Draft CS 150 Final Project Specifications, Spring 2007 
Two-Way Video Conferencing System
Randy H. Katz

Computer Science Division

Electrical Engineering and Computer Science Department

University of California, Berkeley

Berkeley, CA 94720-1776

1. Objectives

Your task for this semester is to design and implement the video-only portion of a complete two-way video conferencing system. You will not need to be concerned with handling the audio stream. 
The core system will: (1) continuously capture data from a video camera on a local station, (2) store this data in a local frame buffer in a simple compressed form (truncation and run-length encoding), (3) transport it via a serial transmission mechanism to a remote station’s frame buffer, (4) in turn, receive video data from the remote station’s frame buffer, and (5) continuously decompress and display the received video on the local display, with the local video also decompressed and displayed as a smaller “picture within picture” in a corner of the display.
As part of the baseline project design, we will specify a standard compression and decompression scheme, as well as a standard serial transmission mechanism. We expect you to be able demonstrate your design with another student team’s design (or the TA’s “gold design”) as the second station. However, should you choose to do something non-standard, such as for extra credit, you will be able to demo your system by downloading your design to two interconnected labstations.

In addition to objective metrics of your design, such as size and speed, the subjective quality will be determined by how closely the remote video display follows the local video. In other words, a high quality design will exhibit low latency and high image fidelity in terms of how the remote video display tracks local changes in the video input.

2. Project Structure and Schedule
The project is organized into one lab and four checkpoints that will span most of the second half of the course:
Laboratory #6/Checkpoint #0 (one week; Semester week 7): SDRAM memory system with Built-in Test. This forms part of the laboratory portion of your course grade.
Checkpoint #1 (two weeks, Semester weeks 8 and 9): SDRAM Frame Buffer with (slow rate) video capture and display. This checkpoint is worth 20% of your project grade.
Checkpoint #2 (one week; Semester week 10): Add compression/decompression to capture/display path to increase frame rate. This checkpoint is worth 10% of your project grade.
Please note that Spring Break takes place between the 10th and 11th weeks of the semester. Also, there will be a second midterm examination during the 10th week. Please plan your semester accordingly!

Checkpoint #3 (two weeks; Semester weeks 11 and 12): Add serial transmission of video from local station to remote station. This checkpoint is worth 30% of your project grade.
Early Checkoff will be at the end of Week 12! There will be substantial extra credit associated with finishing the baseline project one week early. However, once the early completion bonus has been awarded, the project team cannot continue working to add further extra credit features.
Checkpoint #4 (one week, Semester week 13): Add serial transmission of video from remote station to local station and local station “picture within picture” video display. This checkpoint is worth 20% of your project grade.
Regular Checkoff will be at the end of Week 13!

Final Report (one week, Semester week 14). This is worth 20% of your project grade.
The total extra credit that a final project can achieve is 20% (this works out to 6% of the overall course grade).

Checkoffs are due in your normally scheduled lab sections.

3. General Tips

Just because a design works does not it a good design. Use good design practices such as:

· Top-down design, with datapath/control unit decomposition.
· Design, simulate, and debug in modules.
· Use synchronous design methodology (e.g., use only synchronous reset parts). (However, one global asynchronous reset for the whole design using the STARTUP block is permitted). Use BUFG for a single global clock. Pay attention to timing for portions of the system running at more than 25 MHz and use the Xilinx timing analyzer tool to check for the worst case path.

· Divide work up with your partner for individual modules, but make sure that you have agreed on the interface!

· Document your design as you go, using detailed block diagrams, state charts or diagrams, and desired functional timing diagrams.

Budget plenty of time to get your project done. With this level of complexity, it takes at least three times as long to debug a system as it does to design and enter it. In fact, however long you think it will take to complete a task, it will take three times longer. Plan accordingly!

CS 150 Final Project Specification 
Page 2
Spring 2007

