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ABSTRACT
As big data analytics become increasingly popular, data-intensive
scalable computing (DISC) systems help address the scalability is-
sue of handling large data. However, automated testing for such
data-centric applications is challenging, because data is often in-
complete, continuously evolving, and hard to know a priori. Fuzz
testing has been proven to be highly effective in other domains
such as security; however, it is nontrivial to apply such traditional
fuzzing to big data analytics directly for three reasons: (1) the long
latency of DISC systems prohibits the applicability of fuzzing: naïve
fuzzing would spend 98% of the time in setting up a test environ-
ment; (2) conventional branch coverage is unlikely to scale to DISC
applications because most binary code comes from the framework
implementation such as Apache Spark; and (3) random bit or byte
level mutations can hardly generate meaningful data, which fails
to reveal real-world application bugs.

We propose a novel coverage-guided fuzz testing tool for big
data analytics, called BigFuzz. The key essence of our approach
is that: (a) we focus on exercising application logic as opposed to
increasing framework code coverage by abstracting the DISC frame-
work using specifications. BigFuzz performs automated source to
source transformations to construct an equivalent DISC application
suitable for fast test generation, and (b) we design schema-aware
data mutation operators based on our in-depth study of DISC ap-
plication error types. BigFuzz speeds up the fuzzing time by 78 to
1477X compared to random fuzzing, improves application code
coverage by 20% to 271%, and achieves 33% to 157% improvement
in detecting application errors. When compared to the state of the
art that uses symbolic execution to test big data analytics, BigFuzz
is applicable to twice more programs and can find 81% more bugs.
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1 INTRODUCTION
Emerging technologies are producing much data and the impor-
tance of data-centric applications continues to grow. Data-intensive
scalable computing (DISC) systems, such as Google’sMapReduce [30],
Apache Hadoop [1], and Apache Spark [2], have shown great
promises to address the scalability challenge of big data analytics.
Although DISC systems are becoming widely available to industry,
DISC applications are difficult to test and debug. Data scientists of-
ten test DISC applications in their local environment using sample
data only. These applications are thus not tested thoroughly and
may not be robust to bugs and failures in the production setting.

The correctness of DISC applications depends on their ability
to handle real-world data; however, data is inherently incomplete,
continuously evolving, and hard to know a-prior. Motivated by the
successes of systematic test generation tools [33, 34, 62], a few have
been proposed for dataflow-based DISC applications [38, 45, 52].
For example, BigTest [38] uses symbolic execution to automati-
cally enumerate different path conditions of a DISC application and
generate concrete inputs using an SMT solver. However, its applica-
bility is limited to the dataflow operators (e.g., map, reduce, join,
etc.) where symbolic execution is supported, and limited by the
path exploration capability of the underlying symbolic execution
engine and an SMT solver. In other words, developing a robust test
generation tool for DISC applications remains an open problem.

In recent years, coverage-guided mutation-based fuzz testing
has emerged as one of the most effective test generation techniques
for large software systems [17, 49]. Such fuzz testing techniques
are based on implicit assumptions that it takes a relatively short
amount of time to repetitively run programs with different inputs
and arbitrary byte level mutations are likely to yield reasonable
inputs. In fact, most fuzzing techniques start from a seed input,
generate new inputs iteratively by mutating the previous inputs,
and add new inputs to the input queue if they exercise a new branch.

* This research was done, while the third and fourth authors were graduate students
at UCLA and UC Berkeley respectively.

https://doi.org/10.1145/3324884.3416641
https://doi.org/10.1145/3324884.3416641
https://doi.org/10.1145/3324884.3416641


ASE ’20, September 21–25, 2020, Australia Qian Zhang, Jiyuan Wang, Muhammad Ali Gulzar, Rohan Padhye, and Miryung Kim

However, our experience tells us that fuzzing cannot be applied to
big data analytics directly. First, the long latency nature of DISC
systems prohibits the efficacy of traditional fuzzing. While tradi-
tional fuzzing techniques assume thousands of invocations per
second, for example, Apache Spark applications would need about
10 to 15 seconds to initialize the Spark context for each run—job
scheduling, data partitioning, and serialization all contribute to
increased latency. Second, low-level mutations (e.g., flipping a bit
or byte) in existing naïve fuzzers can hardly explore corner cases
that represent realistic application bugs. Lastly, grammar-aware
fuzzers [35, 43, 70] exist to reduce the time required for constructing
meaningful inputs. However, they require a user to provide gram-
mar rules and, by definition, they do not produce inputs violating
the user-provided grammar rules.

In this paper, we lay the groundwork for embodying a coverage-
guided, mutation-based fuzz testing approach for big data analytics.
The key insight behind BigFuzz is that fuzz testing of DISC applica-
tions can be made tractable by abstracting framework code and by
analyzing application logic in tandem. Our key idea is to perform
source-to-source transformation of a DISC application to a seman-
tically equivalent, yet a framework-independent program that is
more amenable to fuzzing.

Based on the insight that a DISC application developer writes ap-
plication logic in terms of user-defined functions and connects them
using dataflow operators in the DISC framework, BigFuzz focuses on
exercising application logic as opposed to the DISC framework im-
plementation. BigFuzz uses a two-level instrumentation method to
monitor application-specific coverage, while modeling the different
outcomes of dataflow operations. As such combination of behav-
ior modeling is independent of the underlying DISC framework
implementation, we can abstract the framework with executable
specifications and generate a Spark context free program tomitigate
the long latency caused by the DISC framework. An application de-
veloper is not required to write any custom specifications, because
the specifications for dataflow operators such as map and reduce
do not need to be re-written for each application. BigFuzz fully
automates this process of constructing a semantically equivalent
DISC application through source to source transformation.

As opposed to random bit or byte-level input mutations, we de-
sign schema-aware mutation operations guided by real-world error
types. These mutation operations increase the chance of creating
meaningful inputs that map to real-world errors. To inform the
design of such data mutation operators, we conducted a systematic
study on common error types and root causes in Apache Spark
and Hadoop applications using two complementary sources: Stack
Overflow [3] and Github [4]. The study identified ten common error
types, which we map and encode in terms of six different mutation
operators in BigFuzz.

We evaluate BigFuzz on a benchmark of twelve Apache Spark ap-
plications. We compare the time to generate test inputs and their as-
sociated error-finding capabilities against two baseline techniques:
random fuzzing, and symbolic-execution based testing. With frame-
work abstraction, BigFuzz is able to speed up the fuzzing time by
78 to 1477X compared to random fuzzing. Schema-aware mutation
operations can improve application code coverage by 20 to 200%
with valid inputs as seeds, which leads to 33 to 100% improvement
in detecting application errors, when compared to naive random

fuzzing. Even without valid input seeds, BigFuzz improves applica-
tion code coverage by 118 to 271% and error detection by 58 to 157%,
demonstrating its robustness. We show that BigFuzz is applicable
to twice more applications and can find 81% more bugs than the
state of the art, BigTest.

In summary, this work makes the following contributions:
(1) We propose a fuzz testing technique called BigFuzz that

targets DISC applications by automatically abstracting the
dataflow behavior of the DISC framework with executable
specifications. This novel approach can also be generalized
to other systems with long latency.

(2) We propose an automated instrumentation method to moni-
tor application logic in conjunction with how dataflow op-
erators are exercised in terms of their dataflow equivalence
class coverage.

(3) We present schema-awaremutation operations that are guided
by real-world errors encountered in DISC applications. To
our knowledge, we are the first to design a fuzz testing tech-
nique by empirically studying and codifying mutations that
correspond to real-world DISC bugs.

(4) Our experimental evaluation on 12 Apache Spark applica-
tions demonstrates that BigFuzz outperforms prior work in
terms of code coverage and error-detection capability.

We provide access to artifacts of BigFuzz at https://github.com/
qianzhanghk/BigFuzz.

2 BACKGROUND
Apache Spark. BigFuzz targets Apache Spark, a widely used data
intensive scalable computing system but can generalize to other
DISC frameworks. Spark achieves scalability by creating Resilient
Distributed Datasets (RDDs), an abstraction of distributed collec-
tion [73]. Programmers can transformRDDs in parallel using dataflow
operations, e.g.,val newRDD = RDD.map(s => s.length). Dataflow
operators such as filter, map, and reduce are implemented as
higher-order functions that take a user-defined function (UDF) as
an input argument. The actual evaluation of an RDD occurs when
an action such as count or collect is called. For example, a Spark
application developer writes application logic in terms of UDFs and
connects them using dataflow APIs. To execute the program, Spark
first translates a program into a Directed Acyclic Graph (DAG),
where vertices represent various operations on the RDDs, and then
executes each stage in a topological order.

The common industry practice for testing such big data analytics
applications remains running them locally on a randomly sampled
dataset. Testing with sample data is often incomplete which leads to
rare buggy cases in production runs. Often Spark programs run for
days and then crash without an obvious reason. Additionally, the
start up latency associated with invoking the Spark framework and
Block Manager Master can take several seconds for simply setting
up an execution environment and repetitive data partitioning, job
scheduling, serialization, and deserialization to support distributed
execution all contribute to increased latency. Thus random fuzzing
would be prohibitively expensive to test big data analytics.
Fuzz Testing. Fuzz testing such as AFL [17] has been proven to be
highly effective in synthesizing test inputs that achieve high code
coverage and find bugs. Given an input program, it instruments

https://github.com/qianzhanghk/BigFuzz
https://github.com/qianzhanghk/BigFuzz
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Figure 1: Approach Overview of BigFuzz
1 val loan = sc.textFile("account_history.csv")
2 // Input with zipcode, base loan, years, and rate

3 .map{ line => val cols = line.split(",")

4 (cols(0),cols(1).toFloat,

5 cols(2).toInt,cols(3).toFloat) }

6 //Return zipcode, base loan, years, and rate

7 .map{ s =>

8 val a = s._2

9 for(i <- 1 to s._3)

10 a = a * (1 + s._4)

11 (s._1, a) }

12 // Return zipcode and final loan
13 val locations = sc.textFile("zipcode.csv")
14 //input with zipcode and city

15 .map{ s =>

16 val cols = s.split(",")

17 (cols(0), cols(1) }

18 //Return zipcode and city

19 .filter{ s => s._2 == "New York" }

20 val output = loan.join(locations)

21 .map{ s =>

22 if(s._2._1 > 10000) ("Property Loan",10000)

23 else if(s._2._1 > 1000) ("Car Loan",1)

24 else ("Credit Debt",1) }

25 //Return three categories based on the loan amount

26 .reduceByKey( _+_ )

(a) A DISC application LoanType.scala

1 ArrayList<String> results0 = LoanSpec.read(inputFile1);

2 ArrayList<Tuple4> results1 = LoanSpec.map1 (results0);

3 ArrayList<Tuple2> results2 = LoanSpec.map2 (results1);

4 ArrayList<String> results3 = LoanSpec.read(inputFile2);

5 ArrayList<Map3> results4 = LoanSpec.map3 (results3);

6 ArrayList<Map3> results5 = LoanSpec.filter1 (results4);

7 ArrayList<Join2> results6 = LoanSpec.join1(results5, results2);

8 ArrayList<Map1> results7 = LoanSpec.map4 (results6)

9 ArrayList<Map1> results8 = LoanSpec.reduceByKey1 (results7)

(b) A transformed program LoanType.java with executable specifications

1 public ArrayList<Map3> map3(ArrayList<String> input){
2 ArrayList<Map3> output = new ArrayList<>();
3 for (String item: input){

4 output.add( Map3.apply(item) );}

5 return output;}

(c) Specification implementation of map3 in LoanTypeSpec.java

1 public class Map3 {

2 static final Map3 apply(String line2) {

3 String cols[]=line2.split(",");

4 return new Map3(cols[0],cols[1]); }

(d) The extracted UDF from lines 14 to 16 of Figure 2a is represented as Map3.java

➊ ➊

➊

Figure 2: Example code transformation and framework abstraction

the program’s bytecode, iteratively generates new inputs by mu-
tating several bits or bytes of the seed input, and collects coverage
feedback by executing the instrumented program with new inputs.
All inputs that exercise a new code branch are then be saved for
further mutation. The implicit assumption underlying such itera-
tive fuzzing is that the target program can run fast, (i.e., thousands
of invocations per second); unfortunately, this assumption is false
for many long latency applications such as big data analytics. For
example, initializing the Spark context in local model to initiate
a distributed data pipeline takes 19 seconds, which correspond to
98% of the total execution time with a typical testing input. The
long latency prohibits the applicability of fuzzing for efficient test
generation. Besides, naively monitoring branch coverage in DISC
applications is unlikely to exercise application logic adequately,
since most binary code comes from the DISC framework imple-
mentation (e.g., roughly 700 KLOC for Apache Spark). Under this
circumstance, naive attempt to increase code coverage may eventu-
ally run out of memory. Furthermore, random byte-level mutations
can hardly generate meaningful structured or semi-structured data
to explore application logic effectively.

3 APPROACH
BigFuzz contains three components that work in concert to make
coverage-guided fuzz testing tractable for big data analytics. Fig-
ure 1 shows (A) abstraction of dataflow implementation using
source-to-source transformation with extracted user-defined func-
tions, discussed in Section 3.1, (B) two-level instrumentation for
coverage monitoring, discussed in Section 3.2), and (C) input muta-
tions geared towards big data analytic errors based on our empirical
study, discussed in Section 3.3. This approach is based on the insight
that (1) we can reduce long latency of DISC applications by abstract-
ing dataflow implementation in a DISC framework using executable
specifications and (2) we can focus on exercising application logic
rather than the entire framework by monitoring code coverage of
user-defined functions in tandem with equivalence classes of ab-
stracted dataflow behavior. Although BigFuzz is designed for Spark
programs, its key idea can generalize to other DISC frameworks
such as Hadoop by rewriting the dataflow operator APIs to our
current set of corresponding specification implementation.

3.1 Framework Abstraction for Fuzzing
As discussed in Section 2, DISC applications have high latency,
making them not suitable for traditional fuzz testing because they
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Table 1: Dataflow Operator and Corresponding Equivalence Classes

Spark Dataflow Operator Transformed Operator Equivalences Classes
def filter(udf:T→ Boolean): RDD[T] ArrayList<T> filter (ArrayList<T> Input) F1: Non-Terminating: ∃t .ud f (t) = true
Return an RDD that satisfies a predicate udf:T→Boolean Return an ArrayList of elements passing udf F2: Terminating: ∃t .ud f (t) = f alse

where udf:T → Booleean is implemented in filter

def join[W](other: RDD[(K,W)]):Rdd[(K,(V,W))] ArrayList<T> join (ArrayList<T1> L, ArrayList<T2> R) J1: Non-Terminating: ∃tL, tR .tL,key = tR,key
Return an RDD containing all pairs of elements with Return an ArrayList of elements from left ArrayList tL ∈ L J2: Terminating: ∃tL,∀tR .tL,key ! = tR,key
matching keys in this and other RDDs. and right ArrayList tR ∈ R, with matching keys tL,key = tR,key J3: Terminating: ∃tR ,∀tL .tR,key ! = tL,key
def map[U](udf:T→U) ArrayList<T> map (ArrayList<U> Input)
Return a new RDD by applying udf:T→ U Return a new ArrayList by applying a udf:T→ U to this M: Non-Terminating: always non-terminated
t of this RDD. ArrayList where udf:T→ U is implemented in map.
def reduceByKey(udf:(V,V) → V) : RDD [K,V] ArrayList<T> reduceByKey (ArrayList<T> Input)
Merge the values for each key using an associative Merge the values for each key using udf:(V,V) → V R: Non-Terminating: always non-terminated
reduce function. where udf:(V,V) → V is implemented in reduceByKey

spend several seconds just to initialize Spark’s execution context for
each run. Theoretically, the long start-up latency can be somewhat
reduced by sharing one Spark execution environment for multiple
runs; however, such practice is still not enough to achievemillions of
executions per minute, because each run still needs to pass through
a data partitioner, a query optimizer, a job scheduler, and a data
serializer/deserializer, etc.

In DISC frameworks, the implementation of dataflow and rela-
tional operators is influenced by and universally agreed upon the
semantics of such operators [68]. For example, although a dataflow
operator join may have a specialized physical implementation in
each framework (e.g., hash join), it has the same consistent logical
semantics across all DISC frameworks. BigFuzz takes advantage of
this observation, rewrites a DISC application into an equivalent
application that uses dataflow specifications, and monitors different
equivalence class coverage of dataflow operations. For example,
filter has two equivalence classes—one passing the filter predi-
cate and the other not passing the filter. Because dataflow operators
are deterministic and state-less [72], the transformed program is
guaranteed to be equivalent to the original program. For example,
map{x => (x,1)} will always give the same output for the same
input for both the spec-based program and the original program.

We map each dataflow operator’s implementation to a corre-
sponding simplified yet semantically-equivalent implementation,
which we call executable specifications. Such specifications help
eliminate the dependency on the framework’s code, transforming
a DISC application into an equivalent, simplified Java program that
can be invoked numerous times in a fuzzing loop.

BigFuzz automates this process of rewriting in two steps: (1) UDF
extraction and (2) source to source transformation. Figure 2 illus-
trates this process using an example DISC application that identifies
the frequency of each loan typewithin ametropolitan area. This pro-
gram is a variation of one of the DISC Benchmark [38]. We formu-
late a distributed, RDD-based implementation using Spark’s APIs (➊
in Figure 2a) to a simplified, executable specification of map in Fig-
ure 2c. Table 1 shows a few sample mappings between Spark RDD’s
dataflow implementation APIs, equivalent spec-implementations
using ArrayList, and a set of corresponding equivalence classes
for each dataflow operator.
Step 1. User-Defined Function (UDF) Extraction. To re-write
a DISC application to use executable specifications only, BigFuzz de-
composes the application into two components: (1) a direct acyclic
graph (DAG) of dataflow operators and (2) a list of corresponding
UDFs. Internally, BigFuzz decompiles the bytecode of the original

application into Java source code and traverses Abstract Syntax
Tree (AST) to search for a method invocation corresponding to each
dataflow operator. The input arguments of such method invoca-
tions represent the UDFs, which are stored as separate Java classes
as shown in Figure 2d.
Step 2. Source to Source Transformation. BigFuzz uses the DAG
extracted in the previous step to reconstruct the DISC application
in the same, interconnected dataflow order using executable specifi-
cations. Such dataflow spec implementation takes in an ArrayList
object as input, applies the corresponding UDF on each element
of the input list, and returns an output ArrayList. For example,
class LoanSpec.map3 (➊ in Figure 2b) represents the equivalent
spec implementation using ArrayList that corresponds to map
➊ in Figure 2a. It takes in results3 from its upstream opera-
tors and returns an ArrayList result4 for downstream operator,
LoanSpec.filter1. BigFuzz selects the corresponding UDFs from
the list of UDFs extracted from step 1 and weaves them with the
equivalent specifications shown in column 2 of Table 1. For exam-
ple, Java class Map3 has method applymapping to the original UDF
➊ in Figure 2a, and this method is invoked on each element of the
input list as seen in Figure 2c.

The above rewriting from a Spark application in Scala or Java
to an equivalent Java application reduces the latency of running a
DISC application, while retaining the same semantics. It also makes
it easier to collect guidance metrics such as branch coverage by
leveraging existing tools JQF [55], which takes Java bytecode as
input and collects various guidance metrics for fuzz testing.

3.2 Application Specific Coverage Guidance
Prior work finds that branch coverage is an effective guidance mech-
anism for feedback-guided fuzz testing, pushing test generation
towards hard-to-reach corners [17, 44, 56]. Generally, feedback-
guided fuzzing techniques instrument a program’s bytecode to
label each constituent branch and if an input exercises a previously-
unseen branch of the program, this input is appended in an input
queue and the branch coverage is fed back into the fuzzer.

However, we observe that such branch coverage guidance mech-
anism cannot be applied to fuzz testing of big data analytics for two
reasons. First, it cannot differentiate user-defined functions from
framework code and can thus push test generation naively toward
exploring the internals of DISC framework, as opposed to applica-
tion logic. Second, it cannot effectively monitor different equiva-
lence classes of dataflow operators though prior studies [38, 45, 52]
argue that numerous errors originate from untested equivalence
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Table 2: Data Collection for Error Type Study.

Keyword Total Inspected
apache spark exception 2430 top 150

StackOverflow-Spark apache spark error 3780 top 200
apache spark wrong/
unexpected/inconsistent 143 143
result/output
hadoop exceptions 2567 top 100
hadoop error 9585 top 100

StackOverflow-Hadoop hadoop wrong output 370 top 50
hadoop wrong result 226 top 50
hadoop unexcepted/
inconsistent result 39 39

Github SparkContext 99 99

classes of dataflow operators. For example, when testing operator
join, it is important to test three equivalence classes: (J1) there
exists a key that appears in both tables, passing the joined result
to the next operator, (J2) an input record in the left table does not
have a matching key on the right table, terminating its data flow,
and (J3) an input in the right table does not have a matching key
on the left, terminating its data flow, discussed in Table 1.

To address these two problems, BigFuzz designs a two level instru-
mentation and monitoring method for application specific coverage
guidance. The key insight here is that BigFuzz monitors regular
branch coverage for user-defined functions only and for dataflow
operators, it monitors at the level of equivalence classes. Below, we
describe how we extend TraceEvent in JQF [55] to monitor which
equivalence classes are exercised for individual dataflow operators.
TraceEvent in JQF. BigFuzz is built on top of JQF [55], a Java-
based fuzz testing framework that uses ASM [5] to instrument Java
bytecode on-the-fly as classes are loaded by the JVM. JQF instru-
ments all application classes by injecting a static method call with
a unique identifier after every bytecode instruction. It focuses on
control flow instructions such as method calls (e.g. INVOKESTATIC,
INVOKEINTERFACE, etc.) and branching instructions (e.g. IF_CMPNE,
GOTO, etc.). JQF collects these instructions and groups them to a
higher-level abstraction called TraceEvent (e.g., CallEvent and
BranchEvent), which are then emitted to its coverage logger.
DataFlowEvent in BigFuzz. To keep track of equivalence class
coverage for individual dataflow operators, BigFuzz extends TraceE-
vent in JQF and creates a specific DataFlowEvent. In addition to an
identifier, DataFlowEvent has an additional Boolean or Integer
variable to keep track of which subset of equivalence classes is
exercised by the corresponding dataflow operator. For example,
FilterEvent is a specific DataFlowEvent class for keeping track of
which equivalence classe is activated for filter. “FilterEvent(arm
= 1)” represents the non-terminating equivalence class, where the
filter predicate holds true and individual data records thus pass
through the filter predicate. “FilterEvent(arm = 0)” indicates
the other terminating case, where the filter predicate holds false

https://stackoverflow.com/search?q=apache+spark+exception
https://stackoverflow.com/search?q=apache+spark+error
https://stackoverflow.com/search?q=hadoop+exceptions
https://stackoverflow.com/search?q=hadoop+error
https://stackoverflow.com/search?q=hadoop+wrong+output
https://stackoverflow.com/search?q=hadoop+wrong+result
https://stackoverflow.com/search?q=hadoop+wrong+unexcepted+result
https://stackoverflow.com/search?q=hadoop+inconsistent+result

and thus individual data records stop at this filter. BigFuzz in-
struments “TraceLogger.get().emit(new FilterEvent(arm))”
in specification implementation of filter to emit FilterEvent
with a specific arm to the trace logger. In this way, BigFuzz retains
the DISC framework’s behavior on the original application code,
while abstracting its coverage guidance mechanism to the level of
equivalence classes for individual dataflow operator uses.
Coverage Guidance for User-Defined Function. DISC applica-
tion developer writes application logic in terms of user-defined func-
tions (UDFs) and connects them using dataflow operators. These
UDFs are standard library based Scala or Java implementations.
To restrict normal coverage guidance to the body of UDFs (e.g.,
Figure 2d), BigFuzz uses a selective instrumentation scheme in ASM,
while ignoring all other dependent libraries. This combination of
monitoring dataflow equivalence coverage together with control
flow events in the body of UDFs constitutes the joint dataflow and
user-defined function path coverage (JDU path coverage), which
essentially represents the behavior of application logic.

3.3 Mutations for Big Data Analytics
In feedback-guided fuzzing, commonly used input mutations are
either bit-level or byte-level mutations in which random bits (or
bytes) are flipped in an input represented as a series of bits [44, 55,
56]. The example program in Figure 2 takes as an input string that
contains comma-separate row entries, where each entry contains
the zipcode of borrower, the loan amount, the number of years
since the loan was issued, and the interest rate respectively (e.g.,
90095,23000,7,0.045 ). When traditional fuzzing is applied to this

example program, if no seed is provided, it may first generate a
series of random bits (e.g., 0010 1010 , which maps to a character
‘∗’). Afterwards, this input is mutated by flipping several bits (e.g.,
0000 1010 , which is the character ‘\n’). Both cases above would
generate meaningless inputs that fail at the program entry and
are thus incapable of advancing the coverage goals. If the fuzzing
process starts with a user-provided seed input, it will take this
seed as bit series and flip several bits at a random position. In
this way, traditional fuzzing can easily find data format errors
when the program terminates at a earlier stage; however, it can
hardly generate meaningful data that drives the program to a deep
execution path since bit-flipping is more likely to destroy the data
format or data type. In fact, our experiment finds that over 90% of
inputs generated by random fuzzing fail at the entry point without
exercising code further.

In contrast, BigFuzz designs a two-fold approach towards mutat-
ing inputs. First, it tries to generate valid inputs, such that the inputs
are consistent with the input-parsing logic of the program. Second,
it introduces record-level schema-aware mutations—modifying data
with respect to the structured data types as well as value ranges.
Unlike random bit-level mutations that produce unnatural inputs,
each of the schema-aware mutations mimics a real-world error in
DISC applications that may lead to program crashes or failures at
runtime. To this extent, we extensively investigate DISC application
errors posted on popular Q/A forums and code repositories.
A Study of Common Error Types. To collect real-world DISC
application errors, we first performed a keyword-based search on
StackOverflow Q/A forum and Github repositories using Spark
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Table 3: Common Error Types in DISC Applications

Type Portion Example Fix Mutation
Type mismatch 16.28% Data type is not double as expected by Spark’s Kmeans[6] Change type M2
Illegal data for UDF 9.30% NullPointerException caused by null values[7] Check UDF M4
Split-related errors 11.63% The user uses .split("[ ]") when .split("\[\]") is expected[8] Change delimeter M3,M4
Incorrect column access 16.28% Column access el(24).sum.toDouble where el.len=22 [9] Check data length M5
Incorrect offset access 2.35% Used substring(1,11) instead of substring(0,10)[9] Check offset M6
Incorrect code logic 11.63% The user uses a mutable data when it shouldn’t be used[10] Check code M1
Incorrect API usage 11.63% To match columns, equalTo API is expected in join operation[11] Check API usage M1
Join-related errors 4.70% Join gives null values, leading to a NullPointerException in map[12] Check data M1
Semantic errors 9.30% Minimum word appearance count in spark word2vec model is not met[13] Change API N/A
Framework bugs 6.90% The expected result is a single row but the user got two lines[14] Update library N/A

libraries. Table 2 shows the number of posts and issues for each
keyword search. As for StackOverflow, we studied both Spark- and
Hadoop-related posts and manually examined 787 posts in total.
We removed posts related to performance or configuration errors
to focus on analyzing posts reflecting either application or data
errors. As for Github, we inspected 99 projects that use the Apache
Spark framework and their code repositories and bug reports.

We examined the accepted answers and comments (if any) to
understand the root cause of underlying errors and summarize their
solutions. We then distilled and grouped these root causes into ten
categories, each reflecting a unique underlying programming issue.
Table 3 shows the error type, % of posts for this error type, a repre-
sentative example, and a solution to fix the error. For instance, the
most frequently encountered error type is related to an incorrect
column access which comprises of 16.28% of total errors. A repre-
sentative example of such error is when a user accesses the 25th
column (el(24).sum.toDouble) from data with only 22 columns
(el.len == 22). The next most frequently occurring error (16.28%)
is when the input does not conform to the expected data type e.g.,
a record entry does not comply with date.toDouble, resulting in
NumberFormatException.
Error-Type Guided Schema-Aware Mutations. Instead of bit-
level mutations, BigFuzz uses a user-defined schema to perform
coarse-grained, record-level mutations. In the schema, a user can
indicate the number of columns, data type, and data distribution
for each column of the input data. The following code snippet
represents a sample user-provided schema for input loan in Figure
2a, which dictates that each input entry comprises of four comma-
separated columns: the first column must be a 5-bit number string
with prefix “900”, the second column must be a random number
with float type, the third column is an integer within range [0-30],
and the last column is a float number within 0-1. From such schema,
we can derive valid input constraints with respect to data format,
data type, and data distribution.

number string[900xx],float[0-2128],integer[0-30],float[0-1]

Based on our study, we design six mutation operations M1-M6
as shown in Table 3 to reflect their association with each real world
error type. We enumerated these mutation types below:

• Data Distribution Mutation (M1) mutates a record to be
either valid or invalid in terms of the allowed range based
on the data distribution given in the schema (e.g., an inte-
ger value 10, corresponding to the range integer[0-30]
mutated to 25 or -1).

• Data Type Mutation (M2) modifies the data type of a se-
lected column, while keeping the same value (e.g., 20 corre-
sponding to integer[0-30] can be mutated to 20.0, leading
to NumberFormatException in line 5 Figure 2a).

• Data Format Mutation (M3)mutates a column-separating
delimiter mentioned in the schema (e.g., replacing delimiter
“,” to “~”).

• Data Column Mutation (M4) inserts one or several char-
acters (e.g., replicating ArrayIndexOutOfBoundsException
in StackOverflow post No.45962453 [15] when a random ‘ ’
is inserted to data that is "Ctrl+A" separated).

• Null Data Mutation (M5) mutates the input row by re-
moving one or more columns (e.g., replicating NullPointer-
Exception in Stack Overflow post No.36015704 [7] by ac-
cessing positions that do not exist).

• Empty Data Mutation (M6) mutates a random column
to an empty string, leading to StringIndexOutOfBound-
Exception caused by incorrect string operations.

Compared to random bit-level mutations, because these scheme-
aware mutations are inspired by real-world errors, they are more
effective for producing valid and invalid inputs, which we empiri-
cally demonstrate in Section 4.
Combined Data Generation and Mutation. Based on a user-
provided schema, BigFuzz automatically constructs an application-
specific mutation generator that combines valid input generation
and six error-type guided mutations. Given a seed input, BigFuzz
will either: (1) randomly mutate the seed input or (2) randomly
generate valid inputs followed by mutating such inputs to increase
cumulative coverage. IT can run under any of the two options and
does not require having a valid seed. So a user may start BigFuzz
with any string as a seed. Empirically, as we discuss in Section 4,
starting with a valid seed does slightly improve performance by
avoiding crashing too early from an invalid input. For example, if a
valid seed such as 90001,100.0,10,0.01 is provided for Figure 2a,
BigFuzz results in higher error detection than without. However,
even an ill-formatted string is given as a seed, BigFuzz does retain
high performance with its data generation option.

4 EVALUATION
Our evaluation seeks to answer the following research questions:

RQ1 Is a widely used fuzzing tool such as AFL applicable to big
data analytics with long latency?

RQ2 Does framework abstraction effectively speedup fuzz testing?
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Table 4: Statistics on Subject Programs

Subject # of # of BigTest BigFuzz RandomFuzzA
ID Program Output Operators JDU Paths Covered Covered Covered
P1 Wordcount Find the frequency of words 3 2 2 2 1
P2 Commute Type People count using each form of transport for daily commute 6 11 8 11 9
P3 ExternalCall Find the frequency of words 3 4 2 4 1
P4 FindSalary Total income of individuals earning ≤$300 weekly 3 8 6 7 4
P5 StudentGrade List of classes with more than 5 failing students 5 14 6 14 6
P6 Movie Rating Total number of movies with rating ≥ 4 4 11 5 11 5
P7 InsideCircle Check whether the point (x,y) is in a circle 5 7 N/A 7 6
P8 MapString String mapping 1 1 N/A 1 1
P9 NumberSeries Find the numbers whose 3n+1 series’ length is 25 3 9 N/A 9 3
P10 AgeAnalysis Total number of people with different age ranges 3 9 N/A 9 4
P11 IncomeAggregation Average income per age range in a district 6 9 N/A 9 4
P12 LoanType The frequency of each loan type within a metropolitan are 4 6 N/A 6 5

RQ3 Does schema-aware mutation effectively improve code cov-
erage and error detection capability?

RQ4 How much improvement in applicability and error detection
does BigFuzz achieve, compared to an alternative symbolic
execution-based technique?

Benchmarks.We use two sets of subject programs as benchmarks.
They include twelve Spark programs written in Scala, listed in Ta-
ble 4. For these subjects, P1-P2 and P4-P6 are directly from prior
work [38], P3 is from [71] and P12 is reproduced by us based on the
information of a Stack Overflow post [16]. P7-P8 are from Spark ex-
amples, and the remaining programs are handcrafted by the authors.
We compare the generated test inputs and their associated error-
finding capabilities with two baselines: (a) conventional fuzzing
and (b) symbolic execution based testing for big data analytics [38],
which is publicly available on Github.
Experimental Environment.We use Spark’s local running mode
to perform experiments on a single machine with Intel(R) Core(TM)
i7-8750H 2.20GHz CPU and 16 GB of RAM running Ubuntu 16.04.

4.1 Faulty Benchmarks
To evaluate error detection capability, we inject code errors to the
subject programs by mapping real-world error types in Table 3 to
corresponding code modifications. Type mismatch errors and split-
related errors are injected by changing the required data type and
delimiter in the program. Changing an array or a string index can
inject incorrect array or string access errors. To inject incorrect logic
errors, we swap binary operators if a relational operator appears
in a branch condition (e.g., the user uses "<" when ">" is expected)
or we replace a multiplication operator (e.g., a ∗ b) to a division
(e.g., a/b) to induce a divide by zero error. We also update constants
or replaces variables. For example, if we inject a large number to
a redeceByKey that does accumulation by key, an overflow error
may occur when the intermediate value is beyond the capacity of
its type. When we replace a dataflow operator such as join with
its counterpart such as left join, we may reduce errors related
to join operator or incorrect API usage.

This error seeding process is done automatically through source
to source transformation on each subject. We traverse the abstract
syntax tree (AST) of each program and apply one of the above
injections to a random location if applicable. If code update can
be applied to multiple locations, we choose one location randomly.

This newly transformedAST is translated into source, so that we can
see the error location. In total, we create 52 error seeded versions.

4.2 Applicablity of AFL (RQ1)
Almost all fuzz and random testing techniques are built on the
assumption that the program under test can be executed millions
of times within a matter of hours. To quantify this limitation of
applying naive fuzzing to DISC applications, we use AFL on the
twelve subject programs. AFL is a mature fuzzing tool designed for
C/C++ [17] and JQF makes AFL available for Java programs. When
using AFL with 9216M as memory and 100 seconds as timeout
setting, it runs at an extremely low speed 0 to 9.68 execs_per_sec
(an AFL reported metric to indicate the number of test expectations
invoked from a fuzzing loop per second). The extremely low speed
is because Spark applications spend significant time on setting up
a Spark context, which attributes to most execution time. Further,
as most binary code comes from DISC framework implementation
with millions of lines of code, AFL’s attempt to increase code cov-
erage eventually leads to running out of memory after only 70
executions on average. Even before it dies, AFL with a random seed
explores only 18% of the application code on average for all subjects
except P1, P3, and P8, which take an unstructured random string as
input. This empirically demonstrate that naive fuzzing is too slow
and insufficient to generate meaningful structured data and reveal
DISC application errors.

4.3 Comparison against Random Fuzzing
We create two separate downgraded versions of BigFuzz by disabling
framework abstraction and error-type guide mutations respectively.
We call the version without framework abstraction as RandomFuzzM
as it retains mutation capability only. We call the version without
error-type guided mutations as RandomFuzzA as it retains frame-
work abstraction capability only.
RQ2: Speedupwith FrameworkAbstraction.To assess speedup
enabled by abstracting DISC frameworks in isolation, we use a
downgraded version, RandomFuzzM, which disables source to source
transformation for framework abstraction. We measure the run-
ning time of both BigFuzz and RandomFuzzM with 1000 iterations
for programs P1-P12. The term ‘iteration’ refers to a single test exe-
cution invoked from a fuzzing loop. We repeat the experiment ten
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Figure 3: Running Time with 1000 iterations

times and report the average results in Figure 3—Y axis is millisec-
onds in log scale. BigFuzz is significantly faster than RandomFuzzM,
speeding up the fuzzing time by 78X to 1477X.
RQ3:Coverage andErrorDetection ImprovementwithError-
Type Guided Mutation. For RQ3, to evaluate the benefit of error-
type guided mutations in isolation, we create a downgraded version
RandomFuzzA that disables error-type guided mutations. We as-
sess how fast BigFuzz and RandomFuzzA generate inputs exercising
more JDU paths within the same iteration limit. We run BigFuzz
and RandomFuzzA for 1000 iterations and report the cumulative
% of exercised JDU paths and % of detected errors. We repeat the
experiments four times and report averages.

Figures 4 and 5 report the results when starting fuzzing with and
without a valid seed. Please note that BigFuzz does not require a
user to provide a valid seed and can run under either option but we
present both to estimate its capability accurately. Under the normal
scenario when RandomFuzzA is started without a valid seed, its over-
all performance is lower than being bootstrapped with a valid seed,
because mutating a valid seed can avoid early crashes. However, as
we discuss below, BigFuzz can achieve similar performance with or
without a valid seed, demonstrating robustness.

When started without a valid seed (the normal scenario), BigFuzz
provides 118 to 271% improvement in JDU path coverage in compar-
ison to starting RandomFuzzA without a valid seed, leading to 58 to
157% improvement in error detection. When fuzzing is started with
a valid seed (the favorable scenario), BigFuzz can improve JDU path
coverage by 20 to 200%, which leads to 33 to 100% improvement in
detecting errors in comparison to RandomFuzzA with a valid seed.

The overall numbers of covered JDU paths among different runs
are reported in the rightmost two columns in Table 4. Because Big-
Fuzz is was to achieve 100% JDU path coverage for all benchmarks
except P4, we did not run BigFuzz for 24 hours, as suggested in prior
work [42]. The uncovered path starts with a string whose length
must be larger than 7; however its integer value should be less than
300. Longer execution time may cover this path. For most programs,
RandomFuzzA’s randomly generated data can hardly exercise a deep
execution path or dataflow equivalence classes.

4.4 Comparison with Symbolic Execution
Based Testing

RQ4: Applicability. We assess how many Spark programs are
testable using BigFuzz, in comparison to an alternative symbolic
execution based approach, BigTest [38]. Symbolic execution-based
testing requires a symbolical interpretation of each dataflow op-
erator used in the program along with the UDF. The applicability
of such techniques could be limited by the capacity of underlying

SMT solvers and the ability to completely represent the entire pro-
gram symbolically. We report the results in Table 4, where "N/A"
represents BigTest is not applicable.

BigFuzz can be applied to twice as many programs as BigTest.
For programs P1-P6, BigTest can generate test inputs successfully,
while it fails to run on programs P7-P12. We investigate the publicly
available source-code of BigTest and find three primary reasons
behind its inapplicability on these programs. As with many sym-
bolic execution based test generation techniques, BigTest restricts
its symbolic exploration of unbounded collections and loops to
a user-defined bound K (default is 2). Some programs such as P9
require a high value of loop-bound (K) to reach critically important
JDU paths, which leads to inability of BigTest to maintain many
symbolic states. During program decomposition, BigTest extracts
each dataflow operator’s argument, assuming that the argument is
always a UDF. However, in P7, a pointer to a UDF is passed instead
of the UDF itself, which results in incorrect UDF extraction. On
the contrary, BigFuzz leverages static-dereferencing in such cases.
Furthermore, in scala, a for loop iterating over a collection is com-
piled into an map method call on the collection. We find such cases
in program P12 in which BigTest considers the map method call
on collections as a dataflow operator resulting in incorrect DAG
interpretation.
RQ4: Error Detection Capability. We evaluate the error detec-
tion capability of BigFuzz in covering more JDU paths and generat-
ing inputs that lead to errors that cannot be found by BigTest for
programs P1-P6 that both tools are applicable.

Columns BigTest and BigFuzz in Table 4 summarize the JDU
path coverage for BigTest and BigFuzz respectively. For all the test
inputs generated by both tools, we manually inspect their covered
execution path in UDFs and dataflow equivalence classes. In terms
of tool setting, we set the user-specified bound K as a default value
2 for BigTest and set the fuzzing iterations as 1000 for BigFuzz. For
all the subjects P1-P6 except P4, BigFuzz is able to achieve 100%
coverage on JDU paths within the number of iterations, leading to
33% to 100% improvement in path coverage compared to BigTest.

Table 5: Error Detection Capability of BigFuzz and BigTest

Subject Programs
P1 P2 P3 P4 P5 P6

Injected Errors 1 6 2 4 6 7
BigTest 0 5 1 2 4 3
BigFuzz 1 6 2 4 6 7

Table 5 reports a comparison of error detection capability of
BigFuzz and BigTest in terms of finding automatically injected errors.
BigFuzz generates inputs to demonstrate all of the injected errors
and detects 80.6% more injected errors than BigTest on average. In
addition, BigFuzz has the unique capability of finding errors that
cannot be detected by BigTest.

In P1, BigTest with default K=2 setting cannot find an input for
the runtime overflow when we inject a large number 2147483600 to
reduceByKey because this error appears only when the minimum
appearance number of a word is larger than three. In P3, when
the filter(v._2>1) is replaced with filter(log10(V._2)>1),
BigTest fails to generate a constraint for this path that contains
an external method call on a symbolic value. The injected divide
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Figure 4: Joint Dataflow and UDF Coverage
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Figure 5: Error Detection Capability

by zero error in P2, as well as the injected type matching errors in
P4-P6 are beyond BigTest because its underlying SMT solver fails
to generate concrete inputs that satisfy such path constraints.

5 RELATEDWORK
Fuzz testing has gained popularity in both academia and industry
due to its black/grey box approach with a low barrier to entry [53].
The key idea of fuzz testing originates from random test generation
where random inputs are incrementally produced with the hope to
exercise previously undiscovered program behavior [28, 32, 54]
RandomTesting.One difficulty in pure random testing is generat-
ing valid inputs, especially for object-oriented programs. JCrasher
uses Java reflection to understand the parameter space and the
type of a method under test and generates random inputs aiming
to produce a Java exception [28]. Randoop [54] permutes method
sequences to construct valid input, executes the new sequence,

and observes regression or user-defined contract violations, while
eliminating those leading to redundant execution by keeping track
of the method sequences. EvoSuite also generates test suites to
reveal program crashes and constructs test oracles in the form of
assertions to check for the expected program behavior [32].
Fuzz Testing. Fuzz testing is similar to random test generation
in many aspects. It mutates a seed input through its fuzzer to ex-
pose previously unseen internal states of the program. AFL is the
most widely used coverage-guided fuzzing tool [17]. Generally, tra-
ditional coverage-guided fuzz testing has limited efficiency and
effectiveness due to a vast space of inputs and unbounded pro-
gram paths. Lemieux et al. identify rarely executed branches in
the program with AFL-generated inputs and then create custom
mutations so that the generated inputs gravitate toward exercising
rare branches [44]. As a result, it requires fewer fuzzing loops and
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achieves higher coverage in less time. Other approaches incorpo-
rate symbolic execution in fuzzing to guide careful selection and
mutation of the inputs, invoking unique program paths [26, 64].
Padhye et al. incorporate the semantic validity of input mutations
in Zest [56]. Zest reduces the search space of inputs by mapping
bit-level changes to valid structural changes in the input.

Another angle to minimize unfruitful fuzzing loops is to generate
only legal inputs for the program. Le et al. propose a grammar-
based fuzzing approach called Saffron that relies on a user-defined
grammar [43]. During fuzzing, if an input generated by the gram-
mar leads to a program failure, Saffron reconstructs the grammar
according to newly learned input specifications of the program.
Wang et al. leverage a user-provided grammar, but instead of ar-
bitrary mutations, they introduce grammar-specific mutations to
diversify test inputs for tightly formatted input domains such as
XML and JSON [70]. Gopinath et al. highlight that the state-of-art
grammar-aware fuzzer dharma [19] is still two orders of magnitude
slower than a random fuzzer and suggest guidelines for efficient
grammar-aware fuzzing [36]. In their follow-up work, they present
an approach to infer an input grammar from the interactions be-
tween an input parser and input data [35]. In DISC applications, a
large proportion of program failures are due to ill-formatted inputs,
which are hard to know in advance and are not taken into account
during development. Therefore, grammar-aware fuzzing may not
be practical in revealing errors in DISC applications, because if
a user were to prescribe grammar rules up front, it may be too
restrictive to generate meaningful error-inducing inputs.

Almost all fuzz and random testing techniques are built on the
assumption that the program under test can be executed millions of
times within a matter of hours. In the domain of data-intensive scal-
able computing, user applications are built on top of frameworks
(such as Apache Spark or Hadoop MapReduce) containing complex
distributed systems. Therefore, a single program run may take sev-
eral minutes, if not hours, including a constant cluster spin-up time.
Therefore, the performance and resource expense of state-of-art
fuzzing and random testing for DISC applications are prohibitive.

To speed up test execution while fuzzing, UnTracer [51] dynam-
ically strips out code-coverage instrumentation for lines of code
that have already been covered. For DISC applications, the over-
head is not due to instrumentation but indeed due to the extensive
framework code. BigFuzz is the first fuzzing tool that transforms
the target application by simplifying framework logic.
Software Debloating. Code debloating techniques [23, 60, 61, 63]
strip off unnecessary logic or library functions that are not used
by an application with the primary motivation to reduce the attack
surfaces or to reduce binary size. Unlike debloating techniques that
remove unused code via reachability program analysis, BigFuzz’s
framework abstraction replaces critical dataflow operators with
semantically equivalent implementations to reduce the impact of
bloated code for fuzz testing.
Symbolic andConcolic Execution. Symbolic execution has been
extensively used for a diverse set of use cases, including automated
test generation, program verification, security analysis, and code op-
timization. It allows programmers to execute their program symbol-
ically to verify correctness [53]. Tools such as KLEE [25], Pex [66],

and JavaPathFinder [69] brought symbolic execution to the fore-
front of systematic test generation by discovering uncovered pro-
gram regions and using constraint solvers to generate additional
test data to reveal faults in previously uncovered regions [41].

However, symbolic execution based testing is often limited by
an enormous number of program paths emerging from large code.
Several heuristics-based approaches address this problem of path
explosion [22, 24, 47, 62]. Burnim et al. leverage static analysis
to guide symbolic execution toward uncovered paths to prioritize
specific program paths [24]. As with any other heuristics-based
approach, these techniques produce many false negatives, as they
prioritize exploration of certain program paths over others. Conse-
quently, it may lead to low test quality (or fault detection rate) of
the generated test suite. Experimental results from prior work show
that symbolic execution may have lower fault detection capability
than black-box fuzzing or random testing [29].

DISC applications depend on millions of lines of code in DISC
framework, which makes it infeasible to naively apply symbolic ex-
ecution to the resulting code as is. Even if heuristics-based symbolic
execution is used to model the entire DISC application’s binary
code, the resulting test suite would mostly concentrate on finding
the defects in the DISC framework, as opposed to finding bugs in
application code.
Testing SQL and Data Analytics. Qex follows the traditional
symbolic execution based test generation playbook and maps a
SQL query to an SMT query [68]. It is loaded with custom theories
for each relational operator. Cosette maps a relational query to a
symbolic representation by either (a) proving equivalence among
two queries or (b) generating counterexamples that explain con-
flicting answers from two queries [27]. Miao et al. leverage hard-
coded specifications of relational operators and generate database
rows to explain the output difference between two queries [50].
DOMINO [20] uses tailored, domain-specific operators based on
random values to generate test data for relational database schemas.

Gupta et al. pivot their mutation-based test generation technique
for SQL queries [39]. They define a set of mutations for selected
relational operators such as inner-join or join and specify rules
needed for each type of join to kill the mutant. SQL-integrated ap-
plications are widely used in practice and they invoke SQL queries
programmatically using database connections such as ODBC [18]
or JDBC [65]. Variants of symbolic execution are used to generate
both application inputs and database states [31, 57–59].

Relational database applications rarely use user-defined functions
(UDF), which are prevalent in DISC applications. Thus the above
mentioned tools cannot reveal faults from the interaction of UDF
and dataflow operators or the UDF alone, making them not appli-
cable to DISC applications.
Testing DISC Applications. Today, DISC applications are, almost
always, composed of both UDF and dataflow& relational operators.
Gulzar et al. model the semantics of these operators in first-order
logical specifications alongside with the symbolic representation
of UDFs [38] and generate a test suite to reveal faults. Prior DISC
testing approaches either do not model the UDF or model the spec-
ifications of dataflow operators partially [45, 52]. Li et al. propose a
combinatorial testing approach that automatically extracts input
domain information from schema and bounds the scope of possible
input combinations [46].
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However, all these symbolic execution use a heuristic (loop iter-
ation bound K) during path exploration, which may lead to false
negatives and they are also limited in applicability due to their
symbolic execution scope.
Testing Large Scale Systems. Gulzar et al. study the use of differ-
ential testing for large-scale, end-to-end systems instead of tra-
ditional unit testing and find unit testing either incomplete or
infeasible in practice due to the system’s complexity [37]. They
further observe that more than 40% of tests in real-world produc-
tion software take between 15 minutes to several hours, stressing
the infeasibility of fuzz testing on large-scale, long-latency systems.
Other studies at Microsoft and Google concur exceedingly long
running test times (in the order of hours) on their products, such
as Microsoft Windows [40, 67]. These studies further validate our
hypothesis that fuzz testing that assumes fast, repetitive re-runs is
not suitable for such large systems with long latency.
Stateless Computation. Long startup time is a well-known prob-
lem for DISC applications and JVM applications in general. Hot-
Tub [48] reduces latency by amortizing the warm-up overhead
over the lifetime of a cluster node instead of over a single job.
RESTler [21] is a stateful fuzzer that analyzes the API specification
of a cloud service and generates sequences of requests that automat-
ically test the service through its API. Different from these stateful
computations, dataflow operations are stateless and deterministic,
which is the key insight that BigFuzz uses to create a semantically
equivalent, fuzzing-friendly program.

6 CONCLUSION
Fuzz testing has emerged as one of the most effective test genera-
tion techniques. To adapt fuzzing to DISC applications with long
latency, we propose BigFuzz that leverages (1) dataflow abstraction
using source-to-source transformation, (2) tandem monitoring of
equivalence-class based dataflow coverage with control flow cov-
erage in user-defined functions, and (3) schema-aware mutations
that reflect real world error types. BigFuzz achieves 78 to 1477X
speed-up compared to random fuzzing, improves application code
coverage by 20 to 271%, leading to 33 to 157% improvement in
detecting application errors.
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