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ABSTRACT

Greybox fuzzing and mutation testing are two popular but mostly

independent fields of software testing research that have so far

had limited overlap. Greybox fuzzing, generally geared towards

searching for new bugs, predominantly uses code coverage for

selecting inputs to save. Mutation testing is primarily used as a

stronger alternative to code coverage in assessing the quality of

regression tests; the idea is to evaluate tests for their ability to

identify artificially injected faults in the target program. But what

if we wanted to use greybox fuzzing to synthesize high-quality

regression tests?

In this paper, we develop and evaluate Mu2, a Java-based frame-

work for incorporating mutation analysis in the greybox fuzzing

loop, with the goal of producing a test-input corpus with a high mu-

tation score. Mu2 makes use of a differential oracle for identifying

inputs that exercise interesting program behavior without causing

crashes. This paper describes several dynamic optimizations imple-

mented in Mu2 to overcome the high cost of performing mutation

analysis with every fuzzer-generated input. These optimizations

introduce trade-offs in fuzzing throughput and mutation killing

ability, which we evaluate empirically on five real-world Java bench-

marks. Overall, variants of Mu2 are able to synthesize test-input

corpora with a higher mutation score than state-of-the-art Java

fuzzer Zest.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging.
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1 INTRODUCTION

Greybox fuzzing [9, 49, 52, 81] and coverage-guided property test-

ing [44, 58] have become increasingly popular for automated testing.

Their key idea is to evolve a corpus of test inputs via an evolutionary

search that maximizes code coverage: in each iteration, a new input

is synthesized by randomly mutating an existing input from the cor-

pus. The mutated input is added to the corpus if the corresponding

execution of the test program increases code coverage.

Fuzzing is traditionally used to discover inputs that crash pro-

grams and reveal security vulnerabilities [5, 11, 14, 20, 25, 42, 50,

54, 59, 68]. In the absence of new bugs, fuzzers are evaluated based

on code coverage achieved during the fuzzing campaign [10, 48].

However, in the vast majority of fuzzing research, the end goal is

to find bugs in the moment [42]; not much attention is paid to the

inputs saved along the way.

In this paper, we explicitly focus on the quality of the test-input

corpus produced at the end of a fuzzing campaign. Such a corpus

can be used for continuous regression testing during subsequent

program development. This practice is recommended by Google’s

OSS-Fuzz [28], and is already adopted by some mature projects. For

example, in SQLite, “Historical test cases from AFL, OSS Fuzz, and

dbsqlfuzz are collected [...] and then rerun by the fuzzcheck utility

program whenever one runs make test” [71]. Similarly, OpenSSL

uses several distinct fuzzer-generated corpora and their correspond-

ing fuzz drivers for continuous testing [72]. Even though these test

corpora are used for regression testing, the only metric being tar-

geted by conventional greybox fuzzers is code coverage. However,

coverage alone is not the necessarily the strongest predictor of fault

detection ability [15, 36].

Now, the technique of mutation testing [19], which evaluates the

ability of tests to catch artificially injected bugs (a.k.a. mutation

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Figure 1: A mutation-analysis-guided fuzzing loop. Each

fuzzer-generated input is run through a set of program mu-

tants to compute a mutation score. Inputs are saved to the

corpus if they improve mutation score.

analysis), has shown promise as an adequacy criteria for improving

test-suite effectiveness [15, 39, 64]. A test is said to kill a program

mutant if it fails when executed on the mutant, whereas mutants

that fail no tests are said to survive. A goal of mutation testing is to

produce a test corpus that has a high mutation score, defined as the

fraction of all mutants that are killed by the test suite. A natural

question thus arises: can we use mutation scores to guide the fuzzer?

In this paper, we develop and evaluate a framework for incor-

porating mutation analysis in the fuzzing loop, building on our

previous work which first proposed the approach [46]. The idea is

as follows (see Fig. 1): after a new input is synthesized by a fuzzer

via random mutation of a previously saved input, it is evaluated by

executing a set of mutants of the program under test. If the new in-

put kills any previously surviving program mutant, then it is added

to the corpus. In this process, we distinguish between input muta-

tions (e.g., randomly setting input bits or fields to zero) and program

mutations (e.g., replacing the expression a+b with a-b in the tar-

get’s source code). Our Java-based implementation, calledMu2—for

Mutation-Based Greybox Fuzzing + Mutation Testing—incorporates

program mutations from the popular PIT toolkit [17] into a custom

guidance in the JQF [58] greybox fuzzing framework. Mu2 is open

source and available at: https://github.com/cmu-pasta/mu2.

This paper details two main aspects of Mu2’s design. First, with

a conventional fuzzing oracle that only identifies program crashes

or aborts, many inputs will be discarded for not killing any mu-

tant even though they exercise interesting program functionality.

For mutation testing to be useful, we need a stronger test oracle.

Mu2 incorporates the idea of differential mutation testing, which

validates the output of program execution. Second, evaluating each

fuzzer-generated input on the set of all program mutants is pro-

hibitively expensive, thereby reducing fuzzing throughput. Mu2

prunes the set of mutants to run at each fuzzing iteration using

dynamic analysis of the original program’s execution in two ways:

(a) sound optimizations that prune mutants which cannot be killed

by a given input, and (b) aggressive optimizations that select only a

bounded subset of candidate mutants to run in each iteration.

We evaluate Mu2 on five real-world Java targets using state-of-

the-art greybox fuzzer Zest [59], which is also built on top of the JQF

framework, as a baseline. We also empirically evaluate 7 variants of

Mu2 employing different strategies for improving performance. Our

combined evaluation represents 21,600 CPU-hours (2.5 CPU-years)

of fuzzing campaigns.

Our results indicate: (1) an optimized version of Mu2 has an

overall improvement of up to 20% in mutation scores across five

benchmarks (5% increase on average); (2) mutation-analysis feed-

back generates test-input corpora with higher reliability of killing

nontrivial mutants compared to coverage-only feedback; (3) the

differential testing oracle is significantly valuable to Mu2, detecting

30% more mutants on average than a conventional fuzzing oracle;

To summarize, this paper makes the following contributions:

(1) We investigate the various challenges of combining muta-

tion testing and greybox fuzzing, and propose solution ap-

proaches to include in our framework.

(2) We incorporate differential testing as an oracle for mutation

testing in the fuzzing loop and find that it significantly im-

proves the strength of the fuzzing oracle.

(3) We employ multiple sound performance optimizations that

enable mutation analysis to run in the fuzzing loop, and

propose aggressive optimizations that are able to scale Mu2

to larger programs.

(4) We present an empirical evaluation of Mu2 on 5 real-world

Java benchmarks, with Zest [59] as a baseline.

(5) We open-source Mu2 for use by practitioners and to enable

reproduction and extension by researchers.

2 BACKGROUND

2.1 Greybox Fuzzing and Corpus Generation

Coverage-guided greybox fuzzing (CGF) is a technique for auto-

matic test-input generation using lightweight program instrumenta-

tion. It was first popularized by open-source tools such as AFL [81]

and libFuzzer [49], but has since been heavily studied and variously

extended in academic research [5, 9, 14, 20, 25, 44, 50, 52, 58, 59].

Algorithm 1 describes the basic greybox fuzzing algorithm, with

many details elided. First, a corpus of test inputs is initialized with a

set of one ormore seed inputs (Line 2), which could be user-provided

or randomly generated. Then, in each iteration of the fuzzing loop

(Line 3), a new input is synthesized by first picking an existing

input G from the corpus (Line 4) and then performing random mu-

tations to produce G ′ (Line 5). The heuristics to sample an input

(PickInput) vary, and often use some sort of energy schedule [9].

Some inputs may also be marked as favored, and receive higher

energy than other inputs. The randommutations performed on G to

get G ′ (MutateInput) also vary depending on the known format of

inputs (e.g., bitflips for binary data or random keyword insertion for

text files). Structure-aware fuzzing tools [4, 44, 59, 65, 76] perform

mutations that preserve the syntax or type safety of inputs, e.g. by

mutating parse trees using a grammar or by mutating pseudoran-

dom choices backing a Quickcheck-like [16] generator function.

The program under test % is then executed with the new input G ′,

using lightweight instrumentation to collect code coverage during

execution. The function coverage referenced in Algorithm 1 re-

turns a set of program locations executed when processing an input.

If the run of G ′ causes new code to be covered (Line 8), then G ′ is

saved to the corpus (Line 9); thus, G ′ may be used as the basis for

further input mutation in subsequent iterations of the fuzzing loop.
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Algorithm 1 Coverage-guided greybox fuzzing

1: procedure CGF(Program % , Set of inputs seeds, Budget) )

2: corpus← seeds ⊲ Initialize saved inputs

3: repeat ⊲ Fuzzing loop

4: G ← PickInput(corpus) ⊲ Sample using heuristics

5: G ′ ← MutateInput(G ) ⊲ Synthesize new input

6: if running % (G ′ ) leads to a crash then

7: raise G ′ ⊲ Bug found!

8: if coverage(%, G ′ ) ⊈
⋃

G ∈corpus coverage(%, G ) then

9: corpus← corpus ∪ G ′

10: until budget)

11: return corpus ⊲ Final corpus

If the execution of any synthesized input G ′ causes the program to

crash, then a bug is reported (Line 7). The fuzzing loop continues

until a user-provided resource budget ) runs out (Line 10), where

this budget may be in terms of the number of fuzzing trials (i.e.,

iterations of the fuzzing loop) or in terms of wall-clock time. The

corpus of fuzzer-synthesized test inputs is finally returned (Line 11)

and may be used either as a regression test suite, for seeding future

fuzzing campaigns, or for other applications [28, 55, 71, 72, 75]. The

quality of the final test-input corpus is often evaluated using code

coverage [10, 42], though mutation scores—which we describe in

the next section—have also been used [75].

2.2 Mutation Testing

Mutation testing (also known as a mutation analysis) is a method-

ology for assessing the adequacy of a set of tests using artificially

injected “bugs”, or program mutants [19, 37]. In assessing test ade-

quacy [27], we are given a program % and a suite of passing tests

- . The goal is to evaluate the quality of - by computing a score

that grows monotonically [79] with additions to the set - . Code

coverage is an example of a test adequacy criteria.

In mutation testing, a set of program mutants, sayMutants(%),

is first generated. Each mutant % ′ ∈ Mutants(%) is a program that

differs from % in a very small way. Most commonly, mutations are

replacements of program expressions. For example, an expression

a+b at line 42 in % may be replaced with the expression a-b. We

can use the notation ⟨%,a+b,a-b, 42⟩ to refer to this mutation. For

purposes of this paper, we use the notation:

% ′ = ⟨%, 4, 4′, =⟩

to refer to a program mutant % ′ as a modification of program %

where expression 4 is replaced with 4′ at program location =. The

main idea is that a program mutation simulates a simple program-

mer error or an artificially injected “bug”.

The test suite- is then run on each mutant % ′. If some test G ∈ -

fails when run on mutant % ′, then the mutant % ′ is said to be killed,

which we denote as Kills(% ′, G). If the test suite- still passes, then

the mutant % ′ is said to survive.

Ideally, we want our tests to be able to identify “bugs” and so we

hope to have tests that fail on each mutant % ′. So, the adequacy of

test suite - is defined by the mutation score, which is computed as

the fraction of mutants killed:
| {% ′∈Mutants(% ) |∃G∈- :kills(% ′,G ) } |

|Mutants(% ) |
.

In general, a mutation score of 100% is rarely achievable because

some mutants % ′ may actually be equivalent to %—that is, ∀G :

% (G) = % ′ (G). Similar to code coverage—where 100% may not be

achievable due to unreachable code—the best use of the adequacy

score is as a relative measurement rather than an absolute one.

One of the most mature and actively developed mutation testing

frameworks, PIT [17], targets Java programs by mutating JVM

bytecode. PIT’s default mutation operators include:

• Conditional boundary mutator (e.g., a<b to a<=b))

• Increments mutator (e.g., a++ to a--)

• Invert negatives (e.g., -a to a)

• Math mutators (e.g., a+b to a*b)

• Negate conditionals (e.g., a==b to a!=b)

• Return values mutator (e.g., replacing operands in return

statements with a constant such as null, 0, 1, false, etc.

depending on type).

3 MUTATION-ANALYSIS-GUIDED FUZZING

3.1 Problem Statement and Scope

In this paper, we focus on the following problem:

Can we use mutation analysis to guide greybox fuzzing in order

to synthesize a test-input corpus with high mutation score?

Recently, Gopinath et al. [31] have identified and discussed sev-

eral challenges of combining mutation analysis with fuzzing, in-

cluding (1) the strength of oracles used by the fuzzer, (2) the compu-

tational expense of performing mutation analysis, (3) dealing with

equivalent mutants, and (4) the lack of mutation testing frameworks

that focus on fuzzers. We directly address such challenges in this

paper. Oracles are discussed in Section 3.3 and performance con-

cerns in Section 3.4. Our evaluation is not dependent on identifying

equivalent mutants, since we only care about relative mutation

scores (higher=better) rather than the exact number of mutants

killed by a test-input corpus. Section 3.4.2 deals with reducing the

performance impact of equivalent mutations.

Scope. Since there is a vast amount of literature on the many

variables involved in mutation analysis, as surveyed by Papadakis

et al. [63], we restrict ourselves in this paper to investigating only

the aspects of combining mutation analysis with greybox fuzzing.

In particular, we (1) work with the assumption that a high muta-

tion score is a desirable property of a test-input corpus used for

regression testing, referring the reader to several empirical stud-

ies examining the relationship between mutation scores and real

faults [2, 12, 15, 32, 39, 41, 64], and (2) directly use the default set of

mutation operators provided by PIT (ref. Section 2.2), which have

been chosen based on several empirical studies of effectiveness,

sufficiency, and to align with developer expectations [1, 17, 45, 57].

3.2 The Mu2 Framework

To address our problem statement, we present the mutation-

analysis-guided greybox fuzzing technique in Algorithm 2. This

is an extension of Alg. 1, with changes highlighted in grey. The

key additions of this algorithm are in evaluating whether a fuzzer-

generated input G ′ should be saved to the corpus. The function

ProgMuts2Run (Line 8) returns a set of program mutants to eval-

uate with input G ′. For now, assume it to return Mutants(P) as

defined in Section 2.2, though we will refine this in Section 3.4.2.
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Algorithm 2 Mutation-analysis-guided fuzzing. Changes to Alg. 1

are highlighted.

1: procedure Mu2 (Program % , Set of inputs seeds, Budget) )

2: corpus← seeds

3: repeat

4: G ← PickInput(corpus)

5: G ′ ← MutateInput(G )

6: if coverage(%, G ′ ) ⊈
⋃

G ∈corpus coverage(%, G ) then

7: corpus← corpus ∪ G ′

8: for all % ′ ∈ ProgMuts2Run(%, corpus, G ′ ) do

9: if kills(% ′, G ′ ) ∧ % ′ ∉ killed(%, corpus) then

10: corpus← corpus ∪ G ′

11: until budget)

12: return corpus

13: function killed(Program % , Set of inputs X )

14: return {% ′ | % ′ ∈ Mutants(% ) ∧ ∃G ∈ X : kills(% ′, G ) }

We then determine whether the input G ′ is the first input to kill

some mutant % ′. If % ′ is killed by G ′ and % ′ has not previously been

killed by any input in the corpus (Lines 9 and 14), then we add G ′ to

the corpus (Line 10). Broadly, this algorithm saves fuzzer-generated

inputs if they increase either code coverage or mutation score. Addi-

tionally, inputs that increase mutation score are marked as favored,

giving them more energy to be picked for fuzzing (Line 4). As be-

fore, the final corpus of fuzzer-generated inputs is returned as the

result (Line 12).

We have implemented Algorithm 2 for fuzzing Java programs by

integrating PIT [17] into JQF [58]. We call this system Mu2, since it

combines Mutation-based Greybox Fuzzing with Mutation Testing.

We chose PIT and JQF because of their maturity, extensibility,

and their common target platform. As described in Section 2.2, PIT

is an actively developed mutation testing framework that operates

on JVM bytecode. The JQF framework [58] was originally designed

for coverage-guided property-based testing, which is a structure-

aware variant of greybox fuzzing (ref. Section 2.1) and instruments

JVM bytecode for collecting code coverage. JQF also has a highly

extensible design for creating pluggable guidances, which supports

rapid prototyping of new fuzzing algorithms [43, 55, 56, 59, 69, 75,

83].

In Mu2, Mutants(%) includes all of PIT’s default expression

mutation operators (ref. Sections 2.2 and 3.1). For heuristics such as

PickInput andMutateInput, Mu2 reuses the logic and code from

Zest [59], which we also use as a baseline for evaluation (Section 4).

3.3 Oracle: Differential Mutation Testing

One challenge of mutation-analysis-guided fuzzing is determining

whether a program mutant is killed by a particular input. This

corresponds to the kills function invoked in line 9 of Algorithm 2.

In mutation testing, a program mutant % ′ is considered killed if

any test in the test suite fails. The logic that determines whether a

test passes or fails is known as the test oracle.

Greybox fuzzing generally relies on implicit oracles, which aim

to detect anomalous behavior such as crashes or uncaught excep-

tions, or property tests, which assert a predicate over the output of

some computation. For example, consider the insertion sort method

1 class Sort {

2 static int[] insertionSort(int[] arr) {

3 for (int j = 1; j < arr.length; j++) {

4 int key = arr[j], i = j-1;

5 while (i >= 0 && // P'2 changes `>=` to `>`

6 key < arr[i]) {

7 arr[i+1] = arr[i]; // P'3 sets RHS to `1`

8 i = i-1; // P'4 removes `-1`

9 }

10 arr[i+1] = key; // P'1 removes `+1`

11 } return arr;

12 }}

Figure 2: Java program that implements insertion sort, anno-

tated with four sample program mutants.

defined in Figure 2 and the following test method, which is written

in the property-testing style using JQF’s @Fuzz annotation:

1 @Fuzz // Inputs generated using greybox fuzzing

2 void fuzzInsertionSort(int[] input) {

3 assert(isSorted(Sort.insertionSort(input)));

4 }

For Mu2, we could use this property test as an oracle. Con-

sider the following examples, using the notation introduced in

Section 2.2: executing mutant % ′
1

= ⟨Sort,i+1,i, 10⟩ with

input array G = [3, 2, 1] would result in an uncaught

IndexOutOfBoundsException (-1) on line 10, triggering

a failure via the implicit oracle. Additionally, executing % ′
2

=

⟨Sort,i>=0,i>0, 5⟩ with G would result in an assertion failure in

the property test because the result of % ′
2
(G) would be the array [3,

1, 2], which is not sorted. So, both mutants % ′
1
and % ′

2
would get

killed by the fuzzer if it discovers such an input.

Unfortunately, the property test is not a complete oracle in that

it does not fully specify the expected behavior of the sort function.

Consider a third mutant % ′
3
= ⟨Sort,arr[i],1, 7⟩, which assigns

a constant to every array element at line 7. This is clearly a bug in

insertion sort, yet the output is always sorted. For example, when G

= [3, 2, 1], the result of % ′
3
(G) is [1, 1, 1]. Such a mutant

would incorrectly survive on any input the fuzzer generates.

Writing a complete oracle for testing insertion sort is possible,

but quite cumbersome. In general, this is a hard problem [6]. For

many applications, a complete oracle would need to be as complex

(or in some cases exactly the same) as the original program itself.

In Mu2, we use the well-known concept of differential testing

to define our oracle. In differential testing [21, 53], different im-

plementations of a program that are expected to satisfy the same

specification are executed on a single input, and their results are

compared to identify discrepancies. In Mu2, our different "imple-

mentations" are the original program and program mutants; any

discrepancy between the original program output and a mutant’s

output leads to that mutant being killed.

To support the comparison of outputs, we create a differential

mutation testing framework. This allows for (1) output values to

be returned from a fuzzing driver (as opposed to the void returns

used by conventional property testing methods) and (2) a user-

defined comparison function for specifying how outputs from the

original program and a program mutant should be compared. An

example of differential mutation testing methods in our framework
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1 @Diff // inputs generated by Mu2

2 int[] runInsertionSort(int[] input) {

3 return Sort.insertionSort(input);

4 }

5 @Compare // outputs compared with mutant

6 boolean checkEq(int[] outOrig, int[] outMut) {

7 return Arrays.equals(outOrig, outMut);

8 }

Figure 3: A Mu2 differential mutation test driver and com-

parison method for the insertionSortmethod (Fig. 2).

is shown in Figure 3. The @Diff method runInsertionSort

returns an output value of type int[]. The user-defined com-

parison method checkEq simply determines if the output ar-

rays are equal. If unspecified, the @Compare function defaults to

the java.lang.Objects.equals() method. Our interface

is general enough to support complex differential testing oracles

such as the ones used in CSmith [80].

With differential mutation testing, we are able to kill mutants

such as % ′
3
described above with an input like [3, 2, 1], where

the output of insertionSort on the original program—[1, 2,

3]—is not equal to the output of the mutant—[1, 1, 1].

We can now precisely define Kills(% ′, G) which was referenced

in Algorithm 2. Given a mutant % ′ = ⟨%, 4, 4′, =⟩ and an input G ,

Kills(% ′, G) returns true iff:

(1) % (G) = ~ ∧ % ′ (G) = ~′ ∧ ¬Compare(~,~′), where Compare

is the user-defined @Compare method (e.g., checkEq in Fig-

ure 3) or Object.equals() if one is not defined; or

(2) % (G) = ~ but executing % ′ (G) results in an uncaught run-time

exception being thrown; or

(3) Executing % ′ (G) takes longer than a predefined TIMEOUT.

The timeout is required for killing mutants such as % ′
4

=

⟨Sort,i-1,i, 8⟩, which effectively removes the decrement of i,

leading to an infinite loop on the input [3, 1, 2].

We evaluate the improvement in completeness using the differ-

ential oracle over the greybox fuzzing implicit oracle in Section 4.4.

3.4 Performance

The biggest challenge with incorporating mutation testing inside

a fuzzing loop is performance. Given its need to execute many

mutants on each iteration, mutation testing is in general a very

expensive technique [63], so scaling Mu2 to real-world software

is a non-trivial task. Two aspects of improving scalability are: (1)

reducing the average time required to execute each programmutant,

and (2) reducing the number of program mutants that must be

evaluated at each iteration of the fuzzing loop.

3.4.1 Improving Performance of Mutant Execution. When running

a mutation testing tool such as PIT [17], each mutant and test is run

in a different JVM. For general mutation testing, this is ideal because

it simplifies managing multiple copies of the same program (sans

mutations), and prevents global state changes from one program

mutant affecting the state of another program mutant. However,

this is not necessary for Mu2. For in-process fuzzing, test driver

1The Closure Compiler benchmark was too large to run without the execution and
infection optimizations, so we did not include the speedups in this table.

Table 1: Geometric mean of speedups achieved by the execu-

tion and infection based optimizations (Alg. 3, Line 4) from

the PIE model [38] across 10 repetitions of 3 hours each1.

Mean Speedup From: Execution Opt. Infection Opt.

ChocoPy 3.6× 7.4×

Gson 18.2× 23.2×

Jackson 60.5× 77.4×

Tomcat 13.6× 23.8×

Algorithm 3 Logic for determining which mutants to run in a

given iteration of the fuzzing loop (Alg. 2)

1: function ProgMuts2Run(Program % , Old inputs corpus, New input G )

2: surviving ← mutants(% ) \ killed(%, corpus)

3: killable← {% ′ = ⟨%, 4, 4′, =⟩ | (% ′ ∈ surviving) ∧

4: (= ∈ coverage(%, G ) ) ∧ (infect(%, 4, 4′, G ) ) }

5: if AGGRESSIVE_OPT is configured then

6: return filter(killable,AGGRESSIVE_OPT )

7: return killable

methods are expected to be self-contained and not depend on global

state. Like JQF and Zest, Mu2 is designed to work in a single JVM.

Mu2 thus adopts a different strategy than PIT and takes advan-

tage of the Java class-loader mechanism to load and run program

mutants within the same JVM, essentially by having copies of the

entire class hierarchy (one per mutant) in memory at the same time.

First, aCoverageClassLoader (CCL) is responsible for loading

the original target program % and collecting code coverage using

on-the-fly instrumentation. For differential testing, the CCL-loaded

classes compute the ground-truth outcome % (G). Second, a family

of MutationClassLoaders (MCL) are used to load program

mutants; one MCL per mutant % ′ = ⟨%, 4, 4′, =⟩. When a mutant

test program is loaded by the MCL, it performs on-the-fly bytecode

instrumentation exactly at location =, replacing expression 4 with

4′ and loading the rest of the program without changing semantics.

The MCL adds instrumentation at backward jumps (i.e., loops) in

order to detect timeouts and exit test execution cleanly if necessary.

Further, assuming that fuzz tests do not affect global state, Mu2

loads only one copy of each library class (defined as classes outside

a specified package identifying the target application as long as they

and their transitive dependencies do not reference any application

class) using a common SharedClassLoader—this dramatically

reduces memory pressure when mutating large programs.

To validate our design, we ran an informal preliminary exper-

iment of performing mutation analysis with PIT and Mu2’s in-

memory set-up on a fixed corpus of seed inputs for the Google

Closure Compiler [30]. In the steady state (after the first 8 inputs),

Mu2’s in-memory analysis runs with a 9.6× speed-up over PIT.

3.4.2 Reducing the Number of Mutants to Run in the Fuzzing Loop.

For each trial—i.e., iteration of the fuzzing loop—(1) the input must

be executed once by the original program and (2) the input must

be executed by each mutant. Thus, we can model the time required

to execute each trial as the following:

trialTime = timeorig +" ∗ avgTimemut (1)

where" = |ProgMuts2Run(%, corpus, G) | as per Algorithm 2.
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Observe that the time per trial scales linearly with " . We can

improve the fuzzing throughput (i.e., the number of trials executed

per unit time) directly by reducing" . From Algorithm 2 (Lines 9–

10), we can see that we only care about executing a programmutant

if it will help us determine if a given input is the first input to kill it.

We can therefore reduce" by dynamically pruning mutants whose

execution will necessarily lead to Line 9 evaluating to false.

So, we begin by applying the following conditions for a given

% ′ = ⟨%, 4, 4′, =⟩, which are shown in Algorithm 3, lines 2–4:

(1) If % ′ ∈ killed(%, corpus), then % ′ does not need to be exe-

cuted for any future inputs.

(2) If the program mutant % ′ applies a mutation to a program

location =, but = is not covered when executing the original

program onG , then % ′ cannot be killed byG . This corresponds

to execution-based pruning in the PIE model [38].

(3) If we can guarantee that all dynamic evaluations of 4 during

the execution of % on G are equivalent to the corresponding

evaluations of mutated expression 4′, then % ′ cannot be

killed by G . This corresponds to infection-based pruning in

the PIE model [38], which we implemented as a dynamic

analysis of the execution of the original program % (G).

The last two strategies from the PIE model require additional over-

head when executing G : (1) the execution-based pruning depends on

coverage instrumentation, and (2) infection-based pruning requires

evaluating and comparing the mutation expression 4 each time

that it is executed by G . Referring to Equation 1, the optimization

results in a trade-off for trialTime due to the increase in timeorig
and decrease in the number of mutants to run" . However, we find

this is quite beneficial overall. Table 1 shows the results of prelim-

inary experiments on 4 benchmarks included in our evaluations

in Section 4 to validate these optimizations; clearly, they improve

performance significantly.

We note that all the pruning methods mentioned above are sound

optimizations: a mutant is pruned only if it is guaranteed to sur-

vive when executed. Effectively, we are pruning mutants that are

equivalent modulo inputs [47].

3.4.3 Aggressive Mutant Selection Optimizations. While the execu-

tion and infection optimizations significantly improve the overall

throughput of Mu2, the" factor in Equation 1 still grows linearly

with the size of the program (more code = more mutants). We can

be aggressive about reducing " by attempting to bound it by a

constant : , at the risk of potentially missing out on analyzing some

mutants that could have been killed by a given input. We call these

aggressive optimizations. We use the function filter in Algorithm 3

(Line 6) to optionally apply a selection strategy [66, 73] that returns

a bounded subset of the killable mutants. We have implemented

two types of filters in Mu2:

(1) :-RandomMutant Filter: For each generated input,: mutants

are randomly sampled from the killable set in Alg. 3.

(2) :-Least-Executed Mutant Filter: For each generated input,

the killable mutants are sorted by the number of times they

have been executed on previous inputs. The first : mutants

are then selected. The goal is to prioritize executing mutants

that have not been tested as frequently during the fuzzing

fuzzing campaign. This is a novel reduction strategy designed

specifically for the fuzzing loop.

Section 4.2 evaluates the impact of these aggressive optimizations.

4 EVALUATION

We evaluate Mu2 on 5 different Java program benchmarks, using

state-of-the-art coverage-guided fuzzer Zest [59] as the baseline.

We structure our evaluation around four research questions:

RQ1: Does mutation-analysis guidance produce a higher quality

test-input corpus than coverage-only feedback in greybox fuzzing?

RQ2: How do the performance optimizations impact the quality of

the test-input corpus produced by mutation-analysis guidance?

RQ3: How does the reliability of killing nontrivial mutants differ

between mutation-analysis guidance and coverage guidance?

RQ4: How much stronger is the differential mutation testing oracle

than the implicit oracle?

Benchmarks. We consider five real-world Java programs:2

(1) ChocoPy [7, 61] reference compiler (~6K LoC): The test driver

(reused from [75]) reads in a program in ChocoPy (a statically

typed dialect of Python) and runs the semantic analysis stage

of the ChocoPy reference compiler to return a type-checked

AST object.

(2) Gson [29] JSON Parser (~26K LoC): The test driver parses a

input JSON string and returns a Java object output.

(3) Jackson [22] JSON Parser (~49K LoC): The test driver acts

similar to that of Gson.

(4) Apache Tomcat [3] WebXML Parser (~10K LoC): The test

driver parses a string input and returns the WebXML repre-

sentation of the parsed output.

(5) Google Closure Compiler [30] (~250K LoC): The test driver

(reused from [59] and [75]) takes in a JavaScript program

and performs source-to-source optimizations. It then returns

the optimized JavaScript code.

Mutation selection. Following previous work on semantic

fuzzing [59, 75], we filter on package names to identify classes

relating to the core logic of the program under test. The mutation

operators are then applied on these classes. We use the same gen-

erators, oracles, and filters for both Zest and Mu2. All of the test

drivers return objects that override Object.equals, and were

thus properly compared by the differential oracle.

Duration. Following best practices [42], we use a time bound of

24 hours for each experiment.

Repetitions. To account for the randomness in fuzzing, we run

each experiment 20 times and report statistics.

Metrics. For our evaluations, we compute the branch coverage

and mutation scores across each fuzzer-generated test-input corpus.

We report mutation scores as the absolute number of mutants killed

instead of as a fraction (ref. Section 2.2), since we only care about

comparing these numbers across fuzzing variants, and since the

denominator is meaningless when considering a single test entry

point. We additionally compute the kill frequency of each of the

2While we note lines of code (LoC) for completeness, only a fraction of this code is
reachable from fuzz drivers. Fig. 5 indicates actual code coverage.
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Figure 4: Box plots showing the number of killed mutants by Zest and Mu2-generated test corpora across 20 repetitions of

24-hour fuzzing campaigns (higher is better). Mu2-Split and Mu2-OPT are two variants of Mu2 detailed in Section 4.1.

ChocoPy
(4856)

Gson
(645)

Jackson
(2217)

Tomcat
(990)

Closure
(30792)

Benchmark

0.00

0.25

0.50

0.75

1.00

Co
ve

ra
ge

 R
el

at
iv

e 
to

 Z
es

t Branch Coverage

Zest
Mu2-Default
Mu2-Split
Mu2-OPT
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ized to the mean coverage achieved by Zest. The number of

branches covered by Zest (used to normalize) is listed below

each target. Error bars represent 95% confidence intervals.

nontrivial mutants across the repetitions.When reporting statistical

significance, a Mann-Whitney-U test was performed with U = 0.05.

Default variant. Unless explicitly qualified with an aggressive

optimization strategy, the default variant of Mu2 used in our evalu-

ation only uses sound optimizations described in Section 3.4.2.

Reproducibility and Data Availability. We have published a repli-

cation package and evaluation data at: https://doi.org/10.5281/

zenodo.7647828. The evaluation data contains logs of fuzzing cam-

paigns used to generate all evaluation figures and tables [74].

4.1 RQ1: Test-Input Corpus Quality

Does mutation-analysis guidance produce a higher quality test-

input corpus than coverage-only feedback in greybox fuzzing?

RQ1 focuses on evaluating mutation-analysis-guided fuzzing

with a fixed time budget. Higher mutation score from the Mu2-

produced corpus and comparable coverage results would demon-

strate that mutation-analysis can be used as an off-the-shelf re-

placement for coverage-only guidance. We first discuss results for

Mu2-Default, then evaluate two variants against the Zest baseline.

Figure 4 visualizes the mutation scores for each fuzzer-generated

corpus. The default mutation-analysis guidance (Mu2-Default) is

able to produce a corpus with higher mutation scores than coverage-

only feedback in the first three benchmarks, achieving statistically

significant increases in all three. Additionally, Figure 5 shows equiv-

alent branch coverage between Zest and Mu2 for these benchmarks.

For the Tomcat WebXML parser, the number of killed mutants

saturated at 239 in almost all of the repetitions of the fuzzing cam-

paigns. For the Closure Compiler, our largest benchmark, the Mu2-

Default corpora achieve, on average, approximately 17% less branch

coverage than Zest (shown in Figure 5). This is likely due to the

performance overhead of running mutation analysis for a large

benchmark, and also likely accounts for the Zest corpora on aver-

age killing 12 more mutants than Mu2-Default, as covering code is a

necessary condition for killing mutants in that part of the code. This

suggests Mu2-Default may not scale well to very large programs.

One way to mitigate this slowdown is to add mutation-analysis

feedback to coverage-guided fuzzing later in the campaign. The

Mu2-Split variant utilizes coverage-only feedback for the first half

of the campaign (which is very efficient) and then introduces ex-

pensive mutation-analysis feedback for the second half. This is

based on an idea by Gopinath et al. [31], who suggested saturating

coverage before adding mutation analysis to the fuzzing loop. The

Mu2-Split-generated corpora show statistically significant increases

in mutation score over Zest for the first 4 benchmarks (Fig. 4), al-

though the effect for Tomcat is very small. There is also a major

improvement over Mu2-Default in the Closure benchmark; Mu2-

Split is able to bridge the gap in coverage (Fig. 5) and mutation

scores (Fig. 4) that Mu2-Default had with the Zest baseline.

Another method of scaling Mu2 is to apply the aggressive opti-

mizations detailed in Section 3.4.3. Mu2-OPT is a particular vari-

ant we chose that applies the k-Least-Executed filter with : = 10

mutants. The Mu2-OPT generated corpus similarly achieves sta-

tistically significant increases in mutation scores across the first

four benchmarks over Zest, with up to 20% increase in the Jackson

JSON parser (Fig. 4). There is no significant difference between the

mutation scores of Mu2-OPT and Zest on the Closure Compiler.

Mu2-OPT achieves slightly less coverage than Zest on two bench-

marks (ChocoPy and Closure) and more on one (Jackson)—however,

the differences are fairly small (below 2%).

We are also curious about whether the additional saving of

mutant-killing inputs in Mu2 may bloat the size of the generated

test-input corpus, impacting its use in regression testing. Table 2

displays the average sizes and runtimes for each fuzzer-generated

corpus and show that no such bloat occurs in Mu2. While there

are some differences in the number of test inputs, the runtime of

the Mu2-produced corpora are not significantly higher than those
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Table 2: Average number of test inputs (and average runtime,

in parentheses below) of fuzzer-generated corpora. Corre-

sponding standard deviations also listed.

Zest
Mu2-

Default

Mu2-

Split

Mu2-

OPT

ChocoPy
864 ± 34 711 ± 47 725 ± 36 746 ± 40

(18.6 s ± 2.1 s) (9.8 s ± 0.8 s) (11.7 s ± 1.3 s) (10.4 s ± 1.0 s)

Gson
467 ± 18 461 ± 17 469 ± 15 489 ± 21

(1.7 s ± 0.1 s) (1.7 s ± 0.1 s) (1.7 s ± 0.0 s) (1.7 s ± 0.0 s)

Jackson
598 ± 19 655 ± 16 641 ± 19 673 ± 15

(2.4 s ± 0.1 s) (2.4 s ± 0.1 s) (2.4 s ± 0.0 s) (2.4 s ± 0.1 s)

Tomcat
138 ± 7 122 ± 6 136 ± 6 171 ± 5

(2.6 s ± 0.1 s) (2.5 s ± 0.1 s) (2.6 s ± 0.1 s) (2.7 s ± 0.1 s)

Closure
4885 ± 205 1075 ± 219 4044 ± 146 4037 ± 192

(554 s ± 82 s) (58 s ± 13 s) (360 s ± 27 s) (353 s ± 30 s)

Table 3: Geometric mean of speedups achieved by each ag-

gressively filtered variant of Mu2 over Mu2-Default. 20/10/5

refer to the sizes of the filtered subset of mutants.

Random (20/10/5) LeastExecuted (20/10/5)

ChocoPy 1.1/1.7/2.8× 1.1/1.6/2.5×

Gson 0.9/1.1/1.3× 1.0/1.2/1.3×

Jackson 1.0/1.1/1.3× 1.1/1.0/1.2×

Tomcat 3.4/3.5/8.2× 2.3/6.0/7.9×

Closure 10.4/13.8/21.3× 13.8/19.2/24.9×

produced by Zest. Thus, mutation-analysis-guided fuzzing is able

to produce a higher quality test-input corpus and can be feasibly

used for regression testing.

We believe that an aggressively optimized version of mutation-

analysis-guided fuzzing can be used as a replacement for coverage-

guided fuzzing if the goal is to produce a test input corpus with high

mutation score. Mu2-OPT provides an improvement for 4 bench-

marks and scales to the largest target without paying a performance

penalty.

4.2 RQ2: Aggressive Optimizations

How do the performance optimizations impact the quality of

the test-input corpus produced by mutation-analysis guidance?

This RQ focuses on understanding the benefit of the aggressive

optimizations in mitigating the scalability concerns of Mu2-Default.

We created variants Mu2-LeastExecuted-: and Mu2-Random-: ,

each applying the corresponding filter described in Section 3.4.3,

and chose three different values of : ∈ {5, 10, 20}.

First, we measure just the performance benefit. Table 3 shows

the speedups achieved—in terms of number of inputs evaluated

over a 24-hour period—by each variant over Mu2-Default. The

improvement for the benchmarks Gson and Jackson is relatively

minor due to the already small number of mutants executed for each

input after applying the execution and infection optimizations (ref.

Section 3.4.2 and Table 1). However, the aggressive optimizations

provide significant improvement for the larger benchmarks, with

almost 25× speedup for the Mu2-LeastExecuted-5 variant on the
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Figure 6: Box plots showing number of killed mutants by

each aggressively optimized variant of Mu2 and the default,

across 20 repetitions of 24 hour campaigns (higher is better).

Closure benchmark. This makes sense, as the main purpose of

aggressive optimizations is to enable scaling to large programs.

Due to the aggressive nature of the mutant filtering, it is possible

that input candidates that do kill mutants are not saved simply

because those killable mutants were filtered. To determine whether

the speedup actually results in a test-input corpus with higher muta-

tion score, we must also measure the impact of these optimizations

on the mutation score of the generated corpus.

Figure 6 displays the mutation scores of all of the variants for

each of the 5 benchmarks. At least one optimized variant was bet-

ter than the default in all benchmarks. Somewhat surprisingly, we

observe similar mutation scores between the Mu2-LeastExecuted-:

and Mu2-Random-: variants for the same value of : in the first

four benchmarks. The one exception is Closure Compiler, where

Mu2-LeastExecuted-10 achieves a statistically significantly higher

mutation score than Mu2-Random-10. Again, the effect of aggres-

sive optimizations is most pronounced in the largest target.

Another interesting observation is that we can visualize the

trade-off between execution speed and mutation score in the Jack-

son benchmark: although the Mu2-Random-5 variant has a faster

execution speed than Mu2-Random-10 (Tab. 3) due to the smaller

number of mutants, the mutation score slightly decreases (Fig. 6)

since the optimization might skip some mutants at the wrong time.

Nonetheless, the speedup displayed by the variants for the Closure

Compiler results in better test-input corpus quality. All of the Mu2

variants are able to achieve statistically significantly higher muta-

tion scores than Mu2-Default. Specifically, Mu2-LeastExecuted-10,
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Mu2-Random-5, and Mu2-LeastExecuted-5 kill ∼15 more mutants

on average than Mu2-Default.

We found that Mu2-LeastExecuted-10 and Mu2-LeastExecuted-5

were the strongest variants, as they had a statistically significant

increase in mutation score over Mu2-Default in the most bench-

marks (3 out of 5) out of all variants. There was no significant

difference in mutation scores between these two variants in any

benchmarks, so we arbitrarily picked Mu2-LeastExecuted-10 as the

optimized version of mutation-analysis-guided fuzzing (Mu2-OPT)

in our evaluation of RQ1 and RQ4. We do however note for future

practitioners that the best aggressively optimized variant of Mu2

may change depending on the target program.

4.3 RQ3: Nontrivial Mutants

How does the reliability of killing nontrivial mutants differ

between mutation-analysis guidance and coverage guidance?

Not all mutants are equal—some mutants are easier to kill than

others. We define a mutant % ′ = ⟨%, 4, 4′, =⟩ as trivial if it is killed

by the first input that executes = in every experiment (this is the

dynamic version of Kaufman et al.’s definition [40]). Since trivial

mutants are killed as soon as the corresponding code is covered,

conventional coverage-guided fuzzing like Zest suffices to capture

them. On the other hand, since nontrivial mutants may or may

not be killed even after the mutated expression is covered, we are

interested to know whether these get killed based on pure luck or

whether these get killed reliably across repetitions potentially due

to the guidance in the fuzzing algorithm. We measure reliability

by counting the number of repetitions in which each mutant is

killed. In particular, we study the difference in reliability of killing

nontrivial mutants between Zest and the best variant of Mu2.

Figure 7 is a histogram showing the difference in kill rate of

nontrivial mutants between Mu2-OPT and Zest. The values on the

right side (green) correspond to mutants killed more reliably by

Mu2-OPT than Zest. For the sake of visualization, the mutants with

no difference in kill rate (X-axis value 0) are excluded from the

charts.

Mu2-OPT is able to achieve a significantly higher kill frequency

of nontrivial mutants in ChocoPy and Jackson. In fact, there are

29 mutants in Jackson that are killed during all repetitions of

Mu2-OPT and zero repetitions of Zest. This is a strong indication

that mutation-analysis feedback can consistently discover mutant-

killing inputs that coverage-only feedback is incapable of finding.

For the Gson parser, there are 22 vs. 24 nontrivial mutants killed

more reliably by Zest and Mu2-OPT respectively, though the X-

axis values are generally higher for Mu2-OPT. For Closure, there

are over 60 mutants killed by at least one more repetition of Mu2-

OPT compared to the 4 by Zest. Overall, Mu2-OPT is able to kill

nontrivial mutants more reliably than Zest.

We also note that Figure 7 provides some insight into the di-

versity of mutants, particularly redundant mutants. By definition,

redundant mutants are grouped together in the same bars since

they are always killed at the same frequency. Flattening the size of

each bar to 1 removes at least all redundant mutants and acts as a

lower bound on the number of nonredundant mutants.
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Figure 7: Histogram of difference in kill-rate of nontrivial

mutants between Zest and Mu2-OPT over 20 experiments.

X-axis is the difference in repetitions (ranging from -20 to

20), and Y-axis is the number of mutants. Larger positive dif-

ferences (right) are better for Mu2-OPT, and larger negative

differences (left) are better for Zest.

4.4 RQ4: Differential Mutation Testing

How much stronger is the differential mutation testing oracle

than the implicit oracle?

Described in Section 3.3, the differential mutation testing oracle

is responsible for determining whether an input kills a mutant by

comparing the outputs of the executions. We contrast it with the

incomplete greybox fuzzing implicit oracle, which only detects un-

caught exceptions or failed property checks. To study the strength

of the differential oracle, we evaluate the improvement in the num-

ber of killed mutants over the implicit oracle.

Figure 8 shows the difference in mutant kills across the bench-

marks with the two types of oracles. The differential oracle is able

to kill a significantly higher number of mutants across all 5 bench-

marks, with an average increase of 25%. In the ChocoPy benchmark,

over 85 more mutants are caught! This is because certain mutants

are unkillable by the implicit oracle due to their effect on program

behavior. We describe one of these mutants below. For brevity, we

describe the code functionality, omitting the actual code snippet.

The ChocoPy type-checker has a function to check that the

left and right operand types of an expression match when using

the “+" operator. If so, the type is returned and assigned to the

corresponding expression node in the output AST; otherwise, an
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Figure 8: Number of killed mutants detected by the differen-

tial oracle vs. the implicit oracle across 20 repetitions of 24

hour campaigns with Mu2-Default (higher is better). Error

bars represent 95% confidence intervals.

error message for the expression is added to the output AST error

list. Consider a mutant % ′ that modifies this function to return

null instead of the correct type. Executing % ′ on the well-typed

ChocoPy program [1]+([2]+[3]) results in a type-checking

error, since the [int] type of [1] does not match the mutated

null return type of ([2]+[3]). The differential oracle kills % ′

since the output AST produced by % ′ contains a type error, whereas

% does not. The implicit oracle fails to kill this mutant since no

exceptions are triggered.

We conclude that the differential oracle is substantially stronger

than a traditional implicit oracle and is valuable for capturing a

larger set of mutant program execution behaviors.

5 THREATS TO VALIDITY

Threats to construct validity. First, the measurement of mutation

score is of course dependent on the set of mutation operators be-

ing applied to generate program mutants [62]. We aim to mitigate

this threat by using the default set of operators in the widely used

PIT framework, as justified in Section 3.1. Second, our test oracles

(ref. Section 3.3) report an outcome of TIMEOUT if a mutant execu-

tion does not terminate within a predefined limit. Such a bound is

necessary to catch infinite loops (e.g., for mutants that negate loop

conditions). However, if this bound is too small, then it is possible

in theory that some mutants could be marked as “killed” by a fuzzer-

generated input even if their execution would eventually produce

a correct output. To mitigate this threat, we compute the mutation

scores for the final test-input corpus by re-running saved inputs

on all program mutants using a larger timeout. We also manually

analyzed a sample of reported timeouts to confirm correspondence

to infinite loops—we found no false kills.

Threats to internal validity. Our evaluation uses mutation score

when comparing the quality of the generated test-input corpora

since our goal was to synthesize a test-input corpus with high

mutation score (ref. Section 3.1). We assume that a high mutation

score is a valuable objective for fuzzers. However, there is a potential

bias from using mutation score as an evaluation metric, as Mu2

benefits from incorporating mutation testing in the fuzzing loop.

Our results nevertheless capture the performance overhead impact

of mutation-analysis-guided fuzzing on mutation score and code

coverage.

Our implementation simply reused all the fuzzing hyperparame-

ters (e.g., PickInput andMutateInput in Algorithms 1 and 2) that

were set by the baseline Zest fuzzer. Tuning these heuristics could

affect our results, but the size of this search space is too large for

us to explore systematically. We stick with the baseline-provided

defaults for simplicity and make sure to use the same hyperparam-

eters for both Zest and Mu2 so that our conclusions are exclusively

based on the inclusion of mutation-analysis guidance in Mu2 only.

Threats to external validity. Since our implementation is based

on JQF [58] and PIT [17], which both target JVM bytecode, we

used Zest as the baseline. We do not know if our conclusions will

generalize to other programming languages or fuzzing platforms,

such as the family of tools based on AFL [81] and libFuzzer [49].

The available mutation testing infrastructure for C/C++ appears

to be less mature than that for Java/JVM. Another threat to exter-

nal validity arises from our selection bias in choice of benchmark

programs. Our targets have input and output formats which make

them amenable to differential mutation testing. This is not always

true for all applications that can be fuzzed—e.g., PDF viewers and

other programs whose output is graphical. The study of the general

test oracle problem [6] is outside the scope of this paper.

6 RELATED WORK

Greybox fuzzing. The field of coverage-guided greybox fuzzing

has a vast literature, as surveyed by Manès et al. [52]; a more recent

and evolving publication list is maintained by Wen [78]. The ma-

jority of fuzzing research focuses on improving heuristics such as

seed-picking power schedules [9], input mutations [5, 48, 50], and

coverage feedback [14, 25]. FuzzFactory [60] generalizes the feed-

back of greybox fuzzing beyond code coverage to domain-specific

metrics that satisfy certain conditions. Our proposed mutation-

analysis guidance fits into this framework.

Greybox fuzzing for regression testing. A family of techniques

have been developed for directing fuzz testing towards specific

code locations [8, 13, 77] or code commits [84], which can be used

for identifying regressions. However, this still requires running a

full fuzzing campaign, which can take hours or days. In contrast,

we focus on synthesizing a high-quality test-input corpus which

can be quickly executed in CI—usually taking a few seconds or

minutes—as is often already practiced (ref. Section 1).

Guiding fuzzing with mutation testing. We first proposed the

idea of using mutation testing to augment greybox fuzzing in a

student research competition [46]; independently, Qian et al. [67]

published a similar idea at a regional symposium. However, we

believe the current paper is the first to thoroughly evaluate the

performance and scalability of incorporating mutation testing in

the fuzzing loop. In particular, we identified that the evaluation in

Qian et al.’s paper [67] uses an unsound comparison to the baseline

Zest; they use mutation analysis with multiple threads but run

Zest only single threaded for the same time bound, hence giving

higher CPU time to their technique and obscuring the effects of the

increased overhead of performing mutation testing. Additionally,

they use a selection strategy to choose 10 mutants at random, but
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do not measure the impact on the overall mutation score, since

they never run all killable mutants. We were unable to perform a

head-to-head evaluation between Mu2 and their technique since

their implementation is not open source.

Using mutation testing in automated test generation. In a regis-

tered report, Groce et al. [33] propose fuzzing specially mutated

targets to find inputs triggering interesting control flow not in the

original program, and then use those inputs as seeds for coverage-

guided fuzzing. However, they do not target maximizing mutant

kills—for example, a mutant which only changes return codes gets

low fuzzing priority in their approach because it won’t affect con-

trol flow [33]. In contrast, Mu2 aims to find inputs that differentiate

program output on potentially semantics-altering mutants, which

often change data values but not necessarily control flow. Our ap-

proach is therefore orthogonal to Groce et al.’s and could potentially

even be combined.

`-test [24] and EvoSuite [23] are evolutionary test-generation

techniques that can use mutation scores as an objective as well

as a fitness function. `-test, which is based on Javalanche [70],

uses a form of differential testing to compare the coverage traces

of the original program and a mutant. Unlike these tools, which

generate unit test methods for exercising program API, greybox

fuzzing focuses on the generation of inputs for system testing, given

a fixed entry point.

Improving the performance of mutation testing. A lot of research

has been conducted to speed up mutation testing [18, 37, 63, 66, 73].

The approaches fall into three categories: (1) reducing the number

of mutants to generate, (2) pruning mutants to run on a given test,

and (3) speeding up mutant evaluation on a given test. For exam-

ple, many techniques have been developed to avoid generating

redundant or equivalent mutants [51]; we do not currently make

an attempt to identify these statically. Just et al. [39] introduce the

propagation, infection, execution (PIE) model to prune mutants that

are test-equivalent using dynamic analysis. Mu2 implements the

execution and infection optimizations from this work. MeMu [26]

speeds up PIT’s mutation analysis by memoizing unmutated meth-

ods with long execution time; this is a promising approach that

could be integrated into Mu2. Kaufman et al. [40] prioritize mu-

tants to reach test completeness faster. All these optimizations are

sound—they do not avoid analyzing mutants that may be killable.

Other research directions aim to reduce mutation-analysis costs

while potentially trading off soundness. For example, weak muta-

tion [35] has been proposed to terminate mutant evaluation quickly

by observing the intermediate state after executing the mutated pro-

gram locations. Many techniques have been developed formutation

reduction [63, 66, 73]—where only a subset of mutants are evaluated

based on some program-specific criteria. In this paper, we have

evaluated the random sampling approach and a novel least-executed

approach to mutant selection. Recently, Guizzo et al. [34] have

proposed an evolutionary approach to automate the generation

of optimal cost reduction strategies. Further, predictive mutation

testing [82] uses machine learning to estimate which mutants are

most likely to be killed. Incorporating such advanced models into

the Mu2 framework are promising directions for future work.

7 CONCLUSION

We investigated the challenges of incorporating mutation analysis

to guide greybox fuzzing. Our implementation, Mu2, integrates PIT

mutation testing into the JQF framework, and is aimed at producing

a test-input corpus with high mutation score. In our design, we in-

corporated a differential testing as an oracle for killing mutants and

proposed optimizations to improve fuzzing throughput by dynami-

cally pruning the number of mutants to be executed. We applied

both sound and aggressive optimizations for Mu2 to help scale it to

larger programs. After conducting a thorough evaluation on Mu2

and several variants, we found that mutation-analysis feedback can

improve the mutation score of a test-input corpus and more reliably

kill nontrivial mutants than coverage-guided fuzzing.

One of the challenges identified by Gopinath et al. [31] was to

“improve visibility of mutation analysis among fuzzing researchers.”

We hope our work increases awareness of mutation analysis tech-

niques in the fuzzing community and encourages other researchers

to develop more advanced hybrid techniques.
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