
1
Relativity by M. C. Escher

ESCHER
Expressive SCHeduling with Ephemeral Resources
Romil Bhardwaj, Alexey Tumanov, Richard Liaw, Stephanie Wang, Robert Nishihara, Philipp Moritz, Ion Stoica

Distributed Execution Framework

Typical Distributed Application

Node 1

Resources: {CPU: 4, GPU: 4}

Node 3
Resources: {CPU: 1, GPU: 1}

Node 2
Resources: {CPU: 4}

Application 1

Scheduler

Application is composed
of tasks with resource

requirements

Cluster is composed of
nodes with resource

configurations

Scheduler matches task
resource requirements to

node resource availabilities

2

Task 1
ResReq: {CPU: 1, GPU: 1}

Task 2
ResReq: {CPU: 1, GPU: 4}

Example - Distributed Training

Node 2

Distributed Training App

Task 1

Scheduler

Scheduling Requirements

1. Gang Scheduling
• Scheduling co-dependent tasks

requires all-or-none semantics

Node 1 Node 3

Task 2

Job 1

Task 2Task 1

2. Co-location
• Tasks of a job share parameter

updates and must be placed on
the same node for performance

3. Anti-affinity
• Avoid interference and resource

contention by spreading jobs
evenly spread across nodes Task 2

Task 3 Task 4

Job 2

Task 3 Task 4

3

Example - Distributed Training

Node 2

Distributed Training

Task 1

Scheduler

Scheduling Requirements

1. Gang Scheduling
• Scheduling co-dependent tasks

requires all-or-none semantics

Node 1 Node 3

Task 2

Job 1

Task 2Task 1

2. Co-location
• Tasks of a job share parameter

updates and must be placed on
the same node for performance

3. Anti-affinity
• Avoid interference and resource

contention by spreading jobs
evenly spread across nodes Task 2

Task 3 Task 4

Job 2

Task 3 Task 4

4

Supporting custom scheduling constraints requires evolvable
schedulers

Evolvability in Monolithic Schedulers

• Applications state resource requirements
• Scheduler provides a fixed set of

supported policies
• E.g., Affinity, anti-affinity

• Challenging to evolve
• Implementing custom policies requires

modifying the core scheduler
• Can take months to add support
• Difficult to maintain - must commit to

maintaining branch

Resource
Requirements

Application

Framework

Kubernetes, YARN

Scheduler

Policy A Policy B

Policy C Custom
Policy

Evolvability in Two-level Schedulers

• Physical resources are exposed to
applications
• Applications implement end-to-end

scheduling
• Highly flexible, but application must

implement a scheduler:
• Resource state tracking
• Task queueing
• Fault tolerance Physical Resources

Application

Framework

Custom Application Scheduler

Policy A Custom
Policy

Resource
Requirements

Scheduling
Constraints

Mesos, Omega

Summary of solutions today

Scheduling Policy +
Scheduling Mechanism

App

Scheduling Policy +
Scheduling Mechanism

App

Scheduling Policy +
Scheduling Mechanism

App

Scheduling Policy +
Scheduling Mechanism

AppApp

App

Scheduling Mechanism

App

Scheduling Policy +
Scheduling Mechanism

App

Scheduling Policy +
Scheduling Mechanism

App

Scheduling Policy

Application
Layer

Cluster
Framework

7

Monolithic Schedulers
Simple, but hard to evolve

Two-level Schedulers
Highly evolvable, but complex

ESCHER
Simple and evolvable

ESCHER Insights

2. An API for applications to create resources at runtime

With the following two scheduling abstractions, frameworks can
allow applications to express a wide range of scheduling policies:

1. A simple resource matching scheduler

8

Abstraction 1 - Resource Matching Scheduler
Scheduler matches tasks resource requirements to node

resource availabilities

Node 1

Resources: {CPU: 0}

Node 3

Resources: {CPU: 8}

Node 2

Resources: {CPU: 8}

Scheduler

Task 1
ResReq: {CPU: 1}

9

Abstraction 2 – Create Resources on-the-fly

• Can specify resource availability constraints for resource creation

• If not node_spec not specified, resource created locally

def set_resource(resource_name, capacity, node_spec=None)

Applications should be able to create resources and get cluster state
at runtime through an API

def get_cluster_state() # Returns a map of {node: resources}

10

Scheduling with Ephemeral Resources

A simple resource matching scheduler can be induced to make
targeted placement decisions with short-lived ephemeral resources

Node 1

Resources: {CPU: 0}

Node 3

Resources: {CPU: 8}

Node 2

Resources: {CPU: 8}

Scheduler

Task 1
ResReq: {CPU: 1}

Ephemeral ResourceResources: {CPU: 8, my-res: 1}

ResReq: {CPU: 1, my-res : 1}

11

Example - Task co-location

def task1():
set_resource(label="co_location", capacity=1)
...

def task2():
...

def main():
launch(task1, res = {})
launch(task2, res = {"co_location": 1})

Node 1

{“co-location”: 1}

Node 2

ESCHER

task2
Res: {“co-location”: 1}

task1

Run tasks on the same node

ESCHER allows declarative specification of scheduling policies by
dynamically creating ephemeral resources

12

Example - Load Balancing

def static_load_balancing(num_tasks, num_nodes):
resource_capacity = ceiling(num_tasks/num_nodes)
set_resource(label="load_bal", node_spec={},

capacity=resource_capacity)
for task in tasks:

task.resources = {"load_bal": 1}
task.launch()

Node 1

{“load_bal”: 1}

Node 2

ESCHER

Task 2
Res: {“load_bal”: 1}

Task 1
Res: {“load_bal”: 1}

{“load_bal”: 1}
{“load_bal”: 0} {“load_bal”: 0}

Spread tasks across machines

Many more ESCHER policies (gang scheduling, bin-packing, anti-affinity,
soft constraints, priorities, hierarchical fair sharing) in the paper!

Policy Composition: Load Balancing & Co-location
Co-locate two tasks and spread out pairs of tasks

Node 1

{“load_bal”: 1}

Node 2

ESCHER

Task 2
{“task1”: 1}

Task 1
{“load_bal”: 1}

{“load_bal”: 1}
{“load_bal”: 0,

“task1”: 1}

def task1(id):
set_resource(label=id, node=None, capacity=1)
...

def task2():
...

def main():
Create load-balancing resources
set_resource(label="load_bal", capacity=1, node_spec={})

Launch tasks
for i in range(0, task_count):

Load balance task 1
launch(task1, id=f'task{i}', resources = {'load_bal': 1})
Co-locate task 1 & 2
launch(task2, resources = {f'task{i}': 1})

Task 4
{“task3”: 1}

Task 3
{“load_bal”: 1}

{“load_bal”: 0,
“task3”: 1}

Compositions of policy can be represented as combinations of
ephemeral resource constraints

Policy Composition: Load Balancing & Co-location
Co-locate two tasks and spread out pairs of tasks

Node 1

{“load_bal”: 1}

Node 2

ESCHER

Task 2
{“task1”: 1}

Task 1
{“load_bal”: 1}

{“load_bal”: 1}
{“load_bal”: 0,

“task1”: 1}

def task1(id):
create_resource(label=id, node=None, capacity=1)
...

def task2():
...

def main():
Create load-balancing resources
create_resource(label="load_bal", capacity=1, node_spec={})

Launch tasks
for i in range(0, task_count):

Load balance task 1
launch(task1, id=f'task{i}', resources = {'load_bal': 1})
Co-locate task 1 & 2
launch(task2, resources = {f'task{i}': 1})

Task 4
{“task3”: 1}

Task 3
{“load_bal”: 1}

{“load_bal”: 0,
“task3”: 1}

Do I have to
maintain this

resource-policy
mapping in the

application?

ESCHER Scheduling Libraries (ESLs)

def colocated_task():
...

def main():
esl = CoLocationESL()
coloc_res = esl.get_colocation_group("mygroup", res_req={gpu: 8})
launch(colocated_tasks, res += coloc_res)

• An app-level library of scheduling policies which encapsulate all state

management for ephemeral resources

• Encourage code-reuse and simplify application code

16

Resource Specification
(R)

ESCHER Scheduler

ESCHER Scheduling Library
(ESL)

Application

Request Scheduling
Policy

1

ESCHER API
Calls 2

3 4

Cluster
State

Launch Task
with R

set_resource() get_cluster_state()

{CPU = 8,
co-loc = 4} {CPU = 4} {CPU = 8,

GPU = 4}
{CPU = 2,

data-loc = 1}
{CPU = 0,

load-bal = 1}

Node 1 Node n

A
pp

lic
at

io
n

Sp
ac

e
Fr

am
ew

or
k

Ph
ys

ic
al

Cl
us

te
r

ESCHER Workflow

17

Implementation

No changes required in Kubernetes core
– we reuse the extended resources API

Modified the Ray Scheduler to
support online resource updates

18

Evaluation - AlphaZero

• AlphaZero trains an RL agent to play Go

• Training has two key processes:

• Board Generation: CPU intensive generation of possible game states

• Board Evaluation: A GPU agent predicts the “goodness” of the generated

states and chooses an action

• These processes require both co-location and load-balancing

AlphaZero on Ray

ESCHER is 1.5-2x faster in
exploring board states than

a locality-unaware scheduler

Board Exploration Latencies - 128 GPUs

ESCHER performs comparably
with a static hard-coded policy

with just 5 lines of code changes

AlphaZero on Ray

ESCHER is 1.5-2x faster in
exploring board states than

a locality-unaware scheduler

Board Exploration Latencies - 128 GPUs

ESCHER performs comparably
with a static hard-coded policy

with just 5 lines of code changesMore results (MapReduce on 100 node K8s cluster, Hierarchical Fair
Sharing, Distributed Training, Microbenchmarks) in the paper!

ESCHER Overheads vs Evolvability

Gang Scheduling
Implementation

Lines of
Code

Median Scheduling
Latency

AppSpace
(ESCHER)

78 937 ms

LibSpace
(ESLs in ESCHER)

261 892 ms

FrameSpace
(Monolithic Scheduler)

1624 381 ms

ESCHER Scheduling Library
(ESL)

ApplicationApplication
Space

Framework Scheduler

Library
Space

Framework
Space

Using ESCHER adds latency for some policies
such as gang scheduling, but significantly

reduces the implementation burden.

ESCHER Summary

• Applications need fine-grained scheduling control
without the complexity of implementing scheduling
mechanisms.

• ESCHER presents an evolvable scheduler architecture
with two key abstractions – a resource matching
scheduler and set_resource API

• Ephemeral resources are easily implemented in Ray
and Kubernetes and provide scheduling flexibility for
a range of workloads with minimal overhead.

23

def set_resource()

