Data Center Workload
Monitoring, Analysis, and Emulation

Jeff Chase'
TDepartment of Computer Science
Duke University
{justin,chase} @duke.edu

Justin Mooref

Abstract— Over the last ten years we have witnessed a shift
from large mainframe computing to commodity, off-the-shelf
clusters of servers. Today’s data centers contain thousands or
tens of thousands of servers, providing services and computation
for tens or hundreds of thousands of users. In addition to tra-
ditional IT challenges such as server management, security, and
performance, data center owners now must deal with power and
thermal issues, previously the domain of facilities management.
These trends will continue to accelerate as organizations acquire
bladed servers and consolidate multiple, smaller clusters into
centrally-located data centers. However, in spite of these trends,
there has been no corresponding change in emphasis in the
methods and toolkits that target system instrumentation, analysis,
management, replay, and emulation.

This paper seeks to address this gap. We focus on methods
and toolkits to enable the automated collection and analysis of
workload traces from data centers, and use those traces as the
basis for repeatable and verifiable experiments and workload
emulation. Our work has two components:

« a location- and environment-aware extended knowledge
plane that places thermal and power management concerns
at the same level as service performance, collecting and
analyzing facilities and performance data with particular
focus on causal relationships across this boundary, and

« data analysis and and workload playback methods that
allow detailed and flexible emulation of enterprise-class
workloads.

We discuss the high-level architectural requirements for these
two components and present results from specific implementa-
tions and toolkits.

I. INTRODUCTION

As data centers grow in size and proliferate, we have seen
a wide range of applications evolve to take advantage of
this environment. Web farms with multiple tiers, multime-
dia rendering applications, large-scale simulations, and other
service-oriented workloads now scale to tens of thousands
of servers. This new world presents challenges to both the
owners of these data centers and the customers or users
who run the applications. Data center owners must manage
facilities-level resources — such as the power grid and com-
puter room air conditioning (CRAC) units — in addition to
traditional information technology (IT) level resources. Users
must manage applications that may be run on shared hardware,

This work is supported in part by HP Labs, the U.S. National Science
Foundation (EIA-9972879 and EIA-9870728), and an IBM faculty research
award.

Keith Farkas?

Parthasarathy Ranganathan?

Ynternet Systems and Storage Lab
Hewlett Packard Labs
{keith.farkas, partha.ranganathan} @hp.com

including virtual machines and virtual local area networks, and
in heterogeneous environments.

The scale of this challenge has motivated recent work in
frameworks for coordinated monitoring and control of large-
scale computing infrastructures. The most common approaches
are based on Monitor, Analyze, Plan, and Execute (MAPE)
control loops. Figure 1 provides a high-level overview of
these projects. An instrumentation infrastructure logs sensor
readings, which undergo data analysis. The results of the
analysis are fed to a policy engine, which creates a plan for
how to utilize resources. Finally, external interfaces to data
center objects allow the administrator — or other actors —
to monitor the data center and react to changing conditions
from remote locations in a rapid manner. For example, com-
mercial frameworks such as HP’s OpenView and IBM’s Tivoli
aggregate information from a variety of sources and present a
graphical monitoring and control interface to administrators.

Recent research focuses on extending the state of the art in
three significant ways. The first is to extend it to Internet-scale
systems, often using a sensor metaphor for the instrumentation,
and leveraging research in large-scale sensor networks [11]
and queries on massive sensor fields [17], [8] for wide-area
infrastructures such as PlanetLab [18] or the Grid [6]. The
second is to develop analysis tools to recognize patterns and
diagnose anomalies in the data [4], [3], [1], [10]. Finally,
since human operators may be unable to assess events quickly
enough to respond effectively, there is increasing interest in
“closing the loop” with tools to plan responses, and execute
them through programmatic interfaces (actuators) for system
management; for example, this is a key long-term goal of
initiatives for autonomic computing and adaptive enterprises
at IBM and HP respectively. These trends combine in the idea
of a “knowledge plane” for the Internet and other large-scale
systems [5].

Physical information has an important role to play in
dynamic monitoring and control for data center automation
as well, particularly when coupled with performance metrics.
As a motivating example, consider the need to manage power
and cooling in a data center. The cost of energy to power
and cool the equipment of a large data center is significant
(e.g., $72,000 per month for a 40,000 sq. ft. facility[12]).
Moreover, technology trends are driving increasing power
density, in part to reduce costs for space and cabling. As
a result, the infrastructure for power and cooling is critical

Fig. 1.

Distributed
sense—and-respond

policy

e {observations)

High-level view of modern data center operation. Workload —in the form of web requests, data analysis, multimedia rendering, or

other applications — is placed in the data center. An instrumentation infrastructure monitors server activity, network utilization, and power and
temperature status. A policy actor, either an administrator or management software, analyzes the observations, and formulates a management
plan. The actor leverages external control interfaces, or actuators, to implement the plan.

to reliability, and automated mechanisms to control power
consumption and cooling resources are essential. Combined
instrumentation is a prerequisite for intelligent control to adjust
a software-controlled cooling infrastructure [14], place work-
loads to balance thermal load and improve energy efficiency, or
forecast thermal events and respond by migrating or throttling
workloads or failing over to backup systems.

A fundamental challenge facing these projects, however, is
how to conduct effective scientific experiments that provide
insight into these new environments. There are a shortage
of methods and tools to obtain data and understand the
interactions between objects in the data center — from the
low-level facilities components to the high-level application
performance — and then validate or reject hypotheses on
how these components will respond to future changes and
optimizations. If we are to apply the scientific method to data
center management, we must have the right tools to perform
repeatable, verifiable experiments, and measure the results.

This work addresses a portion of this problem by present-
ing three tools that focus on data collection, analysis, and
workload emulation. Splice, our data collection tool, enables
us to correlate observations across the IT/facilities boundaries
and understand the location-dependent aspects of data center
management, such as the temperature throughout the data
center. Our data analysis tool, SeASR, helps us understand how
objects respond and change during experiments, and provides
feedback to Splice, enabling more efficient data collection
and retention. The final application, sstress, enables fine-
grained and repeatable control over server resource utilization,
allowing us to explore the IT/facilities relationships in one
machine, or emulate workload playback across the data center.

The rest of this paper is organized as follows. Section II
examines the requirements for our toolkit and the high-level
architecture for each. Section III describes the implementation
of each tool and the assumptions behind our decisions. Sec-
tion IV presents some results and experiments performed to
examine the facilities/IT boundary, and Section V concludes.

II. ARCHITECTURE

This section describes our approach to data center instru-
mentation, statistical analysis, and workload emulation. The
instrumentation and analysis architectures also serve as the
basis for an automated, closed-loop control component, or site
authority [2].

A. Monitor

The design of Splice was guided by two emerging data
center trends. First, data centers are increasingly dynamic.
New equipment is continually added and existing equipment
is often reconfigured or removed; both kinds of changes may
include adjustments to the supporting power, cooling, and
network infrastructure. Similarly, each successive generation
of equipment offers new capabilities and new features. Second,
with the drive towards larger data centers and consolidation,
the number of measurement points and objects within data
centers continues to grow.

These trends drive the following goals for the Splice data
model:

1) It must be extensible to support new data sources, new
objects, and new object properties.

2) It must archive a history of changes to the state of
the data center over time, although most queries apply
to the current state. In this context, state includes the
objects that comprise the data center, their location and
other properties, how they are composited, and their
infrastructure connection points. As such, Splice must
enable an agent to retrieve the state of the data center
at any time in the past.

3) The architecture must be scalable to large numbers of
objects and attributes, and long histories.

The data collection and filtering engine logs changing values
of dynamic attributes for environmental and performance
metrics, such as CPU utilization, power draw, and CPU
temperature for a server, along with other information that
defines the state of the data center.

Splice gathers data from many sources that may publish data
through different interfaces and with different formats. The
data collection engine includes modules that implement the
required elements of the communication interface associated
with each such data source. For example, we have built a
communication module to interface the engine to both the
Ganglia and OpenView Service Reporter performance tools,
as well as to temperature and power sensors using proprietary
interfaces and OPC (OLE for Process Control), a standard that
is widely used in commercial sensors for process control and
manufacturing automation.

Along with each such data item, the communication inter-
faces also gather a time stamp corresponding to when the item
was recorded. Many sensors timestamp data at the source; for
example, some sensor interfaces cache data readings locally
until the aggregator “pulls” it using operations for polling
and retrieval. In our current implementation, we rely on the
Network Time Protocol (NTP) for clock synchronization of
server-hosted sensors. For sensors that produce data at reg-
ular intervals, Splice timestamps each reading locally before
entering it in the database.

A second role performed by the data collection and filtering
engine is to filter the incoming data streams or filter the values
already recorded in the database. Filtering reduces the amount
of data that is stored in the database, improving scalability.
The amount of data impacts the speed at which data can be
inserted into the database, and to a greater degree, the speed
at which data can be retrieved.

Splice uses a change-of-value filter that retains only those
values that differ significantly from the previously logged
values; this reduces data size significantly, with minimal
loss of information. Splice also supports a variation of this
approach in which a more aggressive filter is applied to older
data thereby trading increased information loss for greater
compression ratios. The filter parameters are defined on a
per-data-source basis. Some sensors may also filter continuous
readings before publishing values for a measurement interval.

B. Analyze

With the instrumentation infrastructure providing attribute
data, the next step is data analysis. Our data analysis falls into
two main classes: attribute behavior, and correlation. Attribute
behavior describes both the value of observed readings, as well
as how those values change over time. Hidden Markov Models
(HMMs) are useful for this purpose, as they can summarize
both the distribution of observations and how the values
will change. Attribute behavior analysis can provide data
conduits in the instrumentation infrastructure with information
on how to establish filtering policies. For example, analysis
may indicate that a majority of consecutive CPU load average
readings differ by less than 12%, with a sharp drop-off in the
distribution above that threshold; therefore, a filtering policy
that discards a reading that differs from the previously logged
reading by 12% will preserve a similar degree of accuracy as
a different cutoff value (for example, an “intuitive” value of
10%), but will reduce necessary storage space significantly.

Data correlation methods determine which attributes affect
other attributes and the strength of those correlations. This

analysis is necessary to determine the minimum set of control
points necessary to control an indirectly managed attribute.
In our context, correlation is a relatively lightweight process
that determines access rights for our external control points;
correlation will not tell us how to control the attributes. For
example, our correlation methods will let us know that ambient
temperature is a function of server CPU utilization, fan speeds,
CRAC supply temperature, and floor vents, but is not a factor
of server power consumption; servers consume power spinning
disks, but do not release the power as heat.

C. Emulation

There is a growing body of work that focuses on emulation.
As opposed to simulation — in which all aspects of the system
are modeled — emulation allows one to leverage real hardware
and applications, and simulate only portions of the world.
Similar to other tools, such as ModelNet [16] and Emulab [19],
we seek to emphasize the “science” in computer science; it
is important to conduct repeatable tests on live systems to
quantify the behavior of the systems we design.

The desired functionality is the ability to take a sequence
of CPU, memory, disk, and network utilization figures for
one or more servers and force another set of servers to
recreate those conditions. Fine-grained control over these four
attributes also enables us to perform detailed analysis of a
single server, including the relationship between utilization and
power consumption. On a larger scale, we wish to be able to
analyze the effect of different workload placement algorithms
on IT and facilities-level components, including request queue
sizes and CRAC cooling costs.

III. IMPLEMENTATION

This section describes the implementation of the three
portions of our workload monitoring, analysis, and emulation
toolkit.

A. Splice

Splice aggregates sensor and performance data in a rela-
tional database using a database schema that has been designed
to treat information that rarely changes in much the same
way as those that frequently change. That is, the schema
uses the same set of tables to store information that rarely
changes, such as the physical memory size of a system and
the power circuit to which it is attached, and information that
frequently changes, such as the power consumption and CPU
utilization of the system. In so doing, the schema addresses
our two extensibility and adaptability goals. However, there
are two exceptions. First, we assume that the size of objects
is immutable, and hence, this information is stored as part of
the objects definition. Second, we track separately the current
and past location of objects so as to reduce the time required
to access this important parameter.

Turning to specifics, the database schema comprises eight
tables, which are illustrated in Figure 2. The object types table
records the basic information about the types of object in
the data center, while the objects table records the instances

Object Types Input Types Readings

* object type id * input type id « time

* size (x,y,2) * units * object id

* label * label * location id

* description * description * input type id

* value

Objects Locations *eventid

* object id * location id

« object type id « coordinate (x, y, z) Current Readings

« location id « label « time

* parent object id « description * object id

«is valid * location id

« label * input type id

« description * value

*eventid

Objects Deltas

. time Events

« object id *time

* location id - event id
(new, old) * object id

« parent object id *type
(new, old) + description

» event id

Fig. 2. Database schema of the Splice architecture.

of each object type, its parent object identifier, its location
identifier, and whether it is currently present in the data center.
The parent object identifier is used to specify an “attached-to”
relationship between two objects, such as, that a system is a
part of a rack, or a power grid connection point connects to a
particular system. If an object is moved, its earlier location and
“attach-to” relationship is recorded in the object deltas table
before the new location is recorded into the objects table.

With the exception of object size and location, the readings
table records all the properties of the objects, both, as noted
above, those that are dynamic and those that are static.
For each reading, this table records the object that provided
the reading (e.g., a power meter, a temperature sensor), the
location identifier of the object, the input-type identifier of
the reading, and the reading value. The location identifier is
included so as to support objects that are mobile, and thus, the
object identifier alone is not sufficient to locate the reading.
The input-type identifier keys into the input types table, which
provides the units for the reading along with a description and
label. These items are useful to agents. Finally, the current
readings table records the latest reading for each property.
A separate table is provided to reduce the time required to
extract the current value of all properties, and hence, facilitates
agents that require real-time access to the information, such
as monitoring functions or control systems.

Each of the above mentioned tables records a location
identifier rather than spatial coordinates. This approach was
chosen to reduce the amount of duplicate information in the
database. Location identifiers are mapped to spatial coordi-
nates by the locations table. The frame of reference for the
spatial coordinates is a top-level object, namely, the data
center. Multiple data centers may be supported by defining
a non-overlapping region of 3D space for each.

Finally, the events table allows a management agent to
log an user-defined event. Event types may be stand-alone
occurrences (e.g., a new system was installed), or may mark

the start and end of a sequence (e.g., the cooling system was
down for a day). As such, the event table provides context for
the other information maintained in the database.

B. SeASR

We created the Sensor Analysis and Synthetic Reproduction
toolkit (SeASR) to provide us with a way to discover important
statistical properties of observed sensor readings. Using these
properties, we can create synthetic traces for use in various
experiments. SeASR was written with Splice in mind — par-
ticularly Splice’s filtering capabilities — and includes features
that allow us to analyze and reproduce data stored in a Splice
database. SeASR examines how readings change, how often
sensors update readings, and into what range of values attribute
readings fall.

The statistical properties of how attribute values change are
crucial to the effectiveness of Splice’s filters, and allows both
administrators and automated components to set optimal per-
attribute filtering parameters. Simple properties, such as the
mean and standard deviation, are of limited use; one trace
whose attribute values change seldom but with great variation
may have an identical mean and deviation as another trace
whose values change often but with little variation. The same
logic applies to how often the values change. Given these
observations, we make two assumptions.

« First, we assert that the observed distribution of attribute
value deltas and time deltas — the time between consec-
utive readings — for any one attribute type is each the
sum of one or more Gaussian distributions. In addition to
the observed distributions, we create a pseudo-distribution
having a delta of all zeros. Thus we have N “states” the
delta can be in: N — 1 observed Gaussian distributions
and the all-zeros distribution.

e Second, we assume that there is are correlations between
the IV states. For example, the attribute whose values
change seldom but with great variation will have a high
probability that one zero delta will follow another zero
delta. We create an NzN first-order Hidden Markov
Model to predict the odds that one distribution will follow
another.

SeASR uses one-dimensional Expectation Maximization
(EM) clustering, a common technique in machine learning, to
create the Gaussian distributions that serve as the basis for the
HMM. We use these distributions as input for the forward-
backward algorithm, which produces the Hidden Markov
Model [15]. Using the set of Gaussian distributions and the
HMM, we use our mktrace tool to create a synthetic trace
of sensor readings. The user can specify location, attribute,
and object identifiers for each trace, as well as the start and
end times of the trace. These statistics and synthetic traces
are useful in scalability tests, setting filtering parameters, and
detecting unusual behavior in future readings.

C. Sstress

Sstress is an application for selectively utilizing parts of a
single machine or networked servers. It is a multi-threaded

application, accepting commands from stdin and starting,
changing, or stopping worker threads. Sstress currently sup-
ports four classes of worker threads: CPU, RAM, disk, and
network. On startup, sstress will attempt to determine the
effective speed of the system, including CPU speed, random
number generator speed, and system call overhead. This burn-
in process will run for a few seconds and then allow the user
to enter commands. There are three commands — add, mod,
del — to control thread execution. When adding a thread, you
can specify the attributes of the new worker thread.

We can specify the number of concurrent processor loads
we want to run. While we can’t explicitly assign load to each
CPU of an SMP system, we can have multiple threads running
with load, and hopefully the scheduler will be smart enough
to distribute the load in an intelligent manner. The worker
threads use alternating periods of executing “add” instructions
in a tight loop with periods of sleeping by using the SELECT
system call. Currently there are 100 “slots” per second, and
sstress will perform one “add” cycle per percent of CPU time
requested.

We specify the number of megabytes of RAM we want to
use. We do this by asking for the total megabytes of RAM
to allocate, the megabytes of the working set, and the delay
(in microseconds) before “touching” each page in the working
set. Sstress attempts to keep memory in RAM and out of swap
by performing a random walk through the working set. This
feature is not 100% effective, as it depends on the scheduler.
The MLOCK (memory lock) function is one possibility, but
requires root access; we currently try to avoid that requirement.

Sstress can establish multiple I/O streams to read and write
data from a given file. For each stream, we can specify the
filename, the blocksize in kilobytes, and the number of 1/Os
per second. Sstress can also establish multiple I/O streams
over the network. For each stream, we can specify the address
and port of the remote end, the transport (UDP or TCP), the
read/write mode, the packet size, and the I/O rate in packets
per second.

A networked version off sstress — netsstress — and a perl
script that emits sstress commands enables data center-wide
trace replay with these different policies. We used sstress
extensively in preliminary stages of our temperature-aware
workload placement research.

IV. RESULTS

This section examines the effectiveness of our instrumen-
tation and analysis components, and the flexibility of our
emulation toolkit.

A. Instrumentation and Analysis

Here we examine the results of running Splice on two clus-
ters: HP’s Utility Data Center (UDC) and the Duke Computer
Science “Devil Cluster”. The amount of data arriving at the
database from the conduits has the potential to be very large;
after only six weeks the Duke database has over thirteen
millions rows, consuming 800 MB in data and index files.
Complex queries over large data sets need to scale gracefully
if the data is to be useful. For a single Splice site to attain

such scalability we explore the benefits of simple data filtering
techniques. For example, we can often discard consecutive
identical or near-identical readings from a given sensor. In this
manner, we explore delta-value filtering and age-delta value
filtering.

In delta-value filtering we take a value as it arrives at the
database and compare it to the current reading for that sensor.
If difference between the new value and the old value is less
than some threshold, we discard the new value. If they are
sufficiently different, however, we add the new value to the
database. The amount a value is allowed to change before
we log a new entry is the size of the filter. We trade perfect
accuracy — defined as logging every reading arriving at the
database — for scalability. Splice allows us to establish per-
conduit and per-sensor-type filtering policies, irregardless of
any filtering that may or may not occur on the other end of
the conduit.

Age-delta value filtering is similar to delta-value filtering,
but with the addition of a postprocessing filter. The postproces-
sor examines historical data and allows us to increase the size
of the filter for older data. The rationale behind this approach is
that as data gets older the exact values become less important.
However, to ensure that old data does not indiscriminately get
filtered out, there is an upper bound on the coarseness of the
filtering granularity.

1) Exploring Filtering: Filtering is a tradeoff between
accuracy and space, and here we explore the costs and benefits
of various filtering parameters.

Figure 3 illustrates the effect of these filtering modes for
three kinds of sensors: power, temperature, and one-minute
CPU load. The CPU data (Figure 3(a)) is presented for the
Duke facility while the power (Figure 3(b)) and temperature
(Figure 3(c)) data is presented for the HPL facility.

For each graph, the line illustrating the no-filtering default
case shows a large increase in the number of readings over
a five-week period when compared to simple delta-value
filtering. For performance data that is logged close to every
two minutes, such as the one-minute load average, this is
almost a factor of fourteen; for the base unfiltered graphs
for the temperature and power data, the increases are factors
of five and ten respectively. Even one sensor that logs one
reading every other minute will generate over nine megabytes
of data per year, not including database metadata; one rack of
machines at the HP UDC can easily generate over a terabyte
of measurements.

Focusing on Figures 3(a) and (b), the results indicate that
the delta-value filter is very effective at reducing the database
size. For the five-week total, this method reduces the number
of readings by almost 85% for the CPU load (using a delta-
value-threshold of 0.25 in the one-minute CPU load-average)
and 60% for the power readings (using a delta-value-threshold
of 10W). As evident from the slopes of the curves, the
compression ratio is fairly constant indicating that there is not
too much variation for these metrics in the sample data set
we considered. Figure 3 also shows the compression possible
with the aged-value-delta approach. As expected, as time
progresses, the aged-value-delta approach accomplishes better
compression compared to the base delta-value method by

1e:06

Tad ol ——
‘loadHlat 25"
load-aged-25-10-75

800000

£ soo000

ands)

2500

2000

1500 [

powerotal ——
“power-flat25' -
‘power-aged25-10-75

300000

250000

200000

D
temp-lat 25 -
tomp-aged-25-10-75

4
H

£ soo00 1000 |-

Number of Readings (thous

200000 4 s00 |

H
5 150000
H
H

100000

50000 T -

Time (hours)

(a) Performance

Fig. 3. Demonstrating the fi ltering modes in Splice.

300

T T T
Random Placement —+—
Coolest Inlets ---x---
DigitalMinHR ---%---
DigitalMaxHR 8-

260

Cooling costs (kW)

60
0 10 20 30 40 50 60 70 80 90 100
Percent Data Center Utilization

(a) Cooling costs for random placement, choosing the coolest
inlets, and best and worst heat-recirculation-based algorithms.

504 72 80 0 100 00 300
Time (hours)

(b) Power

400 500 B0 700 800
Time (hours)

(c) Temperature

90

Random Placement ——
Coolest Inlets ---x---
DigitalMinHR - ---

DigitalMaxHR &

80

70

60 e

50

Amount of Heat Recirculating (kW)

Y 2 O

30
0

10 20 30 40 50 60 70 80 90 100
Percent Data Center Utilization

(b) The amount of heat recirculating. Note that the increase in
heat recirculation closely mirrors the increase in cooling costs.

Fig. 4. At mid-range utilizations, cooling costs for a data center using temperature-aware workload placement algorithms are 30% less than
random workload placement and almost 40% less than the worst possible workload distribution [13].

virtue of its greater compression of older values.

Figure 3(c) represents an interesting case where the data
collection agent already includes some non-trivial amount of
base pre-filtering. The OPC server logs temperature data only
when the temperature difference exceeds 0.05 degrees F or if
more than a half-hour has elapsed. Also, the collected-data-
graph shows other variations in the slope due to periods when
the temperature sensors were offline (days 25-32) and due to
other idiosyncrasies of interactions between the OPC server
and our conduit. In particular, when our conduit re-connects
with the OPC server, the protocol sends out the current values
of all sensors irrespective of when the previous value was
logged. As seen from Figure 3(c), the delta-value and the
aged delta-value filtering methods still perform better than the
default filtering achieving almost 77% to 98% compressions.

2) Temperature-Aware Workload Placement: Current work
examines the relationship between workload placement and
cooling costs [13]. Figures 4(a) and 4(b) compare the cooling
costs and heat recirculation levels — the amount of heat
coming from servers that returns to the inlets of other servers
before returning to the air conditioning cycle — for four
workload placement algorithms in a simulated 1,120-server
data center: random placement (which approaches a uniform

distribution over time), selecting the servers in the coldest
portions of the room, and algorithms that attempt to mini-
mize and maximize the amount of heat recirculation. Results
show that cooling costs in a moderately-sized data center are
significantly lower when using temperature-aware workload
placement. These savings can represent tens to hundreds of
thousands of dollars per year.

The next stage in this research is to apply these algorithms
to a real-world data center. Splice is a crucial component in
this step, allowing us to perform load-balancing in a way that
combines temperature readings with current server utilization.

B. Workload Emulation

Our work using sstress and SeASR have been very valuable
in quickly duplicating complex IT environments to understand
and improve resource usage patterns [9], [7]. A workload man-
agement component that understands the detailed relationship
between server utilization and temperature increase within a
single server enables a fine-grained level of control over per-
server power allocations. The two primary factors dictating
server power draw — and, consequently, the temperature of
the exhaust air — are whether or not the server is on, and the
server’s CPU utilization. Figure 5(a) shows the relationship

200 ; ; ;
CPU Utilization —+—
Processor Zone Temperature ---x---
180 | 1O Zone T e

160

140

120

100

80

Actual %CPU Utilization

Temperature Increase (C)

60

40

20

L

0 50 100 150 200 250 300 350 400
Target %CPU Utilization

(a) Using sstress to explore the relationship between target
CPU utilization, power draw, and internal temperature on an
HP DL360-G3. There is one sensor between the CPUs and
one near the PCI (I/O) slots. Bounding bars represent a 90%
confi dence interval.

between CPU utilization and temperature increase for an HP
DL360 G3 with two HyperThread-capable processors, present-
ing four logical processors to the OS. As sstress increases
target CPU utilization, OS and hardware limitations prevent
it from reaching its goals; however, the server continues to
draw more power. Userspace performance is not necessarily
an accurate indicator of power consumption.

On a larger scale, sstress allows us to explore the relation-
ship between CPU utilization and power at the granularity
of a rack of data center server. Figure 5(b) shows the total
power consumption and average inlet temperature for a rack
of servers during an 8-hour experiment in the HP UDC. We see
the time-delayed nature of this correlation, as it takes several
minutes for the increases in server heat to propagate through
the data center, and several more minutes for the ambient
temperature to cool after the server return to an idle state.

V. CONCLUSION

As enterprise IT systems continue to respond to the changes
in recent years, it becomes increasingly important for cor-
responding changes in methods and tools targeting system
instrumentation, analysis, replay, and emulation. In particular,
this paper focuses on two key needs: the need for monitoring
approaches that address system instrumentation holistically
across the IT and facilities domains, and the need for more
detailed and flexible emulation of current complex multi-user
and multi-application consolidated data center environments.

To address the first need, our work develops the notion
of knowledge planes extended to include location and spa-
tial information and environmental sensor information. As
an illustration of such an extended knowledge plane, we
architect the Splice framework that combines environmental
sensor readings with performance measures all normalized to a
common spatial frame of reference. Our proposed architecture
includes a data communication and filtering engine and a
database schema implemented on top of a relational database

Rack Power Consumption (kW)
Avg Rack Inlet Temperature

Rack Power Consumption ——
Avg. Rack Inlet Temperature —3<-—

. . .
0 5000 10000 15000 20000 25000
Time (seconds)

68
30000

(b) Power draw and average inlet temperature of a rack of
servers during an 8-hour experiment in the HP UDC. Sstress
drove the CPU utilization changes, and Splice captured the
relationship between power draw and inlet temperatures.

and is designed to support easy extensibility, scalability, and
support for the notion of higher-level object views and events
in the data center.

To address the second need, we are developing a broader
data analysis and playback framework. Our data analysis
captures attribute behavior trends and inter-attribute correlation
properties through the use of corresponding mathematical
techniques (Hidden Markov Models, EM clustering, etc) to
enable us to capture and condense important statistical prop-
erties of system behavior logs. Our data playback tools seek
to recreate system resource usage conditions at specified user
levels of interest. As specific examples of such tools, we have
built the SeASR and sstress applications and used them in
conjunction with Splice. SeASR works in conjunction with
Splice to generate statistical summaries that enable more ag-
gressive filtering for scalability, detection of aberrant behavior
and generation of synthetic traces for experimentation. sstress
uses trace information collected from Splice to mimic resource
utilization behavior at the system component level.

Though the discussions in the paper primarily focus on the
implementation aspects of the tools, we have used these tools
in our ongoing research on power management in enterprise
environments as well as in broader resource management
issues with utility computing environments. Our experiences
validate the benefits from such a toolkit. For example, our
recent work on temperature-aware resource provisioning [13]
demonstrates that an instrumentation approach like Splice can
facilitate optimizations that were otherwise not possible and
reduce coolings costs in the data center by up to 40%.

While our work is a good first step in this direction, we are
just beginning to scratch the surface, in terms of addressing the
needs that exist for such tools. The functionality of extended
knowledge planes such as Splice can be significantly enhanced
by the consideration of additional topological relationships that
go beyond simple cooling provisioning - for example power
grid provisioning, network redundancy provisioning, etc. We

are also currently exploring additional techniques to strengthen
the mathematical analysis in our toolkits. Similarly, workload
playback tools in the context of being able to relate to higher-
level application response times is an open research question.
As current trends towards increased complexity in workload
and datacenter configurations for enterprise environments con-
tinue, it will become even more important to address the need
for correspondingly more sophistication in the methods and
tools for analysis, replay, and emulation.

APPENDIX I
ACKNOWLEDGMENTS

We would like to thank Chandrakant Patel, Cullen Bash,
Monem Beitelmal, and Ratnesh Sharma for their invaluable
assistance with all things cooling and heat related. We would
also like to thank April Slayden and Subu Iyer for their
help in making the Splice query and display interface more
usable than an uninteresting SQL command prompt, along
with other useful modifications and suggestions for real-world
deployment.

REFERENCES

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthi-
tacharoen. Performance debugging for distributed systems of black
boxes. In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), Bolton Landing, NY, Oct. 2003.

[2] J. S. Chase, L. E. Grit, D. E. Irwin, J. D. Moore, and S. E. Sprenkle.
Dynamic virtual clusters in a grid site manager. In Proceedings of
the Twelfth International Symposium on High Performance Distributed
Computing (HPDC-12), June 2003.

[3] M. Chen, E. Kiciman, A. Accardi, A. Fox, and E. Brewer. Using runtime
paths for macro analysis. In Proc. HotOS-IX, Kauai, HI, May 2003.

[4] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint:
Problem determination in large, dynamic systems. In Proc. 2002
Intl. Conf. on Dependable Systems and Networks, pages 595-604,
Washington, DC, June 2002.

[5] D. Clark, C. Partridge, J. C. Ramming, and J. Wroclawski. A knowledge
plane for the Internet. In Proceedings of ACM SIGCOMM, August 2003.

[6] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid infor-
mation services for distributed resource sharing. In Proceedings of the
Tenth IEEE International Symposium on High-Performance Distributed
Computing (HPDC), August 2001.

[7]1 D. Economous, C. Kozyrakis, and P. Ranganathan. Modeling and
understanding server power consumption. In Hewlett Packard Technical
Report, 2004.

[8] R. Huebsch, J. M. Hellerstein, N. L. Boon, T. Loo, S. Shenker, and
I. Stoica. Querying the Internet with PIER. In Proceedings of 19th
International Conference on Very Large Databases (VLDB), September
2003.

[9] D. Irwin and et al. Dense and powerless: Hardware-software co-

ordination for blade serverpower reduction. In Hewlett Packard Techni-

cal Report, 2004.

R. Isaacs and P. Barham. Performance analysis in loosely-coupled

distributed systems. In 7th CaberNet Radicals Workshop, Bertinoro,

Italy, Oct. 2002.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A

Tiny AGgregation service for ad-hoc sensor networks. In Proceedings

of the 5th Symposium on Operating System Design and Implementation

(OSDI), December 2002.

J. D. Mitchell-Jackson. Energy needs in an internet economy: a closer

look at data centers. Master’s thesis, University of California, Berkeley,

2001.

J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making Scheduling

“‘Cool”> Temperature-Aware Workload Placement in Data Centers. In

2005 Usenix Technical Conference, April 2005.

C. Patel, R. Sharma, C. Bash, and A. Beitelmal. Thermal Considerations

in Cooling Large Scale High Compute Density Data Centers. In ITherm

2002 - Eighth Intersociety Conference on Thermal and Thermomechan-

ical Phenomena in Electronic Systems, May 2002.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

L. R. Rabiner. A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition. In Proceedings of the IEEE,
volume 77, pages 257-286, February 1989.

A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kosti¢, J. Chase, and
D. Becker. Scalability and Accuracy in a Large-scale Network Emulator.
In Proceedings of the 5th Symposium on Operating System Design and
Implementation (OSDI), pages 271-284, December 2002.

R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A robust and
scalable technology for distributed system monitoring, management, and
data mining. ACM Transactions on Computer Systems, 21(2):164-206,
May 2003.

M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An information
plane for networked systems. In Proceedings of ACM HotNets-II,
November 2003.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar. An Integrated Experimental
Environment for Distributed Systems and Networks. In Proceedings of
the 5th Symposium on Operating Systems Design and Implementation
(OSDI), December 2002.

