
EXCHAIN: Exception Dependency Analysis for Root Cause Diagnosis

Ao Li1, Shan Lu23, Suman Nath2, Rohan Padhye1, Vyas Sekar1

1Carnegie Mellon University, 2Microsoft Research, 3University of Chicago

Abstract
Many failures in large-scale online services stem from

incorrect handling of exceptions. We focus on exception-
handling failures characterized by three features that make
them difficult to diagnose using classical techniques: (1) im-
plicit dependencies across multiple exceptions due to state
changes; (2) silent code handling without logging; and (3)
separation (in code and in time) between the root cause excep-
tion and the failure manifestation. In this paper, we present
the design and implementation of ExChain, a framework
that helps developers diagnose such exception-dependent
failures in test/canary deployment environments. ExChain
constructs causal links between exceptions even in the pres-
ence of the aforementioned factors. Our key observation is
that mishandled exceptions invariably modify critical system
states, which impact downstream functions. A key challenge
in tracking these states is balancing the tradeoff between
performance overhead and accuracy. To this end, ExChain
uses state-impact analysis to establish potential causal links
between exceptions and uses a novel hybrid taint tracking
approach for tracking state propagation. Using ExChain, we
were able to successfully identify the root cause for 8 out of
11 reported subtle exception-dependent failures in 10 pop-
ular applications. ExChain significantly outperforms state-
of-art approaches, while producing several orders of magni-
tude fewer false positives. ExChain also offers significantly
better accuracy-performance tradeoffs relative to baseline
static/dynamic analysis alternatives.

1 Introduction
Failures in large-scale production systems continue to be a
significant source of frustration for developers and loss of
customer satisfaction and revenues for service providers. A
common root cause of system failures is incorrect handling
of exceptions or errors.

Developers today can check whether a failure occurred
during the handling of an exception and whether that excep-
tion was thrown during another exception handler, etc; i.e.,
track exception chains. Unfortunately, existing workflows are
not useful for diagnosing failures whose root causes are out-
side the current exception chain, a type of failures that we
refer to as exception-dependent failure (EDFs). Exception-

dependent failures involve multiple exceptions whose han-
dling periods do not overlap (i.e., they do not belong to the
same exception chain) and yet the (mis)handling of one root
cause exception triggers a downstream exception which even-
tually leads to a failure.

In the context of large systems, diagnosing failures often ne-
cessitates an in-depth understanding of EDF. As highlighted
by Yuan et al., "Almost all catastrophic failures (92%) stem
from the incorrect management of non-fatal errors that are
explicitly signaled in software" [59]. Complementing this,
our manual analysis of 150 failures across multiple Apache
Foundation projects affirms that 85% of these failures orig-
inate from exceptions. Unfortunately, existing solutions for
root cause diagnosis of EDFs are insufficient; in our evalua-
tion with 11 EDFs, state of the art slicing, log analysis, and
statistical debugging techniques could identify the root causes
of only three of fewer EDFs.

EDFs differ from simple exception-chains [25] in three key
aspects that make them especially challenging to diagnose:

• Implicit stateful dependencies: In an explicit exception
chain, the final failure-inducing exception is part of a
cascaded chain of exceptions triggered by the root cause.
In EDFs, however, the root cause exception can lead to
a failure not only by just modifying the control flow of a
program, but also by subtly changing the state.

• Silent handling: Due to the common practice of silent ex-
ception handling [59], the root cause exception may not
be logged. This makes it difficult to diagnose exception-
handling failures that may occur later on.

• Spatial/temporal separation: Finally, the root cause and
the failure may be spatially and temporally distant from
each other. For instance, the root cause exception may
be triggered by one user request and the failure may
be triggered by a different request that has some data
dependency with the root cause.

For these reasons, we argue that it is critical to complement
exception chain information, which is commonly produced
and visualized by standard libraries in languages like Java and
Python, with exception dependency information for effective
failure diagnosis.

1



In this paper, we present EXCHAIN, a tool that enables
developers to diagnose EDFs by automatically inferring ex-
ception dependency. EXCHAIN works by instrumenting the
production system binary. At run time (e.g., during integra-
tion testing or canary deployment), EXCHAIN routines, which
were instrumented into the production binary, automatically
log all exceptions and their contexts, and perform a dynamic-
static hybrid analysis to identify causal dependencies among
all exceptions; i.e., an exception e2 causally depends on an
exception e1 if e1 is responsible for e2, either explicitly (e.g.,
throw e2 inside a catch block of e1) or implicitly (e.g., e1
changes application states that causes e2). Whenever a failure
occurs, developers can query the exception-dependency graph
produced by EXCHAIN to see whether the failure was caused
by the mishandling of an exception.

EXCHAIN employs a set of novel state-impact analyses
to establish potential causal links between exceptions. First,
EXCHAIN analyzes how exception-handling code changes
program state—we call this affected state analysis—by iden-
tifying memory locations whose values are impacted by the
change in control flow when compared to non-exceptional
execution. Second, EXCHAIN analyzes immediate causes for
exceptions by tracking control flow backwards from the pro-
gram locations where exceptions are raised and identifying
memory locations whose values are responsible in triggering
the exception—we call this responsible state analysis. Third,
EXCHAIN incorporates taint analysis to monitor the state
affected by code addressing one exception as it influences
values which activate other exceptions. Notably, EXCHAIN in-
troduces a hybrid algorithm, blending dynamic taint tracking
for heap objects with static taint tracking for local primitives.
This strategic approach positions EXCHAIN uniquely in the
taint-tracking arena, offering accuracy akin to dynamic taint
analysis while achieving the overhead benefits of static taint
tracking. Collectively, these methods enable EXCHAIN to
determine causality between exceptions, proving invaluable
for EDF diagnosis.

We evaluated EXCHAIN using 10 diverse applications from
the Apache Foundation, spanning various domains and av-
eraging 6K stars. Out of 11 reproducible EDFs instances,
EXCHAIN identified root causes for 8, outperforming the
state-of-the-art statistical debugging, slicing, and log analy-
sis tools, which pinpointed only 3 or fewer issues.1 In per-
formance metrics, EXCHAIN introduced an average latency
overhead of 8%, half attributable to its techniques and half to
underlying JVM tools – tools we aim to optimize in future
versions. When juxtaposed with an alternative design employ-
ing static taint tracking, EXCHAIN was a mere 2% costlier but
detected 5 more root causes. In contrast, while dynamic taint
tracking identified the root cause for all failures, it was found
to introduce a substantial performance overhead, reaching up
to 50 times. This suggests that while accuracy is crucial, the

1EXCHAIN could have identified the root causes of two additional failures
with a better static taint tracking tool than what our current prototype uses.

1 class PageProvider {
2 int counter;
3 Page[] cache;
4 void processRequest(Request req) {
5 Page page = cache[req.pageIndex];
6 try {
7 if (page.isAttached()) {
8 logAndThrow(
9 "attached page.");

10 }
11 page.resolve(req.sessionId);
12 counter++;
13 // render page
14 } catch (StalePageException e1) {
15 // StalePageException is
16 // swallowed and not logged.
17 page.refresh(counter);
18 } catch (InitError e2) {
19 throw new FatalError(e2);
20 }
21 }
22 void logAndThrow(String msg) {
23 logger.info(msg);
24 throw new InitError(msg);
25 }
26 }
27 class Page {
28 int sessionId;
29 void resolve(int sessionId) {
30 attach();
31 if (sessionId != this.sessionId) {
32 throw new StalePageException();
33 }
34 ...
35 detach();
36 }
37 }

Req. 1
1

2

3
4
5

6
HTTP 200

Req. 2
1

2

3

4
HTTP 500

The method does not detach the page
when a StalePageException is thrown.

Figure 1: Wicket [7] fails to detach page when exception
occurs [56]. Green circles represents the first request that
triggers a StalePageException and leaves the page
attached. Red squares represents the second request which
triggers the InitError and causes the system to fail.

accompanying performance trade-off can be significant. The
results show that EXCHAIN’s hybrid taint-tracking presents
a useful accuracy-overhead trade-off: an accuracy closer to
dynamic taint tracking with an overhead closer to static taint
tracking. This makes EXCHAIN suitable for test or canary
deployments where the modest overhead is acceptable for the
ease of failure diagnosis.

The source code of EXCHAIN is available at:
https://github.com/aoli-al/exchain.

2 Motivation
In this section, we present an example to illustrate the notion
of exception-dependent failures and discuss why they are
an important class of problems that do not yet have good
solutions in practice.

2.1 A Motivating Example
We present a simplified real-world example to illustrate

2

https://github.com/aoli-al/exchain


exception-dependent failures (EDFs) and the unique chal-
lenges in diagnosing their root causes. To keep the discussion
short, we pick a simple application and keep details to a min-
imum, noting that similar problems also manifest in more
complex and popular applications such as Hadoop, HDFS,
and Tomcat (as we show in §6).

Figure 1 shows a simplified code snippet from the Apache
Wicket web server [7], a popular choice for dynamic web
applications. When a user requests a page, Wicket returns the
cached version of the page for better performance (Line 5).
Next, Wicket resolves the page based on the req.sessionId

(Line 11). This sessionId allows Wicket to differentiate
between requests from various users. Specifically, if the ses-
sionId associated with a rendered page differs from a new
request, Wicket initiates re-rendering for the page. This pro-
cess is implemented in the resolve method. It begins by
attaching the page object to the current context (Line 30),
ensuring it remains exclusive to the current requester and
safeguarded against accidental modifications by concurrent
requests. Upon completion, the method detaches the page
object. The resolve compares the sessionId of the page
object with that of the requester. In cases of mismatch, it
throws a StalePageException (Line 32) so that the Page-
Provider will refresh the page (Line 17).

Unfortunately, the resolve method in Wicket 9.4.0 has a
bug that can result in an HTTP 500 error response. Figure 2
illustrates the sequence of requests that trigger this bug. The
issue involves two requests. The first request asks for a stale
page, i.e., the req.sessionId does not match the current
page.sessionId, which causes a StalePageException at
Line 31. Due to this exception, the resolve method fails
to detach the page object, leaving it attached to the current
context. The exception is later swallowed and the page is
silently refreshed in Line 17. The second request asks for
the same page requested by the previous request, and the
cache array returns correctly. However, since page is still
attached, processRequest throws an InitError exception
that eventually causes the HTTP 500 error response. The
reporter of the above Wicket issue spent significant time to
identify the root cause and to understand how it is causally
related to the failure [56].

Note that the final failure (HTTP response 500) causally
depends on one or more exceptions. The dependency can be
explicit or implicit. An exception e j explicitly depends on
another exception ei if ei’s catch block explicitly throws e j. In
the Wicket example above, FatalError explicitly depends
on InitError. On the other hand, e j implicitly depends on
ei if ei changes application state in a way that causes e j; i.e.,
there is a data-flow between the effect of ei and the cause of
e j. In the Wicket example, InitError implicitly depends on
StalePageException since the latter leaves the page in the
attached state, causing the former.

We observe that diagnosing this exception-handling failure
is challenging due to three key factors:

Req 1
p1.html

1. Get Cached Page 2. Check Page Attached

5. Throw StalePageException
HTTP 200 4. Check Stale Page

User

3. Attach Page

6. Refresh Page

Req 2
p1.html

1. Get Cached Page 2. Check Page Attached

3. Throw InitError
HTTP 500 Rethrow

4. Throw FatalError

Figure 2: The request flow that triggers the HTTP 500
error when a user requests the same page twice. The labels
correspond to the execution flow shown in Figure 1.

F1: Implicit state changes. Exceptions can have unexpected
consequences beyond just modifying the control flow of a
program. In the case of the FatalError exception shown in
Figure 2, the presence of a StalePageException implicitly
modifies the state of the page object. Specifically, the detach
method is not called, leaving the object in an un-detached
state that later triggers the FatalError exception. Impor-
tantly, there is no direct control-flow relationship between the
StalePageException and the FatalError, meaning that
simply tracing the execution path of the second request does
not reveal the root cause of the failure.

F2: Silent exception handling. The root cause exception
StalePageException is silently swallowed and not logged
(Line 15). This allows the first request to continue normally
despite encountering errors, improving overall system reli-
ability and user experience. Such silent exception handling
is a common practice among practitioners[59]; however, the
fact that the exceptions are not logged or reported to external
systems makes it difficult to diagnose failures that may occur
later on (e.g., in the second request in this example).

F3: Spatially and temporally distant root cause. The error
only surfaces in the second request, which can be temporally
distant from when the root cause was triggered by the first
request. Many unrelated error messages appear between the
temporally-distant root cause and failure, and identifying if
an error message is causally related to the failure can be
challenging.

These key factors are not specific to the motivating ex-
ample alone. For example, in a study of 10 Java libraries,
Fetzer et al. found that 40% of exceptions caused implicit
state changes [23], where both the control- and data-flow
of the program are changed. Such state changes can cause
implicit EDFs that are difficult to diagnosis. Moreover, an em-
pirical study by Fu and Ryder found that approximately 40%
of the exceptions caught by the analyzed applications were
completely ignored by the program [25]. Existing empirical
evidence shows the ubiquitous of the above factors in diag-
nosing EDF. Our experiments in §6 sampled 11 reproducible
EDFs from ten popular apps (Table 2); six of the EDFs turned
out to involve multiple requests/operations, and the root cause
exceptions were missing in the logs for five EDFs.

3



2.2 Prior Work and Limitations
We now briefly discuss why closely related work is not appli-
cable in identifying the root cause of an EDF.

Failure diagnosis. Statistical debugging [39] and backward
slicing are two classic approaches to failure diagnosis. The
former requires comparing many successful runs and failure
runs to identify the failure root cause, a very different usage
scenario from EXCHAIN. In our evaluation, even when pro-
vided with both types of runs, the leading statistical debugging
tool, GZolta, detected 6 fewer root causes than EXCHAIN.

Backward slicing has struggled to balance accuracy and
run-time overhead: static slicing [44, 49] cannot scale to ana-
lyze large-scale systems precisely. On the other, dynamic slic-
ing techniques, like [5], can drastically slow down program
execution—by up to 15 times in our evaluation, rendering
them unsuitable for consistent use during routine testing or
canary deployments.

Additionally, Sinha et al. suggested an integration of ex-
ception semantics with backward tracing, specifically to ad-
dress null pointer exceptions. However, this technique’s scope
remains limited as it primarily tracks NULL propagation,
making it non-generalizable for other exceptions [49].

Failure monitoring. Existing failure monitoring techniques
primarily focus on identifying the failure of distributed sys-
tems [4, 13, 14, 17, 22, 26, 27, 28, 37, 38, 54]. However, iden-
tifying the failure service does not reveal the root cause of the
failure. Panorama [31] and OmegaGen [40] improve the ob-
servability of large systems by monitoring grey-failures [30].
Such techniques are not sufficient to identify the root cause
for EDFs as not all exceptions are triggered by grey failures;
i.e, they do not work for silent exception handling (F2).

Log enhancement and analysis. These techniques focus on
improving the log quality [58, 63], like logging more variable
values at more selected program locations, and identifying
failure-related logs [19] during post-mortem analysis. They
are orthogonal to EXCHAIN. EXCHAIN conducts its analysis
at run time, without relying on logs. Furthermore, no matter
how many variables are logged at how many program loca-
tions, exception dependency cannot be figured out without
the dependency analysis that we will present later. Notably,
in our evaluations, only 3 failures benefitted from analyzing
the first exception thrown by the application and the closest
exception to the final failure.

2.3 Our Goal
Our goal is to build a tool that can automatically identify, at
run time, the causal relationship between root cause excep-
tions and an EDF, even when the root causes are far from the
failure, exceptions are silently swallowed, and dependencies
are implicit. More precisely, given an EDF e f , we aim to pro-
duce a DAG such that (1) there is a single sink node e f , (2)
source nodes represent root cause exceptions, and (3) an edge
ei → e j indicates that e j implicitly or explicitly depends on

Figure 3: A high-level overview of EXCHAIN.

ei. In the most common case, the output is a chain of excep-
tions, starting from the root cause exception and ending at e f .
For example, for the aforementioned Wicket failure in Fig-
ure 1, we produce the chain StalePageException@32 →
InitError@9 → FatalError@19 (while this notation only
shows line numbers, the actual dependencies are between the
objects corresponding to the exceptions thrown at run-time).
Such dependencies can better explain to developers how root
cause exceptions lead to the failure.

We aim to make our tool easy to use: a developer should be
able to use the tool with low manual effort. The tool should
be accurate: it should be able to find root causes of most
EDFs, without generating many false positives. Finally, it
should be efficient: its run time overhead would be modest.
We envision EXCHAIN being deployed in a test, a canary, or a
reproduction environment where a modest run time overhead
is acceptable for the advantage of an easy-to-use and effective
failure diagnosis tool.

3 EXCHAIN Overview
We begin with a high level overview of its workflow and
how we envision EXCHAIN being used before diving into the
technical challenges.

3.1 A High Level View
EXCHAIN consists of three components as shown in Figure 3:
the instrumenter, the runtime, and the analyzer.

To use EXCHAIN, a developer proactively uses the auto-
mated instrumenter to instrument the target application bi-
naries. The instrumenter does not require application source
code or any application-specific configuration. The instru-
mented binaries are then deployed in the same way as the
original binaries (e.g., in an integration testing environment
or in a canary deployment).

As the instrumented application executes, EXCHAIN’s run-
time intercepts all exceptions that are raised and saves all ex-
ceptions as well as the critical runtime information required
to determine their dependencies in the EXCHAIN log file.
After a failure, the developer uses EXCHAIN analyzer to di-
agnose the failure. We assume that the developer charged
with this incident troubleshooting and remediation knows
the final symptom exception of the failure (potentially from
the application’s own log file). For instance, in our example
from earlier, the developer knows that the HTTP 500 error
occurred with the FatalError exception inside the Page-

4



Provider class. The analyzer takes this symptom exception
as an input, and uses EXCHAIN logs to output an exception
DAG (or, most commonly, an exception chain) that has the
given symptom exception as the sink. For instance, apply-
ing EXCHAIN to the incident from Section 2, it produces
StalePageException@32 → InitError@9 → FatalEr-
ror@19. The source nodes in the analyzer output represent
potential root cause exceptions.

3.2 Technical Challenges
EXCHAIN proactively monitors all exceptions and collects
runtime information every time an exception is thrown, treat-
ing every exception as a potential threat to the system. This
is because predicting whether an exception will eventually
cause a failure is impossible in general, and hence a selective
interception may miss exceptions that are causally related to
the failure. Similarly, a reactive strategy can miss important
information if an exception and its information is not available
when the failure happens.

The key challenge EXCHAIN addresses is determining
possible dependencies between two intercepted exceptions.
There are many existing solutions to track explicit dependen-
cies across exceptions, i.e., when one exception is thrown
from the catch block of another. In this case, simply log-
ging both the caught and the thrown exceptions can trivially
capture their explicit dependency. There also exist program
analysis tools to automatically construct such explicit depen-
dencies across exceptions [24, 25, 33, 48]. However, these
solutions cannot identify implicit dependencies of two excep-
tions where one exception causes state changes, which later
causes the second exception.

The core contribution of EXCHAIN is the ability to in-
fer implicit dependencies of exceptions by tracking how an
exception changes application states and how the changes
cause subsequent exceptions. EXCHAIN needs to address two
challenges to achieve this.

First, EXCHAIN needs to identify a set of application states
to track. The set should be minimal in order to reduce the
tracking overhead. To this end, EXCHAIN uses two novel pro-
gram analysis techniques to identify a small set of program
memory locations to track. In particular, for each exception
ei, it identifies a set Aei of affected memory locations whose
values are impacted by ei and a set Rei of responsible mem-
ory locations whose values may cause ei. For example, if an
exception e1 causes null values of the variables v1 and v2,
and accessing v1 later leads to a null pointer exception e2,
then Ae1 = {v1,v2} and Re2 = {v1}. The fact that Ae1 and Re2

overlaps readily implies that e2 (implicitly) depends on e1.
Note that our abstraction of affected and responsible mem-
ory locations captures explicit dependencies as well: if e2 is
thrown in the catch block of e1, Ae1 and Re2 both include e1
and hence e2 depends on e1.

Second, an exception e2 may depend on another exception
e1 only indirectly. For instance, suppose e1 causes v1 =−1,

Cause

Affect
(4.1)

Catch
E1

Throw
E2

State

Responsible
(4.2)Propagate

(4.3) State'

Figure 4: EXCHAIN identifies the affected state of each
exception and tracks its propagation. A causal link is es-
tablished if the state causes another exception directly or
indirectly.

which causes v2 = −1 (e.g., via the copy v2 = v1), which
causes the array index out of bounds exception e2 (e.g., when
executing arr[v2]). In this case, e1’s affected memory loca-
tions {v1} do not overlap with e2’s responsible memory loca-
tions {v2,arr}, rather they are related to each other through
data- and control-flow. Taint tracking can accurately capture
such indirect dependencies or variables; however, it can be
prohibitively expensive (up to 50× overhead for some ap-
plications in our evaluation in §6). EXCHAIN uses a novel
technique that combines static and dynamic taint tracking of
a subset of memory locations that is significantly lightweight
compared to dynamic taint tracking (although it can miss
a small fraction of dependencies). Given the affected mem-
ory locations Ae1 of exception e1, the techniques computes
Prop(Ae1), the set of all memory locations that are tainted by
Ae1 . Using the information, EXCHAIN decides that an excep-
tion e2 with responsible memory location Re2 depends on e1 if
the intersection of Prop(Ae1) and Re2 is not empty. Intuitively,
a nonempty intersection means e1 affects at least one memory
location that, through data- and control-flow, affects at least
one memory location that is responsible for e2, and hence e2
depends on e1.

3.3 Scope and Limitations
EXCHAIN has several sources of false negatives. First, EX-
CHAIN cannot identify affected and responsible memory lo-
cations that are not initialized when the exception is thrown.
Second, EXCHAIN cannot track the state propagation if the
exception is thrown or caught by native code or if the state
propagates to other systems (e.g. an exception causes a cor-
rupted file or disrupts API functionalities).

The EXCHAIN is specifically tailored for programming
languages that utilize exceptions for error handling, such as
C# and Java. Its algorithms analyze throw and try/catch state-
ments to track where exceptions are raised and handled. How-
ever, EXCHAIN is less effective for languages like C and
Rust, which predominantly use return values for error han-
dling, without raising and handling failures explicitly.

4 Detailed Design
Next, we describe the detailed design of EXCHAIN to realize
the workflow from the previous section. We start by describ-

5



Statement Variable Memory Location
StalePageException:resolve

detach(); this Page

StalePageException:processRequest

counter++; counter PageProvider.counter

page.refresh(); page Page

Table 1: Affected state analysis for the Wicket example.

ing the main analyses in EXCHAIN (ref. Figure 4). Note that
all analyses are dynamic unless specified otherwise, and they
track memory locations, which are either local variables on
the stack, objects in the heap, or fields of objects in the heap.

4.1 Affected State Analysis
First, given an exception, our goal is to identify all memory
locations whose values may be affected by the exception,
i.e., their values will differ depending on whether the excep-
tion is thrown or not. For example, in Figure 1, let us con-
sider the control-flow of the program if the resolve method
does not throw the StalePageException@32. Firstly, the
resolve method calls the detach method (Line 11), which
modifies the internal state of the Page object. Next, the
processRequest method increments the counter variable
(Line 12). Finally, the page.refresh() call (Line 17) is not
executed because it is inside the catch block. Therefore, the
StalePageException@32 affects the memory locations cor-
responding to the Page object referenced by this variable at
line 35, the counter field, and the Page object referenced by
page variable at line 17.

However, obtaining this information at runtime can be chal-
lenging. Simply removing the throw statement and rerunning
the request may not yield the correct result, particularly if the
system is stateful.

To enable EXCHAIN to identify memory locations affected
by an exception at run-time, we develop a novel a static data-
flow analysis that resembles liveness analysis [47]. Given
an exception e and its corresponding stack trace ST from
the current execution as input, EXCHAIN generates a set of
memory locations whose value will be altered by the excep-
tion. We represent a stack trace as a sequence of k ≥ 1 tuples
⟨method, loc,vars⟩ corresponding to stack frames when the
exception was thrown, where loc is the program location of
the call site (for the first k−1 frames) or the throw statement
(for the k-th frame), and vars is a mapping of variables to their
values. Our algorithm for computing the affected locations A
is as follows:
1. Add thrown exception e to A.

2. For each stack frame ⟨method, loc,vars⟩ ∈ ST:

(a) Identify all instructions Iaff that are control depen-
dent on the throw instruction or the corresponding
invocation site loc.

(b) For each instruction i ∈ Iaff which is of the form x = y
or x. f = y or x. f oo(), determine (respectively) the as-

signed local variable, the assigned object field, or the
object on which a method was invoked, and add these
locations to A. Intuitively, this is because their value
may be impacted by the change in control flow due to
the exception. Note that concrete memory locations
are obtained by resolving object references and fields
via vars.

3. Return all affected locations A.
Table 1 shows the analysis result of the StalePageExcep-

tion. When the StalePageException@32 is thrown, the
detach() statement is control dependent of the throw state-
ment. The detach() statement is a method invocation of the
object referenced by this. Therefore, EXCHAIN identifies the
memory location pointed by this as affected. The stack trace
of this exception also contains the method processRequest

which is at the invocation site page.resolve(req.sessionId)

(Line 11); as this call is aborted, the control-dependent state-
ments counter++ and page.refresh() are marked as affected.
Correspondingly, the affected state analysis returns two mem-
ory locations: (1) the Page object referenced by this in
the resolve method and by page in the processRequest
method, and (2) the class field counter.

4.2 Responsible State Analysis
Given an exception, we also need to identify all memory lo-
cations whose specific values can cause the exception. Note
that exceptions broadly have two types of causes: (a) excep-
tions originating at a throw statement are usually caused by
some program condition that is checked by an enclosing if;
and (b) run-time exceptions can be triggered while executing
expressions because of the value in some memory location
(e.g., if a reference is null or if a divisor is zero).

As an example, consider the processRequest method
shown in Figure 1. This method can throw an ArrayIndex-
OutOfBoundsException at Line 5 if cache.length <= req. ⌋

pageIndex. The memory location referenced by cache and req
are responsible for the exception. Next if page is attached,
the method throws an InitError exception (Line 9). In this
case, the Page object referenced by page is the responsible
memory location, since it is part of the closest enclosing if

condition. Note that the InitError is thrown indirectly by
a wrapper method called logAndThrow. Therefore, simply
analyzing the method that directly throws the exception is not
sufficient to identify the responsible location. To address this,
we implement several heuristics based on the semantics of
the exceptions and the structure of the code.

Exception rethrown. Many exceptions are thrown explicitly
in the catch block (e.g. the FatalError in Figure 1). The mem-
ory location referenced by the caught exception (e.g. e2 at
Line 18) is responsible for the new exception.

Run-time exceptions without an explicit throw statement.
We maintain a list of exceptions that are thrown directly by the
runtime while executing individual instructions, and handle

6



them specially to identify the memory locations responsible
for these exceptions. For instance, if a NullPointerExcep-
tion is triggered by a method invocation instruction or an
object field access, then EXCHAIN identifies the correspond-
ing object reference as the culprit.
Exceptions thrown by throw statements. When an excep-
tion is thrown by a throw statement, EXCHAIN employs a
backward control-flow analysis to identify the memory lo-
cations responsible for the exception. The algorithm takes
an exception e and its corresponding stack trace ST as input
and returns a set of memory locations R that are responsible
for the input exception. The stack trace is again represented
as a sequence of tuples ⟨method, loc,vars⟩ as before. The
algorithm is as follows:
1. For each frame ⟨method, loc,vars⟩ ∈ ST starting from the

top of the stack:

(a) Find the closest branch statement of the current frame
location loc based on the control-flow graph of the
method.

(b) If no such branch is identified in this method, go to
step 1.

(c) Collect all variables or object fields that are refer-
enced by the condition expression of the branch state-
ment. Use vars to resolve variables to memory loca-
tions, and add these to R. Break and go to step 2.

2. Return the set R.
For example, in the InitError shown in Figure 1, EX-

CHAIN first analyzes the logAndThrow method at line 24, and
then the processRequest method at line 9. Since the throw
statement in question is not dominated by any branch condi-
tion in the logAndThrow method, the analysis continues up
the call stack to the processRequest method, where it iden-
tifies the closest branch condition as page.isAttached(). EX-
CHAIN then resolves the local variable reference and returns
a singelton set containing the memory location referenced by
value as R. Since this value is the same object included in
the affected set for StalePageException (ref. Section 4.1),
EXCHAIN can establish causality between StalePageEx-
ception and InitError.

4.3 Hybrid Taint Flow Analysis
In general, EXCHAIN needs to consider how the values af-
fected by some exception ei propagate to other values before
they become responsible for some other exception e j (§3.2).
This is done using taint analysis. The main idea behind taint
analysis is to associate some information with program values
(e.g., that they are affected by exception ei) and propagate this
to other values that are derived from the former.

Traditional dynamic taint analysis works by instrumenting
program code to propagate taint information at every instruc-
tion, such as copying local variables, performing arithmetic
computation, or invoking method calls. This instrumentation
introduces excessive overhead to the application [11, 15, 20],

1 class Foo {
2 int value = 0;
3 Taint valueT = new Taint("const:0");
4 Taint thisT = new Taint("obj:Foo");
5 }
6 void m() {
7 int i1 = 10;
8 // create a new taint because i1 is created

from a constant.↪→

9 Taint i1T = new Taint("const:10");
10 int i2 = i1;
11 // Passing the taint information from i1 to

i2.↪→

12 Taint i2T = i1T;
13 Foo e1 = new Foo();
14 Foo e2 = e1;
15 int i3 = e1.value;
16 // Passing the taint information from

e1.value to i3.↪→

17 Taint i3T = e1.valueT;
18 }

Passing the taint information
from e1 to e2 is not necessary!

Figure 5: A simple program to demonstrate how dynamic
taint analysis tools tracks the taint tag for heap objects
and local variables. The original code is not highlighted.

making it difficult to apply dynamic taint analysis techniques
to large, complex enterprise-level applications even in an in-
tegration/canary test environment. Alternatively, static taint
analysis reconstructs the dynamic behavior of a program us-
ing only static code analysis [8, 41], which introduces zero
overhead to the application while trading off precision.

Hybrid taint analysis. Neither static nor dynamic taint analy-
sis alone can achieve both accurate and efficient taint tracking.
Therefore, it is natural to ask if it is possible to combine these
two approaches to achieve a high precision and a low over-
head. EXCHAIN implements a novel hybrid taint analysis that
leverages the following two observations.

First, the main overhead introduced by dynamic taint anal-
ysis comes from maintaining the taint information for local
primitives, such as integers and booleans. In contrast, tracking
heap objects can be done more efficiently and accurately by
adding only taint information to the heap object itself.

For example, Figure 5 illustrates an instrumented Java pro-
gram that tracks taint information using dynamic taint anal-
ysis. The fields valueT and thisT of the class Foo are used
to track the taint information of Foo.value and Foo respec-
tively. The dynamic taint analysis tool creates a taint reference
for each local primitive and updates the taint information ac-
cordingly (Line 9, 12, and 17). For object references, the tool
does not create taint references if they point to heap objects
whose taint information is already being maintained by cor-
responding fields (Line 3-4). When the thisT field of an
object is updated, all references pointing to that object are au-
tomatically updated as well. In our evaluation, tracking local
primitives introduces 87-5005% overhead but tracking heap
objects only introduces 1-10% to the system.

Second, local primitives can be efficiently tracked using

7



HADOOP FINERACT WICKET NIFI JENA TOMCAT SOLR HIVE
Application

0

1

2

3

4

5

6

7

8

Ra
tio

 (%
)

assign call return

Figure 6: Analysis result of the percentage of data-flows
between heap and local objects using CodeQL.

static taint analysis offline and static taint analysis produces
more accurate result for local primitives compared to heap
objects [29]. Heap objects can be manipulated in various ways
by the program, such as being passed between functions or
being dynamically allocated and deallocated. This makes it
harder to track the flow of data through the program and to
accurately determine which inputs have tainted a particular
object. On the other hand, local primitives are typically only
modified within a single function or block of code, making it
easier to trace their flow of data.

EXCHAIN utilizes these observations and dynamically in-
struments heap objects and adds taint information at run time,
introducing only a constant overhead per exception. For lo-
cal primitives, EXCHAIN uses static taint analysis to track
data-flow offline, introducing no overhead at run time.

One limitation of tracking different types of variables dif-
ferently is that it may miss data flow between heap objects and
local primitives. For example, in Figure 5, taint information
will be lost between e1.value and i3 because EXCHAIN main-
tains the taint information of e1.value dynamically and the
taint information of i3 statically. This limitation may affect
the accuracy of EXCHAIN’s analysis.

To better understand the impact, we used CodeQL [16] to
statically analyze multiple popular cloud services. Specifi-
cally, we focused on three types of statements: assignments,
method calls, and method returns. Figure 6 presents the re-
sults of our analysis. Across all applications, we found that
less than 8.5% of assignment statements, less than 4% of
method call statements, and less than 8.4% of method return
statements had data flow from heap objects to local primitives.
Our findings confirmed that the majority of data flow occurs
between heap-to-heap and local-to-local, which can be effec-
tively handled by hybrid taint analysis. In our evaluation of
11 reproduced failures, we found that EXCHAIN can identify
the root cause of 6 issues by only tracking heap objects, while
four issues require only tracking local primitives. Only one
failure requires tracing the data-flow between heap objects
and local primitives. Besides, tracking local primitives intro-
duces 17x overhead to the target system compared to only
tracking heap objects. Overall, by selectively tracing heap

objects and local primitives, EXCHAIN can identify the root
cause of most failures with minimal overhead.

4.4 Putting it Together
We now describe how different pieces fit together in the work-
flow of EXCHAIN as shown in Figure 3. At runtime, EX-
CHAIN intercepts every exception that is thrown by the appli-
cation. On each exception, EXCHAIN performs both affected
and responsible state analysis and logs the results in the EX-
CHAIN logs (the results are cached and reused when the same
exception is thrown multiple times). It also performs the dy-
namic part of its hybrid taint analysis. For affected states that
are heap objects, EXCHAIN marks them with a unique ID
of the exception. For affected states that are local primitives,
EXCHAIN logs the stack slot number and the correspond-
ing exception. When analyzing responsible states, EXCHAIN
checks if the memory location is a heap object that contains
any labels of previous exceptions. If a label is found, EX-
CHAIN records in its logs the causal link between the current
exception and the exception represented by the label. If the
memory location is a local primitive, EXCHAIN logs the stack
slot number and the corresponding exception.

To diagnose a failure, the user uses the EXCHAIN analyzer
offline with the target symptom exception of the failure. The
analyzer first performs the static part of its hybrid taint analy-
sis with the stack slots of affected states as sources and the
stack slots of responsible states (the states are retrieved from
EXCHAIN logs). If the static taint analysis reports a flow from
a source to a sink, EXCHAIN reports the causal link between
the corresponding exceptions. Finally, the analyzer returns
a DAG (or most commonly, a chain) that has the symptom
exception as the sink node. The source nodes in the returned
DAG represents the root cause exceptions.

5 Implementation
Our EXCHAIN implementation consists of 9,000 lines of code
written in Kotlin, Java, and C++. It instruments the compiled
bytecode of the target system and attaches dynamic monitors
to the runtime. We use JVM Tool Interface (JVMTi) [35]
to capture all exceptions thrown by the target application
and map local variables and heap fields to memory locations.
The affected and responsible state analyzer are developed
on top of ASM [9]. Our dynamic taint analysis is based on
Phosphor [11], and the static taint analysis is implemented
using Soot [53] and FlowDroid [8]. Although our algorithm
is not tied to a specific implementation of JDK and JVM, we
only execute target applications using OpenJDK 16 because
the underlying dynamic taint analysis tool requires APIs that
are only available after OpenJDK 16.

Dynamic Entry Point Inference. We have also implemented
a dynamic entry point inferring technique that allows the static
taint analysis to provide more accurate results.

Client-server architecture for cloud services typically in-
volves multiple public interfaces, each serving as an entry

8



1 int main() {
2 while (true) {
3 Request r = waitForNewRequest();
4 dispatchRequest(r);
5 }
6 }
7 class Server {
8 @Endpoint("create")
9 Response createUser(Request r) {

10 method1(); // may throw Exception1
11 }
12 @Endpoint("remove")
13 Response removeUser(Request r) {
14 method2(); // may throw Exception2
15 }
16 }

Figure 7: A simple web server with two endpoints.

Exception1 ->
Server.method1,
Server.createUser,
Thread.run

Exception2 ->
Server.method2:24,
Server.removeUser,
Thread.run

Exception1 ->
Server.method1,
Server.createUser,
Thread.run

void main() {
createUser(SYM);
removeUser(SYM);
createUser(SYM);

}

Figure 8: EXCHAIN constructs a main method based on
the exception trace collected at runtime.

point to the application. Figure 7 illustrates a simple web
server with two public interfaces: create and remove. The
main function of the server is a hot loop that waits for incom-
ing requests and dispatches them to respective endpoints.

The dynamic design of modern web frameworks such as
Spring [51] and Wicket [7], which dispatch requests to differ-
ent worker threads through reflection and dependency injec-
tion, makes it difficult for the static taint analyzer to construct
an accurate call graph [6]. This design significantly limits the
completeness of the static analysis.

To address this problem, EXCHAIN leverages the exception
traces collected at runtime. For each exception, EXCHAIN
identifies the deepest stack frame that contains application
code based on the package name of the caller. It then con-
structs a main method that invokes the corresponding ap-
plication code in sequential order. For example, Figure 8
demonstrates an exception trace of Figure 7. EXCHAIN finds
the deepest method that contains application code for each
exception and creates a new main method that invokes the
identified methods sequentially. By doing so, EXCHAIN is
able to generate a new main method for the application that
starts with the identified application code.

In our evaluation, dynamic entry point inference helps EX-
CHAIN to identify the root cause for two more issues com-
pared to using the original main method of the application.

Issue Multi-Run
Cause # Excp

Logged Dist Total
WICKET-6908 ✓ ✓ 5 8
JENA-324 ✓ ✓ 792 796
FINERACT-1211 ✗ ✓ 1 58
MAPREDUCE-6654 ✗ ✓ 11 117
HADOOP-17812 ✗ ✗ 1 24
WICKET-6249 ✓ ✗ 7 11
HDFS-4128 ✓ ✗ 7 115
HIVE-13410 ✓ ✓ 15 51
NIFI-8249 ✓ ✓ 1 47
SOLR-16363 ✗ ✗ 1 171
TOMCAT-65131 ✗ ✗ 1 13

Table 2: Basic information of EDFs. ‘Multi-Run’ indicates
if the root cause and the final exception occur in different
operations. ‘Cause Logged’ shows if the root cause excep-
tion is logged by the application. ‘Dist’ shows the number
of exceptions thrown between the root cause and the final
exception. ‘Total’ shows the total number of exceptions
thrown by the application during the reproduction.

6 Evaluation
We evaluate EXCHAIN to answer the following questions:
(1) How does EXCHAIN compare to state-of-the-art failure
diagnosis techniques in identifying the root cause for EDFs?
(2) How do our analysis techniques help improve the accuracy-
performance tradeoffs of EXCHAIN? We conduct all experi-
ments on an Ubuntu server with an Intel Xeon 1290P proces-
sor and 128 GB of memory. We set an 8-hour time limit for
static taint analysis, with a maximum heap size of 32 GB.

6.1 Methodology
For our evaluation, we looked at popular open source appli-
cations maintained by the Apache Foundation. We query the
Jira issue tracking system [32] with a list of keywords such
as "exception handling". From the result of our query (run on
11-15-2022), we closely examined the latest 30 issues return
that are indeed software bugs related to exception handling
and have clearly described failure symptoms, and were able
to reproduce 11 of them (the remaining ones do not provide
an instruction to reproduce the failure).

As such, these 11 reproducible incidents spanning 10 open
source applications form the core of our evaluation setup.
Table 2 shows the basic information of the reproduced 11
issues. We reproduce all failures by running the service in
production configuration except for NIFI-8249, which uses
a customized class loading mechanism that is not supported
by the underlying taint analysis framework. As a result, we
reproduced this issue using unit tests. We manually analyze
the issue report summary and developer conversations in the
ticket to identify the root cause to serve as the ground truth.
Note that our system does not need or have access to this issue
report.

As shown in Table 2, many of the failures are non-trivial:

9



Issue EXCHAIN
Statistical SL4J Log

Ochiai Taran. First Nearst
WI-6908 ✓ ✗ ✗ N/A ✗ ✗
JE-324 ✓ ✗ ✗ ✗ ✓ ✓
FI-1211 ✓ N/A N/A N/A ✗ ✗
MA-6654 ✓ ✗ ✗ N/A ✗ ✗
HA-17812 ✓ ✗ ✓ N/A ✗ ✗
WI-6249 ✓ ✗ ✗ N/A ✗ ✗
HD-4128 ✓ ✓ ✓ N/A ✗ ✗
HI-13410 ✓ ✗ ✗ N/A ✓ ✗
NI-8249 ✗ ✗ ✗ N/A ✓ ✓
SO-16363 ✗ N/A N/A N/A ✗ ✗
TO-65131 ✗ N/A N/A N/A ✗ ✗

Table 3: The analysis result of each issue. Ochiai and
Tarantula are two statistical debugging techniques imple-
mented by GZoltar. N/A means GZoltar and Slicer4J are
not applicable to the target application. First and Nearest
are two debugging techniques that focus on examining the
initial exception thrown by the application and the closest
exception to the final failure from logs.

their root causes and failures happen in different executions,
root causes are not logged, and many (unrelated) exceptions
separate the failures from their the root causes.

6.2 End-to-End Evaluation
For the end-to-end evaluation of accuracy, we compare EX-
CHAIN with three state-of-the-art fault localization tech-
niques: statistical debugging (GZoltar [12] with two different
ranking algorithms Ochiai [3] and Tarantula [34]), slicing
(Slicer4J [5]) and Log analysis. GZoltar requires workloads
that contains both pass and fail cases and we use the unit
tests associate with the application. If the existing unit test
does not cover the reproduced failure, we manually imple-
ment one. GZoltar return a ranked list of statements that may
be related to the failure based on their relevance to the failure
and Slicer4J returns a ranked list of statements that are data
dependent of the failure. If the containing method of a state-
ment reported by the tool that throws the root cause is ranked
top 200 of the list, we report a true positive. In our analysis of
application logs, we utilized two strategies: "First" represent-
ing the initial exception thrown and "Nearest" representing
the closest exception to the final failure.

Note that, as discussed in Section 2.2, it is much more costly
to use GZoltar and Slicer4J: GZoltar requires many successful
runs and failure runs, and Slicer4J requires re-executing a
failed run. In contrast, EXCHAIN allows diagnosis right after
a failure run.

Table 3 presents the analysis result. EXCHAIN successfully
identified the root cause for most issues (8 out of 11). GZoltar
only identified the root cause for 2 issues among the 8 on
which we could run it. GZoltar was unable to analyze Fineract,
Tomcat, and Solr due to incompatibilities with the building
system used by these applications. For HDFS-4128, Ochiai
identified the root cause in the top 2 predicted statements.
However, for HADOOP-17812 and WICKET-6249, Ochiai

failed to predict the root cause within the top 200 statements.
For Tarantula, it predicted the root cause statements within the
top 30 statements for HADOOP-17812 and HDFS-4128. For
5 issues, GZolta cannot report any root cause statements due
to insufficient pass/fail executions. Our experimental results
highlight that EXCHAIN is more capable than GZoltar in
identifying the root cause for EDFs.

To gain insight into the challenges of diagnosing failures
using dynamic variable dependency tracking, we performed a
backward slicing for all failures using Slicer4J [5]. However,
we were able to use the tool to reproduce only one issue:
JENA-324; Slicer4J could not used with the other issues due
to incompatible Java versions. For JENA-324, Slicer4J re-
ported 3741 statements related to the final failure, with the
root cause identified at the 3628th statement. This suggests
that relying on variable dependency for failure diagnosis can
lead to information overload, potentially overwhelming de-
velopers. Slicer4J can introduce significant performance over-
head (up to 15×) Ahmed et al. [5]).

Finally, for the log based approaches, the "First" strategy
identified the root cause for three out of the total failures. The
"Nearest" strategy pinpointed the root cause for only two dis-
tinct failures. It’s crucial to note that even in our experiments
with smaller workloads, numerous exceptions can occur be-
fore and after the root cause, particularly in long-running
services.

6.3 Accuracy vs. Performance Tradeoff
To put the accuracy-performance tradeoff of EXCHAIN in con-
text and explain the value of our optimizations, we consider
two other hypothetical designs SI+Static and SI+Dynamic (SI
stands for affected/responsible state identification). Similar
to EXCHAIN, both log exceptions at runtime and identify af-
fected and responsible states using the algorithms mentioned
in §4.1 and §4.2. They differ in how they analyze taint flow
between affected to responsible states: SI+Static uses fully
static taint analysis and SI+Dynamic uses fully dynamic taint
analysis. In contrast, EXCHAIN uses a hybrid taint analysis:
dynamic analysis of heap objects and static analysis of local
primitives. Note, that SI+Static logs all exceptions as well as
the corresponding stack traces and runs affected and respon-
sible state analysis offline. SI+Static is expected to offer low
run-time overhead but least accurate diagnosis results. Con-
versely, SI+Dynamic is expected to offer the highest overhead
but also the highest diagnosis accuracy.

To evaluate the performance impact of EXCHAIN, we iden-
tify benchmarks for 7 out of the 10 applications. For Hadoop,
Solr, MapReduce, and HDFS, we used the built-in bench-
marks to generate workloads [18, 45, 50, 52]. For Fineract,
Wicket, and Tomcat, we use the Apache HTTP benchmarking
tool [1] to measure their performance. For each benchmark,
we measure both throughput and latency. We encountered is-
sues when attempting to benchmark NIFI in production mode
due to dynamic class loading as described earlier. We were

10



Issue EXCHAIN SI+Static SI+Dynamic
TP FP TP FP TP FP

WICKET-6908 ✓ 1 ✓ 1 ✓ 0
JENA-324 ✓ 0 ✗ 0 ✓ 0
FINERACT-1211 ✓ 0 ✓ 0 ✓ 0
MAPREDUCE-6654 ✓ 0 ✗ 0 ✓ 0
HADOOP-17812 ✓ 0 ✗ 0 ✓ 0
WICKET-6249 ✓ 0 ✓ 0 ✓ 0
HDFS-4128 ✓ 0 ✗ 0 ✓ 0
HIVE-13410 ✓ 0 ✗ 0 ✓ 0
NIFI-8249 ✗ 0 ✗ 0 ✓ 0
SOLR-16363 ✗ 0 ✗ 0 ✓ 0
TOMCAT-65131 ✗ 0 ✗ 0 ✓ 0
Sum 8/11 1 3/11 1 11/11 0

Table 4: Analysis result of each issue. EXCHAIN cannot
identify the root cause for NIFI-8249 and SOLR-16363
because of the imprecise analysis result returned by the
underlying static taint analysis tool. EXCHAIN cannot
identify the root cause for TOMCAT-65131 because of the
data-flow between heap objects and local primitives.

also unable to find a representative benchmark workload for
Jena and Hive.2 Solr only reports throughput and MapReduce
only reports latency. All remaining benchmarks report both
latency and throughput.

Accuracy Results. Table 4 presents the accuracy results for
EXCHAIN and two baselines including the number of true
positives (TP) and false positives (FP). A true positive for a
technique means that it successfully identifies the root cause
exception and correctly reported causal relationship between
the root cause exception and the final failure described in the
issue. A false positive means that the technique reports an
exception that is not mentioned by the reporter and fixing the
exception does not prevent the final failure.

The result shows that EXCHAIN successfully identified
the root cause for most issues (8 out of 11) with only 1 false
positive. SI+Dynamic successfully identified all root causes
without any false positive (at the cost of huge run-time over-
head that we discuss later). On the other hand, SI+Static could
identify root causes for only 3 issues with 1 false positive.

Recall that SI+Dynamic is based on the affected and re-
sponsible variables identified by our analysis described in §4.
The fact that it can successfully identify all root causes shows
the effectiveness of the analysis algorithms.

We also investigated the three failures for which EXCHAIN
failed to report the true root cause. For two of the cases (NIFI-
8249 and SOLR-16363), EXCHAIN failed because of the
imprecise analysis result returned by the underlying static
taint analysis while tracking local variables. Only for one case
(TOMCAT-65131), EXCHAIN failed because of its design
limitation of not being able to track data-flow between heap
and local objects.

Performance Result. Figure 9 shows the latency results re-

2A third-party benchmark for an old version of Hive was available, but our
dynamic taint analysis tool could not instrument the benchmark application.

FINERACT
17.8(ms)

HADOOP
1.7(ms)

WICKET
11.2(ms)

MAPREDUCE
24.3(ms)

TOMCAT
5.9(ms)

HDFS
34.7(s)

Application

10−1

100

101

102

103

L
at

en
cy

O
ve

rh
ea

d
(%

)

SI+Static SI+Dynamic ExChain

Figure 9: The latency overhead for different applications
in log scale. Lower is better.

FINERACT
1125.0
(ops/s)

HADOOP
1176.4
(ops/s)

WICKET
13459.4
(ops/s)

SOLR
16591.2
(ops/s)

TOMCAT
25403.7
(ops/s)

HDFS
1556.6
(mb/s)

Application

0

20

40

60

80

100

T
hr

ou
gh

pu
t

D
eg

ra
da

ti
on

(%
)

SI+Static SI+Dynamic ExChain

Figure 10: The throughput degradation for different ap-
plications. Lower is better.

ported by 6 applications. On average, EXCHAIN incurred
1%-12% overhead on latency, only 2% more than SI+Static.
In contrast, SI+Dynamic incurred 87%-5015% overhead. The
throughput result in Figure 10 shows a similar trend: EX-
CHAIN incurred 1%-11% degradation on throughput, while
SI+Static also incurred 1%-11% degradation. In contrast,
SI+Dynamic incurred 48%-99% degradation.

Our evaluation shows that EXCHAIN achieves a better bal-
ance between performance and accuracy than SI+Dynamic
and SI+Static. Specifically, it achieves an accuracy closer
to SI+Dynamic, with a cost closer to SI+Static. In fact,
EXCHAIN successfully identified the root cause of all fail-
ures whose affected and responsible states are heap objects,
whereas SI+Static only identified the root cause for 3 such
failures. Moreover, EXCHAIN reported only one false positive
out of 11 issues, demonstrating its high accuracy. In terms of
performance, EXCHAIN introduces an average overhead of
only 8%, making it feasible to deploy in an integration test or
canary environment.

7 Discussion
Our current focus was on using EXCHAIN was in a test/canary
environment where a moderate performance overhead (≈ 8%)
may be acceptable. One natural question is if our approach
may eventually be amenable to be run in production with a
lower overhead.

11



FINERACT HADOOP HDFS MAPREDUCETOMCAT WICKET
Application

0

2

4

6

8

10

12

L
at

en
cy

O
ve

rh
ea

d
B

re
ak

do
w

n
(%

)

JVMTi ExChain

Figure 11: Latency overhead break down for different
applications.

FINERACT HADOOP HDFS SOLR TOMCAT WICKET
Application

0

2

4

6

8

10

T
hr

ou
gh

pu
t

D
eg

ra
da

ti
on

B
re

ak
do

w
n

(%
)

JVMTi ExChain

Figure 12: Throughput degradation break down for dif-
ferent applications.

To understand the future feasibility of extending EXCHAIN
we investigate the sources of the overhead. We divide the sys-
tem into two components: JVMTi and EXCHAIN. Figure 11
and Figure 12 show the breakdown of overhead introduced
by each component. JVMTi represents the aforementioned
overhead due to JVMTi. EXCHAIN represents the overhead
introduced by the central design, including logging all ex-
ceptions and their corresponding stack traces, computing the
affected and responsible states, and storing taint information
of heap objects.

From our observations, less than half of the total overhead
is attributed to the core components of EXCHAIN, while the
rest originates from JVMTi. JVMTi can disable several JIT
optimizations when attached to the JVM, which affects the
overhead. An alternative way to intercepting exceptions (e.g.,
through instrumentation or a better JVM mechanism similar
to .NET’s first-chance-exception[21]) could reduce this over-
head substantially to enable closer-to-production acceptable
overhead (≤ 5%).

8 Other Related Work
We discussed some key related efforts and their limitations in
§2.2. Here, we discuss other related work.

Statistical debugging technique. There is a rich body of
work focusing on statistical debugging [2, 12, 34, 43, 55, 57,
61]. Such techniques are effective if the developer provides

both failing and passing executions. Unfortunately, such data
is not always available. In our evaluation, we show that with
existing test suit, GZoltar can only identify the root cause for
one EDF. Moreover, statistical debugging aims to identify
events (e.g., exceptions) that are correlated to failures, rather
than finding the causal dependencies among multiple events.

Failure reproducing. Kasikci et al. showed that it is possible
to reproduce failures with low overhead instrumentation using
hardware features [36]. Pensieve reconstructs failing execu-
tions using dependency analysis of runtime events [62]. EX-
CHAIN is complementary to failure reproducing techniques
and help developers to pinpoint the root cause efficiently.

Failure handling testing. ChaosMachine [60] and Fili-
buster [42] use chaos engineering to test failure handling logic
of the application. Such techniques are useful in identifying
bugs in failure handling logic.

Speeding up dynamic taint analysis. JetStream uses paral-
lel execution and record and replay techniques to improve
the performance of dynamic information flow tracking [46].
Iodine uses static analysis to remote runtime monitors if the
data-flow can be determined statically [10]. Both tool show
that taint analysis is useful in debugging and failure diagnosis.
EXCHAIN uses exception-focused hybrid taint analysis and
focuses on identifying the root cause for EDFs.

9 Conclusions
In some sense, EXCHAIN solves a particularly hard problem —
the very practices of good software engineering at scale (e.g.,
throwing exceptions, silent handling) also end up creating
subtle exception-dependent failure modes that are incredibly
hard to debug! Our key observation is that unlike basic ex-
ception chains, EDFs can entail subtle stateful dependencies
between the root cause and the eventual failure mode.

In designing EXCHAIN, we addressed fundamental chal-
lenges in applying program analysis techniques to balance
the performance and overhead in tracking such stateful de-
pendencies in exception handling failures. EXCHAIN helps
developers diagnose EDFs using a famililar exception-trace
like abstraction akin to traditional debugging workflows. Our
evaluation showed that EXCHAIN is able to successfully diag-
nose subtle issues that stumped expert developers in popular
applications with little to no manual effort and that it signifi-
cantly outperforms state-of-art techniques. While our current
implementation offers sufficient performance for test and ca-
nary deployments, our core design contributions are amenable
to production deployments at scale as well.

10 Acknowledgments
We would like to thank the anonymous reviewers for their
insightful comments and constructive feedback. This research
was supported in part by seed funding from CMU’s CyLab
and by the NSF grant CCF-2119184. A portion of this work
was carried out during an internship at Microsoft Research.

12



References
[1] ab. ab - apache http server benchmarking tool.

https://httpd.apache.org/docs/2.4/programs/
ab.html. Accessed: 2023-02-23.

[2] Rui Abreu, Peter Zoeteweij, and Arjan J.C. van Gemund.
On the accuracy of spectrum-based fault localization. In
Testing: Academic and Industrial Conference Practice
and Research Techniques - MUTATION (TAICPART-
MUTATION 2007), pages 89–98, 2007. doi: 10.1109/
TAIC.PART.2007.13.

[3] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan
J. C. van Gemund. A practical evaluation of spectrum-
based fault localization. J. Syst. Softw., 82:1780–1792,
2009.

[4] Marcos K. Aguilera and Michael Walfish. No time for
asynchrony. In Proceedings of the 12th Conference on
Hot Topics in Operating Systems, HotOS’09, page 3,
USA, 2009. USENIX Association.

[5] Khaled Ahmed, Mieszko Lis, and Julia Rubin. Slicer4J:
A Dynamic Slicer for Java. In The ACM Joint European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE),
2021.

[6] Anastasios Antoniadis, Nikos Filippakis, Paddy Krish-
nan, Raghavendra Ramesh, Nicholas Allen, and Yannis
Smaragdakis. Static analysis of java enterprise applica-
tions: Frameworks and caches, the elephants in the room.
In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion, PLDI 2020, page 794–807, New York, NY, USA,
2020. Association for Computing Machinery. ISBN
9781450376136. doi: 10.1145/3385412.3386026. URL
https://doi.org/10.1145/3385412.3386026.

[7] Apache Wicket. Apache wicket. https://wicket.
apache.org/. Accessed: 2023-02-23.

[8] Steven Arzt, Siegfried Rasthofer, Christian Fritz,
Eric Bodden, Alexandre Bartel, Jacques Klein, Yves
Le Traon, Damien Octeau, and Patrick McDaniel. Flow-
droid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. In
Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion, PLDI ’14, page 259–269, New York, NY, USA,
2014. Association for Computing Machinery. ISBN
9781450327848. doi: 10.1145/2594291.2594299. URL
https://doi.org/10.1145/2594291.2594299.

[9] asm. Asm: A java bytecode engineering library. https:
//asm.ow2.io/index.html. Accessed: 2023-02-23.

[10] Subarno Banerjee, David Devecsery, Peter M. Chen,
and Satish Narayanasamy. Iodine: Fast dynamic taint
tracking using rollback-free optimistic hybrid analysis.
In 2019 IEEE Symposium on Security and Privacy (SP),
pages 490–504, 2019. doi: 10.1109/SP.2019.00043.

[11] Jonathan Bell and Gail Kaiser. Phosphor: Illuminating
dynamic data flow in commodity jvms. In Proceedings
of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages and Applica-
tions, OOPSLA ’14, page 83–101, New York, NY, USA,
2014. Association for Computing Machinery. ISBN
9781450325851. doi: 10.1145/2660193.2660212. URL
https://doi.org/10.1145/2660193.2660212.

[12] José Campos, André Riboira, Alexandre Perez, and Rui
Abreu. Gzoltar: an eclipse plug-in for testing and de-
bugging. In 2012 Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engi-
neering, pages 378–381, 2012. doi: 10.1145/2351676.
2351752.

[13] Tushar Deepak Chandra and Sam Toueg. Unreliable
failure detectors for reliable distributed systems. J.
ACM, 43(2):225–267, mar 1996. ISSN 0004-5411. doi:
10.1145/226643.226647. URL https://doi.org/10.
1145/226643.226647.

[14] Wei Chen, S. Toueg, and M.K. Aguilera. On the qual-
ity of service of failure detectors. IEEE Transactions
on Computers, 51(1):13–32, 2002. doi: 10.1109/12.
980014.

[15] James Clause, Wanchun Li, and Alessandro Orso. Dytan:
A generic dynamic taint analysis framework. In Pro-
ceedings of the 2007 International Symposium on Soft-
ware Testing and Analysis, ISSTA ’07, page 196–206,
New York, NY, USA, 2007. Association for Comput-
ing Machinery. ISBN 9781595937346. doi: 10.1145/
1273463.1273490. URL https://doi.org/10.1145/
1273463.1273490.

[16] Codeql. Codeql. https://codeql.github.com/. Ac-
cessed: 2023-02-23.

[17] A. Das, I. Gupta, and A. Motivala. Swim: scalable
weakly-consistent infection-style process group mem-
bership protocol. In Proceedings International Con-
ference on Dependable Systems and Networks, pages
303–312, 2002. doi: 10.1109/DSN.2002.1028914.

[18] dfsio. Hadoop hdfs dfsio. https:
//github.com/c9n/hadoop/blob/
master/hadoop-mapreduce-project/
hadoop-mapreduce-client/
hadoop-mapreduce-client-jobclient/src/
test/java/org/apache/hadoop/fs/TestDFSIO.
java. Accessed: 2023-02-23.

13

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://doi.org/10.1145/3385412.3386026
https://wicket.apache.org/
https://wicket.apache.org/
https://doi.org/10.1145/2594291.2594299
https://asm.ow2.io/index.html
https://asm.ow2.io/index.html
https://doi.org/10.1145/2660193.2660212
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/1273463.1273490
https://doi.org/10.1145/1273463.1273490
https://codeql.github.com/
https://github.com/c9n/hadoop/blob/master/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-jobclient/src/test/java/org/apache/hadoop/fs/TestDFSIO.java
https://github.com/c9n/hadoop/blob/master/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-jobclient/src/test/java/org/apache/hadoop/fs/TestDFSIO.java
https://github.com/c9n/hadoop/blob/master/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-jobclient/src/test/java/org/apache/hadoop/fs/TestDFSIO.java
https://github.com/c9n/hadoop/blob/master/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-jobclient/src/test/java/org/apache/hadoop/fs/TestDFSIO.java
https://github.com/c9n/hadoop/blob/master/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-jobclient/src/test/java/org/apache/hadoop/fs/TestDFSIO.java
https://github.com/c9n/hadoop/blob/master/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-jobclient/src/test/java/org/apache/hadoop/fs/TestDFSIO.java
https://github.com/c9n/hadoop/blob/master/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-jobclient/src/test/java/org/apache/hadoop/fs/TestDFSIO.java


[19] Pradeep Dogga, Karthik Narasimhan, Anirudh Sivara-
man, Shiv Kumar Saini, George Varghese, and Ravi Ne-
travali. Revelio: Ml-generated debugging queries for
finding root causes in distributed systems. In Conference
on Machine Learning and Systems, 2022.

[20] William Enck, Peter Gilbert, Seungyeop Han, Vasant
Tendulkar, Byung-Gon Chun, Landon P. Cox, Jaeyeon
Jung, Patrick McDaniel, and Anmol N. Sheth. Taint-
droid: An information-flow tracking system for real-
time privacy monitoring on smartphones. ACM Trans.
Comput. Syst., 32(2), jun 2014. ISSN 0734-2071. doi:
10.1145/2619091. URL https://doi.org/10.1145/
2619091.

[21] fce. Appdomain.firstchanceexception event.
https://learn.microsoft.com/en-us/dotnet/
api/system.appdomain.firstchanceexception?
view=net-8.0. Accessed: 2023-02-23.

[22] C. Fetzer. Perfect failure detection in timed asyn-
chronous systems. IEEE Transactions on Computers,
52(2):99–112, 2003. doi: 10.1109/TC.2003.1176979.

[23] C. Fetzer, K. Hogstedt, and P. Felber. Automatic de-
tection and masking of non-atomic exception handling.
In 2003 International Conference on Dependable Sys-
tems and Networks, 2003. Proceedings., pages 445–454,
2003. doi: 10.1109/DSN.2003.1209955.

[24] C. Fu, A. Milanova, B.G. Ryder, and D.G. Wonnacott.
Robustness testing of java server applications. IEEE
Transactions on Software Engineering, 31(4):292–311,
2005. doi: 10.1109/TSE.2005.51.

[25] Chen Fu and Barbara G. Ryder. Exception-chain anal-
ysis: Revealing exception handling architecture in java
server applications. In 29th International Conference on
Software Engineering (ICSE’07), pages 230–239, 2007.
doi: 10.1109/ICSE.2007.35.

[26] Trinabh Gupta, Joshua B. Leners, Marcos K. Aguil-
era, and Michael Walfish. Improving availability
in distributed systems with failure informers. In
10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13), pages
427–441, Lombard, IL, April 2013. USENIX
Association. ISBN 978-1-931971-00-3. URL
https://www.usenix.org/conference/nsdi13/
technical-sessions/presentation/leners.

[27] Andreas Haeberlen and Petr Kuznetsov. The fault detec-
tion problem. In Tarek Abdelzaher, Michel Raynal, and
Nicola Santoro, editors, Principles of Distributed Sys-
tems, pages 99–114, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg. ISBN 978-3-642-10877-8.

[28] Andreas Haeberlen, Petr Kouznetsov, and Peter Dr-
uschel. Peerreview: Practical accountability for dis-
tributed systems. In Proceedings of Twenty-First ACM
SIGOPS Symposium on Operating Systems Princi-
ples, SOSP ’07, page 175–188, New York, NY, USA,
2007. Association for Computing Machinery. ISBN
9781595935915. doi: 10.1145/1294261.1294279. URL
https://doi.org/10.1145/1294261.1294279.

[29] Michael Hind. Pointer analysis: Haven’t we solved
this problem yet? In Proceedings of the 2001 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, PASTE ’01, page
54–61, New York, NY, USA, 2001. Association for
Computing Machinery. ISBN 1581134134. doi:
10.1145/379605.379665. URL https://doi.org/10.
1145/379605.379665.

[30] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R.
Lorch, Yingnong Dang, Murali Chintalapati, and Ran-
dolph Yao. Gray failure: The achilles’ heel of cloud-
scale systems. In Proceedings of the 16th Workshop
on Hot Topics in Operating Systems, HotOS ’17, page
150–155, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450350686. doi:
10.1145/3102980.3103005. URL https://doi.org/
10.1145/3102980.3103005.

[31] Peng Huang, Chuanxiong Guo, Jacob R. Lorch, Lidong
Zhou, and Yingnong Dang. Capturing and enhancing
in situ system observability for failure detection. In
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 1–16, Carlsbad,
CA, October 2018. USENIX Association. ISBN 978-
1-939133-08-3. URL https://www.usenix.org/
conference/osdi18/presentation/huang.

[32] jira. Asf jira. https://issues.apache.org/jira/
secure/Dashboard.jspa. Accessed: 2023-02-23.

[33] Jang-Wu Jo, Byeong-Mo Chang, Kwangkeun Yi, and
Kwang-Moo Choe. An uncaught exception analysis for
java. J. Syst. Softw., 72(1):59–69, jun 2004. ISSN
0164-1212. doi: 10.1016/S0164-1212(03)00057-8.
URL https://doi.org/10.1016/S0164-1212(03)
00057-8.

[34] James A. Jones, Mary Jean Harrold, and John Stasko.
Visualization of test information to assist fault localiza-
tion. In Proceedings of the 24th International Confer-
ence on Software Engineering, ICSE ’02, page 467–477,
New York, NY, USA, 2002. Association for Computing
Machinery. ISBN 158113472X. doi: 10.1145/581339.
581397. URL https://doi.org/10.1145/581339.
581397.

14

https://doi.org/10.1145/2619091
https://doi.org/10.1145/2619091
https://learn.microsoft.com/en-us/dotnet/api/system.appdomain.firstchanceexception?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.appdomain.firstchanceexception?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.appdomain.firstchanceexception?view=net-8.0
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/leners
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/leners
https://doi.org/10.1145/1294261.1294279
https://doi.org/10.1145/379605.379665
https://doi.org/10.1145/379605.379665
https://doi.org/10.1145/3102980.3103005
https://doi.org/10.1145/3102980.3103005
https://www.usenix.org/conference/osdi18/presentation/huang
https://www.usenix.org/conference/osdi18/presentation/huang
https://issues.apache.org/jira/secure/Dashboard.jspa
https://issues.apache.org/jira/secure/Dashboard.jspa
https://doi.org/10.1016/S0164-1212(03)00057-8
https://doi.org/10.1016/S0164-1212(03)00057-8
https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/581339.581397


[35] JVMTI. Jvm(tm) tool interface. https:
//docs.oracle.com/javase/8/docs/platform/
jvmti/jvmti.html. Accessed: 2023-02-23.

[36] Baris Kasikci, Benjamin Schubert, Cristiano Pereira,
Gilles Pokam, and George Candea. Failure sketching:
A technique for automated root cause diagnosis of in-
production failures. In Proceedings of the 25th Sympo-
sium on Operating Systems Principles, SOSP ’15, page
344–360, New York, NY, USA, 2015. Association for
Computing Machinery. ISBN 9781450338349. doi:
10.1145/2815400.2815412. URL https://doi.org/
10.1145/2815400.2815412.

[37] Joshua B. Leners, Hao Wu, Wei-Lun Hung, Marcos K.
Aguilera, and Michael Walfish. Detecting failures in
distributed systems with the falcon spy network. In
Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP ’11, page 279–294,
New York, NY, USA, 2011. Association for Comput-
ing Machinery. ISBN 9781450309776. doi: 10.1145/
2043556.2043583. URL https://doi.org/10.1145/
2043556.2043583.

[38] Joshua B. Leners, Trinabh Gupta, Marcos K. Aguilera,
and Michael Walfish. Taming uncertainty in distributed
systems with help from the network. In Proceedings of
the Tenth European Conference on Computer Systems,
EuroSys ’15, New York, NY, USA, 2015. Association
for Computing Machinery. ISBN 9781450332385. doi:
10.1145/2741948.2741976. URL https://doi.org/
10.1145/2741948.2741976.

[39] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han, and
Samuel P Midkiff. Statistical debugging: A hypothesis
testing-based approach. IEEE Transactions on software
engineering, 32(10):831–848, 2006.

[40] Chang Lou, Peng Huang, and Scott Smith. Under-
standing, detecting and localizing partial failures in
large system software. In 17th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 20), pages 559–574, Santa Clara, CA, Febru-
ary 2020. USENIX Association. ISBN 978-1-939133-
13-7. URL https://www.usenix.org/conference/
nsdi20/presentation/lou.

[41] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and
Guofei Jiang. Chex: Statically vetting android apps
for component hijacking vulnerabilities. In Proceed-
ings of the 2012 ACM Conference on Computer and
Communications Security, CCS ’12, page 229–240,
New York, NY, USA, 2012. Association for Comput-
ing Machinery. ISBN 9781450316514. doi: 10.1145/
2382196.2382223. URL https://doi.org/10.1145/
2382196.2382223.

[42] Christopher S. Meiklejohn, Andrea Estrada, Yiwen
Song, Heather Miller, and Rohan Padhye. Service-
level fault injection testing. In Proceedings of the
ACM Symposium on Cloud Computing, SoCC ’21, page
388–402, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781450386388. doi:
10.1145/3472883.3487005. URL https://doi.org/
10.1145/3472883.3487005.

[43] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao.
A model for spectra-based software diagnosis. ACM
Trans. Softw. Eng. Methodol., 20(3), aug 2011. ISSN
1049-331X. doi: 10.1145/2000791.2000795. URL
https://doi.org/10.1145/2000791.2000795.

[44] Mangala Gowri Nanda and Saurabh Sinha. Accurate
interprocedural null-dereference analysis for java. In
2009 IEEE 31st International Conference on Software
Engineering, pages 133–143, 2009. doi: 10.1109/ICSE.
2009.5070515.

[45] nnbench. Hadoop benchmarking. https://hadoop.
apache.org/docs/stable/hadoop-project-dist/
hadoop-common/Benchmarking.html. Accessed:
2023-02-23.

[46] Andrew Quinn, David Devecsery, Peter M. Chen, and Ja-
son Flinn. JetStream: Cluster-Scale parallelization of in-
formation flow queries. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
16), pages 451–466, Savannah, GA, November 2016.
USENIX Association. ISBN 978-1-931971-33-1. URL
https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/quinn.

[47] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise
interprocedural dataflow analysis via graph reachability.
In Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
pages 49–61, 1995.

[48] Martin P. Robillard and Gail C. Murphy. Static analysis
to support the evolution of exception structure in object-
oriented systems. ACM Trans. Softw. Eng. Methodol., 12
(2):191–221, apr 2003. ISSN 1049-331X. doi: 10.1145/
941566.941569. URL https://doi.org/10.1145/
941566.941569.

[49] Saurabh Sinha, Hina Shah, Carsten Görg, Shujuan Jiang,
Mijung Kim, and Mary Jean Harrold. Fault localiza-
tion and repair for java runtime exceptions. In Pro-
ceedings of the Eighteenth International Symposium
on Software Testing and Analysis, ISSTA ’09, page
153–164, New York, NY, USA, 2009. Association for
Computing Machinery. ISBN 9781605583389. doi:
10.1145/1572272.1572291. URL https://doi.org/
10.1145/1572272.1572291.

15

https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://doi.org/10.1145/2815400.2815412
https://doi.org/10.1145/2815400.2815412
https://doi.org/10.1145/2043556.2043583
https://doi.org/10.1145/2043556.2043583
https://doi.org/10.1145/2741948.2741976
https://doi.org/10.1145/2741948.2741976
https://www.usenix.org/conference/nsdi20/presentation/lou
https://www.usenix.org/conference/nsdi20/presentation/lou
https://doi.org/10.1145/2382196.2382223
https://doi.org/10.1145/2382196.2382223
https://doi.org/10.1145/3472883.3487005
https://doi.org/10.1145/3472883.3487005
https://doi.org/10.1145/2000791.2000795
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/Benchmarking.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/Benchmarking.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/Benchmarking.html
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/quinn
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/quinn
https://doi.org/10.1145/941566.941569
https://doi.org/10.1145/941566.941569
https://doi.org/10.1145/1572272.1572291
https://doi.org/10.1145/1572272.1572291


[50] solr. Solr jmh-benchmarks module. https://github.
com/apache/solr/tree/main/solr/benchmark.
Accessed: 2023-02-23.

[51] spring. Spring | home. https://spring.io/. Ac-
cessed: 2023-02-23.

[52] terasort. Package org.apache.hadoop.examples.terasort.
https://hadoop.apache.org/docs/r3.0.0/
api/org/apache/hadoop/examples/terasort/
package-summary.html. Accessed: 2023-02-23.

[53] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie
Hendren, Patrick Lam, and Vijay Sundaresan. Soot - a
java bytecode optimization framework. In Proceedings
of the 1999 Conference of the Centre for Advanced Stud-
ies on Collaborative Research, CASCON ’99, page 13.
IBM Press, 1999.

[54] Robbert van Renesse, Yaron Minsky, and Mark Hay-
den. A gossip-style failure detection service. In Nigel
Davies, Seitz Jochen, and Kerry Raymond, editors, Mid-
dleware’98, pages 55–70, London, 1998. Springer Lon-
don. ISBN 978-1-4471-1283-9.

[55] Westley Weimer, ThanhVu Nguyen, Claire Le Goues,
and Stephanie Forrest. Automatically finding patches
using genetic programming. In 2009 IEEE 31st Inter-
national Conference on Software Engineering, pages
364–374, 2009. doi: 10.1109/ICSE.2009.5070536.

[56] WICKET-6908. Wicket-6908. https://issues.
apache.org/jira/browse/WICKET-6908. Accessed:
2023-02-23.

[57] W. Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yi-
hao Li. The dstar method for effective software fault
localization. IEEE Transactions on Reliability, 63(1):
290–308, 2014. doi: 10.1109/TR.2013.2285319.

[58] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu,
Michael M. Lee, Xiaoming Tang, Yuanyuan Zhou, and
Stefan Savage. Be conservative: Enhancing failure diag-
nosis with proactive logging. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, page 293–306, USA, 2012.
USENIX Association. ISBN 9781931971966.

[59] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Ro-
drigues, Xu Zhao, Yongle Zhang, Pranay U. Jain, and
Michael Stumm. Simple testing can prevent most critical
failures: An analysis of production failures in distributed
data-intensive systems. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’14, page 249–265, USA, 2014.
USENIX Association. ISBN 9781931971164.

[60] Long Zhang, Brice Morin, Philipp Haller, Benoit Baudry,
and Martin Monperrus. A chaos engineering system
for live analysis and falsification of exception-handling
in the jvm. IEEE Transactions on Software Engineer-
ing, 47(11):2534–2548, 2021. doi: 10.1109/TSE.2019.
2954871.

[61] Mengshi Zhang, Xia Li, Lingming Zhang, and Sar-
fraz Khurshid. Boosting spectrum-based fault lo-
calization using pagerank. In Proceedings of the
26th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, ISSTA 2017, page 261–272,
New York, NY, USA, 2017. Association for Comput-
ing Machinery. ISBN 9781450350761. doi: 10.1145/
3092703.3092731. URL https://doi.org/10.1145/
3092703.3092731.

[62] Yongle Zhang, Serguei Makarov, Xiang Ren, David
Lion, and Ding Yuan. Pensieve: Non-intrusive fail-
ure reproduction for distributed systems using the event
chaining approach. In Proceedings of the 26th Sym-
posium on Operating Systems Principles, SOSP ’17,
page 19–33, New York, NY, USA, 2017. Association
for Computing Machinery. ISBN 9781450350853. doi:
10.1145/3132747.3132768. URL https://doi.org/
10.1145/3132747.3132768.

[63] Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm,
Ding Yuan, and Yuanyuan Zhou. Log20: Fully au-
tomated optimal placement of log printing statements
under specified overhead threshold. In Proceedings
of the 26th Symposium on Operating Systems Princi-
ples, SOSP ’17, page 565–581, New York, NY, USA,
2017. Association for Computing Machinery. ISBN
9781450350853. doi: 10.1145/3132747.3132778. URL
https://doi.org/10.1145/3132747.3132778.

16

https://github.com/apache/solr/tree/main/solr/benchmark
https://github.com/apache/solr/tree/main/solr/benchmark
https://spring.io/
https://hadoop.apache.org/docs/r3.0.0/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/r3.0.0/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/r3.0.0/api/org/apache/hadoop/examples/terasort/package-summary.html
https://issues.apache.org/jira/browse/WICKET-6908
https://issues.apache.org/jira/browse/WICKET-6908
https://doi.org/10.1145/3092703.3092731
https://doi.org/10.1145/3092703.3092731
https://doi.org/10.1145/3132747.3132768
https://doi.org/10.1145/3132747.3132768
https://doi.org/10.1145/3132747.3132778

	Introduction
	Motivation
	A Motivating Example
	Prior Work and Limitations
	Our Goal

	ExChain Overview
	A High Level View
	Technical Challenges
	Scope and Limitations

	Detailed Design
	Affected State Analysis
	Responsible State Analysis
	Hybrid Taint Flow Analysis
	Putting it Together

	Implementation
	Evaluation
	Methodology
	End-to-End Evaluation
	Accuracy vs. Performance Tradeoff

	Discussion
	Other Related Work
	Conclusions
	Acknowledgments

