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Lecture 17: Memory Hierarchy—
Five Ways to Reduce Miss Penalty

(Second Level Cache)

Professor Randy H. Katz
Computer Science 252

Spring 1996
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Review: Summary

• 3 Cs: Compulsory, Capacity, Conflict Misses
• Reducing Miss Rate

1. Reduce Misses via Larger Block Size
2. Reduce Conflict Misses via Higher Associativity
3. Reducing Conflict Misses via Victim Cache
4. Reducing Conflict Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Capacity/Conf. Misses by Compiler Optimizations

• Remember danger of concentrating on just one 
parameter when evaluating performance

• Today: reducing Miss penalty & Hit time

CPUtime = IC x (CPIexecution + 
                  Mem Access per instruction x Miss Rate x Miss penalty) x clock cycle time
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1. Reducing Miss Penalty: Read 
Priority over Write on Miss

• Write back with write buffers offer RAW conflicts 
with main memory reads on cache misses

• If simply wait for write buffer to empty might 
increase read miss penalty by 50% (old MIPS 1000)

• Check write buffer contents before read; 
if no conflicts, let the memory access continue

• Write Back?
– Read miss replacing dirty block
– Normal: Write dirty block to memory, and then do the read
– Instead copy the dirty block to a write buffer, then do the read, 

and then do the write
– CPU stall less since restarts as soon as do read
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2. Subblock Placement to 
Reduce Miss Penalty

• Don’t have to load full block on a miss
• Have bits per subblock to indicate valid
• (Originally invented to reduce tag storage)

Valid Bits
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3. Early Restart and Critical 
Word First

• Don’t wait for full block to be loaded before restarting 
CPU

– Early restart—As soon as the requested word of the block arrives, 
send it to the CPU and let the CPU continue execution

– Critical Word First—Request the missed word first from memory 
and send it to the CPU as soon as it arrives; let the CPU continue 
execution while filling the rest of the words in the block. Also called 
wrapped fetch and requested word  first

• Generally useful only in large blocks, 
• Spatial locality a problem; tend to want next 

sequential word, so not clear if benefit by early restart
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4. Non-blocking Caches to 
reduce stalls on misses

• Non-blocking cache or  lockup-free cache allowing the 
data cache to continue to supply cache hits during a 
miss

• “hit under miss”  reduces the effective miss penalty 
by being helpful during a miss instead of ignoring the 
requests of the CPU

• “hit under multiple miss” or “miss under miss”  may 
further lower the effective miss penalty by overlapping 
multiple misses

– Significantly increases the complexity of the cache controller as 
there can be multiple outstanding memory accesses
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Value of Hit Under Miss for SPEC

• FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
• Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
• 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

Hit Under i Misses
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5th Miss Penalty Reduction: 
Second Level Cache

• L2 Equations
AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 + Miss RateL1 x (Hit TimeL2 + Miss RateL2 + 
Miss PenaltyL2)

• Definitions:
– Local miss rate— misses in this cache divided by the total 

number of memory accesses to this cache (Miss rateL2)
– Global miss rate—misses in this cache divided by the total 

number of memory accesses generated by the CPU 
(Miss RateL1 x Miss RateL2) 
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Comparing Local and Global 
Miss Rates

• 32 KByte 1st level cache;
Increasing 2nd level cache

• Global miss rate close to 
single level cache rate 
provided L2 >> L1

• Don’t use local miss rate
• L2 not tied to CPU clock 

cycle
• Cost & A.M.A.T.
• Generally Fast Hit Times 

and fewer misses
• Since hits are few, target 

miss reduction

Linear

Log

Cache Size

Cache Size
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Reducing Misses: Which apply 
to L2 Cache?

• Reducing Miss Rate
1. Reduce Misses via Larger Block Size
2. Reduce Conflict Misses via Higher Associativity
3. Reducing Conflict Misses via Victim Cache
4. Reducing Conflict Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Capacity/Conf. Misses by Compiler Optimizations
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Relative CPU Time   

Block Size   
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L2 cache block size & A.M.A.T.

• 32KB L1, 8 byte path to memory
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Reducing Miss Penalty Summary

• Five techniques
– Read priority over write on miss
– Subblock placement
– Early Restart and Critical Word First on miss
– Non-blocking Caches (Hit Under Miss)
– Second Level Cache

• Can be applied recursively to Multilevel Caches
– Danger is that time to DRAM will grow with multiple levels in 

between
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Review: Improving Cache 
Performance

1. Reduce the miss rate, 
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache. 
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1. Fast Hit times via Small and 
Simple Caches

• Why Alpha 21164 has 8KB Instruction and 
8KB data cache + 96KB second level cache

• Direct Mapped, on chip
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2. Fast hits by Avoiding 
Address Translation

• Send virtual address to cache? Called Virtually Addressed 
Cache or just Virtual Cache vs.  Physical Cache

– Every time process is switched logically must flush the cache; otherwise 
get false hits

» Cost is time to flush + “compulsory” misses from empty cache
– Dealing with aliases (sometimes called synonyms); 

Two different virtual addresses map  to same physical address
– I/O must interact with cache, so need virtual address

• Solution to aliases
– HW that guarantees that every cache block has unique physical address
– SW guarantee: lower n bits must have same address; as long as covers 

index field & direct mapped, they must be unique;
called page coloring

• Solution to cache flush
– Add process identifier tag that identifies process as well as address within 

process: can’t get a hit if wrong process
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2. Avoiding Translation: 
Process ID impact

• Black is uniprocess
• Light Gray is multiprocess 

when flush cache
• Dark Gray is multiprocess 

when use Process ID tag
• Y axis: Miss Rates up to 20%
• X axis: Cache size from 2 KB 

to 1024 KB



RHK.S96  17

2. Avoiding Translation: Index 
with Physical Portion of Address

• If index is physical part of address, can start 
tag access in parallel with translation so that 
can compare to physical tag

• Limits cache to page size: what if want bigger 
caches and uses same trick?

– Higher associativity
– Page coloring

Page Address Page Offset

Address Tag Index Block Offset
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• Pipeline Tag Check and Update Cache as separate stages; 
current write tag check & previous write cache update 

• Only Write in the pipeline; empty during a miss

• In color is Delayed Write Buffer; must be checked on 
reads; either complete write or read from buffer

3. Fast Hit Times Via Pipelined Writes
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4. Fast Writes on Misses Via 
Small Subblocks

• If most writes are 1 word, subblock size is 1 word,  & write 
through then always write subblock & tag immediately 

– Tag match and valid bit already set: Writing the block was proper, & 
nothing lost by setting valid bit on again.

– Tag match and valid bit not set: The tag match means that this is the 
proper block; writing the data into the subblock makes it appropriate to 
turn the valid bit on.

– Tag mismatch: This is a miss and will modify the data portion of the 
block. As this is a write-through cache, however, no harm was done; 
memory still has an up-to-date copy of the old value. Only the tag to the 
address of the write and the valid bits of the other subblock need be 
changed because the valid bit for this subblock has already been set

• Doesn’t work with write back due to last case
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Cache Optimization Summary

Technique MR MP HT Complexity
Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + 2
Compiler Controlled Prefetching + 3
Compiler Reduce Misses + 0
Priority to Read Misses + 1
Subblock Placement + + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level  Caches + 2
Small & Simple Caches – + 0
Avoiding Address Translation + 2
Pipelining Writes + 1
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What is the Impact of What 
You’ve Learned About Caches?

• 1960-1985: Speed 
= ƒ(no. operations)

• 1995
– Pipelined 

Execution & 
Fast Clock Rate

– Out-of-Order 
completion

– Superscalar 
Instruction Issue

• 1995: Speed = 
ƒ(non-cached memory accesses)

• What does this mean for
– Compilers?,Operating Systems?, Algorithms? Data Structures?
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