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Abstract—This paper presents a coverage-guided grammar-
based fuzzing technique for automatically synthesizing a corpus
of concise test inputs. We walk-through a case study of a
compiler designed for education and the corresponding problem
of generating meaningful test cases to provide to students.
The prior state-of-the-art solution is a combination of fuzzing
and test-case reduction techniques such as variants of delta-
debugging. Our Kkey insight is that instead of attempting to
minimize convoluted fuzzer-generated test inputs, we can instead
grow concise test inputs by construction using a form of iterative
deepening. We call this approach bonsai fuzzing. Experimental
results show that bonsai fuzzing can generate test corpora having
inputs that are 16-45% smaller in size on average as compared
to a fuzz-then-reduce approach, while achieving approximately
the same code coverage and fault-detection capability.

Index Terms—test-case generation, grammar-based testing,
fuzz testing, small scope hypothesis, test-case reduction

I. INTRODUCTION

This paper describes a new technique for automatically
generating a concise corpus of test inputs having a well-
defined syntax and non-trivial semantics (e.g. for a compiler).

This project originated when the authors were faced with
the task of generating a test corpus for use in an undergraduate
compilers course. The course project targets the ChocoPy pro-
gramming language [[1]. ChocoPy is a statically typed subset
of Python, designed specifically for education. In a ChocoPy-
based course, students are expected to build a compiler in Java
that statically checks and then translates ChocoPy programs
to RISC-V assembly. Student projects can be autograded by
comparing their compilers’ output at various stages—parser,
type checker, and code generator—with the corresponding
output produced by a reference implementation. When starting
their project, students are provided with a suite of ChocoPy test
programs and the autograder, which together serve as a partial
executable specification. This workflow simulates fest-driven
development, while also enabling students to continuously get
feedback about their progress. For instructors, writing test
cases to validate every language feature is a tedious task; we
wanted to automatically synthesize such a test corpus. This
paper describes the technique we developed for this purpose.
In particular, we focus on the problem of automatically gener-
ating test cases that exercise the typechecker, since generating
well-typed programs is known to be a difficult problem [2]-
(5]

This task presents two conflicting challenges: (1) the gen-
erated test suite must be comprehensive in covering various
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Fig. 1. An example bonsai fuzzing architecture—A lattice of coverage-guided
size-bounded grammar-based fuzzers F,, ,, 4, ordered by three size bounds
on the syntax of the test cases they produce: number of unique identifiers m,
maximum sequence length n, and maximum nesting depth d. Test cases flow
along directed edges: the inputs generated by each fuzzer are used as the seed
inputs to its successors. The result of bonsai fuzzing is the corpus produced
by the top-most element.

semantics of the language, including corner cases; (2) the test
suite must be concise and readable; in particular, each test
case should be small in size so that test failures can guide
students towards identifying which feature was incorrectly
implemented. The conflict is apparent from previous work [6]]
which indicates that automated test generation for covering
difficult program branches works better with larger test cases.

Much work has been done on automatically generating
concise and comprehensive unit test suites [[7]-[9]. However,
this work mainly focuses on generating test code as sequences
of method calls while minimizing the number of test cases or
size of the entire test suite. Our goal is to generate non-trivial
test inputs (e.g. strings) while minimizing the individual size
of each test case, on average. This is because our conciseness
goals are related to readability and debuggability [10], [[11]]
rather than reducing the cost of test execution [[12].

The state-of-the-art in concise automatic test case generation
for structured input domains such as compilers is as follows:
first, perform some form of random fuzzing [[13], [[14] to auto-
matically discover unexpected or coverage-increasing inputs.
Then, perform test-case reduction [15]], [[16] on every fuzzer-
saved input in order to find a corresponding (locally) minimal
input that causes the test program to exhibit the same behavior.
For example, CSmith [2] and C-Reduce [17]] complement each
other by respectively generating and minimizing C programs
for automated testing of C compilers.

By their very nature, fuzzer-generated inputs exercise pro-
gram features chaotically. This can make isolating the most



significant features of a fuzzer-saved test input challenging
both for humans and for minimization algorithms. Further, to
make the test-case minimization problem tractable, algorithms
such as delta-debugging [[15] and its variants perform only
local optimization.

In this paper, we present bonsai fuzzing, a technique for
automatically generating a concise and comprehensive test
corpus of structurally complex inputs. Our key insight is
that instead of reducing large convoluted inputs that exercise
many program features at once, we can grow a concise test
corpus bottom-up. Bonsai fuzzing generates small inputs by
construction in an iterative evolutionary algorithm: the first
round generates tiny trivial inputs and then each successive
round generates inputs of slightly larger size by mutating
inputs saved in a previous round. In particular, we first define a
procedure to sample syntactically valid inputs from a grammar
specification using bounds on the number of identifiers, linear
repetitions, and nested expansions in the resulting derivation
trees. We then define a partial order over coverage-guided
bounded grammar fuzzers (CBGFs). For any given desired
size bound, this partial order results in a lattice of CBGFs. A
corpus produced by each CBGEF in this lattice is used as a set
of seed inputs for all successive CBGFs. The bottom element
of the lattice has minimum size bound—a fuzzer with no good
seed inputs—and the top element has the maximum desirable
size bound—a fuzzer that produces the final test corpus. Fig. [1]
visualizes bonsai fuzzing for a given size bound.

Experimental results on the ChocoPy typechecker indicate
that bonsai fuzzing produces inputs that are 42.5% smaller
than those produced by the fuzz-then-reduce approach, while
retaining 98.5% of coverage and 98.8% of the mutation score.

Although we developed bonsai fuzzing to solve a spe-
cific problem related to the use of ChocoPy, the tech-
nique is more generally applicable. We report results of
applying bonsai fuzzing to the Google Closure Compiler,
which optimizes JavaScript programs: Bonsai fuzzing re-
sults in test corpora that are 16.5% smaller on average
than those produced by the conventional fuzz-then-reduce
approach, while achieving approximately the same code cov-
erage. We have made a replication package publicly available
at https://github.com/vasumv/bonsai-fuzzing,

II. BACKGROUND AND MOTIVATION
A. ChocoPy

ChocoPy [1]] is a statically typed subset of Python 3.6.
It uses Python’s type annotation syntax, but enforces static
type checking. Figures [2| and (3| show examples of well-
typed ChocoPy programs demonstrating a variety of language
features borrowed from Python.

ChocoPy is primarily used in undergraduate compilers
courses. For the programming assignments, students imple-
ment a Java-based ChocoPy compiler, whose output is com-
pared against that produced by a publicly available reference
compiler. Autograding is supported by the ChocoPy infras-
tructure out-of-the-box. In this paper, we are interested in
specifying and autograding the type-checking component of

1 def is_zero(items:[int], idx:int) -> bool:
2 val:int = 0

3 val = items[idx]

4 return val == 0

5 idx:int = 1

6 print(is_zero([l, O, 1, 0, 1], idx))

Fig. 2. ChocoPy Program illustrating functions, variables, and static typing.
Prints True when executed.

class A(object):
x:int = 1
def setx(self:
self.x =y
def equals(self: "A",
return self.x ==y
a:A = None
a = A()
if True:
10 if a.equals(0):
11 a.setx(3)
12 print (a.x)

"A", y:int):

y:int) -> bool:

R R T I ST R S

Fig. 3. ChocoPy Program illustrating classes, methods, objects, and condi-
tional statements.

student-developed ChocoPy compilers: on semantically valid
programs, their output is expected to match the type-annotated
ASTs (in JSON format) with those produced by the reference
compiler; on invalid programs, error messages and correspond-
ing line numbers are compared. A comprehensive test suite
therefore consists of both valid and invalid ChocoPy programs
that exercise various aspects of the ChocoPy typing rules.

B. Problem Definition

Our high-level goal in this paper is to automatically synthe-
size test cases for the ChocoPy typechecker that are not only
comprehensive but also concise. We expand on these primary
goals as follows:

1) Automatic: Manual test creation is cumbersome and
error-prone. Further, we want to have the option of
quickly adding and removing language features in
ChocoPy to evolve its scope. We therefore want a
mechanism to automatically generate a test corpus, given
only a syntax definition (i.e., a grammar) and a reference
compiler implementation.

2) Comprehensiveness: We want the automatically gener-
ated test corpus to have high code coverage and fault-
detection ability. We focus on optimizing for branch
coverage in the reference compiler and also measure
mutation scores where applicable.

3) Conciseness: We want to generate minimal test cases
that exercise various features in the reference compiler.
We focus on optimizing for individual test-case size,
though we also measure the size of the test corpus in
number of test cases.

4) Semantic Validity: We want a high fraction of seman-
tically valid programs. Although invalid programs are
necessary to cover specific aspects (e.g. error messages)
of the typechecker, we prefer generally prefer test cases


https://github.com/vasumv/bonsai-fuzzing

to be semantically valid as they are more representative
examples of language features.

Finally, it only makes sense to invest in automation if our
efforts can be applied to more than one testing target. We
therefore also add a secondary goal:

5) Generalizable: We would like the technique to general-
ize to at least one other testing target.

On the surface, this seems like a standard automated testing
problem. Why do we need a new technique? We next briefly
discuss prior work in the context of our application goals and
why we felt the need to develop a novel solution.

III. CHALLENGES WITH PRIOR SOLUTIONS
A. Systematic Testing

Since our goal is to generate concise test cases, a natural
approach to consider is simply enumerating a bounded space
of inputs or program behaviors.

1) Bounded Exhaustive Testing: Tools such as Korat [18]],
TestEra [19], ASTGen [20] and UDITA [21]] perform bounded
exhaustive testing: inputs of a bounded size are generated
systematically, while employing various optimizations. These
tools have been effective at generating test suites for data
structure libraries, for powering automatic refactoring tools,
etc. Unfortunately, the input space of a ChocoPy compiler
is too large to be enumerated exhaustively. The number of
unique syntactically valid programs, with at most one user-
defined identifier, up to two statements per block, and a
maximum block/expression nesting depth of two, is more than
the estimated number of atoms in the universe: about 1085,

2) Input Structure: Since we know the ChocoPy syntax, we
can consider systematically enumerating k-paths [22] within
the ChocoPy grammar. This approach yields minimal pro-
grams corresponding to each unique k-length path (from root
to leaf) in valid syntax trees. This works really well for gen-
erating parser tests; however, it is not ideal for exercising the
type checking and semantic analysis logic of a compiler. For
example, a minimal well-typed ChocoPy program that contains
a valid method-call invocation requires several syntax sub-
trees to ensure valid class definition, valid method definition
inside the class, valid instantiation of an object of that class,
and a valid method call on this object. This semantic feature
cannot therefore be defined as a linear k-path for any k.

3) Symbolic Execution: Instead of enumerating the input
space, tools such as JPF-SE [23]] systematically explore the
space of program paths using symbolic execution [24f]. With
the use of constraint solvers, one could potentially generate a
comprehensive test suite that covers a diverse set of program
paths of bounded size (assuming that execution path length
correlates with input size). However, the number of program
paths to explore grows exponentially with the number of
branches encountered during execution [25]]. Even on the small
ChocoPy program in Fig. [2] the reference compiler executes
12,274 conditional jumps and 5,132 virtual method calls.
Exhaustive symbolic execution is therefore not a practical
solution even for bounded input sizes.

B. Fuzz Testing

Random test generation is an established technique for
sampling complex input spaces with the hope of discovering
unexpected corner cases. The term fuzz testing (or simply
fuzzing) is generally used for techniques that randomly gen-
erate test inputs [13]], [14] as opposed to test code [7]-[9].
Fuzzing is mainly used for discovering security vulnerabilities.

There are two main challenges in using fuzz testing tools
for test corpus generation. First, generating a comprehensive
test corpus for a compiler requires generating a diverse set of
inputs satisfying complex constraints (e.g. programs should be
well-typed). We therefore consider several variants of fuzzing
that address effective state-space exploration. Second, fuzzer-
generated inputs are often notoriously large and unreadable.
We thus consider some advances in making test inputs concise
and semantically valid.

1) Coverage-Guided Fuzzing: One one extreme end,
coverage-guided fuzzing (CGF) uses no knowledge of the
input domain; instead, it instruments programs under test to
analyze their run-time behavior. CGF evolves a corpus of
test inputs with the goal of maximizing code coverage. The
process starts with developer-provided or randomly generated
seed inputs. New inputs are created by performing random
mutations on seed inputs (e.g. randomly inserting, modifying,
or deleting bytes at randomly chosen locations). Inputs that
cause the test program to cover previously uncovered code
are added to the set of seeds. The process repeats until a
time budget expires. AFL [26] and LibFuzzer [27] are popular
CGeF tools for finding bugs in programs that parse binary data
(e.g. media players and network protocol implementations).
When applied to the ChocoPy compiler, these tools are useful
for generating tests for the frontend; indeed, AFL helped
discover some dormant bugs in the reference parser. However,
these tools are ineffective at generating comprehensive tests
for the type checker. In a preliminary experiment, we found
that less than 0.01% of AFL-generated inputs were valid
ChocoPy programs. This is unsurprising because random byte-
level mutations rarely lead to the generation of inputs that can
satisfy syntactic and semantic constraints.

2) Specialized Compiler Fuzzing: On the other extreme
end, a highly precise compiler fuzzer can be developed by
incorporating the syntax and semantics of the language in
the input generation process itself. For example, CSmith [2]]
generates C programs while avoiding undefined behavior,
Patka et al. [3] generate well-typed lambda terms for testing
the Glasgow Haskell Compiler, and Dewey et al. [4] use
constraint logic programming to test the Rust type-checker.
Such specialized compiler fuzzers require quite a bit effort
to develop, and do not meet our secondary criteria of being
generally applicable to multiple testing targets.

3) Grammar-based Fuzzing: Between these extremes,
grammar-based fuzzers offer an acceptable middle ground.
Using only a declarative specification of a compiler’s input
grammar—which is often readily available—these fuzzers
randomly sample syntax trees. Inputs generated in this way
are guaranteed to be syntactically valid. By enforcing bounds



on the expansion of recursive production rules and other
repeating elements, the size of generated test inputs can also
be controlled. In Section we provide an algorithm
for sampling size-bounded test inputs from a context-free
grammar provided in an extended BNF notation.

Although grammar fuzzing produces syntactically valid test
inputs by construction, generating inputs that are semantically
valid is challenging. For example, we empirically found that
the probability of a randomly sampled ChocoPy program of
size 3 (precisely defined in Section being semantically
valid is less than 9%.

4) Semantic Fuzzing: Recently developed tools such as
Zest [28]], Nautilus [29], and Superion [30] combine structure-
aware (e.g. grammar-based) input generators with code cov-
erage feedback. The hope is that such feedback will help
generate inputs that are not only syntactically valid, but also
exercise various code paths in the compiler corresponding
to semantic checks. In fact, Zest is specifically designed
to generate semantically valid inputs for programs such as
compilers. We therefore found Zest a very promising approach
for generating a test corpus for ChocoPy.

While Zest-produced test suites were comprehensive—
achieving about 95% line coverage on the ChocoPy type-
checker—the generated test corpora were not concise. For
example, the size-bounded Zest-generated program in Fig. [
simultaneously achieves novel coverage related to the handling
of while loops, for loops, and i f-else expressions. How-
ever, the program also contains certain redundant features—
those that exist in other inputs in the corpus—such as pass
statements, assignments, and list indexing. This is sometimes
referred to as collateral coverage in the literature [[12]]. We
prefer not to provide such a compound input to undergraduate
students developing a compiler, as (1) it does not immediately
suggest an implementation goal and (2) it is not ideal for
debugging failures.

C. Test-Case Reduction

A natural solution to the conciseness problem presented by
Zest-generated inputs is to simply minimize them. In general,
finding a minimal input that exhibits a given behavior (e.g.
triggers a bug, or exercises certain program features), is an
NP-hard problem. Starting with an initial input of size n, there
are O(2™) possible subsets of the starting input itself, not to
mention other small inputs that contain elements not present
in the initial input.

Techniques such as Delta Debugging (DD) [15] find locally
minimal inputs that are subsets of the initial input in worst-
case O(n?) steps. One drawback of DD applied on the string
representation of inputs is that deleting individual characters
and contiguous substrings often results in inputs that have
invalid syntax; therefore, most subsets do not exhibit the
desired behavior. Hierarchical Delta-Debugging (HDD) [16]]
solves this problem by applying a DD-like algorithm on a tree
representation of parsed inputs. HDD requires knowledge of
the input syntax, which is readily available in our application.
Similarly, Perses [31] utilizes a grammar to perform reductions

while not (0):
for a in a:

b and True

(0).a = (c) [None if c else 1 if a else

1
2
3
4
5 "
6

pass

Fig. 4. ChocoPy Program generated using coverage-guided bounded
grammar-based fuzzing with size bounds of (3, 3, 3).

1 while A:
2 for A in "":
3

A= None if A if None else A else A

Fig. 5. Minimized ChocoPy program achieving the same novel coverage as
achieved by the program in Fig. []

and guarantees that each reduction step also produces a
syntactically valid program.

We used state-of-the-art implementations of DD and HDD
developed by Hodovan et al. [32]-[35] on Zest-generated
ChocoPy programs. Fig. [5] depicts a minimized version of
the program listed in Fig. where the reduction criterion
was that the reduced input achieves at least the unique same
coverage as achieved by the original input. The minimization
takes about 30 seconds to run, and achieves a 50% reduction
in test case size—the redundant pass, assignment, etc. has
been removed. However, Fig. [3] still contains multiple loops,
branching statements, etc. In the next section, we will describe
a novel solution that produces inputs that are much more
concise, for free.

IV. BONSAI FUZZING

Our proposed technique leverages the scalability advantages
of grammar-based coverage-guided fuzzing while avoiding
the constraints of the fuzz-then-reduce approach. The key
idea in our approach is to grow a test corpus botfom-up by
(1) using coverage-guided bounded grammar fuzzing (CBGF)
to generate small inputs by construction and (2) iteratively
increasing the input size, inspired by iterative-deepening-based
search algorithms [36]. We call our approach bonsai fuzzing.

Figs. [6] [7} and [§] show a total of eleven ChocoPy programs
saved during various rounds of bonsai fuzzing (comments
added manually). These programs are concise and the lan-
guage features they exercise can be easily discerned. In our
opinion, they look almost like hand-written test cases that are
precisely designed for testing specific features of the ChocoPy
language semantics. However, they were generated completely
automatically and without knowledge of any typing rules. We
next build a series of concepts leading up to a description of
the bonsai fuzzing algorithm.

A. Bounded Grammar Fuzzers

We start by considering an input generator that can ran-
domly sample inputs of a bounded size, where the bounds are
based on the definition of an input language’s grammar. We
can observe three properties of a ChocoPy program to get an
idea of how we might bound the input space.



# (Ex. A)
pass

Single pass statement

# (Ex. B) Simple assignment statement

a:object =1
# (Ex. C) Function definit

def a():
return

ion with return

Fig. 6. Three examples of ChocoPy programs saved during bonsai fuzzing,
in a corpus produced by F1,1,1.

# (Ex. D)

class a(object):

Class definition with

a:int = 1
pass

# (Ex. E) Indexing into a strinc

("a") [0]
# (Ex. F) Less-than comparison on two integers
0 <O
# (Ex. G) Equality comparison on two strings
nno_— mgm
# (Ex. H) Function definition with two arguments
def a(b:str, a:int):

pass

Fig. 7. Four examples of ChocoPy programs saved during bonsai fuzzing by
Fa,1,1, F1,2,1, and F1 1 9.

1) idents: the number of new unique identifiers (variable
names, function names, class names) excluding prede-
fined identifiers (e.g. int).

2) items: the maximum number of elements in a linear
group. This can correspond to the maximum number of
statements in a block, arguments in a function definition,
arguments in a list expression, etc.

3) depth: the maximum number of times an expression,
statement, or function definition is nested.

For the ChocoPy example in Fig. 2] we have idents=4
(is_zero, items, idx, wval), items=5 (comma-
separated list elements on line 6), and depth=3 (triply nested
expressions on line 6). For the example in Fig. 3] we
have idents=7 (A, setx, equals, self, x, y, a),
items=4 (top-level statements in the program), and depth=2
(doubly nested if statements on lines 9-11).

We can bound the input space if we restrict the maximum
value of idents, items, and depth for any generated ChocoPy
program. We will now generalize this to any language.

Consider a specification for the syntax of an input language
in the form of a context-free grammar G. We consider defini-
tions in an extended Backus—Naur form [37]], where G consists
of a set of terminals 7, a set of non-terminals A/, a start
symbol S € N, and a set of production rules of the form:

A— o, where Ac N and a =ajas...

# (Ex. I)

[[1], [None]]

o

Nested list expression

# (Ex. J) Object construction and at

class a(object):

tribute assignment

a:int = 1
(a()).a =1

# (Ex. K)
def a():
def b():
pass

Nested functions

return

Fig. 8. Example ChocoPy programs saved in the bonsai fuzzing corpus of
F3,3,3.

The right-hand side of production rules a are a sequence
of zero or more symbols which are defined recursively as
follows: a symbol is either a terminal in 7, a non-terminal
in A or of the form [b]*, where b is a symbol. The Kleene-
star in the final form has the usual meaning and enables non-
recursive definitions of linear repeating sequences, e.g. list of
statements or arguments to a function call. We also consider
a special class of terminals 7 C 7 whose concrete values are
user-defined (e.g. identifiers) instead of predefined (e.g. ‘+’ or
‘while’). In the ChocoPy grammar—included in our online
repository (ref. Section —we have 7 = {ID, IDSTRING}.

Now consider the set of programs P = {p : p ~ G}. Each
program p has a corresponding derivation tree ¢ from G. We
are interested in bounding the following properties:

1) idents(p): The maximum number of distinct values for
any terminal in 7 (e.g. number of distinct identifiers)
observed across the entire tree ¢.

2) items(p): The maximum number of repetitions in any
expansion of a Kleene-star (e.g. number of statements
in a block) when generating ¢.

3) depth(p): The maximum number of expansions of the
same non-terminal (e.g. expr) in any path from the
root to any leaf node in ¢.

We can then define a smaller input space Py, , 4, Where

pEP

idents(p) < m,
¢%nnud =3P

For example, the ChocoPy program in Fig. [2] belongs to
ChocoPy, 5 3, but the program in Fig. [3| does not. Both of
them belong to ChocoPyy 5 5. Neither is in ChocoPyy 4 ;.

Algorithm [I] details the procedure we use for sampling
programs in Py, ,, 4. The parameters to function BOUNDED-
SAMPLE are a grammar G, a symbol a, and bounds m, n, d;
the function returns a string which is an expansion of symbol a
that obeys the provided bounds. A top-level call to BOUND-
EDSAMPLE with ¢ = S, the start symbol of the grammar,
produces a random program in Py, ,, 4.



Algorithm 1 Bounded grammar sampling algorithm.
G is a grammar; m, n, and d are positive integers.

function BOUNDEDSAMPLE(G, symbol a, m, n, d)
case typeof(a):
terminal ¢: return CONCRETIZE(t, m)
repetition [b]": return concatenate(
[BOUNDEDSAMPLE(b, m, n, d)
for ¢ € {0... chooseRandom([0...n])}])
nonterminal A: return
SAMPLENONTERMINAL(G, A, m, n, d)
function SAMPLENONTERMINAL(G, nonterminal A, m, n, d)
if INT_EXPANSIONS(G, A) |== 0 then
p+1 > Expand to leaf node
else if |T_EXPANSIONS(G, A) |== 0 then
p+0 > Expand to non-leaf node
else
Let ¢ < number of expansions of A from root to here
p+ (c+1)/(d+1) > Probability of leaf expansion
with probability p
Let A — a = chooseRandom(T_EXPANSIONS(A))
otherwise
Let A — a = chooseRandom(NT_EXPANSIONS(A))
return concatenate([SAMPLE(b, m, n, d) for b in «]
function T_EXPANSIONS(G, nonterminal A)
return all expansions A — « in G where
Va; € a, typeof(a;) == terminal
function NT_EXPANSIONS(G, nonterminal A)
return all expansions A — « in G where
da; € a : typeof(a;) == nonterminal

> See text...

The sampling algorithm has a similar structure to the PTC1
grammar-sampling procedure described by Luke [38]]; the
following discussion clarifies specific algorithmic details.

In general, since a can be any type of symbol—terminal,
nonterminal, or a group with Kleene-star— BOUNDEDSAM-
PLE performs different logic depending on the type of a.

1) When a is a terminal symbol, it is concretized as fol-
lows: If a € 7, then one of m pre-populated expansions
is uniformly chosen at random (e.g. if the terminal
represents an identifier, then one of say a_1, a_2, ...,
a_m is returned uniformly at random). Otherwise, a has
exactly one concrete value (e.g. ‘+’ or ‘while’), which
is returned directly.

2) If a is a repetition [b]*, we choose a number of expan-
sions ¢ uniformly at random in the range [0,n]. Then,
we recursively call BOUNDEDSAMPLE with symbol b
for ¢ times and the results are concatenated.

3) If a is a nonterminal A, then with a calculated prob-
ability p we return the output of BOUNDEDSAMPLE
on a randomly chosen terminal expansion. Otherwise,
we use a randomly chosen nonterminal expansion. The
probability p is a function of the number of times A
has been expanded from the root and the maximum
depth parameter d. It ensures that the program cannot
have a depth larger than d, while favoring nonterminal
expansions when the nesting depth is relatively smaller.
The calculation of p differs from that used by Luke
in PTC1 [38]], since we are interested in bounding the

maximum nesting along any given path in a derivation
tree, instead of bounding the size of the tree itself.

Preliminary Results with ChocoPy: There is a natural
dichotomy between conciseness and comprehensiveness. Tiny
bounds such as (1,1, 1) produce very concise inputs, but they
do not exercise many language features. Additionally, most
randomly sampled inputs of size (1,1,1) are well-typed. As
we increase the bounds, the likelihood of a randomly sampled
program being semantically valid diminish.

For preliminary experiments, we ran small 3-hour fuzzing
sessions using bounded grammar sampling for all configu-
rations where m, n, and d were between 1 and 5 each—a
total of 125 configurations. Each experiment was repeated ten
times to account for randomness. We then measured (1) branch
coverage in the ChocoPy reference typechecker across all the
inputs generated during each experiment, and (2) fraction of
generated inputs that were semantically valid. Fig. [9] shows
averages of the fraction validity and relative branch coverage
for all 125 configurations. We noticed that bounds such as
(3,3,3) were able to achieve high coverage; however, the
fraction of valid inputs generated for was concerning (only
9%). We next consider a feedback-directed variant of the
bounded grammar sampling fuzzer that can produce inputs
that are more likely to be semantically valid.

B. Coverage-Guided Bounded Grammar Fuzzing (CBGF)

In order to incorporate a feedback from test execution,
we enhance our bounded grammar sampling technique to
a coverage-guided bounded grammar fuzzer (CBGF). Algo-
rithm [2| describes CBGF. It is almost a standard coverage-
guided fuzzing loop (e.g. as described by Béhme et al. [39]),
but focuses on generating a comprehensive test-case corpus
rather than discovering program Crashe The technique ex-
pects an instrumented version of the test program, such as
the ChocoPy reference compiler; the instrumentation provides
a way to receive feedback (e.g. code coverage) from test
execution. Test execution on a given input can also return ad-
ditional feedback such as whether the input was semantically
valid or not (e.g. based on whether type-checking succeeded
or if there were any errors). The function CBGF is given
an ordered set of initial seed inputs in S. The main fuzzing
loop continuously cycles through the set S, picking each input
in order (sometimes with repetition to increase energy [39])),
mutating it, and executing the test program with the mutated
input to receive feedback. If the feedback is interesting (e.g.
coverage includes a program location that is not exercised by
any other input in S so far), then the mutated input is added to
S. The loop ends after a fixed time budget, and the resulting
corpus of inputs S is returned.

The two main unspecified components in this algorithm
are how MUTATE works (Line [4) and what the interest-
ingness criteria is for saving new inputs (Line [6). We use
an off-the-shelf implementation of Zest [28|], a structure-
aware coverage-guided fuzzer that is well suited for our

'We assume that the reference program being analyzed is not buggy. If we
find any crashes, we apply a patch and restart from the beginning.
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applicatiorﬂ In Zest, all inputs—including the initial seed
inputs—are generated using some sampling procedure called
a generator; in our case, the generator is simply the bounded
grammar sampler (ref. Algorithm [T). Each input is associated
with a sequence of pseudo-random choices made during the
sampling procedure, which uniquely determine the input pro-
duced by that procedure. In Algorithm [} this includes the
“random” choices made in expanding production rules and
concretizing terminal values. Zest records these choices in
a vector, which is associated with the corresponding input.
The MUTATE function in Algorithm [2] works by performing
random point mutations on these recorded pseudo-random
choices and then replaying BOUNDEDSAMPLE with the spec-
ified choices and with the given bounds to produce input’.
Essentially, BOUNDEDSAMPLE is implicitly parameterized by
the source of pseudo-randomness, which Zest controls—in the
implementation, by simply overriding java.util.Random.
We expect the returned value input’ to be a syntactically
valid input that is subtly different from—that is, a structural
mutation of—the original input input [28]]. Note that if input
was a member of the initial set of seeds, then the size bounds
(m, n,d) provided to MUTATE may be larger than the bounds
used to originally generate input; we will exploit this fact in
the Section [V-Cl

The criteria used by Zest to determine whether to save
input’ (Line [6]in Algorithm [2) is the following: the feedback
from execution of p on input’ is interesting if (1) there is
new code coverage, regardless of the validity of input’, or

2We elide details of all other heuristics in Algorithm [2} since we inherit
them from the original Zest implementation [28]. The search heuristics are
not important to our proposed technique, which works at a higher level.

(2) input’ is semantically valid and it achieves new coverage
when compared to all other semantically valid inputs in S.
Zest thus favors saving semantically valid inputs. Section[[V-D]
describes a tweak to this criterion we make in some scenarios.

The F notation: We now define some short-hand no-
tation that will be useful when describing our proposed
bonsai fuzzing technique. Let ‘7:7%51, 4 denote a coverage-
guided bounded grammar fuzzer (CBGF) parameterized by
grammar §, test program p, size bounds m, n, and d. As
per Algorithm fg”i’ 4 1s a function that accepts an ordered
set of inputs and returns a corpus of the same type. Since
the grammar and target program are usually fixed in a given
application, we will omit the superscripts hereon; therefore,
Fmn.d is a CBGF of size bounds (m,n,d).

Preliminary Results with ChocoPy: As described in Sec-
tion [[lI-C| simply using Zest followed by input minimization
on the resulting corpus still lacks conciseness. The program in
Fig. E| was produced using F3 3 3 in seedless mode [40]. The
program in Fig. ]is its corresponding reduction after applying
hierarchical delta debugging [[16]—the invariant being that the
reduced input still meets the same interestingness criteria from
Algorithm 2] A full HDD-reduced corpus of Zest-generated
ChocoPy programs can be found in our online repository
(ref. Section [I).

C. Bonsai Fuzzing

Our novel solution is to build a concise test corpus from
the bottom up by using a set of CBGFs with gradually
increasing size bounds. The intuition is that the smaller CBGFs
would initially build a corpus of tiny test corpus covering
simple features, and larger CBGFs can build on the smaller



Algorithm 2 Coverage-Guided Bounded Grammar Fuzzing

Algorithm 3 Bonsai fuzzing algorithm

Require: Instrumented program p, Grammar G, Bounds m, n, d
1: function CBGF(Seed inputs S) > Returns corpus 2 S
2: repeat

3: input < next(S) > Cycle through S
4: input’ <+ MUTATE(input, G, m,n, d) > See text...
5: feedback < EXECUTE(p, input’) > validity + coverage
6: if feedback is interesting then > new coverage?
7: S + S Uinput’

8: until time budget expires

9: return S

programs to generate more complex test cases that achieve
better coverage. By inceasing the size bounds gradually at each
step, we expect the complex test cases in later stages to be
structural mutations of test cases discovered in earlier stages;
thus, we hope to simultaneously achieve validity, conciseness,
and comprehensiveness. We now define a way to iteratively
increment the size of a CBGF, which allows us to create a
formal procedure for this approach.

Given upper bounds M, N, and D, we can consider the set
of CBGFs

1<m<M
1<n<N
1<d<D
With upper bounds (3,3,3), we would have 27 different

CBGFs in set C3 3 3.
We define a partial order < over Cps,n p as follows:

Cunp =1 Fmnd

]:m,n,d < ]:m’,n’,d' — m < mlan < n/,d < d/

Consequently, Fry n.d < Frmsnrd it Frnng < Fr s a2 and
]:m,n,d 7é fm’,n’,d“

This ordering suggests that Cps y p is a lattice with Fj 1 3
being the bottom element (denoted F ) and Fjr,n,p being
the top element (denoted F ). Fig. E] visualizes the lattice for
Cs,2,2, where the partial order corresponds to graph reachabil-
ity. In this example, FT = F2.2.2.

Additionally, we define the terms successor and predecessor
with their usual meaning:

1) Fs is a successor of F if F < F, and there exists no
CBGF F! such that F < F. < F.

2) F, is a predecessor of F if F,, < F and there exists no
CBGF F), such that F,, < F), < F.

For example, F» 11 is a successor of Fj 1 1, whereas Fs 21
is not. Conversely, F1 1,1 is a predecessor of F» 11 but not
a predecessor of F2 1. In Fig. |1} every node has incoming
edges from its predecessors and outgoing edges to its succes-
sors. Naturally, predecessors(F|) = successors(F ') = {}.

We now formally define bonsai fuzzing as a procedure
that begins with the smallest configuration F, and iteratively
increases the size until a given upper bound is reached.

Algorithm [3] describes the procedure for bonsai fuzzing.
Variable F is initialized to the smallest CBGF F, . Recall
from Algorithm [2] that a CBGF is a function that is given a
set of seed inputs and returns a test corpus. Initially, we have

1: procedure BONSAIFUZZING

2: F <+ FL

3: seeds « [random()] > Single random seed
4 corpus(F1) = F(seeds) > Run CBGF to generate corpus
5: worklist « successors(F)

6: while worklist is not empty do
7: for each F in worklist do > Parallelizable
8

9

0

1

P < predecessors(F)

seeds < SORTBYSIZE (U;pep corpus(Fp))
corpus(F) < F(seeds) > Run CBGF
worklist < U z. corpiisr SUCCESSOTS(Fs)

12: return corpus(F i

no seeds. We thus start by running the CBGF F | with one ran-
dom seed input (similar to SLF [40]) to produce corpus(F,).
Then, a worklist is populated with the successors(F). For
each unprocessed element in the worklist—that is, each unex-
ecuted fuzzer—we prepare its seeds by taking a union of all
test cases in the corpus generated by each of its predecessors.
The seeds are also sorted by size in ascending order (so that
Algorithm [2] encounters smaller inputs to mutate first). We
then run F, save its resulting corpus, and repeat this process.
Eventually, we reach the point where 7 = F ' and there are
no more successors. The final corpus is the result of F .

Consider a sample run of bonsai fuzzing over the set
C33,3. We start by running the CBGF F| = F; 11 with one
randomly generated seed input. Fig. [6] shows three sample test
cases saved in the resulting corpus (]—"17171). We can see that the
generated programs are small in size and test simple language
features. These inputs will then be used as seeds in successor
CBGFs: F21.1, F1,2,1, and Fq 1 2. Fig. lists some programs
saved in the corresponding corpora of these fuzzers. We can
now start to see programs with slightly complex features,
such as class attributes, binary expressions, and functions with
multiple parameters. We repeat the process until we reach
F3.3,3, the top element of the lattice C33 3. Fig. E] shows
some example programs saved in the its corpus. More complex
features such as nested list expressions and nested function
definitions are demonstrated in these generated programs. Note
that some of these inputs may have been copied verbatim from
its seeds, having been discovered by predecessors. The final
corpus necessarily incorporates the corpora generated by all
CBGFs in the lattice. The full corpus of ChocoPy programs
generated using bonsai fuzzing can be found in our online
repository (ref. Section [I).

D. Bonsai Fuzzing with Extended Lattice

So far, we have restricted test generation to only those
programs that are semantically valid. By and large, we want
semantic rules (e.g. well-typed addition) to be exercised in
valid representative programs, as opposed to larger invalid
programs that contain these as subexpressions. However, in
order to have a comprehensive test corpus, we also need
some invalid input programs for testing various error paths in
the semantic analysis (e.g. duplicate variable definition, non-



boolean condition to while, and so on). Ideally, we want
these invalid programs to be concise as well; that is, they are
indicative of the particular error path that is being tested. To
achieve this goal, we define two variants of CBGF by tweaking
the interestingness criterion on Line [6] of Algorithm [2] First,
a restricted-CBGF is a CBGF that only saves valid inputs:
that is, the feedback is considered interesting on Line E] if the
input was valid and it achieved new code coverage. Second, an
unrestricted-CBGF saves both valid and invalid inputs, using
Zest’s interestingness criterion as described in Section [[V-B

We thus add a parameter v € {r,u} to CBGFs, where
r denotes restricted and u denotes unrestricted. We use the
symbol JF, 4.0 to denote a CBGF that is parameterized by
size bounds as well as the validity restriction (or lack thereof).
We can now define a new partial ordering as follows: given
two CBGFs Ty, q,0 and Ty s g o

]:m,n,d < ]:m’,n’,d’ and

—
(v="1"or v =u)

\rfm,n,d,v < 9:m’,n’,d’,v’

The definitions of successors and predecessors remain the
same as before. So we now have successors(F11,1.,) =
{3’2,1’177”7 ?1,2’177”7 ?1,1’277”7 ?1’1’171,4}. Slmllarly, we now have
predecessors(F1214) = {F111u,F1,2,1,+} The key idea
of this lattice is that restricted-CBGFs are predecessors of
unrestricted-CBGFs with the same size bounds. In other
words, unrestricted-CBGFs with size bounds m,n, d will be
able to use as seeds all the valid inputs produced by a fuzzer of
the same size bounds, as well as both valid and invalid inputs
produced by unrestricted fuzzers with smaller size bounds.
The hope is that invalid inputs that are generated by mutating
valid inputs are more likely to be concise, as they would trigger
fewer semantic errors in a single ChocoPy program.

Setting F, = F111, and ' = Fpr N pu, We can Tun
bonsai fuzzing using Algorithm [3] as is.

V. EVALUATION

We evaluate bonsai fuzzing by measuring its ability to
generate a test corpus containing test cases that are concise,
comprehensive, semantically valid, and (where applicable)
able to detect faults. We compare bonsai fuzzing to a baseline
of CBGF (that is; Zest [28] with a grammar-based input
generator) post-processed with minimization techniques. The
baseline is thus the conventional “fuzz-then-reduce” approach.
We run our evaluation on two test targets: our primary appli-
cation and a secondary target to ensure that our solution is not
biased towards a particular implementation or input language.

1) ChocoPy [41] reference compiler (~6K LoC): The test

driver reads in a ChocoPy program and runs the semantic
analysis / type-checking stage of the ChocoPy reference
compiler. For the fault-detection evaluation, we addition-
ally run a differential test on the typed ASTs returned
by a reference and buggy compiler (see Section [V-DJ.

2) Google Closure Compiler [42] (~250K LoC): The

test driver (borrowed from prior work [28]) expects a
JavaScript program as input and performs source-to-
source optimizations.

Experimental Setup:

1) Bound: Overall, we found the bounds of (M = N =
D = 3) to be a good trade-off between conciseness
and comprehensiveness. We use these bounds for bonsai
fuzzing as well as for the baseline CBGF.

2) Duration: We run each CBGF node in the bonsai
fuzzing extended lattice for one hour, which totals 54
hours of CPU time. We allocate the same 54 hours of
CPU time for the baseline CBGF to rurf|

3) Repetition: We run each experiment 10 times and
report metrics across all repetitions due to the nature
of randomness in fuzzing and its effect on results.

Minimization Techniques: For the fuzz-then-reduce base-

line, we use Picire [43] and Picireny [44]], which are state-of-
the-art [32]-[35]] implementations of character-level [15] and
grammar-based hierarchical [[16] delta debugging respectively.
An “interestingness” predicate script was required for each of
these tools. We provided a predicate that checked whether a
candidate minimized input program met the same criterion as
was used to save the original input during CBGF (ref. Line [6]
in Algorithm [2). Table [I] lists the average CPU-time for each
of these reduction tools to minimize an entire corpus.

A. Conciseness: Test Corpus Size

We evaluate conciseness by measuring the size of each
test file—excluding whitespace characters—in the generated
corpus. Fig. [I0] displays the distribution of test input sizes for
the baseline and bonsai fuzzing.

On both targets, we observed that bonsai fuzzing produces
test files that are statistically significantly lower in size than
those of the baseline. The ChocoPy files are on average
42.22% smaller than the results of grammar-based reduction
and 44.51% smaller than the results of character based reduc-
tion. The Closure files are on average 16.49% smaller than
the results of grammar-based reduction and 25.56% smaller
than the results of character-based reduction. We also see
that the variance of the size of files in the violin plot of
bonsai fuzzing is much lower than that of the baseline. One
clear advantage is that bonsai fuzzing is able to produce
these smaller inputs without requiring any additional post-
processing time. In contrast, the fuzz-then-reduce approach of
the baseline can take up to 6 hours for minimization to run.

As a sanity check, we also report the number of files in the
test corpora as shown in Table [[I} The resulting corpus from
bonsai fuzzing contains about 18% fewer files in both targets.
This shows that bonsai fuzzing does not compensate for its
smaller test inputs by having a large number of tests.

B. Semantic Validity

One of our goals was to generate a high fraction of
semantically valid inputs (ref. Section [[I-B). For each input

3We chose these durations because one hour is sufficient time for coverage
to stagnate for each CBGF node, and because it helps us make a fair
comparison with the baseline by fixing total fuzzing duration to a constant.
Bonsai fuzzing can be optimized by stopping each CBGF early by detecting
saturation dynamically, but this would make the total fuzzing duration variable.
Our evaluation is conservative.
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TABLE I
TIME TO MINIMIZE ZEST-SAVED TEST INPUTS (MINUTES, AVG & STDEV).

ChocoPy
56.510 £ 1.887
20.491 £ 3.209

Closure
356.863 + 37.560
392.777 + 48.456

Picireny Grammar Reductions
Picire Character Reductions

TABLE II
NUMBER OF FILES IN TEST CORPUS (AVG &£ STDEV). LOWER IS BETTER.
ChocoPy Closure
Baseline 185.9 £ 7.666 | 1507.7 + 28.351
Bonsai fuzzing 152.9+£1.912 | 1231.2 + 36.705

program in the saved test corpora, we re-run the ChocoPy
compiler to test whether the input is semantically valid or
whether the compiler reports any errors.

The average percent of semantically valid programs in
the generated corpora is shown in Fig. [T1] Bonsai fuzzing
has a statistically significant increase in both targets. On
average, it is able to achieve a 21% improvement in validity
in ChocoPy and a 7% improvement in Closure. Why is this
s0? In the initial round of bonsai fuzzing, sampling smaller
programs leads to a higher likelihood of semantically valid
inputs as compared to sampling a larger program from scratch
(ref. Fig. EI) In subsequent rounds, it is easier to mutate a
small valid program into a slightly larger valid program, as
there are less opportunities to introduce errors. We observed
that the baseline’s seed pool quickly fills up with invalid or
large programs early-on in the fuzzing campaign, making it
harder to recover in producing diverse valid inputs via random
mutations.

We value this improvement in validity resulting from bonsai
fuzzing, since it means that more language features are being
covered by test cases that are semantically valid, which in our
opinion results in more meaningful and readable test cases.

80 Technique
Baseline <
70  wmm Bonsai Fuzzing

Percent of Valid Programs

ChocoPy Closure

Target

Fig. 11. Fraction of semantically valid programs in test corpora (averages
with standard deviation). Higher is better.

C. Comprehensiveness: Coverage

A key concern when generating small inputs by construction
is whether they comprehensively exercise various program
behaviors as conventional coverage-guided fuzzing.

We measure coverage using a third-party tool: the widely
used JaCoCO library [45]. We report the branch coverage on
the semantic analysis classes within each of the benchmarks,
similar to approach in [28]]. Since many of the branches are
unreachable from our test drivers, it is important to focus on
the relative difference between the baseline and bonsai fuzzing
rather than the raw coverage values.

Fig. [12] shows the branch coverage achieved by the baseline
and bonsai fuzzing on each of the targets. We can see that both
techniques achieve approximately the same branch coverage.
On Closure, the difference is statistically insignificant. On
ChocoPy, the difference is significant but its effect is small:
bonsai fuzzing loses 1.175% of branch coverage on average.
We are not dismayed with this small reduction. In our ap-
plication, we can easily incorporate the few test cases from
conventional fuzzing that cover logic that is not exercised by
bonsai fuzzing—in ChocoPy, this is usually just one test case.
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TABLE III
MUTATION SCORES FOR CHOCOPY TYPECHECKER (AVG =% STDEV)

91.486 £+ 1.012%
90.428 £ 0.714%

Baseline
Bonsai Fuzzing

D. Fault Detection: Mutation Scores

Finally, we want to ensure that the concise inputs generated
by bonsai fuzzing for the ChocoPy target are still useful for
catching faults; that is, they can be used for automated grading
or providing student feedback. This is essentially a validation
of the small scope hypothesis [46]]. In a classroom setting,
we would compare a candidate buggy student implementa-
tion with the reference implementation. For our experimental
evaluation, we simulate such a buggy candidate by using a
mutation testing tool [47] on a copy of the reference compiler.
We run the ChocoPy autograder on the reference compiler
and its mutation; if the auto-grader detects a failure, then the
mutation is killed.

The test corpus saved by bonsai fuzzing by itself achieves
a mutation-killing score of 81% on average. This is despite
the fact that the fuzzing technique and input-saving criteria
is related to coverage improvements within the reference
compiler only, and is unaware of program mutations or bugs
in student implementations. As recently observed by Chen et
al. [48]], a better technique for increasing fault detection while
minimizing test sizes is to first optimize for coverage and
then optimize for mutation scores when coverage saturates.
We thus use the corpus produced by bonsai fuzzing (and the
baseline, for comparison) as seed inputs for a simple grammar-
based blackbox fuzzer with the maximum bounds (3,3, 3)
for 30 minutes. We do this for each of the 444 mutated
compilers—that is, simulated buggy candidates. If any blackbox
-fuzzer-generated input kills the mutation, we say that the
corresponding technique kills that mutation.

Table I summarizes these results. Both the baseline and
bonsai fuzzing achieve more than 90% mutation-killing score,
which we find to be acceptable. We therefore conclude that
size-bounded fuzzing does not significantly sacrifice fault de-
tection capability on ChocoPy. Unfortunately, we cannot report
meaningful mutation scores on Closure, since the project does
not have a proper differential testing oracle.

VI. DISCUSSION AND THREATS TO VALIDITY

Although our original motivation for this work was to
synthesize concise test inputs for ChocoPy programming as-
signments, we also evaluated our technique on the Google Clo-
sure Compiler. The results of are promising. Bonsai fuzzing
can synthesize test inputs that are concise by construction,
without sacrificing the quality of test inputs in terms of code
coverage or mutation scores as compared to the fuzz-then-
reduce approach. Moreover, the test inputs produced using
bonsai fuzzing are smaller in size by 16-45%.

However, since the number of target programs we evaluated
on is small, we cannot claim that this technique will generalize
more broadly. Further, we restricted our evaluation only to
compilers, where the input can be represented by a context-free
grammar (CFG). We leave the generalization of this technique
to other input formats and problem domains as future work.

Further, in our evaluation, we fixed the final size bounds
to (3,3,3) and fuzzing duration to one hour per CBGF
node. Bonsai fuzzing can be improved further by dynamically
choosing ideal size bounds and fuzzing duration by monitoring
the quality of test inputs saved by each CBGF node.

We were unfortunately unable to test fault detection capabil-
ities of bonsai fuzzing on actual student implementations, due
to procedural issues with using student-authored assignments
for this research. We used mutation scores to estimate the
ability of bonsai fuzzing to catch student bugs. Prior empirical
studies have shown this metric to be reasonable [49]], but we
cannot make general claims about the impacts of this research
in the classroom.

In this paper, we used the notion of conciseness of test
inputs as a proxy for readability, based on what we feel are
important features of readable test cases (size and semantic
validity). Since our evaluation did not comprise of a user study,
we cannot make any subjective claims about human-perceived
readability. Independently from our work, Roy et al. [50] have
recently worked on improving the readability of automatically
generated test code, addressing issues such as variable names
and code comments.

It has not escaped our notice that the bonsai fuzzing
technique may also be useful in synthesizing regression tests
for fast evolving software. For validating code changes, it is
much more efficient to simply run a fixed suite of regression
tests than to run a full fuzzing session after every code commit.
Concise test inputs, such as those produced using bonsai
fuzzing, are more likely to be maintainable.
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