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Cluster schedulers need to be evolvable

• Scheduling requirements of modern distributed  

applications are getting increasingly complex

• E.g., Distributed training requires affinity, anti-affinity 

and gang scheduling – all in the same job

• Cluster frameworks must provide flexible scheduling 

control without the complexities of implementing a 

scheduler. Existing Schedulers are insufficient:

Example - Load Balancing and Co-location Benchmarks

def task(task_id):

set_resource(label=task_id, capacity=1)

...

def colocated_task():

...

# Create load-balancing resources

set_resource(“load_bal”, 1, where={cpu: 8}) 

# Create 3 pairs of tasks to co-locate and load balance

for i in range(0, task_count):

launch(task, id=i, resources={“load_bal”: 1})

# Launch co-located task

launch(colocated_task, resources={i: 1})
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ESCHER Abstractions

ESCHER Workflow

Scheduler matches tasks resource requirements to 
node resource availabilities

Frameworks provide an API for applications
to create resources on nodes at runtime

def set_resource(label, capacity, node_spec=None)

Grants applications control over 
resource management

Can specify resource availability 
constraints for resource creation

Node 1

Resources: {CPU: 0}Resources: {CPU: 8} Resources: {CPU: 8}

Scheduler

Task 1

ResReq: {CPU: 1} 

Node 3

A simple resource matching scheduler can be induced to 
make targeted placement decisions with short-lived 

ephemeral resources

Node 1

Resources: {CPU: 0}

Node 3

Resources: {CPU: 8}

Node 2

Scheduler

Task 1

Ephemeral Resource

Resources: {CPU: 8, my-res: 1}

ResReq: {CPU: 1, my-res : 1} 

• These abstractions are sufficient to allow applications to express any 
arbitrary scheduling policy

• Applications can use resource management to declaratively specify and 
execute scheduling constraints

Combining the Abstractions

AlphaZero on ESCHER

ESCHER is 2x faster in 
exploring Go board states 

than an unaware scheduler

Board Exploration Latencies

Performs comparably with a 
hard-coded policy, while 

requiring only 5 lines of changes

Distributed Training on ESCHER
Ported Gandiva’s[1] scheduling policies to Ray 

Tune - 38% speedup with just 40 lines of code.

Abstraction 1: Resource matching scheduler Abstraction 2: Create resources at runtime

Node 1

Resources

{CPU: 8, load_bal: 1}

Node 3

Resources

{CPU: 6, task1: 0, load_bal: 0}

Node 2

Resources

{CPU: 6, task3: 0, load_bal: 0}

Task 1 Task 1a Task 2 Task 2a

ESCHER has implementations of data locality, bin-packing, anti-
affinity, soft constraints, gang scheduling, WFQ and compositions

[1] OSDI 18
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Kubernetes MapReduce on ESCHER

Job Makespan

• ESCHER Scheduling Libraries (ESLs) encapsulate complexity of 

using ephemeral resources into reusable libraries.
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Monolithic Schedulers

Simple, but hard to evolve

Two-level Schedulers
Highly evolvable, but complex


