,
19(4):1–12, 1989.

[17] Danny Dolev, Dror G Feitelson, Joseph Y Halpern, Raz
Kupferman, and Nathan Linial. No justified complaints:
On fair sharing of multiple resources. In proceedings
of the 3rd Innovations in Theoretical Computer Science
Conference, pages 68–75, 2012.

[18] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula,
Eric Boutin, and Rodrigo Fonseca. Jockey: Guaranteed
job latency in data parallel clusters. In Proceedings of
the 7th ACM European Conference on Computer Sys-
tems, EuroSys ’12, page 99–112, New York, NY, USA,
2012. Association for Computing Machinery.

[19] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula,
Eric Boutin, and Rodrigo Fonseca. Jockey: Guaranteed
job latency in data parallel clusters. In Proceedings of
the 7th ACM European Conference on Computer Sys-
tems, EuroSys ’12, page 99–112, New York, NY, USA,
2012. Association for Computing Machinery.

[20] Kelwin Fernandes, Pedro Vinagre, and Paulo Cortez. A
proactive intelligent decision support system for pre-
dicting the popularity of online news. In Portuguese
Conference on Artificial Intelligence, 2015.

[21] Brad Fitzpatrick. Distributed caching with memcached.
Linux journal, 124, 2004.

[22] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang
Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla,
and Christina Delimitrou. An open-source benchmark
suite for microservices and their hardware-software im-
plications for cloud and edge systems. In Proceedings
of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, page 3–18, New York,
NY, USA, 2019. Association for Computing Machinery.

[23] Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion Stoica.
Multi-resource Fair Queueing for Packet Processing. In
Proceedings of the ACM SIGCOMM 2012 conference on

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 637

https://aws.amazon.com/compute/sla/
https://aws.amazon.com/compute/sla/
https://hadoop.apache.org/
https://hadoop.apache.org/
https://kubernetes.io/docs/reference/using-api/health-checks/
https://kubernetes.io/docs/reference/using-api/health-checks/
https://docs.ray.io/en/latest/ray-dashboard.html
https://docs.ray.io/en/latest/ray-dashboard.html
https://developer.twitter.com
https://developer.twitter.com

Applications, technologies, architectures, and protocols
for computer communication, pages 1–12, 2012.

[24] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. Dominant
resource fairness: Fair allocation of multiple resource
types. In Nsdi, volume 11, pages 24–24, 2011.

[25] Alkis Gotovos. Active learning for level set estimation.
Master’s thesis, Eidgenössische Technische Hochschule
Zürich, Department of Computer Science„ 2013.

[26] Robert Grandl, Mosharaf Chowdhury, Aditya Akella,
and Ganesh Ananthanarayanan. Altruistic scheduling
in multi-resource clusters. In 12th USENIX symposium
on operating systems design and implementation (OSDI
16), pages 65–80, 2016.

[27] Jean-Bastien Grill, Michal Valko, and Rémi Munos.
Black-box optimization of noisy functions with un-
known smoothness. In Advances in Neural Information
Processing Systems, pages 667–675, 2015.

[28] Avital Gutman and Noam Nisan. Fair allocation without
trade. arXiv preprint arXiv:1204.4286, 2012.

[29] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D Joseph, Randy H Katz, Scott
Shenker, and Ion Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In NSDI,
volume 11, pages 22–22, 2011.

[30] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi
Wieder, Kunal Talwar, and Andrew Goldberg. Quincy:
fair scheduling for distributed computing clusters. In
Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pages 261–276, 2009.

[31] Raj Jain, Dah-Ming Chiu, and W. Hawe. A quanti-
tative measure of fairness and discrimination for re-
source allocation in shared computer systems. CoRR,
cs.NI/9809099, 1998.

[32] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving
fairness, efficiency, and stability in http-based adaptive
video streaming with festive. In Proceedings of the
8th international conference on Emerging networking
experiments and technologies, pages 97–108, 2012.

[33] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache,
Shravan Matthur Narayanamurthy, Alexey Tumanov,
Jonathan Yaniv, Ruslan Mavlyutov, Inigo Goiri, Subru
Krishnan, Janardhan Kulkarni, and Sriram Rao. Mor-
pheus: Towards automated slos for enterprise clusters.
In 12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 16), pages 117–134,
Savannah, GA, November 2016. USENIX Association.

[34] Vasiliki Kalavri, John Liagouris, Moritz Hoffmann,
Desislava Dimitrova, Matthew Forshaw, and Timothy
Roscoe. Three steps is all you need: fast, accurate,
automatic scaling decisions for distributed streaming
dataflows. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
783–798, 2018.

[35] Faria Kalim, Le Xu, Sharanya Bathey, Richa Meherwal,
and Indranil Gupta. Henge: Intent-driven multi-tenant
stream processing. In Proceedings of the ACM Sympo-
sium on Cloud Computing, SoCC ’18, page 249–262,
New York, NY, USA, 2018. Association for Computing
Machinery.

[36] Kirthevasan Kandasamy, Gur-Eyal Sela, Joseph E Gon-
zalez, Michael I Jordan, and Ion Stoica. Online learn-
ing demands in max-min fairness. arXiv preprint
arXiv:2012.08648, 2020.

[37] Mamoru Kaneko and Kenjiro Nakamura. The nash
social welfare function. Econometrica: Journal of the
Econometric Society, pages 423–435, 1979.

[38] Frank P Kelly, Aman K Maulloo, and David KH Tan.
Rate control for communication networks: shadow
prices, proportional fairness and stability. Journal of the
Operational Research society, 49(3):237–252, 1998.

[39] Kevin Lai, Lars Rasmusson, Eytan Adar, Li Zhang, and
Bernardo A Huberman. Tycoon: An implementation of
a distributed, market-based resource allocation system.
Multiagent and Grid Systems, 1(3):169–182, 2005.

[40] Avinash Lakshman and Prashant Malik. Cassandra: a
decentralized structured storage system. ACM SIGOPS
Operating Systems Review, 44(2):35–40, 2010.

[41] Spyros Makridakis and Michele Hibon. Arma models
and the box–jenkins methodology. Journal of forecast-
ing, 16(3):147–163, 1997.

[42] Jeonghoon Mo and Jean Walrand. Fair end-to-end
window-based congestion control. IEEE/ACM Transac-
tions on networking, 8(5):556–567, 2000.

[43] Raghunath Othayoth Nambiar and Meikel Poess. The
making of tpc-ds. In Proceedings of the 32nd Interna-
tional Conference on Very Large Data Bases, VLDB
’06, page 1049–1058. VLDB Endowment, 2006.

[44] Deepak Narayanan, Keshav Santhanam, Fiodar
Kazhamiaka, Amar Phanishayee, and Matei Zaharia.
Heterogeneity-Aware cluster scheduling policies for
deep learning workloads. In 14th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 20), pages 481–498. USENIX Association,
November 2020.

638 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[45] Vikram Nathan, Vibhaalakshmi Sivaraman, Ravichan-
dra Addanki, Mehrdad Khani, Prateesh Goyal, and Mo-
hammad Alizadeh. End-to-end transport for video qoe
fairness. In Proceedings of the ACM Special Interest
Group on Data Communication, pages 408–423. 2019.

[46] Hiep Chi Nguyen, Zhiming Shen, Xiaohui Gu, Sethu-
raman Subbiah, and John Wilkes. Agile: Elastic dis-
tributed resource scaling for infrastructure-as-a-service.
In International Conference on Automation and Com-
puting, 2013.

[47] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and
Ion Stoica. Sparrow: Distributed, low latency schedul-
ing. In Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles, SOSP ’13,
page 69–84, New York, NY, USA, 2013. Association
for Computing Machinery.

[48] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodol-
sky, and J. Zelenka. Informed prefetching and caching.
SIGOPS Oper. Syst. Rev., 29(5):79–95, dec 1995.

[49] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbig-
niew T. Kalbarczyk, and Ravishankar K. Iyer. FIRM:
An intelligent fine-grained resource management frame-
work for SLO-Oriented microservices. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 805–825. USENIX Associ-
ation, November 2020.

[50] Charles Reiss, Alexey Tumanov, Gregory R. Ganger,
Randy H. Katz, and Michael A. Kozuch. Heterogeneity
and dynamicity of clouds at scale: Google trace analysis.
In Proceedings of the Third ACM Symposium on Cloud
Computing, SoCC ’12, New York, NY, USA, 2012. As-
sociation for Computing Machinery.

[51] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski,
Przemyslaw Zych, Przemyslaw Broniek, Jarek Kus-
mierek, Pawel Nowak, Beata Strack, Piotr Witusowski,
Steven Hand, et al. Autopilot: workload autoscaling
at google. In Proceedings of the Fifteenth European
Conference on Computer Systems, pages 1–16, 2020.

[52] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The hadoop distributed file system.
In 2010 IEEE 26th symposium on mass storage systems
and technologies (MSST), pages 1–10. Ieee, 2010.

[53] Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
Practical bayesian optimization of machine learning al-
gorithms. Advances in neural information processing
systems, 25, 2012.

[54] Gil Tene. giltene/wrk2: A constant throughput, correct
latency recording variant of wrk. https://github.
com/giltene/wrk2. (Accessed on 04/19/2022).

[55] Yan Kyaw Tun, Nguyen H Tran, Duy Trong Ngo,
Shashi Raj Pandey, Zhu Han, and Choong Seon Hong.
Wireless network slicing: Generalized kelly mechanism-
based resource allocation. IEEE Journal on Selected
Areas in Communications, 37(8):1794–1807, 2019.

[56] Hal R Varian. Equity, envy, and efficiency. 1973.

[57] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Dou-
glas, Sharad Agarwal, Mahadev Konar, Robert Evans,
Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, et al. Apache hadoop yarn: Yet another resource
negotiator. In Proceedings of the 4th annual Symposium
on Cloud Computing, page 5. ACM, 2013.

[58] Shivaram Venkataraman, Zongheng Yang, Michael
Franklin, Benjamin Recht, and Ion Stoica. Ernest: Effi-
cient performance prediction for large-scale advanced
analytics. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages
363–378, 2016.

[59] Max Welling. Kernel ridge regression. Max Welling’s
classnotes in machine learning, pages 1–3, 2013.

[60] John Wilkes. Utility Functions, Prices, and Negotiation,
chapter 4, pages 67–88. John Wiley and Sons, Ltd, 2009.

[61] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
et al. Gandiva: Introspective cluster scheduling for deep
learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
595–610, 2018.

[62] Matei Zaharia, Mosharaf Chowdhury, Michael J
Franklin, Scott Shenker, Ion Stoica, et al. Spark: Cluster
computing with working sets. HotCloud, 10(10-10):95,
2010.

[63] Seyed Majid Zahedi, Qiuyun Llull, and Benjamin C Lee.
Amdahl’s law in the datacenter era: A market for fair
processor allocation. In 2018 IEEE International Sym-
posium on High Performance Computer Architecture
(HPCA), pages 1–14. IEEE, 2018.

[64] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G Ed-
ward Suh, and Christina Delimitrou. Sinan: Ml-based
and qos-aware resource management for cloud microser-
vices. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 167–181,
2021.

[65] Yuchen Zhang, John Duchi, and Martin Wainwright. Di-
vide and conquer kernel ridge regression. In Conference
on learning theory, pages 592–617. PMLR, 2013.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 639

https://github.com/giltene/wrk2
https://github.com/giltene/wrk2

[66] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu,
Christos Kozyrakis, Ion Stoica, and Xin Jin. Racksched:
A microsecond-scale scheduler for rack-scale computers.
In 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 1225–1240.
USENIX Association, November 2020.

640 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 14: Sampled query arrival rate from the twitter trace collected over the duration of a day.

A Experiment Addendum
A.1 Workload description
Database querying: We use the TPC-DS [43] benchmark suite as the workload backed by replicated instances of sqlite3 database.
From the TPC-DS query set, we created two workloads (setting scale factor to 100): DB-0, which had queries that completed in
under 100 ms and DB-1 which had queries that had a completion time between 100 and 300 ms. When a query is requested, we
randomly pick a relevant query and dispatch it according to the trace. The performance metric of interest is query latency.

Prediction serving: In prediction serving [13], a job processes arriving queries to output a prediction, usually obtained via a
machine learning model. In our set up, we use a random forest regressor as the model and the the news popularity dataset [20]
for training and test queries in a 50:50 split. Queries are picked randomly from the test set and issued in batches of 4. The metric
of interest is the serving latency.

ML training: We use CPUs to train a neural network with four hidden layers of size 64 each. We train our model on the naval
propulsion [12] dataset using stochastic gradient descent (SGD). Each task in this workload consists of training a batch of 16
points for 100 iterations. The performance metric of interest here is the batch throughput.

A.2 Environment details
Workload traces. As described in §7.1, we use traces collected from twitter to generate traffic patterns for our workloads. The
query arrival rate of this trace is visualized in Figure 14.

Multi-tenant cluster jobs setup. For the multi-tenant cluster resource sharing evaluation, we setup 20 jobs with different
workloads and SLOs as described in in §7.1. Table 3 details the exact SLO and utility function for each job. The utility function
for each job is either of linear, which directly maps performance to utility (Figure 4(a)), sqrt, which performs a sublinear
mapping of performance to utility (Figure 4(b)), or quadratic, which performs a superlinear mapping of performance to utility
(Figure 4(c)).

TPC-DS Query Binning. The queries used for the db serving workload in §7.1 were selected from the TPC-DS benchmark
suite. The TPC-DS suite consists of 99 query templates out of which 27 were not compatible with the sqlite dialect and were
discarded. The remainder were binned according to their mean latency when measured on a AWS m5.2xlarge instance. The
chosen query types and their ids are listed in Table 4

A.3 Baselines from prior work
Here we describe the specific implementation of prior work baselines used in Section 7.

1) Ernest [58]: Ernest uses a featurized linear model to estimate the time taken to run a job. We use this estimate to approximate
the resource demand to meet the job’s SLO. On each round, we use the estimated demand as inputs to NJC to compute the
allocations.

2) Quasar [15]: Quasar uses collaborative filtering to estimate a job’s resource demand, which we use as inputs to NJC to
compute the allocations. We do not incorporate mechanisms for vertical scaling and workload co-location described in [15]
to be consistent across all methods.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 641

Job and SLO Type Job Name SLO Utility Function

Database Serving (Latency)

db01 0.9 linear
db02 0.9 linear
db03 0.95 sqrt
db11 0.9 linear
db12 0.9 quadratic
db13 0.95 quadratic
db14 0.95 linear
db15 0.95 quadratic
db16 0.99 quadratic
db17 0.99 sqrt

Prediction Serving (Latency)
prs1 0.9 linear
prs2 0.9 sqrt
prs3 0.95 sqrt

ML Training (Throughput)

mlt1 400 sqrt
mlt2 400 sqrt
mlt3 450 linear
mlt4 450 linear
mlt5 500 quadratic
mlt6 500 quadratic
mlt7 500 quadratic

Table 3: SLO and utility functions used for jobs in experiments in §7.1. For Latency based SLOs, the SLO implies the fraction of queries that
completed under 2 seconds. For Throughput based SLOs, the SLO is the desired query rate, measured in queries per second.

Query Bin TPC-DS Query Ids Mean Execution Time (s)

db0 93, 91, 92, 45, 85, 15, 32 0.28
db1 90, 84, 8, 55, 96, 81, 79 0.67

Table 4: Details of the bins created from TPC-DS queries. Each user’s workload is generated using these bins. Execution time is profiled on a
SQLite3 database running on AWS m5.2xlarge instance with one allocated CPU core.

3) Minerva [45]: Minerva sets the allocation for job j at each step to be proportional to a j/u j where a j and u j are the allocation
and utility at the previous round.

4) Parties [10]: Parties upsizes the allocation for a job if it violates or is close to violating the SLO, downsizes the allocation if
the job comfortably satisfies the SLO, and otherwise does nothing. If the SLOs of all jobs cannot be met, it evicts the job
from the server. As eviction is not an option in our setting we use the Parties logic to compute the demands which are then
fed to NJC to obtain the allocations. For upsizing, we increase the demand by 20 CPUs and for downsizing, we decrease it
by 5. These parameters were tuned so that the policy did reasonably well on all three metrics.

5) MIAD (Multiplicative-Increase/Additive-Decrease) [11]: This is inspired by TCP congestion control. If a user’s job violates
the SLO, we increase its demand by 1.5× the current allocation, and if it satisfies the SLO, we set the demand to be one
minus the current allocation. We then invoke NJC to compute the allocation for the next round. These parameters were
tuned so that the policy did reasonably well on all three metrics.

A.4 Evolutionary Algorithm
We describe the evolutionary algorithm used in all of our experiments, i.e to optimize the profiled information for the oracular
welfare polices, to optimize the upper confidence bounds for the learning policies in §4.1.2 and§4.2, and the evolutionary
algorithm baselines in §7.1 and§7.2. The input to the algorithm is a data source which the algorithm can query using an allocation
and obtain a feedback signal. This data source can either be a cheap analytically computable function available in memory, as
is the case for the oracles and learning polices, or an expensive experiment, as is the case when used as a baseline to directly

642 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

optimize for performance. The algorithm maintains a hash table mapping allocations to mean observed signal values. When it
receives feedback for an allocation, it updates the mean value if the allocation has already been tried, or it creates a new entry
and stores the feedback.

Our evolutionary algorithm proceeds as follows. In has an initialization phase of 10 rounds. In the first 2 rounds, it always
queries a resource-fair allocation. In the remaining 8 rounds, it queries a random allocation a such that ∑

n
j=1 a j = R. On each

subsequent round, it chooses a random allocation in the above manner with probability 0.1. With probability 0.9, it samples one
of the existing allocations in the hash table based on the mean feedback value, performs a mutation operation, and queries the
new allocation obtained via the mutation. We now to describe these two steps.

• Sampling: Let {(ai,yi}i be the (allocation, mean feedback) pairs in the hash table. Let m,s denote the man and standard
deviation of the {yi} values. We sample ai with probability proportional to exp

(
(yi −m)/s

)
.

• Mutation: The mutation operation is composed of a sequence of steps to modify a given allocation a. At each step, we
randomly sample one job j which has an allocation of at least 2 CPUs; we then sample any other job k ̸= j; we then decrease
j’s allocation by 1 and increase k’s allocation by 1. The number of steps is chosen uniformly at random between 1 and 20.

A.5 Other experimental details
Synthetic environment for robustness microbenchmark: For the microbenchmark in Fig. 13(left), we use 5 users whose
load is obtained by the same twitter trace from the experiments, and whose synthetic performance function is given by
p j(a, ℓ) = 1/(1+ e−(a/ℓ−b j)), where a is the allocation and ℓ is the load. For the 5 users, we set b j ∈ {0.1,0.3,0.5,0.7,0.9}. We
set the SLO to be 0.95 for all users (note that 0 ≤ p j ≤ 1. As the stochastic observation, we sample a Gaussian with standard
deviation 0.2.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 643

	Introduction
	Background & Related Work
	Cilantro Architecture
	Policies
	Resource allocation in shared clusters
	Review of multi-tenant allocation when performance mappings are known
	Online learning policies in Cilantro

	Microservice resource allocation

	Discussion
	Implementation
	Evaluation
	Multi-tenant cluster sharing
	Baselines
	Results & Discussion

	Resource allocation for Microservices
	Microbenchmarks

	Conclusion
	Acknowledgements
	Experiment Addendum
	Workload description
	Environment details
	Baselines from prior work
	Evolutionary Algorithm
	Other experimental details

