EC-Cache: Load-balanced, Low-latency Cluster Caching with Online Erasure Coding

Rashmi Vinayak
UC Berkeley

Joint work with

Mosharaf Chowdhury, Jack Kosaian (U Michigan)
Ion Stoica, Kannan Ramchandran (UC Berkeley)
Caching for data-intensive clusters

- Data-intensive clusters rely on **distributed, in-memory caching** for high performance
 - Reading from memory orders of magnitude faster than from disk/ssd
 - Example: Alluxio (formerly Tachyon†)

†Li et al. SOCC 2014
Imbalances prevalent in clusters

Sources of imbalance:

• Skew in object popularity
• Background network imbalance
• Failures/unavailabilities
Imbalances prevalent in clusters

Sources of imbalance:

- Skew in object popularity
- Background network imbalance
- Failures/unavailabilities

Small fraction of objects highly popular

- Zipf-like distribution
- Top 5% of objects 7x more popular than bottom 75%†
 (Facebook and Microsoft production cluster traces)

†Ananthanarayanan et al. NSDI 2012
Imbalances prevalent in clusters

Sources of imbalance:

- Skew in object popularity
- **Background network imbalance**
- Failures/unavailabilites

Some parts of the network more congested than others

- Ratio of maximum to average utilization more than 4.5x with > 50% utilization

(Facebook data-analytics cluster)
Imbalances prevalent in clusters

Sources of imbalance:

• Skew in object popularity
• Background network imbalance
• Failures/unavailability

Some parts of the network more congested than others

- Ratio of maximum to average utilization more than 4.5x with > 50% utilization
 (Facebook data-analytics cluster)
- Similar observations from other production clusters†

† Chowdhury et al. SIGCOMM 2013
Imbalances prevalent in clusters

Sources of imbalance:

• Skew in object popularity
• Background load imbalance
• Failures/unavailabilities

Norm rather than the exception

- median > 50 machine unavailability events every day in a cluster of several thousand servers†

(Facebook data analytics cluster)

†Rashmi et al. HotStorage 2013
Imbalances prevalent in cluster

Sources of imbalance:

- Skew in object popularity
- Background network imbalance
- Failures/unavailabilities

▷ Adverse effects:
 - load imbalance
 - high read latency
Imbalances prevalent in cluster

Sources of imbalance:

- Skew in object popularity
- Background network imbalance
- Failures/unavailabilities

→ Adverse effects:
 - load imbalance
 - high read latency

Single copy in memory often not sufficient to get good performance
Popular approach: Selective Replication

- Uses some memory overhead to cache replicas of objects based on their popularity
 - more replicas for more popular objects
Popular approach: Selective Replication

- Uses some memory overhead to cache replicas of objects based on their popularity
 - more replicas for more popular objects

Diagram:

- Server 1 with 2x GET A
- Server 2 with 1x GET B
- Server 3 with ellipses
Popular approach: Selective Replication

- Uses some memory overhead to cache replicas of objects based on their popularity
 - more replicas for more popular objects

![Diagram showing three servers with replicas of objects A and B.](image)
Popular approach: Selective Replication

• Uses some memory overhead to cache replicas of objects based on their popularity
 - more replicas for more popular objects

 ![Diagram](image)

• Used in data-intensive clusters† as well as widely used in key-value stores for many web-services such as Facebook Tao‡

†Ananthanarayanan et al. NSDI 2011, ‡Bronson et al. ATC 2013
Read performance & Load balance

Memory Overhead
Read performance & Load balance

Single copy in memory
Memory Overhead

Read performance & Load balance

Single copy in memory

Selective replication

Memory Overhead
Read performance & Load balance

Single copy in memory

Memory Overhead

Selective replication

EC-Cache
Read performance & Load balance

Memory Overhead

“Erasure Coding”

EC-Cache

Selective replication

Single copy in memory
Quick primer on erasure coding
Quick primer on erasure coding

- Takes in k data units and creates r “parity” units
Quick primer on erasure coding

• Takes in k data units and creates r “parity” units

• Any k of the $(k+r)$ units are sufficient to decode the original k data units
Quick primer on erasure coding

- Takes in k data units and creates r “parity” units
- Any k of the $(k+r)$ units are sufficient to decode the original k data units

\[\begin{array}{c}
d1 & d2 & d3 & d4 & d5 & p1 & p2 & p3 & p4 \\
\end{array} \]

- $k = 5$
- $r = 4$
Quick primer on erasure coding

- Takes in k data units and creates r “parity” units
- **Any** k of the $(k+r)$ units are sufficient to decode the original k data units

```
\begin{array}{c}
\text{data units} \\
\text{parity units} \\
\hline
\text{d1} & \text{d2} & \text{d3} & \text{d4} & \text{d5} \\
\text{p1} & \text{p2} & \text{p3} & \text{p4} \\
\end{array}
```

- $k = 5$
- $r = 4$
Quick primer on erasure coding

- Takes in k data units and creates r “parity” units

- Any k of the $(k+r)$ units are sufficient to decode the original k data units

- $k = 5$
- $r = 4$
Quick primer on erasure coding

• Takes in k data units and creates r “parity” units

• Any k of the $(k+r)$ units are sufficient to decode the original k data units

$\begin{array}{c}
d1 \\
d2 \\
d3 \\
d4 \\
d5 \\
p1 \\
p2 \\
p3 \\
p4 \\
\end{array}$

Read

• $k = 5$
• $r = 4$
Quick primer on erasure coding

- Takes in k data units and creates r “parity” units

- Any k of the $(k+r)$ units are sufficient to decode the original k data units

• $k = 5$
• $r = 4$
EC-Cache bird’s eye view: Writes
EC-Cache bird’s eye view: Writes

Put

Caching servers
EC-Cache bird’s eye view: Writes

- Object split into k data units

\[X \]

\[\text{Split} \]

\[k = 2 \]

\[\text{Put} \]

\[\text{Caching servers} \]
EC-Cache bird’s eye view: Writes

- **Object split** into k data units
- **Encoded** to generate r parity units

```
   Caching servers

   ... 

   X

   Split
   d1  d2

   Encode
   d1  d2  p1
```

- k = 2
- r = 1
EC-Cache bird’s eye view: Writes

- Object **split** into k data units
- **Encoded** to generate r parity units
- \((k+r)\) units cached on **distinct servers** chosen **uniformly** at random
EC-Cache bird’s eye view: Reads
EC-Cache bird’s eye view: Reads

- Read from \((k + \Delta)\) units of the object chosen uniformly at random
 - “Additional reads”
- Use the first \(k\) units that arrive
EC-Cache bird’s eye view: Reads

- Read from \((k + \Delta)\) units of the object chosen uniformly at random
 - “Additional reads”
- Use the first \(k\) units that arrive

Caching servers

\[
\begin{array}{c}
d1 \\
d2 \\
p1 \\
\vdots
\end{array}
\]

\[k = 2\]
\[r = 1\]

Get X
EC-Cache bird’s eye view: Reads

- Read from $(k + \Delta)$ units of the object chosen uniformly at random
 - “Additional reads”
- Use the first k units that arrive

Caching servers

Get X
EC-Cache bird’s eye view: Reads

- **Read from** \((k + \Delta)\) **units** of the object chosen uniformly at random
 - “Additional reads”
- **Use the first** \(k\) **units** that arrive

Caching servers

- **k = 2**
- **r = 1**
- **\(\Delta = 1\)**
- **k + \(\Delta\) = 3**

Get X
EC-Cache bird’s eye view: Reads

- Read from \((k + \Delta)\) units of the object chosen uniformly at random
 - “Additional reads”
- Use the first \(k\) units that arrive
EC-Cache bird’s eye view: Reads

- Read from \((k + \Delta)\) units of the object chosen uniformly at random
- “Additional reads”
- Use the first \(k\) units that arrive
EC-Cache bird’s eye view: Reads

• Read from \((k + \Delta)\) units of the object chosen uniformly at random
 - “Additional reads”
• Use the first \(k\) units that arrive
• Decode the data units

Caching servers

\(k = 2\)
\(r = 1\)
\(\Delta = 1\)
\(k + \Delta = 3\)

Get X
EC-Cache bird’s eye view: Reads

- Read from \((k + \Delta)\) units of the object chosen uniformly at random
 - “Additional reads”
- Use the first \(k\) units that arrive
- Decode the data units
- Combine the decoded units
Erasure coding: How does it help?
1. **Finer control over memory overhead**
 - Selective replication allows only **integer** control
 - Erasure coding allows **fractional** control
 - E.g., \(k = 10 \) allows control in multiples of 0.1
Erasure coding: How does it help?

1. Finer control over memory overhead
 - Selective replication allows only integer control
 - Erasure coding allows fractional control
 - E.g., $k = 10$ allows control in multiples of 0.1

2. Object splitting helps in load balancing
 - Smaller granularity reads help to smoothly spread load
 - Analysis on a certain simplified model:
 \[
 \frac{\text{Var}(L_{\text{EC-Cache}})}{\text{Var}(L_{\text{Selective Replication}})} = \frac{1}{k}
 \]
Erasure coding: How does it help?

3. Object splitting reduces median latency but hurts tail latency
 - Read parallelism helps reduce median latency
 - Straggler effect hurts tail latency (if no additional reads)
Erasure coding: How does it help?

3. Object splitting reduces median latency but hurts tail latency
 - Read parallelism helps reduce median latency
 - Straggler effect hurts tail latency (if no additional reads)

4. “Any k out of (k+r)” property helps to reduce tail latency
 - Read from (k + Δ) and use the first k that arrive
 - Δ = 1 often sufficient to reign in tail latency
Design considerations
Design considerations

1. Purpose of erasure codes

<table>
<thead>
<tr>
<th>Storage systems</th>
<th>EC-Cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Space-efficient fault tolerance</td>
<td>• Reduce read latency</td>
</tr>
<tr>
<td></td>
<td>• Load balance</td>
</tr>
</tbody>
</table>
Design considerations

2. Choice of erasure code

<table>
<thead>
<tr>
<th>Storage systems</th>
<th>EC-Cache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Design considerations

2. Choice of erasure code

<table>
<thead>
<tr>
<th>Storage systems</th>
<th>EC-Cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Optimize resource usage during reconstruction operations†</td>
<td></td>
</tr>
<tr>
<td>• Some codes do not have “any k out of (k+r)” property</td>
<td></td>
</tr>
</tbody>
</table>

†Rashmi et al. SIGCOMM 2014, Sathiamoorthy et al. VLDB 2013, Huang et al. ATC 2012
Design considerations

2. Choice of erasure code

<table>
<thead>
<tr>
<th>Storage systems</th>
<th>EC-Cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Optimize resource usage during reconstruction operations†</td>
<td>• No reconstruction operations in caching layer; data persisted in underlying storage</td>
</tr>
<tr>
<td>• Some codes do not have “any k out of (k+r)” property</td>
<td>• “Any k out of (k+r)” property helps in load balancing and reducing latency when reading objects</td>
</tr>
</tbody>
</table>

†Rashmi et al. SIGCOMM 2014, Sathiamoorthy et al. VLDB 2013, Huang et al. ATC 2012
Design considerations

3. How do we use erasure coding: across vs. within objects

<table>
<thead>
<tr>
<th>Storage systems</th>
<th>EC-Cache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. How do we use erasure coding: across vs. within objects

<table>
<thead>
<tr>
<th>Storage systems</th>
<th>EC-Cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Some systems encode across objects (e.g., HDFS-RAID); some within (e.g., Ceph)</td>
<td></td>
</tr>
<tr>
<td>• Does not affect fault tolerance</td>
<td></td>
</tr>
</tbody>
</table>
Design considerations

3. **How do we use erasure coding: across vs. within objects**

<table>
<thead>
<tr>
<th>Storage systems</th>
<th>EC-Cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Some systems encode across objects (e.g., HDFS-RAID); some within (e.g., Ceph)</td>
<td>• Need to encode within objects</td>
</tr>
<tr>
<td>• Does not affect fault tolerance</td>
<td>• To spread load across both data & parity</td>
</tr>
<tr>
<td></td>
<td>• Encoding across: Very high BW overhead for reading object using parities†</td>
</tr>
</tbody>
</table>

†Rashmi et al. SIGCOMM 2014, HotStorage 2013
Implementation

- EC-Cache on top of **Alluxio** (formerly Tachyon)
 - **Backend caching servers**: cache data — unaware of erasure coding
 - **EC-Cache client library**: all read/write logic handled
Implementation

- EC-Cache on top of Alluxio (formerly Tachyon)
 - Backend caching servers: cache data — unaware of erasure coding
 - EC-Cache client library: all read/write logic handled

- Reed-Solomon code
 - Any k out of (k+r) property
Implementation

- EC-Cache on top of Alluxio (formerly Tachyon)
 - Backend caching servers: cache data — unaware of erasure coding
 - EC-Cache client library: all read/write logic handled

- Reed-Solomon code
 - Any k out of (k+r) property

- Intel ISA-L hardware acceleration library
 - Fast encoding and decoding
Evaluation set-up
Evaluation set-up

- Amazon EC2
- 25 backend caching servers and 30 client servers
Evaluation set-up

- Amazon EC2
- 25 backend caching servers and 30 client servers
- Object popularity: Zipf distribution with high skew
Evaluation set-up

• Amazon EC2
• 25 backend caching servers and 30 client servers
• Object popularity: Zipf distribution with high skew
• EC-Cache uses $k = 10, \Delta = 1$
 - BW overhead = 10%
Evaluation set-up

- Amazon EC2
- **25 backend caching** servers and **30 client** servers
- Object popularity: Zipf distribution with high skew
- EC-Cache uses $k = 10, \Delta = 1$
 - BW overhead = 10%
- Varying object sizes
Load balancing

Selective Replication

EC-Cache
Load balancing

Selective Replication

- Percent imbalance metric:

$$\lambda = \left(\frac{L_{\text{max}} - L_{\text{avg}^*}}{L_{\text{avg}^*}} \right) \times 100$$

EC-Cache
Load balancing

Selecting Replication

- Percent imbalance metric:

\[\lambda_{SR} = 43.45\% \]

\[\lambda_{EC} = 13.14\% \]

> 3x reduction in load imbalance metric
Read latency

![Bar chart showing read latency comparison between Selective Replication and EC-Cache]

- **Mean**: 242, 96 for Selective Replication, 238, 90 for EC-Cache
- **Median**: 283, 134 for Selective Replication, 283, 134 for EC-Cache
- **95th Percentile**: 340, 193 for Selective Replication, 340, 193 for EC-Cache
- **99th Percentile**: 481, 242 for Selective Replication, 481, 242 for EC-Cache
- **99.9th Percentile**: 81, 492 for Selective Replication, 81, 492 for EC-Cache
Read latency

- Median: $2.64x$ improvement
- 99th and 99.9th: $\sim 1.75x$ improvement
Varying object sizes

Median latency

Tail latency

5.5x improvement for 100MB

3.85x improvement for 100 MB

More improvement for larger object sizes
Role of additional reads (Δ)
Role of additional reads (Δ)

Significant degradation in tail latency without additional reads (i.e., $\Delta = 0$)

![Graph showing CDF of read latency for different replication strategies.](image)

- EC-Cache, $\Delta=0$
- EC-Cache, $\Delta=1$
- Selective Replication
Additional evaluations in the paper

- With background network imbalance
- With server failures
- Write performance
- Sensitivity analysis for all parameters
Summary

- EC-Cache
 - Cluster cache employing erasure coding for load balancing and reducing read latencies
 - Demonstrates new application and new goals for which erasure coding is highly effective
Summary

• EC-Cache
 - Cluster cache employing erasure coding for load balancing and reducing read latencies
 - Demonstrates new application and new goals for which erasure coding is highly effective

• Implementation on Alluxio

• Evaluation
 - Load balancing: >3x improvement
 - Median latency: >5x improvement
 - Tail latency: >3x improvement
Summary

• EC-Cache
 - Cluster cache employing erasure coding for load balancing and reducing read latencies
 - Demonstrates new application and new goals for which erasure coding is highly effective

• Implementation on Alluxio

• Evaluation
 - Load balancing: > 3x improvement
 - Median latency: > 5x improvement
 - Tail latency: > 3x improvement

Thanks!