HANSEL: Diagnosing Faults in OpenStack

Dhruv Sharma”*
UC San Diego

Mohan Dhawan
IBM Research

ABSTRACT

With majority of the world’s data and computation handled
by cloud-based systems, cloud management stacks such as
Apache’s CloudStack, VMware’s vSphere and OpenStack
have become an increasingly important component in cloud
software. However, like every other complex distributed
system, these cloud stacks are susceptible to faults, whose
root cause is often hard to diagnose. We present HANSEL,
a system that leverages non-intrusive network monitoring to
expedite root cause analysis of such faults manifesting in
OpenStack operations. HANSEL is fast and accurate, and
precise even under conditions of stress.

CCS Concepts

eComputer systems organization — Cloud computing;
eNetworks — Cloud computing; Network monitoring;
eSoftware and its engineering — Fault tree analysis;

Keywords

Network monitoring, OpenStack, REST, RPC.

1. INTRODUCTION

With majority of the world’s data and computation
handled by cloud-based systems, cloud management stacks
(CMSes), such as Apache’s CloudStack [2], VMware’s
vSphere [14] and OpenStack [1], have become an
increasingly important component in the cloud software.
These CMSes are complex, large scale distributed systems
enabling orchestration of tasks, including virtual machine
(VM) spawning, termination, migration, etc. However, like

*Both authors contributed equally.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions @acm.org.

CoNEXT ’15 December 1-4, 2015, Heidelberg, Germany
© 2015 ACM. ISBN 123-4567-24-567/08/06. .. $15.00
DOI:10.475/123_4

Rishabh Poddar®
UC Berkeley

Kshiteej Mahajan
U Wisconsin

Vijay Mann
IBM Research

every other distributed system, these CMSes are susceptible
to a variety of complex faults, most of which are often
hard to diagnose even for skilled developers/operators.
For example, several faults [8—10] in Rackspace’s cloud
offering based atop OpenStack took several hours or even
days to resolve. In this paper, we focus on the problem
of automatically determining the cause of such hard to
diagnose faults manifesting in OpenStack operations.

While cloud systems are resilient to hardware failures
by design, software and human issues amount to ~87%
of all failures in cloud systems [25]. Prior work on
troubleshooting cloud systems has focused mostly on one of
two approaches—model checking or event analysis. State-
of-the-art distributed system model checkers [24, 26, 31,
32,38, 43] leverage novel reduction policies for managing
state space explosion and unearth hard to find bugs. In
contrast, cloud and network troubleshooting systems [15,28,
29] mostly focus on fine-grained event analysis, correlating
system behavior with event logs. These events vary
depending on the system under consideration and may
also require extensive instrumentation. However, correct
implementation of both these approaches requires extensive
knowledge of the entire system. Further, any additions or
modifications to the system would require updates to both
model checking policies and event analysis mechanism.

We present the design and implementation of HANSEL—
a fast, lightweight approach based on network monitoring
to diagnose faults in OpenStack. HANSEL systematically
analyzes each OpenStack message between components,
infers the message context, and uses it to chain together
a sequence of events representing discrete actions, such as
spawning or terminating VMs. HANSEL is novel because
it (a) requires no change even on introduction of new
component nodes, and (b) does not require any expensive
system level instrumentation or offline log analysis. Further,
techniques used by HANSEL are generic and thus potentially
applicable to other distributed systems.

Practical fault diagnosis in OpenStack is hard for two
main reasons. First, several routine OpenStack operations,
such as instance creation, deletion, involve cross-service
interaction for successful completion. However, errors
occurring along the call chain are inferred differently, and


10.475/123_4

thus often incorrectly propagated back, by the disparate
components involved in the operation. Second, OpenStack
is still under active development. Thus, an effective
fault diagnosis solution must ensure compatibility with
existing and future deployments. Routine feature upgrades,
addition/removal of system components, or scale of
deployment must not render the fault diagnosis useless.

Unlike prior work [15, 19, 22,28, 29] for fault detection
and diagnosis, HANSEL only requires network monitoring
agents at each node in the distributed system to capture and
relay OpenStack REST and RPC messages to a centralized
analyzer service. HANSEL relies on a key observation
that most distributed systems use unique identifiers in
communication messages for identifying resources across
components. HANSEL’s analyzer service uses this property
to systematically combine both REST and RPC messages
across different distributed system components, while being
agnostic of the API behavior and the message protocol.

HANSEL mines each OpenStack message for unique
identifiers, such as 32-character hexadecimal UUIDs, IP
addresses, source and destination ports, to create a message
context. HANSEL then stitches together these contexts
to update temporal states observed at each component in
the communication, and generate a control flow graph
corresponding to operator actions. This modeling of the
actual temporal state along with several other heuristics help
HANSEL prune the control flow graph and achieve precision.
On detection of an error, HANSEL backtracks from the faulty
node in the graph to identify the causal chain of events.

We have built a prototype of HANSEL for OpenStack
JUuNO. However, HANSEL’s use of well defined patterns
for detecting unique identifiers, without relying on any
particular message format or specific sequencing of protocol
messages, makes it applicable to any version of OpenStack,
and potentially other cloud orchestration platforms. We
evaluated HANSEL on a physical setup with 3 compute
nodes, using the Tempest integration test suite [12] with over
1K test scenarios, and exercised 369 faults in our setup. We
further stress tested HANSEL and observed that it can handle
about 1.6K REST/RPC messages per second of control traffic.

This paper makes the following contributions:

(1) We present HANSEL—a system that analyzes network
messages to model control flow and localize faults in
OpenStack. To our knowledge, HANSEL is the first such
system that relies only on OpenStack messages and requires
no other system modifications.

(2) We list several scenarios (§ 3.1 and § 8.1) where existing
mechanisms fail/mislead even skilled developers/operators.
(3) We provide a practical design (§ 5) for HANSEL,
which mines unique identifiers from OpenStack messages
to stitch together a stateful trail of control flow amongst the
component nodes. We also present several heuristics (§ 6)
and optimizations to improve HANSEL’s precision.

(4) We apply HANSEL on OpenStack (§ 7), and evaluate it
(§ 8) to demonstrate its speed, precision, and scalability.

User Interface
<

Persistent Stores Stores
Storage Images Disk Files

4 b oottt odid ol

T A4 T A 4 A 4 A4 T A4
ALT A TAT A TA
v i :

Network Connectivity i Stores Disk Files for VMs
Authentication

Figure 1: OpenStack architecture.

2. OpenStack BACKGROUND

OpenStack is a state-of-the-art, open source, Python-
based CMS used by over 250 leading organizations [7].
OpenStack is a fairly complex system with over 2.5 million
LOC. Fig. 1 shows a schematic architecture of a basic
OpenStack deployment. Typically, each of these services
run on different nodes with distinct IP addresses, and provide
a command-line interface (CLI) to enable access to their
APIs via REST calls. We now briefly describe these key
constituents and their functionality.

(1) Horizon is a Web-based dashboard for OpenStack.

(2) Keystone is OpenStack’s identity service, which
provides authentication, authorization and service discovery
mechanisms primarily for use by other services.

(3) Neutron provides “networking as a service” between
virtualized network interfaces managed by other services.
(4) Cinder is a block storage service, which virtualizes
pools of block storage devices, and provides end users with
APIs to request and consume these resources.

(5) Nova provides a controller for orchestrating cloud
computing tasks for OpenStack, and supports a variety of
virtualization technologies, including KVM, Xen, etc.

(6) Glance provides image services for OpenStack such as
the discovery, registration, and retrieval of VM images using
REST calls, along with querying of VM image.

(7) Swift is an object/blob store, which enables creation,
modification, and retrieval of objects via REST APIs.

OpenStack has external dependencies over MySQL for
managing entries in the database, oslo messaging module
for RPC communication using RabbitMQ, virtualization
solutions like KVM and Xen, and Python-based HTTP
clients for REST communication. Additionally, OpenStack
mandates that all nodes be NTP synchronized.

2.1 REST/RPC communication

Inter-services communication within OpenStack happens
via REST calls, and each OpenStack component has a
corresponding HTTP client that enables access to its REST
APIs. On the other hand, intra-service communication
takes place exclusively through RPCs. Since a service
may potentially be distributed across several nodes, all RPC
messages are channeled through the RabbitMQ message
broker. For example, communication between the Nova
controller and Nova agents on the compute nodes happens
via RPCs through the RabbitMQ broker.



Figure 2: OpenStack workflow for launching a new instance.

To manage state and track progress of each request,
all RPC messages share a unique request id, which is a
32-character hexadecimal string prefixed by “req-”. This
request id is also present in the response header of the
REST call that initiated the ensuing RPCs. In OpenStack,
however, only RPCs triggered by REST calls contain request
ids.  Other RPCs neither have request ids nor do they
propagate any updated states across components. Thus, from
the perspective of an OpenStack operation, where the result
must be communicated to the dashboard/CLI via REST calls,
RPCs without request ids are not part of user-level activity.

2.2 Example workflow

Fig. 2 shows a schematic workflow to launch a
new instance in OpenStack. We omit invocations for
authentication for sake of brevity. When a client launches an
instance from the dashboard, Horizon leverages NovaClient
to issues an HTTP PosST to Nova to create a VM for the
specified tenant (step 1). At this moment, the control
migrates from Nova to the NovaCompute service on the
compute node, where it initiates RPCs to build the instance
(step 2). Nova then invokes the GlanceClient to issue an
HTTP GET request to Glance to fetch the VM image and
start the boot process (step 3).

Simultaneously, Nova invokes NeutronClient to issue a
series of GET requests to Neutron to determine the existing
network, port and security group bindings for the specified
tenant (step 4). Nova halts the boot process and invokes
Neutron APIs (with the POST request body containing the
VM and network identifiers) requesting it to create and
attach a new port for the VM (step 5). Neutron immediately
responds with the newly created port identifier for the VM,
which is not yet attached to the instance. Thus, Nova makes
the request and blocks the boot while waiting for a callback
from Neutron indicating that it has plumbed in the virtual
interface. When Neutron has completed port attachment to
the VM (step 6), it leverages NovaClient to issue a POST to
Nova indicating the same (step 7). When all the events have
been received, Nova continues the boot process (step 8).

3. MOTIVATION

Incorrect system configuration, resource exhaustion,
access to privileged resources/actions, data corruption in the
database, etc., may all be causes of faults in OpenStack
operations. Further, OpenStack’s dependence on third party
libraries and utilities, such as RabbitMQ, Python and even

system utilities, may trigger faults.

For the purpose of this paper, any event that manifests as
an error message in OpenStack is treated as a fault. These
error messages are readily identifiable using light-weight
regular expression checks.

FAULT LOCALIZATION. A key indicator to initiating root
cause analysis is the presence of error notification(s) on
the OpenStack dashboard or the command-line interface
(CLI). However, such an error may be merely indicative
of some fault. In several scenarios, this key notification
may be misleading, or even absent altogether, forcing
developers/operators to mine the system logs to determine
the actual source of the fault. The process would be
expedited substantially if the fault could be localized to a
specific OpenStack component/service.

IDENTIFYING CAUSAL SEQUENCE. Isolating a fault to
a particular component is not enough to identify how the
fault occurred. Once a fault has been localized, debugging
the component effectively would require knowledge of the
exact sequence of events that led to the fault. Further, in
the presence of multiple, simultaneous administrative tasks
in the cloud system, it is imperative for operators to identify
which particular task resulted in the fault.

In this section, we illustrate the effectiveness of this
two-pronged approach with the help of three specific, yet
representative, scenarios that benefit from using HANSEL.
We demonstrate how HANSEL’s fault diagnosis coupled
with causal sequencing of events assists both developers and
operators. We also argue why prior work does not suffice
for root cause analysis in production environments on the
representative OpenStack scenarios discussed.

3.1 Representative Scenarios

We describe below three scenarios to show how HANSEL
can expedite root cause analysis by localizing faults and
identifying a causal sequence of events. While the scenarios
themselves are concrete, they are representative of the
typical cross-component communication patterns involving
the major OpenStack constituents, as described in § 2.

3.1.1 VM create

DASHBOARD ERROR. In a particular VM create scenario,
we observed that OpenStack abruptly terminates the entire
process and Horizon simply reflects a “No valid host was
found” error on the dashboard, even when there was one
fully functional compute node available.

LOG ANALYSIS. Digging deeper into the logs, we observed
that the Nova service throws two errors—*“An error occurred
while refreshing the network cache” and “No valid host
found”. Presumably, following the first error response, Nova
scheduled the request on other compute nodes and failed to
find an “enabled” compute node (as indicated by the second
error log). Curiously, the Neutron logs on the compute
node listed no errors. However, repeating the scenario
with TRACE level logs enabled for Nova , we observed



exceptions that pointed to a buggy NeutronClient !. Clearly,
the exception on the dashboard and the errors in Nova logs
are misleading, as they do not point to the root cause of the
fault. Additionally, in a production setting, typically only
ERROR log level is enabled. Thus, it would take a highly
skilled and experienced operator to piece together the chain
of events and determine the missing link 2.

HANSEL’S DIAGNOSIS. HANSEL’s precise analysis of all
causal events in the transaction reported that Neutron RPCs
raised a “Connection to Neutron failed” error. Additionally,
we also observed that the Nova POST request (from the
compute node) to Neutron server (step 5, Fig. 2) for creating
ports on the compute node was never sent out, indicating
that a previous step had failed, i.e., step 4 to fetch network,
port and security groups for the instance. This information
coupled with failed Nova POST request, points to a buggy
NeutronClient on the compute node.

3.1.2 VM delete

DASHBOARD ERROR. When deleting an instance, we
observed that the dashboard marked the VM state as ERROR
without explicitly mentioning the error.

LOG ANALYSIS. Analysis of Nova logs on the compute
node listed two errors—"“Setting instance vm_state to
ERROR” and “Failed to deallocate network for instance”.
Strangely, Neutron logs again showed no errors. Enabling
TRACE level debugging for Nova again pointed towards
exceptions in the buggy NeutronClient. With no error on the
dashboard, it is hugely frustrating for operators to determine
the root cause of such faults.

HANSEL’S DIAGNOSIS. HANSEL reported that the Neutron
RPCs raised a “Connection to Neutron failed” error, similar
to the earlier scenario. Further, the chain of events showed
no DELETE message sent out to delete the ports on the VM
instance was never sent out. Note that a DELETE request
must be issued to delete a resource. These two facts together
again point to a buggy NeutronClient.

3.1.3 Attach VM to an external network

DASHBOARD ERROR. An instance creation requires
plumbing virtual interface to an existing network. However,
if the existing tenant network virtualization, e.g., VXLAN,
GRE, etc., does not match the network configuration, e.g.,
flat networks, then OpenStack aborts the action. We
replicated this scenario and attempted attaching an instance
to an external network when creating it. We observed that
the dashboard reflected a “No valid host found” error, even
when several compute nodes were available.

LOG ANALYSIS. Examining the logs, we observed that
Nova throws an exception about the 1ibvirt driver failing
to attach the virtual interface to the instance. Subsequently,

'While buggy clients are not common, they are possible due to
incompatibilities with third party Python libraries.

2Df:velopers may augment HANSEL’s diagnosis with additional
logs available in development settings for root cause analysis.

Nova fails to schedule the VM on a “valid” host. No
other errors/exceptions were observed in the logs. However,
the real reason for the fault was hidden as only a warning
in Neutron logs, which indicated that the virtual interface
binding to the external network was not possible. Such
erroneous reporting on the dashboard and even the logs
significantly increase time for root cause analysis.
HANSEL’S DIAGNOSIS. Using HANSEL, we observed that
the Neutron REST response for Nova’s POST to create and
bind ports (step 5, Fig. 2) indicated a binding failure of
the virtual interface. Subsequently, we observed no POST
callback (step 7, Fig. 2) from Neutron is not sent to Nova.
The above examples clearly demonstrate the merit in
network monitoring and analysis for root cause analysis, in
contrast to the log based inference alone. Later in § 8.1,
we describe other interesting scenarios where the dashboard
and logs do not readily point to the root cause of faults and
network monitoring can significantly expedite the process.

3.2 Difficulty of fault diagnosis

Several routine OpenStack operations, such as instance
creation and deletion, involve cross-service interaction for
successful completion. However, errors occurring along
the call chain are inferred differently by the disparate
components involved in the operation. For example, as
described in § 3.1, errors encountered by Neutron during its
operations (such as “VIF binding failed”) are escalated by
Nova to the dashboard as generic failures in VM creation,
like “No valid host found”.

Model checkers [24, 26, 31, 32, 38, 43] characterize
the behavior of distributed systems and offer guarantees
about component behavior. However, due to their static
nature, they cannot diagnose faults that arise in a running
production system. Other approaches [15,19,22,28,29] have
advocated analysis of system events either through logs or
instrumentation. Both these approaches, while being useful,
have implementation and deployment limitations. Not only
do they require complete knowledge of the entire system,
their success actually depends on the intrusiveness of the
implementation. Effectiveness of log analysis is limited by
the comprehensiveness of the system logs and their debug
level, while system instrumentation to track faults requires
modification of the entire source code, recompilation and
subsequent deployment.

4. SEQUENCE STITCHING PROBLEM

The problem of network monitoring for root cause
analysis in OpenStack crystallizes to determining the correct
sequence of REST and RPC calls for every administrative task
that leads to a fault. Below we present the problem as finding
the correct transitions in an event sequence (ES) that drive
the system from a given state to the error state.

MODEL. We model a transaction in OpenStack as an ES,
and each REST and RPC message as a transition that drives
the system to a new state. In OpenStack, RPCs update



the system state for the same component, while RESTS
potentially update states across components (recall § 2).
Directives issued from the dashboard or CLI, i.e., REST calls
that initiate new administrative tasks (or “transactions”),
create new start states in the ES, corresponding to different
transactions.  All other REST/RPC messages result in
intermediate states. An error state is one where the
REST/RPC transitions report an error.

A transaction is thus a sequence of temporally related
REST and RPC transitions between states. In particular,
(a) REST requests issued to components create new states
in the ES for those components, and (b) RPCs and
REST responses create updated states of components in
the ES. Thus, REST requests signify transitions from one
component to another, while RPCs update the state of
existing components. REST responses update the state of the
component initiating the REST request. As an example, the
figure below shows the ES for a transaction involving a REST
request from a component A to B, followed by an RPC at B,
which updates its state to B’. The REST response from B’
updates the state of A to A’.

o—
PROBLEM DEFINITION. Given the described model, our
problem reduces to answering the following:

e How to accurately model the state of a component based
on just network messages, and

e How to identify the correct placement of REST and RPC
messages connecting different states.

CHALLENGES. The problem of finding valid transitions
gets exacerbated in OpenStack for the following reasons:
Cl1. A transaction may span several REST/RPC calls,
and multiple such transactions occur simultaneously in
OpenStack. Thus the model as described above runs the risk
of state space explosion.

C2. Occurrences of simultaneous transactions make it
difficult to segregate them, and isolate the component states
corresponding to different transactions from each other.

C3. Inter-service control flow via REST calls only identifies
the destination (based on the well-defined destination port);
the source of the REST request is unidentified as ephemeral
ports are used for communication.

C4. Control for components like Nova may flow across
several compute nodes via RPCs during a transaction. Hence,
its state may be distributed across several nodes. Placement
of transitions must account for such control flow.

5. HANSEL

KEY IDEA. OpenStack makes extensive use of unique
identifiers to describe and locate resources in the system,
and the different system nodes maintain internal states
corresponding to each of these identifiers. Guided by this
observation, HANSEL analyzes network messages flowing
across different components to mine these unique identifiers,
and leverages them to construct an execution trail of events.

< REST / RPC Communication >
Intercept OpenStack
messages

N/W Agent EEE N/W Agent

OpenStack nodes

Extract context from
OpenStack messages

Event reception

Temporal ordering

Transaction stitching

Analyzer Service

Figure 3: Schematic architecture of HANSEL.

On detection of a fault, HANSEL backtracks the execution
graph to string together the exact sequence of events that
possibly lead to the fault. Fig. 3 shows a schematic
architecture for HANSEL, which comprises of a distributed
setup of network monitoring agents and a central analyzer
service. HANSEL sits transparently underneath the existing
deployment, without affecting safety and liveness of the
distributed system. HANSEL supports precise fault detection
using three key features:

5.1 Distributed network monitoring and
context extraction

HANSEL requires network monitoring agents at each
node in the OpenStack deployment since it must monitor
all OpenStack messages sent amongst the nodes. These
agents mine each network message for unique identifiers,
such as the 32-character hexadecimal UUIDs, IP addresses
and OpenStack message ids (which are 32-character
hexadecimal strings prefixed by “req-"). These identifiers
are used to create a message context, which is communicated
to a central analyzer service along with additional
metadata about the OpenStack message, including the
source/destination, protocol (i.e., REST or RPC), and the
OpenStack message body. Mining the unique identifiers at
the network agents expedites computation of the execution
graph at the central analyzer service.

5.2 Execution graph construction

HANSEL’s centralized analyzer service extracts the
message contexts communicated by the network agents to
construct an execution graph of network events, which is a
representation of the event sequence model described in § 4.
The creation of such a graph requires: (a) temporal ordering
of messages (containing contexts) received from the network
agents, and (b) stitching together related message contexts
into a logical transaction.

5.2.1 Temporal ordering

In spite of the timestamp consistency across OpenStack
nodes ensured by NTP synchronization, messages from the
network agents may still arrive out of order. HANSEL



ensures that such out-of-order messages can be temporally
ordered, by leveraging a continuous stream (or pipeline) of
“time buckets” (or t-buckets), each having a start and end
timestamp. Only messages that have timestamps falling
within these time-bounds of a t-bucket, can be added to it.
Messages within each #-bucket are further ordered using an
inexpensive sorting mechanism.

Each t-bucket remains active for a stipulated period
of time during which new messages can be added to it.
This ensures that even the messages that have timestamps
belonging to the given t-bucket but have been received late
due to network and buffer delays, can still be processed in a
sorted order. The expiry of a #-bucket is marked by the expiry
of an associated timer. Messages that are timestamped
later than the newest bucket lazily generates a new #-bucket.
Messages marked earlier than the oldest active ¢-bucket in
the pipeline are discarded. The above mechanism ensures
a reasonable temporal ordering of messages. However,
the granularity of the timer and the bucket window length
are system dependent and should be based on the traffic
observed at the analyzer service. Note that higher expiry
times may lead to delayed message processing.

5.2.2 Transaction stitching

Determining a complete transaction sequence in our
execution graph entails finding the correct transitions in the
event sequence as described earlier in § 4. Before we present
our methodology of transaction stitching, we first address
the problem of state space explosion (C1) that accompanies
the ES approach. The number of RPCs in a typical
OpenStack deployment significantly outnumber the REST
calls. We note that the response header of the REST call that
initiated the related RPCs contains the OpenStack request id
shared across the RPCs (per § 2). Since, a REST request-
response pair can be easily identified from the message
metadata, we can also determine the parent REST request
that resulted in the ensuing RPCs. We therefore collapse
all consecutive RPC transitions with the same request id
into the state created by the parent REST request, thereby
significantly reducing the states in the execution graph. The
states in our graph are now linked by REST transitions only,
while RPC transitions are merely self edges. Recalling the
example describing our model, transaction A—»B—B —A’
reduces to A—B—A’ as shown below.

REST ™. REST . o
° Tequest "'Fé's';ié'ﬁé'e""" A“-’

APPROACH. HANSEL processes the messages from the
t-buckets as follows. A REST request to a particular
component (e.g., from A to B in the above example) results
in the creation of a new state in the execution graph for that
component (i.e., B), initialized with the context extracted
from the incoming REST request. Ensuing RPCs augment the
state thus created with their own contexts. The problem of
transaction stitching, therefore, reduces to the identification

of an already existing state in the execution graph that
initiated the REST request, i.e., the identification of state A
in the above example.

SUBSET INEQUALITY. We identify state A as follows. A
REST request to B could have originated from a state A only
if the context in the REST request is a subset of the contexts
available at state A. Further, A acquires its contexts either
from an incoming REST request, or computes it using the
ensuing RPCs, or both. Thus, for a REST transition from
state A to B, the following must hold true:

A—-B: C(ARESTreq) U C(Agpc) 2 C(BRESTreq)

where C(X) represents the set of contexts extracted in X.
Subsequently, HANSEL creates a copy A’ of state A and
augments it with the unique context received in the REST
response from state B:

C(A/) = C(A) U C(BRESTresp)

All further transition placements from A must account
for this state update and HANSEL must place subsequent
transitions starting from state A’ instead of A, thereby
maintaining a causal sequence of transitions.

EXAMPLE. Fig. 4 depicts our approach with the example
transaction from § 2.2, launching a new instance in
OpenStack. HANSEL processes the REST request from
Horizon (step 1) to create a new start state in the execution
graph (Al), corresponding to Nova. Ensuing RPCs update
Al with their contexts. The subsequent GET request to
Glance in step 3 creates a new state B corresponding to
Glance. HANSEL stitches the new state B to A1 based on our
approach, and creates an updated state A1’ for Nova using
the REST response from Glance. The process continues
similarly, resulting in the construction of the graph as shown,
where the A states correspond to Nova, B to Glance, and C
to Neutron. Note that the REST in step 5 creates a new state
C2 for Neutron, and does not update C1.

ACHIEVING PRECISION. While the above technique
for transaction stitching can identify and chain together
a complete transaction, it may result in spurious linkages
between states belonging to different transactions occurring
simultaneously. This is because the context of a particular
state may be entirely composed of generic identifiers, such
as tenant ID, subnets, ports, etc., causing HANSEL to
identify multiple parents for that state, some of which may
belong to other transactions in the execution graph.

For example, an HTTP GET request for ports associated
with a specific tenant may get incorrectly attached to several
other transactions if the algorithm’s subset inequality is
satisfied for other states. Note that all the extraneous state
transitions are valid as they can be potentially reached from
the start state via the CLI using REST APIs (recall § 2).
However, such transitions are undesirable as they are not part
of the actual user transaction, leading to several plausible
chains of events, making it hard to determine the actual
sequence of states corresponding to the transaction.



RPCs
REST request

REST response
Start state

New state

Updated state

Figure 4: Execution graph for launching a new instance.

We address these issues in § 6, where we describe several
heuristics to achieve precision, and overcome the remaining
challenges (C2—C4) listed in § 4.

5.3 Fault diagnosis

As a message context is consumed from z-buckets
to update the execution graph, HANSEL also scans the
OpenStack message body (available from the context) to
detect the presence of faults. This is straightforward for
RESTs, where errors are indicated in the HTTP response
header. For RPCs, however, diagnosing faulty messages
requires domain-specific knowledge of OpenStack so that
error patterns are accurately identified in the message body.
To ensure this operation remains lightweight, HANSEL does
not parse the JSON formatted message body; it simply uses
regular expressions to identify error codes in the message, if
any. Once a fault is identified, HANSEL backtracks from
the faulty state in the execution graph to the start state,
determining the sequence of events that led to the fault.

6. IMPROVING PRECISION

We now describe several heuristics that enable HANSEL
to prune the undesirable transitions between states (per
§ 5.2.2). Note that all these heuristics are generic enough and
do not bind HANSEL to any specific version of OpenStack.

6.1 HTTP modifiers

The HTTP/1.1 protocol contains several directives
including GET, POST, etc., that enable clients to operate on
resources described in the URI. However, except POST, all
other directives, i.e., GET, HEAD, PUT, DELETE, OPTIONS,
and TRACE, are idempotent in behavior (RFC 2616, Sec
9) [6]. HANSEL implements the following three heuristics
for these resource modifiers to remove undesirable linkages:
(1) We disregard repeat occurrences of idempotent actions
for a specific URL In other words, HANSEL’s algorithm
ignores a REST message corresponding to an idempotent
method for a specific resource if the exact same
request/response has been seen in the transaction’s past,
since it does not result in any state update. For example,
Nova might issue multiple identical GET requests to Neutron

(say, querying for ports associated with a tenant) in the same
transaction while waiting on a status update. HANSEL
however, ignores all the intermediate repeat requests until
a new, updated status is finally reported to Nova.

(2) There are several modifier sequences that are unlikely
to occur in a transaction. For example, it is unlikely for a
transaction to create a resource and then immediately delete
it, i.e., a POST immediately followed by a DELETE for the
same resource. Other such transitions include: pUT followed
by posT, pUT followed by DELETE, and DELETE followed by
PUT, for the same resource. However, HANSEL’s transaction
stitching using the context subset inequality may introduce
these unlikely (and thus undesirable) transitions as linkages
in the execution graph, thereby reducing precision.

(3) Several GET requests may interleave two modifier
requests, such as PUT, POST or DELETE. It is desirable that a
subset of the contexts extracted from GET responses between
the two modifiers be utilized in the second modifier request,
assuming the absence of any irrelevant GET requests.

6.2 1IP/Port distinction

OpenStack setups typically install different services on
separate nodes for scalability and fault isolation. HANSEL
leverages this observation to further improve the precision.
(1) Placing Horizon and CLI on a node with a distinct
IP address helps HANSEL accurately determine the starting
point for each user-level transaction. All other transactions
with source IPs different from the Horizon/CLI node
represent intermediate sub-transactions.

(2) OpenStack services use REST calls for inter-component
communication, while intra-component communication
occurs using RPC messages. This observation helps prevent
addition of transitions (i.e., REST calls) across states for the
same component. For example, Nova does not invoke its
own APIs using REST. Thus, there should not be any REST
transition between two Nova states in the execution graph.
(3) A service may be distributed across multiple nodes in
the deployment, and control may migrate from one node
to another within the service via RPCs (per § 2). Thus,
before stitching a REST request to a possible parent state,
HANSEL also analyzes the RPCs at the parent state to identify
a list of possible destination IPs to which control could have
migrated. The REST request is stitched to the possible parent
only if the source IP of the request is either the IP of the
parent, or is part of the list of possible destination IPs.

Note that even if services share IP addresses, HANSEL
would only require the various OpenStack HTTP clients
to report the source service as an HTTP request header to
prevent spurious linkages. No further changes would be
needed in the core deployment.

6.3 Purging

Long-running transactions in OpenStack see continuous
activity, usually in the form of status update requests. We
leverage this observation to distinguish between completed



transactions and ongoing ones. Specifically, if a particular
transaction does not get updated with any new events in a
considerable period of time, we deduce that the transaction
has been completed. Pruning such completed transactions
from the execution graph not only prevents spurious linkages
in future, but also reduces the maintained state space.

We, thus, regularly purge completed transactions from
HANSEL’s data structures by pre-determining a threshold M
of the number of messages processed by the analyzer service
among which consecutive events in the transaction must be
observed. We augment the construction of the execution
graph (as described in § 5.2) by maintaining an ordered list
of “purge buckets” or (p-buckets). As and when messages
are processed to update the execution graph, the created
states are also added to the current active p-bucket. Once u
new messages have been processed, a new p-bucket is added
to the list of p-buckets in order to receive new states.

This mechanism enables HANSEL to easily identify
transactions that have not seen any recent activity. Let
B, ., be the list of all p-buckets, with B, being the latest
(the current active) bucket, and B; the oldest. Then, all
transactions that have not seen any new states in the last
[M/u] p-buckets are assumed to have been completed, i.e.,
all transactions that lie completely in buckets B ... B,y
are deemed complete. These transactions appear in the
execution graph as disconnected components, and are
purged. An alternate approach to state count-based p-
buckets would be to similarly have a time-based purge
mechanism where transaction that do not have any new
events for a threshold period of time are purged from the
execution graph. The thresholds in both cases are system-
dependent, and need to be empirically determined.

7. IMPLEMENTATION

We have implemented a prototype of HANSEL for
OpenStack JUNO based on the design described in § 5 and
§ 6. We built HANSEL’s distributed network monitoring
agents atop Bro [3,34], which we augmented with a custom
protocol parser for the RabbitMQ messaging protocol (60
LOC in C++). We leveraged Python-bindings to Bro’s
communication library (Broccoli [4]) to send events from
the monitor nodes to our central analyzer service, written in
~800 LOC in Python. We also implemented an interactive
Web-based visualizer tool to validate HANSEL’s output.
MULTI-THREADED ARCHITECTURE. The analyzer
service is implemented as a multi-threaded application with
three primary components—the Event Receiver, the Pre-
Processor, and the Transaction Chainer. Each of these
components executes as a separate thread and interacts
with the others using shared memory and exposed APIs.
The Event Receiver’s sole responsibility is fast reception
of events from the distributed Bro monitoring agents via
Broccoli connections. It writes the received events to a
buffer shared with the Pre-Processor. The Pre-Processor
employs binary search to place these possibly out-of-order

events into time buckets, to ensure temporal ordering (per
§ 5.2.1). It maintains a local timer to periodically purge any
expired time buckets from the active pipeline, and makes
them available for the Transaction Chainer to consume. The
Transaction Chainer processes the events in these expired
buckets to construct the execution graph (per § 5.2.2).
OPTIMIZATIONS. We employ a number of optimizations
to improve the performance of the analyzer service. First,
we implement the shared buffer (co-owned by the Event
Receiver and the Pre-Processor) as a circular buffer to
minimize contention between the two threads, and avoid any
loss of events during the wait. Second, we defer actions such
as sorting of events within #-buckets, error detection, etc., till
t-bucket timer expiry is triggered and the bucket is waiting
to be consumed, thereby reducing processing delays in the
active pipeline. The #-bucket sorting uses Python’s built-in
Timsort algorithm, which is well suited to our use-case.

8. EVALUATION

We now present an evaluation of HANSEL. In § 8.1, we
present three case studies highlighting HANSEL’s utility in
effective fault localization and causal analysis for OpenStack
operations. In § 8.2, we use the Tempest integration test
suite to evaluate HANSEL for its precision in uniquely
identifying the transaction for every fault introduced. In
§ 8.3, we evaluate the effectiveness of several optimizations
on HANSEL’s accuracy. In § 8.4, we measure HANSEL’s
network and system overhead under conditions of stress.
EXPERIMENTAL SETUP. Our physical testbed consists
of 7 servers (including 3 compute nodes) connected to 14
switches (IBM RackSwitch G8264) arranged in a three-
tiered design with 8 edge, 4 aggregate, and 2 core switches.
All of our servers are IBM x3650 M3 machines having 2
Intel Xeon x5675 CPUs with 6 cores each (12 cores in
total) at 3.07 GHz, and 128 GB of RAM, running 64-bit
Ubuntu v14.04. We installed OpenStack JUNO (v2014.2.2),
with each component on a different server. The inter-
component OpenStack traffic and Bro-to-analyzer service
communication was isolated to avoid any performance
penalties. The values of #- and p-buckets were evaluated
empirically to be 32s and 500 messages, respectively.

8.1 Accuracy: Case studies

In this section, we present three scenarios highlighting
HANSEL’s utility in the diagnosis of faults in OpenStack
operations. While the list here is far from exhaustive, they
are representative of HANSEL’s effectiveness in diagnosing
other faults as well. The scenarios are also representative
of the typical cross-component communication patterns
involving the major OpenStack constituents.

8.1.1 Delete VM image while saving snapshot

OpenStack enables operators to create snapshot images
from an active instance. This scenario involves interaction
amongst multiple services, including dashboard/CLI, Nova,



RPCs

REST request
REST response

Start state

New state

Updated state
Error state

Nova states

Neutron states
Glance states
Updated Nova states

Selected REST requests:

1 POST - create snapshot
3,58 GET - network metadata

10 PUT - image

11 DELETE - image

13 DELETE - image

1,1 Issued from Horizon

Figure 5: Execution graph for case study in § 8.1.1.

and Glance, to create an instance snapshot and upload it to
Glance. Once the request is initiated from the dashboard, it
issues a POST request to Glance for creating a reservation
for the image. The image identifier received from the
reservation is passed to Nova in a POST request to create
and eventually upload the image to Glance.

Once the hypervisor (in our case, KVM with libvirt)
finishes extracting the image, the dashboard reflects this
change in status of the operation from Queued to Saving.
However, post the image extraction, the completion of
the operation requires two additional steps—(i) writing the
extracted image to a temporary location on the system
performed by libvirt, and (ii) subsequent upload of this
image file to the Glance server. While either of these
stages are in process, other simultaneous operations can be
performed on the image and we briefly discuss them below.

If the image is accidentally deleted from Glance during
the first stage of disk write by 1ibvirt, no error is reflected
on the dashboard. However, Nova logs on the compute
node reveal “Exception during message handling: operation
failed: domain is no longer running”, which is clearly
not very informative. Re-running the scenario with TRACE
debug level, we note a 1ibvirt “virDomainManagedSave()
failed” error, indicating the real cause of the fault.

If the DELETE request is issued during the snapshot upload
to Glance, still no error is reflected on the dashboard. The
only errors detected in the logs are (i) “Exception during
message handling: image may have been deleted during
the upload”, and (ii) a subsequent failed cleanup attempt by
Nova (to delete the failed upload that in turn fails due to
absence of the specific image entry on Glance). Glance logs
show no errors in either case.

HANSEL’S DIAGNOSIS. As shown above, log analysis may
miss out on diagnostic clues due to the log levels and the
often vague nature of error messages. In contrast, HANSEL
reported all the errors in each of the above scenarios. Unlike,
log analysis, HANSEL also detected the failed PUT and the
subsequent cleanup initiated by Nova. Fig. 5 presents the

output of HANSEL’s visualizer for this case study. Steps 1-9
involve creating a snapshot of the VM image. The DELETE
REST call in step 11 halts the PUT request (step 10) to upload
the VM image on Glance, and subsequently deletes it. As
a result, Glance responds with an error (step 12) captured
in state C2. Following the failed PUT call, Nova initiates
a cleanup operation (step 13), which also fails as shown in
node C3. While the real cause of the error was the DELETE
operation (step 11), HANSEL in its present form does not
link faults across transactions. Note that 11 is a separate
transaction by itself. Thus, HANSEL did not pinpoint the
DELETE operation as the cause of the fault. We leave such
cross-transaction diagnosis for future work.

8.1.2  External dependency crash

OpenStack relies on several third party dependencies
for correct functioning. For example, the Neutron agent
on the compute node requires presence of a functional
OpenvSwitch (OVS) to create port bindings for every VM
scheduled for creation on that node. However, if the OVS
on the compute node goes down, the Neutron agent crashes
immediately. If an operator schedules creation of a VM on
such a compute node, the dashboard throws “No valid host
found”. Interestingly, Neutron logs show no faults.
HANSEL’S DIAGNOSIS. In contrast, HANSEL’s analysis
of the entire sequence of events indicated (i) Neutron
RPCs with failed interface bindings, and (ii) the same
being communicated to Nova (i.e., Neutron’s response to
Nova’s POST in step 5, Fig. 2), which in the absence of
another candidate compute node, ultimately resulted in the
dashboard displaying the “No valid host found” error raised
by Nova scheduler. While, HANSEL does not detect the
root cause of the fault, it does determine the OpenStack
component responsible for faulty behavior.

8.1.3 Delete a network with existing VM

In addition to scenarios where fault notifications are either
not propagated back to the operator or are misleading in
nature, there can be several use-cases where the notifications
are not informative enough for the operator to take a
corrective action. This scenario presents a case where an
operator issues a DELETE request for a virtual network
from the dashboard but the operation fails. The dashboard
notification indicates no definite reason for the failure.

There can be multiple plausible reasons for the failure
such as a Neutron controller service component crash,
inaccessibility of the database service, or existing ports that
are currently connected to that network. Absence of such
details may leave the operator clueless about the corrective
actions that must be taken to resolve this issue, and leaves
no choice other than to look for existing ports on the virtual
network, or to mine the log files of related components for
any crashes or disconnections.

As part of each network delete operation, any existing
subnets of the network must be deleted first. In this scenario,



Events
Category Tests | Txns RPC [ REST | Error | Drop States
Image (Glance) 100| 3.7K| 28.0K|16.4K 50 1| 2.0K
Mgmt (Nova) 218 | 59K| 523K |26.6K| 125 3| 48K
N/w (Neutron) 109| 2.2K| 15.5K| 9.0K 45 0 12K
Storage (Cinder) 58| 1.0K 3.5K| 39K 25 0| 04K
VM (Nova) 224| 82K | 87.7K|37.0K| 124| 173| 58K

Total 709 |21.0K | 187.0K |92.7K | 369 | 177|14.2K

Table 1: Characterization of the Tempest test suite.

we had an existing VM instance with a network port attached
to one of the subnets of the virtual network. This caused the
subnet deletion to fail, consequently leading to the failure of
the network delete operation.

HANSEL’S DIAGNOSIS. HANSEL was able to correctly
capture and mark the erroneous DELETE request for the
subnet along with the encapsulated message in its response
stating “Unable to complete operation on subnet. One or
more ports have an IP allocation from this subnet.”.

8.2 Identification of unique transaction

We define the precision n of identification of unique
transaction per error as:

n=WN-n/(N-1)

where N is the total number of possible parents, and 7 is
the actual count reported by HANSEL. If HANSEL correctly
identifies a fault to just one transaction, i.e., n=1,7=1. In
the worst case with n=N, n=0.
REPRESENTATIVE SCENARIOS. We leverage cases from
the Tempest OpenStack integration test suite [12] and
analyze them with HANSEL to determine its precision
when executing several transactions in parallel. Our choice
of using Tempest is based on several design goals and
principles it follows and are discussed subsequently.
(1) Tempest is designed to run against any OpenStack
deployment, irrespective of the scale, the environment
setting or the underlying services that the deployment uses.
(2) Tempest accesses only the public user-level APIs that all
OpenStack components expose through their REST clients
and CLI. Therefore, all tests that Tempest runs and validates,
are user-level transactions that a tenant or administrator is
allowed to make in a real-world setting via OpenStack’s API.
(3) Tempest provides a comprehensive set of functional and
integration test cases derived from actual scenarios occurring
daily in fully operational OpenStack deployments. These
scenarios include actions spanning single or multiple nodes.
(4) Since the Tempest test suite can run on large
deployments, it provisions running it’s testcases in parallel
to stress the OpenStack deployment close to the degree that
it would endure during peak usage cycles.
TEST SUITE CHARACTERIZATION. The latest Tempest
OpenStack integration test suite has ~1K tests of which
709 executed successfully on our setup, including both the
“positive” and “negative” scenarios. The rest were not
applicable for our setup and thus skipped by the test harness.
All tests that included operations such as creation,

deletion, updation, migration, etc., of instances, were
classified as VM. Tests that update tenant network
configuration, ports, routers, etc., were classified under
Network. Management tests included updating host lists,
key pairs, availability zones, tenant quotas, etc. Tests
involving block storage were marked as Storage, while those
involving VM images are categorized under Images.

We executed each of the applicable 709 Tempest tests
in isolation and observed its network communication using
HANSEL. Table 1 reports our findings for each category
described above. TESTS lists the number of tests executed in
each category. TXNS indicates the sum total number of top
level transactions initiated for all tests in the corresponding
category. The REST and RPC columns list all the network
messages processed by HANSEL. These messages also
include periodic updates, heartbeats, etc., which HANSEL
prunes before creating execution graph.

ERRORS indicates the erroneous network messages
received across all tests, while DROPS shows the messages
received but discarded as their corresponding #-bucket had
already expired. The low number of drops with respect
to the high count of REST and RPC events indicates the
effectiveness of the 7-bucket expiry time in handling out-
of-order events. STATES shows the sum total of nodes
generated per execution graph by HANSEL across all tests
in that category. The effectiveness of HANSEL’s core
algorithm, optimizations and other heuristics is evident from
the low number of states in the execution graph considering
the high number of REST and RPC messages received.
PARALLEL WORKLOAD.  We determine HANSEL’s
effectiveness, in localizing faults to unique transactions in
a more realistic setting, by randomly selecting Tempest
tests proportional to their distribution in the test suite and
executing them concurrently. The executed tests include
a mix of both erroneous and successful tests, as well as
the different categories described earlier. Fig. 6a plots
HANSEL’s precision for varying number of parallel tests,
ranging from 50 to 300 in increments of 50. Each test
case spans several distinct transactions. We observe that
HANSEL’s precision (>98%) does not vary significantly
even with a high number of concurrent transactions.

8.3 Effectiveness of optimizations

8.3.1 Impact of rec state reduction

We evaluate the impact of RPC state conflation described
in § 5.2.2 using execution results from all 709 Tempest tests
to calculate relative savings in state space. Fig. 6b plots
the aggregated and individual results for all the categories
of tests listed in Table 1. We observe that our optimization
shows significant benefits across all the tests, with >30%
tests demonstrating >60% reduction in state space. We
further observe that tests in the VM category show the
highest savings with >60% state space reduction for >60%
VM-based tests. Since a large fraction of all OpenStack



- 7
50 —e—
100 —— 6
0.8 150 0.8
200 3 5
250 —o— <
w 0.6 300 —o— w 0.6 @ 4
a [a) 9
© o4l © o4 Al —o— | z 3
Img —a— 2
Mgt —*— w2
02 f 0.2 .
— ; e
0 : 0 ‘ i ‘ 0 i i i b
0.984 0.988 0.992 0.996 1 0 20 40 60 80 100 2 4 8 16 32 64
Precision Degree of Conflation (%) t-Bucket Expiry Time (s)
(a) Precision for parallel workload. (b) State space savings due to RPC conflation. (¢) Impact of z-bucket on temporal ordering.
s ‘ 2000 160
200 —o— 140
300 1600 | 120
1000
W 1500 —o— 100
8 1200 80

0.1

0.976 0.98 0.984 0.988 0.992 0.996 1
Precision

(d) Impact of p-bucket size on precision.

800 r

Event Rate (Receive)

Preprocessor —&— 1
Python Broccoli —&—
Event Receiver —x—

400
0 1000 2000 3000 4000 5000

Event Rate (Send)

(e) Overhead of communication pipeline.

60
40
20
0 Ji;
50 100 150 200 250
Parallel Workload Size

Time/Transaction (msec)

(f) Time spent within chainer per transaction.

Figure 6: HANSEL’s precision and effectiveness of optimizations.

actions also involve VM based operations, this optimization
would yield significant savings. In contrast, the Storage tests
yield minimum benefits with 50% of them showing <25%
reduction in state space. On average, the RPC state conflation
optimization saves ~61% of all states managed by HANSEL.

8.3.2  Impact of t-buckets

To evaluate the impact of #-buckets for temporal ordering
of messages (per § 5.2.1), we selected 30 Tempest tests
across all categories proportional to their distribution, and
executed them in parallel on our system, with varying timer
expiry for the #-buckets. We subsequently measured the
count of messages received but discarded (because their
corresponding t-bucket had already expired). Fig. 6¢ plots
the results with varying #-bucket expiry times from 2s to 64s
incremented exponentially. We observe that at 2s, HANSEL
reports drop rates of ~6%, which drop to 0% at 32s. Thus, at
lower t-bucket expiry times, HANSEL is more likely to drop
events, which may result in incorrect causal sequences.

8.3.3 Effectiveness of purging

We evaluate the effectiveness of the purging mechanism
(per § 6.3) to measure the improvement in HANSEL’s
precision as a result of purging older (and therefore possibly
unrelated) transactions. We selected 50 Tempest tests across
all categories proportional to their distribution, and executed
them in parallel with varying p-bucket size. Fig. 6d plots
the results, and we observe that the p-bucket size does not
significantly alter the precision, even when size changes
from 100 to 1.5K messages. This is because: (a) transactions
do not cross the p-bucket boundaries, or (b) other heuristics
were sufficient to achieve the desired precision.

8.4 Performance

8.4.1 Overhead of communication pipeline

In this section, we evaluate the overheads of HANSEL’S
event transmission pipeline till each message is processed.
Specifically, we measure the rate of events sent by the
Bro agents running at the different OpenStack nodes, and
compare the rate of events processed by the analyzer service.
Note that this excludes time to generate the execution graph.

We use tcpreplay [11] to send out HTTP events at varying
rates from the Bro agents and observe the rate of events
received at the analyzer service at various stages in its
pipeline. Fig. 6e plots the variation in events received with
event rates starting from 500 till 5K, incremented in steps of
500. We observe that events processed by the Pre-processor
match with those received at HANSEL’s Event Receiver
(with no losses reported) and those sent by Python Broccoli.
This trend continues even at higher send rates.

Note that Python Broccoli reports lower event rate after
the 1.6K mark. We believe that the Python bindings for
Broccoli significantly impacts the processing pipeline, and
is thus a bottleneck. Leveraging the C++ Broccoli bindings
may improve the observed event rate.

8.4.2 Overhead of Transaction Chainer

HANSEL’s fault diagnosis also depends on the time taken
by the Transaction Chainer to create the execution graph. We
randomly selected several Tempest test cases and executed
them concurrently. Fig. 6f plots the results with varying
number of tests, ranging from 50 to 250. We observe that
under all scenarios HANSEL’s Transaction Chainer takes



<150ms per transaction. We attribute the variance across
the results to the random selection of test cases.

8.4.3 System overhead

We measure the overhead of applying HANSEL to our
testbed. We ran 30 Tempest tests in parallel, which initiated
>1.5K concurrent transactions, and monitored all nodes to
measure CPU and memory consumption by Bro agents and
the central analyzer service. These tests took ~15mins to
complete. We observed that peak CPU usage for Bro-based
monitoring agents was <1%, while their memory usage was
~100 MB. The analyzer service reported peak CPU usage of
~4.35% and memory consumption of ~100 MB.

9. LIMITATIONS & FUTURE WORK

(1) The granularity of fault detection and subsequent
diagnosis is contingent upon the nature of network messages
monitored. Error messages that do not match the
regular expression checks may be potentially missed. In
comparison, log analysis also suffers from this limitation.
(2) HANSEL cannot always detect fault manifestations due
to system dependencies. For example, if an OVS agent on a
compute node crashed, HANSEL may detect from the nature
of communication that the Neutron agent on that compute
node is not working. However, HANSEL cannot precisely
localize the fault due to the OVS crash itself (unless the error
messages reveal it). In such cases, HANSEL together with
log analysis may be useful to pinpoint the root cause.

(3) HANSEL in its present form does not detect faults
that manifest across transaction boundaries, e.g., a DELETE
request halting an ongoing operation (per § 8.1.1). While
HANSEL can find causal linkages between the two
transactions, it may not conclusively determine the cause
of the problem with the halted transaction. We leave such
cross-transaction fault analytics for future work.

(4) Unlike later versions of OpenStack that exclusively use
32-character UUIDs as identifiers, some older versions use
either 8 or 32-character identifiers, or their hashed variants.
Thus, HANSEL would only require minor format specific
changes to its regular expressions to be applicable to other
OpenStack versions. Further, while the general technique
of stitching transactions based on event sequences can be
applied to debug other systems, the direct portability of
HANSEL in its current form needs further investigation. For
example, while cloud platforms such as CloudStack and
vSphere also make use of 32-character UUIDs in their REST
and RPC calls, a meaningful application of HANSEL to both
of them would require a more careful study of the end-to-end
communication patterns and the role of UUIDs in resource
management. We defer such exploration to future work.

(5) Distributed stream processing systems, such as Spark
Streaming [45], may significantly improve HANSEL’s
scalability and performance. Spark Streaming models
incoming streams as a series of micro-batch computations
on discrete time intervals (analogous to HANSEL’s bucketing

mechanism), supports iterative algorithms on the workload,
and is thus well-suited for our use case. We defer the
development and evaluation of HANSEL’s analyzer service
as a distributed streaming application to future work.

(6) The execution sequences constructed by HANSEL could
also be leveraged to diagnose other problems in the system,
such as the ability to localize performance bottlenecks. Like
prior work [37], HANSEL could also be augmented with this
capability by correlating latencies in requests/responses with
the utilization levels of system resources.

10. RELATED WORK

10.1 Distributed System Model Checkers

Distributed System Model Checkers (DMCK) are utilized
primarily for discovering bugs by exercising all possible
sequences of events so as to push the target distributed
system into critical situations. They are primarily aimed
at preemption of faults by verifying a priori the reliability
of distributed systems. DMCK, however, suffer from the
problem of state-space explosion, which is addressed by
state-of-the-art black-box approaches [24, 26, 32, 38, 43]
through non-systematic, randomized reduction techniques.
These techniques rarely exercise multiple system failures,
which limits the effectiveness of bug discovery. This
renders them inadequate in addressing the typical complex
failures encountered in distributed systems, especially cloud
systems. While SAMC [31] addresses the above concerns,
unlike HANSEL, it requires complete semantic knowledge of
the target distributed system. Further, DMCK cannot be used
for diagnosing faults in running production deployments.

10.2 Distributed Systems Tracing

Various techniques have been proposed in prior work
that diagnose faults by tracing the sequence of events and
interactions among the components of a distributed system.
EXPLICIT METADATA PROPAGATION. In this approach,
end-to-end tracing is integrated within the distributed system
operations itself. These systems [18-22,28,35-37,39, 41]
rely on instrumentation at the level of kernel, applications,
middleware, libraries or network messages. In other words,
they modify the target system to (a) ensure propagation of
unique metadata per request across the system, and (b) get a
causal chain of events associated with that request. Pip [35]
and Webmon [23] rely on application level tagging, while
Pinpoint [19] tags client requests as they travel through the
system, via middleware and library modifications. Several
popular industry implementations [5, 13, 37], also take a
similar approach towards end-to-end tracing. X-trace [22]
employs a combination of middleware and network message
instrumentation to uniquely tag all network operations
resulting from a particular task. Ju er al. [28] make
modifications to OpenStack to taint RPC and REST traffic for
end-to-end OpenStack task tracing. vPath [39] makes kernel
modifications to trace all synchronous RPC calls associated



with a particular task. In contrast, HANSEL does not require
any such instrumentation, and uses available metadata to
stitch together a causal sequence of events.
SCHEMA-BASED. Magpie [16] and ETE [27] rely on the
event semantics of distributed systems, and use temporal
join-schemas on custom log messages. Such approaches are
less scalable than those based on propagation of metadata,
since they delay the determination of causal relations until
all the logs are collected. In contrast, HANSEL is API-
agnostic and does not require knowledge of event semantics.
Moreover, HANSEL is based on a fast, online algorithm.
BLACK-BOX TRACING. Some tracing systems [17, 30,
40,42, 44] rely on log analysis to infer causal relationship
among events. Such tools, however, are limited by the
verbosity of the logs, and employ probabilistic data mining
approaches. FChain [33] and Netmedic [29] use statistical
inferences from system metrics (like CPU and network
usage) and require a comprehensive training phase. Unlike
the deterministic approach taken by HANSEL, these tools are
probabilistic and are not exhaustive in their fault detection.

11. CONCLUSION

We present HANSEL, a system that uses non-intrusive
network monitoring to expedite root cause analysis for faults
manifesting in OpenStack operations. HANSEL examines
relevant OpenStack messages to mine unique identifiers, and
stitches together a stateful trail of control flow amongst the
component nodes. We present several optimizations and
heuristics to improve HANSEL’s precision. HANSEL is fast
and accurate, and precise even under conditions of stress.

12. ACKNOWLEDGEMENTS

We thank our shepherd, Theophilus Benson, and the
anonymous reviewers for their valuable comments.

13. REFERENCES

[1] OpenStack. https://www.openstack.org/.

[2] Apache CloudStack. https://goo.gl/1S3K9W.

[3] Bro. https://www.bro.org/.

[4] Broccoli. https://goo.gl/4NUdF1i.

[5] Cloudera HTrace. https://goo.gl/Pz31Qu.

[6] HTTP. http://www.ietf.org/rfc/rfc2616.txt.
[7] Openstack customers. https://goo.gl/JFLPrU.

[8] Rackspace Issue 1. https://goo.gl/2tdjHB.

[9] Rackspace Issue 2. https://goo.gl/CngST1.

[10] Rackspace Issue 3. https://goo.gl/JVVpXO0.

[11] Tcpreplay. http://tcpreplay.synfin.net/.

[12] Tempest. http://goo.gl/0ZiXTV.

[13] Twitter Zipkin. https://goo.gl/bHtUKc.

[14] VMware vSphere. http://goo.gl/kNAROE.

[15] P. Bahl et al. Towards Highly Reliable Enterprise Network
Services via Inference of Multi-level Dependencies. In
SIGCOMM’07.

[16] P. Barham et al. Using Magpie for Request Extraction and
Workload Modelling. In OSDI’04.

[17] L. Bitincka et al. Optimizing Data Analysis with a
Semi-structured Time Series Database. In SLAML’10.

[18] A. Chanda et al. Whodunit: Transactional Profiling for
Multi-tier Applications. In SOSP’07.

[19] M. Y. Chen et al. Pinpoint: Problem Determination in Large,
Dynamic Internet Services. In DSN’02.

[20] Y.-Y. M. Chen et al. Path-based Failure and Evolution
Management. In NSDI’04.

[21] R. Fonseca et al. Experiences with Tracing Causality in
Networked Services. In INM/WREN’10.

[22] R. Fonseca et al. X-trace: A Pervasive Network Tracing
Framework. In NSDI’07.

[23] T. Gschwind et al. Webmon: A Performance Profiler for Web
Transactions. In WECWIS’02.

[24] R. Guerraoui et al. Model Checking a Networked System
Without the Network. In NSDI'11.

[25] H. S. Gunawi et al. What Bugs Live in the Cloud?: A Study
of 3000+ Issues in Cloud Systems. In SOCC’14.

[26] H. Guo et al. Practical Software Model Checking via
Dynamic Interface Reduction. In SOSP’11.

[27] J. L. Hellerstein et al. ETE: A Customizable Approach to
Measuring End-to-end Response Times and their
Components in Distributed Systems. In ICDCS’99.

[28] X. Ju et al. On Fault Resilience of OpenStack. In SOCC’13.

[29] S. Kandula et al. Detailed Diagnosis in Enterprise Networks.
In SIGCOMM’09.

[30] S.P. Kavulya et al. Draco: Statistical Diagnosis of Chronic
Problems in Distributed Systems. In DSN’12.

[31] T. Leesatapornwongsa et al. SAMC: Semantic-aware Model
Checking for Fast Discovery of Deep Bugs in Cloud
Systems. In OSDI’ 14.

[32] H. Lin et al. MODIST: Transparent Model Checking of
Unmodified Distributed Systems. In NSDI’09.

[33] H. Nguyen et al. FChain: Toward Black-box Online Fault
Localization for Cloud Systems. In ICDCS’13.

[34] V. Paxson. Bro: A System for Detecting Network Intruders
in Real-time. In USENIX Security’98.

[35] P. Reynolds et al. Pip: Detecting the Unexpected in
Distributed Systems. In NSDI’06.

[36] R.R. Sambasivan et al. Diagnosing Performance Changes by
Comparing Request Flows. In NSDI'1].

[37] B. H. Sigelman et al. Dapper: A Large-scale Distributed
Systems Tracing Infrastructure. Google Research, 2010.

[38] J. Simsa et al. dBug: Systematic Evaluation of Distributed
Systems. In SSV’10.

[39] B.-C. Tak et al. vPath: Precise Discovery of Request
Processing Paths from Black-Box Observations of Thread
and Network Activities. In ATC’09.

[40] J. Tan et al. Visual, Log-based Causal Tracing for
Performance Debugging of MapReduce Systems. In
ICDCS’10.

[41] E. Thereska et al. Stardust: Tracking Activity in a
Distributed Storage System. In SIGMETRICS 06.

[42] W. Xu et al. Detecting Large-scale System Problems by
Mining Console Logs. In SOSP’09.

[43] M. Yabandeh et al. CrystalBall: Predicting and Preventing
Inconsistencies in Deployed Distributed Systems. In
NSDI’09.

[44] D. Yuan et al. SherLog: Error Diagnosis by Connecting
Clues from Run-time Logs. In ASPLOS’ 10.

[45] M. Zaharia et al. Discretized Streams: Fault-tolerant
Streaming Computation at Scale. In SOSP’13.


https://www.openstack.org/
https://goo.gl/1S3K9W
https://www.bro.org/
https://goo.gl/4NUdFi
https://goo.gl/Pz3lQu
http://www.ietf.org/rfc/rfc2616.txt
https://goo.gl/jFLPrU
https://goo.gl/2tdjHB
https://goo.gl/CnqSTl
https://goo.gl/JVVpX0
http://tcpreplay.synfin.net/
http://goo.gl/OZiXTV
https://goo.gl/bHtUKc
http://goo.gl/kNAR0f

	1 Introduction
	2 OpenStack Background
	2.1 1.04347rest/rpc communication
	2.2 Example workflow

	3 Motivation
	3.1 Representative Scenarios
	3.1.1 VM create
	3.1.2 VM delete
	3.1.3 Attach VM to an external network

	3.2 Difficulty of fault diagnosis

	4 Sequence Stitching Problem
	5 1.04347Hansel
	5.1 Distributed network monitoring and context extraction
	5.2 Execution graph construction
	5.2.1 Temporal ordering
	5.2.2 Transaction stitching

	5.3 Fault diagnosis

	6 Improving precision
	6.1 HTTP modifiers
	6.2 IP/Port distinction
	6.3 Purging

	7 Implementation
	8 Evaluation
	8.1 Accuracy: Case studies
	8.1.1 Delete VM image while saving snapshot
	8.1.2 External dependency crash
	8.1.3 Delete a network with existing VM

	8.2 Identification of unique transaction
	8.3 Effectiveness of optimizations
	8.3.1 Impact of rpc state reduction
	8.3.2 Impact of t-buckets
	8.3.3 Effectiveness of purging

	8.4 Performance
	8.4.1 Overhead of communication pipeline
	8.4.2 Overhead of Transaction Chainer
	8.4.3 System overhead


	9 Limitations & future work
	10 Related Work
	10.1 Distributed System Model Checkers
	10.2 Distributed Systems Tracing

	11 Conclusion
	12 Acknowledgements
	13 References

