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Abstract—Load balancing and auto scaling are important
services in the cloud. Traditionally, load balancing is achieved
through either hardware or software appliances. Hardware ap-
pliances perform well but have several drawbacks. They are
fairly expensive and are typically bought for managing peaks
even if average volumes are 10% of peak. Further, they lack
flexibility in terms of adding custom load balancing algorithms.
They also lack multi-tenancy support. To address these concerns,
most public clouds have adopted software load balancers that
typically also comprise an auto scaling service. However, software
load balancers do not match the performance of hardware load
balancers. In order to avoid a single point of failure, they also
require complex clustering solutions which further drives their
cost higher. In this context, we present HAVEN—a system for
holistic load balancing and auto scaling in a multi-tenant cloud
environment that is naturally distributed, and hence scalable.
It supports multi-tenancy and takes into account the utilization
levels of different resources as part of its load balancing and auto
scaling algorithms. HAVEN leverages software-defined networking
to ensure that while the load balancing algorithm (control plane)
executes on a server running network controller software, the
packets to be load balanced never leave the data plane. For this
reason, HAVEN is able to provide performance at par with a
hardware load balancer while still providing the flexibility and
customizability of a software load balancer. We validate HAVEN
on a hardware setup and our experiments confirm that it achieves
high performance without any significant overheads.

I. INTRODUCTION

Load balancing and auto scaling are fundamental services
in the cloud, around which other services are offered. They
are critical to any highly scalable cloud deployment. Amazon
realized it long ago and launched these services in its EC2
public cloud [1] in 2009. Google and Microsoft caught up
much later and added these services to their cloud offerings
in 2013 [2]. Many companies that run their services on these
public cloud offerings have highlighted how auto scaling and
load balancing have been critical to their core operations [3].

Given the extremely crucial role load balancing and auto
scaling play in the cloud, they deserve to be investigated
critically by both the systems and networking research commu-
nities. Traditionally, load balancing is achieved either through
hardware or software appliances. Hardware appliances [4],
[5] perform well but have several drawbacks. They are fairly
expensive and are typically bought for managing peaks even
if average volumes are 10% of peak. Typical, state-of-the-art
hardware load balancers cost roughly US $80,000 for 20Gbps
capacity [6]. Since most traffic must pass through the load

balancer, a load balancer has to be provisioned for 100s of
Gbps if not more. For example, authors in [6] show that for
a 40,000 server network, built using a 2 level Clos network
architecture, 400 Gbps of external traffic and 100 Tbps of intra-
DC traffic will need load balancing or NAT. This will easily
require 40 load balancers just for the external traffic (costing
US $3.2 million) and 10,000 load balancers for the intra-
DC traffic (costing US $800 million). To put these numbers
in perspective, the total cost of load balancers (US $803.2
million) alone is enough to buy roughly 320,000 servers (as-
suming a typical list price of US $2500 per server [6]). Further,
hardware load balancers lack flexibility in terms of adding
custom load balancing algorithms and typically comprise 3-
4 standard algorithms such as round robin, weighted round
robin, least connections and least response time [7]. Typical
hardware load balancers also lack multi-tenancy support.

To address the above shortcomings of hardware load bal-
ancers, most public clouds have adopted software load bal-
ancers. These software load balancers comprise load balancing
software running on a general purpose server or a virtual
machine [8], [9]. They typically also consist of an auto scaling
service, since all new instances that are added or deleted as a
result of auto scaling have to be added or removed from the
load balancing loop. While there are no reference performance
numbers available, pure software load balancers present a huge
challenge in terms of extracting performance comparable to
hardware load balancers, because of limitations associated with
packet processing at the user level in software, and the port
capacity and density available on general purpose servers. In
order to meet this performance challenge as well as to avoid a
single point of failure, software load balancers require complex
clustering solutions which further drives their cost higher.

In this paper, we present HAVEN—a system for holistic
load balancing and auto scaling in a multi-tenant cloud envi-
ronment that is naturally distributed and hence scalable. Unlike
hardware and software load balancers, HAVEN does not involve
an extra hop or a middlebox through which all traffic needs
to pass. It supports multi-tenancy and takes into account the
utilization levels of different resources in the cloud as part
of its load balancing and auto scaling algorithms. HAVEN
leverages software-defined networking to ensure that while the
load balancing algorithm (control plane) executes on a server
running network controller software, the packets to be load
balanced never leave the data plane. For this reason, HAVEN
is able to provide performance at par with a hardware load
balancer while still providing the flexibility and customizability
of a software load balancer. We present the overall design978-1-4244-8953-4/11/$26.00 c© 2015 IEEE



of Haven in (§ III) and describe our architecture using an
OpenDaylight [10] based controller in an OpenStack [11]
environment in (§ IV). We validate HAVEN on a hardware
setup in (§ V) and our experiments confirm that it achieves
high performance without any significant overheads.

II. BACKGROUND

This section provides a technical background to the terms
and technologies that form the basis of this paper.

A. Load Balancing and Auto Scaling

Load balancing is a key service in the cloud and refers to
the routing of packets from a source to a chosen destination.
A load balancer in the cloud will typically operate at layer
4 (TCP) or layer 7 (Application/HTTP). In this paper, we
restrict ourselves to layer 4 load balancing. A layer 4 load
balancer will spread incoming TCP connection requests over
a load balanced pool of replica servers, such that all packets
belonging to a given connection are always routed to the same
chosen replica. A load balanced pool of servers will typically
have a virtual IP (VIP) for the entire group, and an actual
IP (AIP) per server. For a given connection request to a VIP
(identified by the service’s TCP port, and the client’s IP address
and TCP port), the load balancer translates the VIP into the
AIP of the chosen server. The policy used to select the server
is referred to as the load balancing policy.

Auto scaling helps in scaling a system horizontally in
presence of a load spike by adding more instances of the
application that can serve incoming requests. When load
reduces or goes back to its normal state, some of the running
instances of the application can then be stopped to ensure that
the cloud tenant does not incur extra costs for running idle
instances (since most public clouds charge by the time an
instance runs). Auto scaling is best implemented as part of
the load balancer service itself. This is because anytime new
replicas are added to or removed from a load balanced pool,
the load balancer needs to be notified so that it can add them
to or remove them from its load balancing loop.

B. Software-Defined Networking and OpenFlow

Software-defined networking (SDN) is an emerging
paradigm that consists of a network control plane that is
physically decoupled from the data plane. The control plane
runs as software on a commodity server, while the data plane
is implemented in the switches. The control plane acts as the
brain of the network and runs forwarding logic and policies,
whereas the data plane acts on instructions from the control
plane to forward the packets in the network. The control plane
communicates with the data plane on its south-bound interface
using a standard protocol such as OpenFlow. The control plane
also exposes a north-bound API for 3rd party applications.
Figure 1 shows the schematic architecture of an SDN setup.

OpenFlow is an open standard that is used by a network
controller (control plane) to communicate with the data plane.
OpenFlow rules installed by the controller dictate the forward-
ing logic of a switch. These rules typically have (i) a match
portion that specifies which packets would match that rule, and
(ii) an action portion that specifies what the data plane should
do with matched packets. Actions can be either drop, forward

Fig. 1: SDN architecture

to one or more ports, or rewrite certain fields in the packet
header. If an incoming packet does not match any existing
rule at a switch, the default action for the switch is to forward
the packet to the controller (referred to as a PACKET_IN
event). The controller can then analyze the packet and install
a matching rule for handling subsequent packets of that flow.
To implement load balancing, an OpenFlow rule can thus be
used to replace the VIP in an incoming request with the AIP
of a server chosen from the load-balanced pool.

III. DESIGN

Since the task of load balancing is essentially directed
towards effective and optimal usage of all available resources
in the cloud, it is desirable for any holistic load balancing
scheme to have the following properties:

• Distributed: A distributed system not only ensures that
there is no single point of failure, but also avoids bottlenecks
due to middleboxes and constrained routing. If the switches
themselves can do load balancing, then the system also be-
comes naturally scalable.
• Flexible: If the load balancing technique is logically cen-
tralized, then it becomes easy for each service to avail of the
technique with configurations specific to its own requirements.
• Dynamic: The load balancer should respond to changes
in resource utilization patterns of the servers as well as the
network, and the selection of a replica to load balance traffic
must be informed by these changes.
• Adaptive: An effective auto scaling mechanism ensures
that the system adapts to changes in demand, i.e., maintains
performance during demand spikes, and reduces the tenant’s
cost during periods of inactivity. Further, the selection of a
suitable replica while scaling up or down is also important.

The separation of control and data planes in SDNs allows
switches to perform the load balancing, while the network
behavior remains logically centralized at the controller. This
not only makes the system naturally scalable, but also highly
flexible as the load balancing technique can be defined cen-
trally in the control plane for the entire network. HAVEN has
been designed as an OpenFlow controller application, and
encapsulates the principles listed above. In essence, HAVEN
monitors the congestion levels in the network links and or-
chestrates the collection of resource usage statistics from the
cloud, such as the CPU and memory utilization levels of the
provisioned virtual machines (i.e., the servers). It uses these
measurements to periodically compute scores for all the virtual



Input: V: set of all pool members, L: set of network links
1: function STATISTICSMANAGER(V, L)
2: /*Collect statistics*/
3: COLLECTBWSTATS(L)
4: COLLECTCPUUTIL(V)
5: COLLECTMEMUTIL(V)
6: /*Notify listeners of update()*/
7: NOTIFY()
8: end function

Fig. 2: Statistics Manager service

machines (VMs) in the cloud. When a request arrives for a
VIP, HAVEN ranks all the member VMs in the tenant’s pool
on the basis of the computed scores and selects the one with
the maximum available resources (network as well as server
utilization). Simultaneously, HAVEN decides whether or not the
pool should scale up or down based on the current demand.

A. Statistics Manager Service

HAVEN gathers two kinds of data from the cloud—
link bandwidth statistics from the network, and resource uti-
lization information from the provisioned VMs (Figure 2).
The link bandwidth data are computed from the OpenFlow
STATS_REPLY messages that are periodically collected from
the switches in the network. These messages communicate
statistics gathered at the switch per port, flow, and table
(e.g., the total number of packets/bytes sent and received).
Additionally, HAVEN also gathers resource usage patterns of
all the VMs in the cloud—in particular, CPU and memory
utilization levels—from the respective hypervisors.

B. Score Manager Service

Based on the measurements gathered by the Statistics Man-
ager, HAVEN’s Score Manager Service computes scores for all
provisioned VMs whenever it receives an update notification
from the Statistics Manager (Figure 3). This score is indicative
of the resources available at the VM’s disposal, which include
(a) the available bandwidth on the paths to the VM from
gateway switches, (b) % CPU utilization of the VM, and (c)
% memory utilization of the VM. The lower the usage levels
of a member’s resources, the lower its score. Since there can
be multiple gateway switches, VMs are accessible via multiple
paths; hence, scores are assigned to a VM per path.

SCORE COMPUTATION. Figure 4 outlines HAVEN’s score
computation function. Given a resource with utilization value
i, its relative importance towards the total score ΣV is indicated
by a user-defined weight wi. The contribution of an over-
utilized resource is magnified by squaring i to allow HAVEN
to identify VMs with resource bottlenecks. Thus, a VM u with
high CPU utilization β and low memory utilization γ will have
a higher score than a VM v with moderate β and γ.

C. Load Balancer Service

When a PACKET_IN arrives from a client for a particular
VIP, the load balancer component selects a VM from the ten-
ant’s pool based on the calculated scores. The service selects
that VM which has the lowest score (and hence the one with
the most available resources) and has been assigned to clients

Input: V: set of all pool members
Output: Σ: set of scores

1: function SCOREMANAGER(V)
2: for all v ∈ V do
3: Pv ← GETPATHS(v)
4: for all P← Pv do
5: /*Compute scores*/
6: α← GETBWUTILIZATION(P)
7: β← GETCPUUTILIZATION(v)
8: γ ← GETMEMUTILIZATION(v)
9: Σv,P ← GETSCORE(α, β, γ)

10: Σ← Σ ∪ Σv,P
11: end for
12: end for
13: /*Notify listeners of update()*/
14: NOTIFY()
15: return Σ
16: end function

Fig. 3: Score Manager service

Input: α, β, γ: resource utilization values
Output: ΣV : computed score
Constants: {wi} = weights of parameters i ∈ {α, β, γ}

1: function GETSCORE(α, β, γ)
2: ΣV ←

∑
(wi · i2)

3: return ΣV
4: end function

Fig. 4: Score function

the least number of times since the last update of scores. Since
score updates depend on the granularity of statistics collection
(order of seconds), this ensures that requests are distributed
fairly amongst the pool members between subsequent updates,
and VMs are not choked during demand spikes. The service
does this by maintaining a map of the number of flows assigned
per VM between score updates, and flushes this map when it
receives a score update notification. Figure 5 describes the
methodology employed by HAVEN for load balancing.

D. Auto Scaling Service

On the arrival of a PACKET_IN for a VIP, HAVEN in
parallel also decides whether or not the system needs to be
scaled (up or down).

1) Scale-up Service: Figure 6 describes the scale-up decision
methodology. The service takes as input the score ΣV of the
pool member selected for load balancing, and thus having
the lowest overall resource utilization. If ΣV is greater than a
threshold value τUP, then the system is scaled up provided no
other pool member is pending activation. Note that ΣV > τUP

would imply that the scores of all other pool members are
also higher than τUP. The pool member whose host switch
has the highest available bandwidth on its links is selected for
activation, and is added to the tenant’s list of pending members
until it is completely launched.

2) Scale-down Service: Figure 7 describes the scale-down
decision methodology. The service determines whether or not
the system needs to be scaled down based on the resource
utilization levels across all the active pool members. Further,
only the last hop bandwidth utilization is considered for every



Input: V: set of all pool members, S SRC: packet entry node, Θ: map
of number of flows assigned per VM since last score update

Output: V: candidate member for load balancing
1: function LOADBALANCER(V, S SRC)
2: if SCORESUPDATERECEIVED() = true then
3: /*Consider all pool members
4: and clear flow count map*/
5: VA ← GETALLACTIVEMEMBERS(V)
6: CLEARFLOWCOUNTS(Θ)
7: else
8: /*Only consider members that have
9: been assigned least flows since

10: last score update*/
11: VA ← GETLEASTFLOWCOUNTMEMBERS(Θ,V)
12: end if
13: for all v ∈ VA do
14: P← GETPATH(S SRC , v)
15: /*Compute score for the member*/
16: Σv ← GETSCORE(v, P)
17: end for
18: V ← v ∈ VA such that Σv is minimum
19: /*Update flow count map*/
20: INCREMENTFLOWCOUNT(Θ, V )
21: return V
22: end function

Fig. 5: HAVEN’s load balancing algorithm

Input: V: set of all pool members, ΣV : score of V , candidate member
for load balancing

Output: V: candidate member for activation
Constants: τUP: threshold score for scale-up decision

1: function SCALEUP(V, ΣV )
2: VP ← GETPENDINGMEMBERS(V)
3: VI ← GETINACTIVEMEMBERS(V)
4: if ΣV ≥ τUP , |VP | = 0 and |VI | > 0 then
5: for all v ∈ VI do
6: /*Get node b/w utilization*/
7: S v ← GETHOSTNODE(v)
8: L← GETLINKS(S v)
9: αv ← GETBWUTILIZATION(L)

10: end for
11: V ← v ∈ VI such that αv is minimum
12: end if
13: return V
14: end function

Fig. 6: Scale-up service

member while computing its score, so that traffic generated
due to other entities in the network are not falsely ascribed to
it. If majority of the active members have scores higher than
a threshold value τDOWN, then the system is scaled down. The
pool member with the longest uptime is selected for deacti-
vation to provide for maintenance (such as patches/upgrades).
Note that while the selection of a member for deactivation
removes it from the tenant’s list of active pool members, it
does not imply its immediate shutdown. All active flows to
the member must expire before it can be actually terminated,
determined via the OpenFlow FLOW_REMOVED messages
communicated to the controller by the network switches.

IMPLEMENTATION. Note that the algorithms described in
Figures 2–7 needn’t perform all computations in the critical
path of execution. The collection of different statistics can

Input: V: set of all pool members
Output: V: candidate member for deactivation
Constants: τDOWN: threshold score for scale-down decision

1: function SCALEDOWN(V, V)
2: VA ← GETACTIVEMEMBERS(V)
3: c← 0
4: for all v ∈ VA do
5: /*Get last hop utilization*/
6: S v ← GETHOSTNODE(v)
7: l← GETLINK(S v , v)
8: α← GETBWUTILIZATION(l)
9: /*Get VM resource utilization*/

10: β← GETCPUUTILIZATION(v)
11: γ ← GETMEMUTILIZATION(v)
12: /*Compute score for the member*/
13: Σv ← GETSCORE(α, β, γ)
14: if Σv < τDOWN then
15: c← c + 1
16: end if
17: end for
18: if c > |VA | /2 then
19: V ← v ∈ VA with longest uptime
20: end if
21: return V
22: end function

Fig. 7: Scale-down service

be offloaded to multiple threads executing in parallel, while
scores are simultaneously computed and cached. Similarly,
computation of routes can be offloaded to a background
service that caches routes and updates them in the event of
topological changes. Further, while load balancing and auto
scaling are seemingly distinct activities, they can be conflated
into a single routine. We employ these techniques in the actual
implementation of HAVEN described in the next section.

IV. SYSTEM ARCHITECTURE

HAVEN has been implemented as an application for an
OpenDaylight based controller integrated with OpenStack, an
open-source cloud computing software platform as shown in
Figure 8 shows our architecture. Implementation of HAVEN in
an OpenStack environment has 3 major advantages. First, we
install the address translation rule inside a vSwitch, allowing us
to scale much better, since most physical switches do not allow
more than 4K-6K OpenFlow rules. Second, we get access to
OpenStack’s telemetry capabilities enabling us to provide a
holistic load balancer. Third, by leveraging the Nova VM pro-
visioning service inside OpenStack, we are able to provide an
integrated load balancing and auto scaling service. Currently,
we use HAVEN primarily as an internal load balancer (where
the client resides in the same data center or L2 domain as the
destination) since we rely on the ingress vSwitch to do the
address translation. This also prevents us from problems of
having OpenFlow support in the border routers (for external
load balancing, where the client is outside the data center) as
well as other issues related to replacing BGP with centralized
routing [6]. Nonetheless, since intra-DC traffic is a significant
portion of the overall data center traffic, we believe HAVEN
provides an extremely critical service in the cloud.

We next describe relevant components of the overall system
along with HAVEN’s implementation within the controller.
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A. OpenStack

OpenStack has a modular architecture with components for
various services. We describe the components that are relevant
to this paper.

1) Neutron: OpenStack’s networking service is provided by
Neutron, which provides tenants with APIs to build topologies
and configure network policies in the cloud. Neutron provides
for the usage of plugins (which are back-end implementations
of the networking API) to allow different technologies to
implement the logical API requests received by it (such as the
creation of tenants, networks, and subnets). We use a plugin
packaged with Neutron to communicate these requests to the
network virtualization solution provided by controller.

2) LBaaS: The Load-Balancing-as-a-Service (LBaaS) plugin
of Neutron allows the use of open-source load balancing
technologies to drive the actual load balancing of requests.
LBaaS requests (such as the allocation of pools, VIPs, and pool
members) are received via REST APIs exposed by Neutron.
We developed a service extension driver for the plugin to drive
the communication of LBaaS data to the controller.

3) Ceilometer: Ceilometer is OpenStack’s telemetry infras-
tructure that collects measurements from the cloud. Its pri-
mary functions are monitoring and metering of resources, and
provides APIs for the retrieval of the collected data. HAVEN
retrieves the VM usage statistics collected by Ceilometer via
the REST APIs exposed by the service.

B. OpenDaylight based Controller

The controller contains a virtualization solution which
communicates with the virtualization agent in Neutron to
provide networking services. HAVEN in turn communicates
with the virtualization solution to configure the network for the
purposes of load balancing. The overall control flow given in
Figure 9. We subsequently describe the components of HAVEN
implemented as an application within the controller.

1) Monitoring Data Orchestrator: This module implements
HAVEN’s statistics manager (§ III-A) and score manager

(§ III-B) services, and is responsible for the management of
all statistics harvested from the cloud, both network as well
as VM resources. The module periodically polls OpenStack’s
Ceilometer for CPU and memory utilization measurements
gathered from all VMs that are part of some tenant’s load
balancing pool. Simultaneously, it collects link bandwidth
statistics by periodically issuing STATS_REQUEST messages
to the OpenFlow-enabled network switches. The collection of
both kinds of data is performed at the granularity of five sec-
onds. Once all the switches have responded with corresponding
STATS_REPLY messages, scores are computed for all VMs
per known path and are cached, and the LBaaS Provider is
notified of the score update.

2) HAVEN LBaaS Provider: This is HAVEN’s central module
that handles the load balancing of packets for a particular
VIP (§ III-C), and auto scaling (§ III-D) of a tenant’s pool.
When a request arrives for a tenant’s VIP, the module in
communication with the Data Orchestrator selects a VM for
load balancing the traffic as described in Figure 5. It then
installs flows in the network switches to load balance the flow
to the VM with the best score. Simultaneously, the service
also decides whether or not the tenant’s pool needs to be
scaled. The module also implements a northbound interface
that exposes REST APIs invoked by Neutron’s LBaaS agent
for the communication of LBaaS data. The data is subsequently
cached in HAVEN’s local database and is used to configure the
network for load balancing.

V. EVALUATION

In this section, we describe the evaluation of HAVEN as
a holistic load balancer in an OpenStack environment. We
evaluate the performance of our design by (i) comparing it
with HAProxy, a popular open-source load balancer software
[12], and (ii) assessing the overheads imposed by HAVEN on
the network controller.

TESTBED. We deployed the Havana release of OpenStack on
our physical testbed, consisting of 7 servers connected over a
network of 14 OpenFlow-enabled switches (IBM RackSwitch
G8264 [13]) arranged in a three-tiered design with 8 edge, 4
aggregate, and 2 core switches. All of our servers are IBM
x3650 M3 machines having 2 Intel Xeon x5675 CPUs with
6 cores each (12 cores in total) at 3.07 GHz, and 128 GB
of RAM, running 64 bit Ubuntu Linux v12.04. The cloud
controller services (OpenStack Nova, Neutron, etc.) were run
on a separate dedicated server of the same configuration, along
with HAProxy/ODL controller.

TOOLS USED. We used httperf [14] to generate HTTP work-
loads of various sizes and drive traffic to web servers for
load balancing. We used nmon, a system monitor tool for
Linux [15], to track the CPU usage at the controller during
our experiments. We also used the Ping utility to capture the
overhead of using HAVEN on the latency of the first packets of
flows that are sent to the controller as PACKET_IN messages.

A. Performance

HAVEN’s architecture can be used to deploy different
load balancing policies. We evaluated the performance of
HAVEN by experimenting with two policies—(i) HAVEN–
RA: a resource-aware policy (as discussed in § III), and
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(ii) HAVEN–RR: a round-robin policy implemented within
HAVEN. For a large number of environments that do not
have high variability in the workload, a round-robin policy
might just about be sufficient. However, HAVEN’s architecture
ensures enhanced performance even in those cases by avoiding
the extra hops that are typically involved for other software
load balancers. Thus, we compare the performance of these
two policies with that of an HAProxy-based approach, and
present our findings.

EXPERIMENTAL SETUP. We deployed 4 VMs each on four
out of our seven servers, and used the remaining three for
generating client workloads. From each of these three client
servers, we ran 5 parallel httperf sessions for files of 5 different
sizes (one session per file type) located at the pool members—3
small files (1KB, 10KB, and 100KB) and two large files (1MB
and 10MB). We used this setup to run four sets of experiments
for each of the three policies—by varying the number of pool
members between 8 and 16, and by varying the generated
workload between high and low—described as follows:

(1) 16 members (high): Pool size of 16 members; each httperf
session configured for a total of 1800 connections, at the rate
of 3 connections/sec, with 50 requests per connection for small
files, and 20 requests per connection for large files, resulting
in a request ratio of roughly 80:20 for small:large files.
(2) 16 members (low): Pool size of 16 members; each httperf
session configured for a total of 1200 connections, at the rate
of 2 connections/sec, with 25 requests per connection for small
files, and 10 requests per connection for large files.
(3) 8 members (high): Pool size of 8 members; each httperf
session configured for a total of 1800 connections, at the rate
of 3 connections/sec, with 50 requests per connection for small
files, and 20 requests per connection for large files.
(4) 8 members (low): Pool size of 8 members; each httperf

session configured for a total of 1200 connections, at the rate
of 2 connections/sec, with 25 requests per connection for small
files, and 10 requests per connection for large files.

RESULTS. Httperf output has 3 metrics that are of interest to
us. These are (i) Average Reply Time - Response, which is
the time spent between sending the last byte of the request
and receiving the first byte of response, (ii) Average Reply
Time - Transfer, which is the time spent between receiving the
first byte of response and the last byte of response, and (iii)
Average Reply Rate (per second), which is the rate at which the
server responded. The results are shown in Figures 10, 11 and
12 respectively, as a weighted average of the measurements
obtained for the httperf sessions corresponding to different file
sizes. HAVEN outperfoms HAProxy in all metrics for both
low and high traffic and for both pool sizes (16 and 8). By
removing a middlebox (as in the case of HAProxy) and thereby
eliminating bottleneck links and choke points, HAVEN is able
to improve response times drastically by up to 50 times, while
the transfer times are improved by a factor of 2.1. The reply
rates or throughput are improved by a factor of 3.8.

B. Overheads

In order to assess the performance overheads of incurred by
the deployment of HAVEN, we ran two sets of experiments on
our testbed. In the first experiment, RTT measurements using
the ping utility were used to assess the overhead of HAVEN on
the latency of first packets of flows; in the second experiment,
we plot the CPU usage at the controller while running a high
workload on a pool of 16 members.

1) Ping packet latencies: We configured the controller to
install flow rules with an idle timeout of 1 second. We then
sent 200 ping packets from a client to a VIP, at an interval
of 3 seconds. This ensured that each ping packet reached
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Fig. 10: Average Reply Time - Response: HAVEN outperforms
HAProxy by up to 50 times
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Fig. 11: Average Reply Time - Transfer: HAVEN outperforms
HAProxy by a factor of 2.1

the controller as a PACKET_IN message, and was load-
balanced by HAVEN. We measured the RTTs of the packets,
and plotted their CDF. We repeated the experiment in 2
additional scenarios—(i) we sent ping packets directly at the
IP address of a pool member (and not the pool’s VIP); these
packets were thus routed by the default forwarding module of
the OpenDaylight (ODL) controller and not load balanced by
HAVEN; (ii) we sent ping packets to a VIP using HAProxy
(and not HAVEN). The results are presented in Figure 13.

RESULTS. In the presence of HAVEN, the first packet latency
is approximately ∼6ms. As expected, this is higher than the
case with an HAProxy (∼500µs), as in the latter no trips
to the controller are involved. However, since this additional
packet latency is limited to the first packets of flows, it has
no bearing on the overall performance of HAVEN as compared
with HAProxy, as seen in § V-A. Further, the latency incurred
by packets load balanced by HAVEN are lesser than that
the packets directly forwarded by ODL’s default forwarding
module. We attribute this to the fact that HAVEN computes
routes offline and caches them, while the default forwarding
module computes routes in the critical path of execution. Thus,
HAVEN’s modules do not incur substantial overheads on the
performance of the controller.
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Fig. 12: Average Reply Rate (per second): HAVEN outperforms
HAProxy by a factor of 3.8
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C. Controller CPU usage

We further validate the fact that HAVEN has negligible
overheads on the controller’s performance by monitoring CPU
usage for 700 seconds for two policies—HAVEN–RA and
HAVEN–RR (as described in § V-A). We used a setup of 16
pool members with a high workload from 3 client servers. The
results are presented in Figure 14, at intervals of 10 seconds.
We observed that on an average, the CPU usage did not exceed
∼8% utilization for HAVEN–RA policy, and ∼7% for HAVEN–
RR, well within permissible limits. Further, even during spikes
of activity, it does not exceed 20% utilization. We attribute
these spikes to JVM’s garbage collection.

VI. RELATED WORK

Recent research systems [6], [16], [17] have achieved SDN
based load balancing and auto scaling. Plug-n-Serve system
[16] uses OpenFlow to reactively assign client requests to
replicas based on the network and server load. This system is
similar to HAVEN in that it intercepts the first packet of each
client request and installs an individual forwarding rule that
handles the remaining packets of that connection. However,
we improve over Plug-n-Serve in several ways. We implement
our solution in an OpenStack environment that allows us
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Fig. 14: CPU usage at controller

to make three significant improvements. First, we install the
address translation rule inside a vSwitch that allows us to scale
much better since most physical switches do not allow more
than 4000-6000 OpenFlow rules. Second, we get access to
OpenStack’s telemetry capabilities that enables us to provide
a holistic load balancer. Third, by leveraging the Nova VM
provisioning service inside OpenStack, we are able to provide
an integrated load balancing and auto scaling service.

Ananta [6] relies on SDN principles and leverages custom
software running on commodity hardware servers. It has a
distributed, scalable architecture for layer-4 load balancing
and NAT. It is able to achieve a throughput of around 40
Tbps using 400 servers. It provides N+1 redundancy and quick
failover along with tenant isolation. While Ananta is a great
engineering effort, it is based on closed standards and it is
unlikely that others in the community can easily replicate that
effort. HAVEN tries to implement a holistic load balancing and
auto scaling system using open standards such as OpenFlow
and through standard network and cloud platforms such as
OpenDaylight and OpenStack.

DUET [18] proposes a hybrid approach by integrating a
switch-based load balancer design with software load bal-
ancing. It controls available functions in commodity switches
(traffic splitting and packet encapsulation) to enable them to
act as hardware load balancers, and uses a small deployment
of software load balancers in case of switch failures. HAVEN,
on the other hand, leverages an SDN-based approach to
implement load balancing in the switches themselves while
additionally accounting for resource utilization levels in the
cloud, and also provides the added capability of auto scaling.

Wang et al. [17] propose a load balancing architecture using
OpenFlow rules, that proactively maps blocks of source IP
addresses to replica servers so that client requests are directly
forwarded to them with minimal intervention by the controller.
They propose a ‘partitioning’ algorithm that determines a
minimal set of wildcard rules to install, and a ‘transitioning’

algorithm that changes these rules to adapt to new load
balancing weights. We believe this work is complementary to
our approach, and HAVEN can leverage these algorithms.

VII. CONCLUSION

In this paper, we present the design and implementation
of HAVEN—a system that achieves holistic load balancing
and auto scaling in the cloud. HAVEN leverages software
defined networking to ensure that custom resource aware load
balancing policies are added to the control plane, while most
traffic never leaves the data plane. This helps in avoiding
an extra hop or a middlebox that most other load balancing
approaches involve. HAVEN has been implemented as a set of
modules inside an OpenDaylight based OpenFlow controller
that provides network service for an OpenStack managed cloud
through an LBaaS driver extension that we developed. Our
preliminary evaluation of HAVEN’s load balancing capabilities
on a hardware testbed demonstrates that HAVEN is faster than
a standard software load balancer widely used in the industry.
We are currently conducting a more comprehensive evaluation
of HAVEN’s load balancing and auto scaling capabilities in
presence of higher workloads. We are also working on a
production deployment of HAVEN in IBM data centers.
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