
CS 150 - Spring 2001 - Combinational Implementation - 1

Combinational Logic Implementation

z Two-level logic
y Implementations of two-level logic
y NAND/NOR

z Multi-level logic
y Factored forms
y And-or-invert gates

z Time behavior
y Gate delays
y Hazards

z Regular logic
y Multiplexers
y Decoders
y PAL/PLAs
y ROMs

CS 150 - Spring 2001 - Combinational Implementation - 2

Implementations of Two-level Logic

z Sum-of-products
y AND gates to form product terms

(minterms)

y OR gate to form sum

z Product-of-sums
y OR gates to form sum terms

(maxterms)

y AND gates to form product

CS 150 - Spring 2001 - Combinational Implementation - 3

Two-level Logic using NAND Gates

z Replace minterm AND gates with NAND gates

z Place compensating inversion at inputs of OR gate

CS 150 - Spring 2001 - Combinational Implementation - 4

Two-level Logic using NAND Gates (cont�d)

z OR gate with inverted inputs is a NAND gate
y de Morgan's: A' + B' = (A � B)'

z Two-level NAND-NAND network
y Inverted inputs are not counted

y In a typical circuit, inversion is done once and signal
distributed

CS 150 - Spring 2001 - Combinational Implementation - 5

Two-level Logic using NOR Gates

z Replace maxterm OR gates with NOR gates

z Place compensating inversion at inputs of AND gate

CS 150 - Spring 2001 - Combinational Implementation - 6

Two-level Logic using NOR Gates (cont�d)

z AND gate with inverted inputs is a NOR gate
y de Morgan's: A' � B' = (A + B)'

z Two-level NOR-NOR network
y Inverted inputs are not counted

y In a typical circuit, inversion is done once and signal
distributed

CS 150 - Spring 2001 - Combinational Implementation - 7

OR

NAND NAND

OR AND

NOR NOR

AND

Two-level Logic using NAND and NOR Gates

z NAND-NAND and NOR-NOR networks
y de Morgan's law: (A + B)'= A' � B'

(A � B)' = A' + B'
y written differently: A + B = (A' � B')�

(A � B) = (A' + B')'

z In other words ��
y OR is the same as NAND with complemented inputs
y AND is the same as NOR with complemented inputs
y NAND is the same as OR with complemented inputs
y NOR is the same as AND with complemented inputs

CS 150 - Spring 2001 - Combinational Implementation - 8

A

B

C

D

Z

A

B

C

D

Z

NAND

NAND

NAND

Conversion Between Forms

z Convert from networks of ANDs and ORs to networks
of NANDs and NORs
y Introduce appropriate inversions ("bubbles")

z Each introduced "bubble" must be matched by a
corresponding "bubble"
y Conservation of inversions

y Do not alter logic function

z Example: AND/OR to NAND/NAND

CS 150 - Spring 2001 - Combinational Implementation - 9

Z = [(A � B)' � (C � D)']'

= [(A' + B') � (C' + D')]'

= [(A' + B')' + (C' + D')']

= (A � B) + (C � D)ü

Conversion Between Forms (cont�d)

z Example: verify equivalence of two forms

A

B

C

D

Z

A

B

C

D

Z

NAND

NAND

NAND

CS 150 - Spring 2001 - Combinational Implementation - 10

Step 2
conserve
"bubbles"

Step 1
conserve
"bubbles"

NOR

NOR

NOR

\A

\B

\C

\D

Z

NOR

NORA

B

C

D

Z

Conversion Between Forms (cont�d)

z Example: map AND/OR network to NOR/NOR network

A

B

C

D

Z

CS 150 - Spring 2001 - Combinational Implementation - 11

Z = { [(A' + B')' + (C' + D')']' }'

= { (A' + B') � (C' + D') }'

= (A' + B')' + (C' + D')'

= (A � B) + (C � D)ü

Conversion Between Forms (cont�d)

z Example: verify equivalence of two forms

A

B

C

D

Z

NOR

NOR

NOR

\A

\B

\C

\D

Z

CS 150 - Spring 2001 - Combinational Implementation - 12

A
B
C

D
E

F
G

X

Multi-level Logic

z x = A D F + A E F + B D F + B E F + C D F + C E F +
G
y Reduced sum-of-products form � already simplified

y 6 x 3-input AND gates + 1 x 7-input OR gate (may not exist!)

y 25 wires (19 literals plus 6 internal wires)

z x = (A + B + C) (D + E) F + G
y Factored form � not written as two-level S-o-P

y 1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate

y 10 wires (7 literals plus 3 internal wires)

CS 150 - Spring 2001 - Combinational Implementation - 13

Level 1 Level 2 Level 3 Level 4

original

AND-OR

network
A

C
D

B

B
\C

F

introduction and

conservation of

bubbles
A

C
D

B

B
\C

F

redrawn in terms

of conventional

NAND gates A

C
D

\B

B
\C

F

Conversion of Multi-level Logic to NAND Gates

z F = A (B + C D) + B C'

CS 150 - Spring 2001 - Combinational Implementation - 14

Level 1 Level 2 Level 3 Level 4

A

C
D

B

B
\C

Foriginal

AND-OR

network

introduction and

conservation of

bubbles A

C

D

B

B

\C

F

redrawn in terms

of conventional

NOR gates
\A

\C
\D

B

\B
C

F

Conversion of Multi-level Logic to NORs

z F = A (B + C D) + B C'

CS 150 - Spring 2001 - Combinational Implementation - 15

A

X

B
C

D

F
(a)

original circuit

A

X

B
C

D

F
(b)

add double bubbles at inputs

\D

A

\X

B
C

F(c)

distribute bubbles

some mismatches

\D

A

X

B
C

F
\X

(d)

insert inverters to fix mismatches

Conversion Between Forms

z Example

CS 150 - Spring 2001 - Combinational Implementation - 16

&

&

+
2x2 AOI gate

symbol

&

&

+
3x2 AOI gate

symbol

NAND NAND Invert

possible implementation

A
B

C
D

Z

AND OR Invert

logical concept

A
B

C
D

Z

AND-OR-Invert Gates

z AOI function: three stages of logic�AND, OR, Invert
y Multiple gates "packaged" as a single circuit block

CS 150 - Spring 2001 - Combinational Implementation - 17

0 1

1 0

A

B

&

&

+

A'

B'

A

B

F

Conversion to AOI Forms

z General procedure to place in AOI form
y Compute complement of the function in sum-of-products form

y By grouping the 0s in the Karnaugh map

z Example: XOR implementation��A xor B = A' B + A B'
y AOI form: F = (A' B' + A B)'

CS 150 - Spring 2001 - Combinational Implementation - 18

each implemented in a single 2x2 AOI gate

Examples of using AOI gates

z Example:
y F = B C' + A C' + A B

y F' = A' B' + A' C + B' C

y Implemented by 2-input 3-stack AOI gate

y F = (A + B) (A + C') (B + C')

y F' = (B' + C) (A' + C) (A' + B')

y Implemented by 2-input 3-stack OAI gate

z Example: 4-bit equality function
y Z = (A0B0+A0'B0')(A1B1+A1'B1')(A2B2+A2'B2')(A3B3+A3'B3')

0 1

0 0

1 1

1 0C

B

A

CS 150 - Spring 2001 - Combinational Implementation - 19

high if A0 B0

low if A0 = B0

if all inputs are low
then Ai = Bi, i=0,...,3

output Z is high

conservation of bubbles

A0
B0

A1
B1

A2
B2

A3
B3

&

&
+

&

&
+

&

&
+

&

&
+

NOR Z

Examples of Using AOI Gates (cont�d)

z Example: AOI implementation of 4-bit equality function

CS 150 - Spring 2001 - Combinational Implementation - 20

Summary for Multi-level Logic

z Advantages
y Circuits may be smaller

y Gates have smaller fan-in

y Circuits may be faster

z Disadvantages
y More difficult to design

y Tools for optimization are not as good as for two-level

y Analysis is more complex

CS 150 - Spring 2001 - Combinational Implementation - 21

Time Behavior of Combinational Networks

z Waveforms
y Visualization of values carried on signal wires over time

y Useful in explaining sequences of events (changes in value)

z Simulation tools are used to create these waveforms
y Input to the simulator includes gates and their connections

y Input stimulus, that is, input signal waveforms

z Some terms
y Gate delay�time for change at input to cause change at output

x Min delay�typical/nominal delay�max delay

x Careful designers design for the worst case

y Rise time�time for output to transition from low to high voltage

y Fall time�time for output to transition from high to low voltage

y Pulse width�time an output stays high or low between changes
CS 150 - Spring 2001 - Combinational Implementation - 22

F is not always 0

pulse 3 gate-delays wide

D remains high for
three gate delays after

A changes from low to high

F
A B C D

Momentary Changes in Outputs

z Can be useful�pulse shaping circuits

z Can be a problem�incorrect circuit
operation (glitches/hazards)

z Example: pulse shaping circuit
y A' � A = 0

y delays matter
in function

CS 150 - Spring 2001 - Combinational Implementation - 23

initially

undefined

close switch

open switch

+

open
switch

resistor

A B

C

D

Oscillatory Behavior

z Another pulse shaping circuit

CS 150 - Spring 2001 - Combinational Implementation - 24

Hazards/Glitches

z Hazards/glitches: unwanted switching at the outputs
y Occur when different paths through circuit have different

propagation delays
x As in pulse shaping circuits we just analyzed

y Dangerous if logic causes an action while output is unstable
x May need to guarantee absence of glitches

z Usual solutions
y 1) Wait until signals are stable (by using a clock): preferable

(easiest to design when there is a clock � synchronous design)

y 2) Design hazard-free circuits: sometimes necessary (clock not
used � asynchronous design)

CS 150 - Spring 2001 - Combinational Implementation - 25

1

0 0

1 1

0 0

1 1

0 0

0

1 1

Types of Hazards

z Static 1-hazard
y Input change causes output to go from 1 to 0 to 1

z Static 0-hazard
y INput change causes output to go from 0 to 1 to 0

z Dynamic hazards
y Input change causes a double change

from 0 to 1 to 0 to 1 OR from 1 to 0 to 1 to 0

CS 150 - Spring 2001 - Combinational Implementation - 26

F

static-0 hazard static-1 hazard

A

B

S

S'

F

hazard

A
S

B

S'

Static Hazards

z Due to a literal and its complement momentarily taking
on the same value
y Thru different paths with different delays and reconverging

z May cause an output that should have stayed at the
same value to momentarily take on the wrong value

z Example:

CS 150 - Spring 2001 - Combinational Implementation - 27

B2

A

C

B1

F

hazard
dynamic hazards

B3

A

C

B

F

1

2
3

Dynamic Hazards

z Due to the same versions of a literal taking on
opposite values
y Thru different paths with different delays and reconverging

z May cause an output that was to change value to
change 3 times instead of once

z Example:

CS 150 - Spring 2001 - Combinational Implementation - 28

multiplexer demultiplexer 4x4 switch

control control

Making Connections

z Direct point-to-point connections between gates
y Wires we've seen so far

z Route one of many inputs to a single output ---
multiplexer

z Route a single input to one of many outputs ---
demultiplexer

CS 150 - Spring 2001 - Combinational Implementation - 29

Mux and Demux

z Switch implementation of multiplexers and
demultiplexers
y Can be composed to make arbitrary size switching networks

y Used to implement multiple-source/multiple-destination
interconnections

A

B

Y

Z

A

B

Y

Z

CS 150 - Spring 2001 - Combinational Implementation - 30

multiple input sources

multiple output destinations

MUX

A B

Sum

Sa

Ss

Sb

B0

MUX

DEMUX

Mux and Demux (cont'd)

z Uses of multiplexers/demultiplexers in multi-point
connections

B1A0 A1

S0 S1

CS 150 - Spring 2001 - Combinational Implementation - 31

two alternative forms
for a 2:1 Mux truth table

functional form

logical form

A Z

0 I
0

1 I
1

I
1

I
0

A Z

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Z = A' I
0
+ A I

1

Multiplexers/Selectors

z Multiplexers/Selectors: general concept
y 2n data inputs, n control inputs (called "selects"), 1 output

y Used to connect 2n points to a single point

y Control signal pattern forms binary index of input connected
to output

CS 150 - Spring 2001 - Combinational Implementation - 32

2 -1

I0
I1
I2
I3
I4
I5
I6
I7

A B C

8:1
mux

ZI0
I1
I2
I3

A B

4:1
mux

ZI0
I1

A

2:1
mux

Z

k=0

n

Multiplexers/Selectors (cont'd)

z 2:1 mux: Z = A' I0 + A I1

z 4:1 mux: Z = A' B' I0 + A' B I1 + A B' I2 + A B I3

z 8:1 mux: Z = A'B'C'I0 + A'B'CI1 + A'BC'I2 + A'BCI3 +
AB'C'I4 + AB'CI5 + ABC'I6 + ABCI7

z In general, Z = (mkIk)

y in minterm shorthand form for a 2n:1 Mux

CS 150 - Spring 2001 - Combinational Implementation - 33

Gate Level Implementation of Muxes

z 2:1 mux

z 4:1 mux

CS 150 - Spring 2001 - Combinational Implementation - 34

control signals B and C simultaneously choose
one of I0, I1, I2, I3 and one of I4, I5, I6, I7

control signal A chooses which of the
upper or lower mux's output to gate to Z

alternative

implementation

C

Z

A B

4:1
mux

2:1
mux

2:1
mux

2:1
mux

2:1
mux

I4
I5

I2
I3

I0
I1

I6
I7

8:1
mux

Cascading Multiplexers

z Large multiplexers implemented by cascading smaller ones

Z

I0
I1
I2
I3

A

I4
I5
I6
I7

B C

4:1
mux

4:1
mux

2:1
mux

8:1
mux

CS 150 - Spring 2001 - Combinational Implementation - 35
CA B

0
1
2
3
4
5
6
7

1
0
1
0
0
0
1
1

S2

8:1 MUX

S1 S0

F

Multiplexers as General-purpose Logic

z 2n:1 multiplexer implements any function of n variables
y With the variables used as control inputs and

y Data inputs tied to 0 or 1

y In essence, a lookup table

z Example:
y F(A,B,C) = m0 + m2 + m6 + m7

= A'B'C' + A'BC' + ABC' + ABC
= A'B'(C') + A'B(C') + AB'(0) + AB(1)

CS 150 - Spring 2001 - Combinational Implementation - 36

A B C F
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

C'

C'

0

1 A B

S1 S0

F
0
1
2
3

4:1 MUX

C'
C'
0
1

F

CA B

0
1
2
3
4
5
6
7

1
0
1
0
0
0
1
1

S2

8:1 MUX

S1 S0

Multiplexers as General-purpose Logic (cont�d)

z 2n-1:1 mux can implement any function of n variables
y With n-1 variables used as control inputs and

y Data inputs tied to the last variable or its complement

z Example:
y F(A,B,C) = m0 + m2 + m6 + m7

= A'B'C' + A'BC' + ABC' + ABC
= A'B'(C') + A'B(C') + AB'(0) + AB(1)

CS 150 - Spring 2001 - Combinational Implementation - 37

n-1 mux control
variables

single mux data
variable

four possible
configurations
of truth table rows
can be expressed
as a function of I

n

choose A,B,C as control variables

multiplexer implementation

I
0

I
1

. . . I
n-1

I
n

F

. . . . 0 0 0 1 1

. . . . 1 0 1 0 1

0 I
n

I
n
' 1

Multiplexers as General-purpose Logic (cont�d)

z Generalization

z Example: F(A,B,C,D) implemented by an 8:1 MUX

CA B

0
1
2
3
4
5
6
7

1
D
0
1
D’
D
D’
D’

S2

8:1 MUX

S1 S0

1 0

1 0

1 1

0 0
D

A

1 1

0 1

0 1

1 0

B

C

CS 150 - Spring 2001 - Combinational Implementation - 38

1:2 Decoder:
O0 = G S�
O1 = G S

2:4 Decoder:

O0 = G S1� S0�
O1 = G S1� S0
O2 = G S1 S0�
O3 = G S1 S0

3:8 Decoder:
O0 = G S2� S1� S0�
O1 = G S2� S1� S0
O2 = G S2� S1 S0�
O3 = G S2� S1 S0
O4 = G S2 S1� S0�
O5 = G S2 S1� S0
O6 = G S2 S1 S0�

O7 = G S2 S1 S0

Demultiplexers/Decoders

z Decoders/demultiplexers: general concept
y Single data input, n control inputs, 2n outputs

y Control inputs (called �selects� (S)) represent binary index of
output to which the input is connected

y Data input usually called �enable� (G)

CS 150 - Spring 2001 - Combinational Implementation - 39

active-high
enable

active-low
enable

active-high
enable

active-low
enable

O0G

S

O1

O0\G

S

O1

S1

O2

O3

O0
G

O1

S0 S1

O2

O3

O0\G

O1

S0

Gate Level iImplementation of Demultiplexers

z 1:2 Decoders

z 2:4 Decoders

CS 150 - Spring 2001 - Combinational Implementation - 40

demultiplexer generates appropriate
minterm based on control signals

(it "decodes" control signals)

Demultiplexers as General-purpose Logic

z n:2n decoder implements any function of n variables
y With the variables used as control inputs

y Enable inputs tied to 1 and

y Appropriate minterms summed to form the function

A'B'C'
A'B'C
A'BC'
A'BC
AB'C'
AB'C
ABC'
ABC

CA B

0
1
2
3
4
5
6
7

S2

3:8 DEC

S1 S0

�1�

CS 150 - Spring 2001 - Combinational Implementation - 41

F1

F2

F3

Demultiplexers as General-purpose Logic (cont�d)

z F1 = A' B C' D + A' B' C D + A B C D

z F2 = A B C' D� + A B C

z F3 = (A' + B' + C' + D')

A B

0 A'B'C'D'
1 A'B'C'D
2 A'B'CD'
3 A'B'CD
4 A'BC'D'
5 A'BC'D
6 A'BCD'
7 A'BCD
8 AB'C'D'
9 AB'C'D
10 AB'CD'
11 AB'CD
12 ABC'D'
13 ABC'D
14 ABCD'
15 ABCD

4:16
DECEnable

C D

CS 150 - Spring 2001 - Combinational Implementation - 42

0 A'B'C'D'E'

1

2

3

4

5

6

7
S2

3:8 DEC

S1 S0

A B

0

1

2

3S1

2:4 DEC

S0

F

0

1

2 A'BC'DE'

3

4

5

6

7
S2

3:8 DEC

S1 S0

EC D

0 AB'C'D'E'

1

2

3

4

5

6

7 AB'CDE

Cascading Decoders

z 5:32 decoder
y 1x2:4 decoder

y 4x3:8 decoders

3:8 DEC

0

1

2

3

4

5

6

7 ABCDE

EC D

S2 S1 S0 S2

3:8 DEC

S1 S0

CS 150 - Spring 2001 - Combinational Implementation - 43

� � �

inputs

AND

array

� � �

outputs

OR

arrayproduct

terms

Programmable Logic Arrays

z Pre-fabricated building block of many AND/OR gates
y Actually NOR or NAND

y �Personalized" by making or breaking connections among gates

y Programmable array block diagram for sum of products form

CS 150 - Spring 2001 - Combinational Implementation - 44

example:

F0 = A + B' C'
F1 = A C' + A B
F2 = B' C' + A B
F3 = B' C + A

personality matrix
1 = uncomplemented in term
0 = complemented in term
� = does not participate

1 = term connected to output
0 = no connection to output

input side:

output side:

product inputs outputs

term A B C F0 F1 F2 F3

AB 1 1 � 0 1 1 0

B'C � 0 1 0 0 0 1

AC' 1 � 0 0 1 0 0

B'C' � 0 0 1 0 1 0

A 1 � � 1 0 0 1
reuse of terms

Enabling Concept

z Shared product terms among outputs

CS 150 - Spring 2001 - Combinational Implementation - 45

Before Programming

z All possible connections available before "programming"
y In reality, all AND and OR gates are NANDs

CS 150 - Spring 2001 - Combinational Implementation - 46

A B C

F1 F2 F3F0

AB

B'C

AC'

B'C'

A

After Programming

z Unwanted connections are "blown"
y Fuse (normally connected, break unwanted ones)

y aAnti-fuse (normally disconnected, make wanted connections)

CS 150 - Spring 2001 - Combinational Implementation - 47

notation for implementing

F0 = A B + A' B'

F1 = C D' + C' D

AB+A'B'
CD'+C'D

AB

A'B'

CD'

C'D

A B C D

Alternate Representation for High Fan-in
Structures

z Short-hand notation--don't have to draw all the wires
y Signifies a connection is present and perpendicular signal is

an input to gate

CS 150 - Spring 2001 - Combinational Implementation - 48

A B C F1 F2 F3 F4 F5 F6
0 0 0 0 0 1 1 0 0
0 0 1 0 1 0 1 1 1
0 1 0 0 1 0 1 1 1
0 1 1 0 1 0 1 0 0
1 0 0 0 1 0 1 1 1
1 0 1 0 1 0 1 0 0
1 1 0 0 1 0 1 0 0
1 1 1 1 1 0 0 1 1

A'B'C'

A'B'C

A'BC'

A'BC

AB'C'

AB'C

ABC'

ABC

A B C

F1 F2 F3 F4 F5
F6

full decoder as for memory address

bits stored in memory

Programmable Logic Array Example

z Multiple functions of A, B, C
y F1 = A B C

y F2 = A + B + C

y F3 = A' B' C'

y F4 = A' + B' + C'

y F5 = A xor B xor C

y F6 = A xnor B xnor C

CS 150 - Spring 2001 - Combinational Implementation - 49

a given column of the OR array
has access to only a subset of
the possible product terms

PALs and PLAs

z Programmable logic array (PLA)
y What we've seen so far

y Unconstrained fully-general AND and OR arrays

z Programmable array logic (PAL)
y Constrained topology of the OR array

y Innovation by Monolithic Memories

y Faster and smaller OR plane

CS 150 - Spring 2001 - Combinational Implementation - 50

0 1 X 0

0 1 X 0

0 0 X X

0 0 X X

D

A

B

C

minimized functions:

W = A + B D + B C
X = B C'
Y = B + C
Z = A'B'C'D + B C D + A D' + B' C D'

A B C D W X Y Z
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 1 1 1 0
0 1 1 0 1 0 1 0
0 1 1 1 1 0 1 1
1 0 0 0 1 0 0 1
1 0 0 1 1 0 0 0
1 0 1 � � � � �
1 1 � � � � � �

0 0 X 1

0 1 X 1

0 1 X X

0 1 X X

D

A

B

C

K-map for W K-map for X

0 1 X 0

0 1 X 0

1 1 X X

1 1 X X

D

A

B

C

K-map for Y

PALs and PLAs: Design Example

z BCD to Gray code converter

K-map for Z

0 0 X 1

1 0 X 0

0 1 X X

1 0 X X

D

A

B

C

CS 150 - Spring 2001 - Combinational Implementation - 51

not a particularly good
candidate for PAL/PLA

implementation since no terms
are shared among outputs

however, much more compact
and regular implementation
when compared with discrete

AND and OR gates

A B C D

W X Y Z

A

BD

BC

BC'

B

C

A'B'C'D

BCD

AD'

BCD'

minimized functions:

W = A + B D + B C
X = B C'
Y = B + C
Z = A'B'C'D + B C D + A D' + B' C D'

PALs and PLAs: Design Example (cont�d)

z Code converter: programmed PLA

CS 150 - Spring 2001 - Combinational Implementation - 52

4 product terms

per each OR gate

A

BD

BC

0

BC'

0

0

0

B

C

0

0

A'B'C'D

BCD

AD'

B'CD'

W X Y Z

A B C D

PALs and PLAs: Design Example (cont�d)

z Code converter:
programmed PAL

CS 150 - Spring 2001 - Combinational Implementation - 53

W

X

Y

Z

B

B

B

B

B

B

\B
C

C

C

C

C
A

A
A

D

D

D

\D

\D

PALs and PLAs: Design Example (cont�d)

z Code converter: NAND gate implementation
y Loss of regularity, harder to understand

y Harder to make changes

CS 150 - Spring 2001 - Combinational Implementation - 54 EQ NE LT GT

A'B'C'D'

A'BC'D

ABCD

AB'CD'

AC'

A'C

B'D

BD'

A'B'D

B'CD

ABC

BC'D'

A B C D

PALs and PLAs: Another Design Example

z Magnitude comparator

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

D

A

B

C

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

D

A

B

C

0 0 0 0

1 0 0 0

1 1 0 1

1 1 0 0

D

A

B

C

0 1 1 1

0 0 1 1

0 0 0 0

0 0 1 0

D

A

B

C

K-map for EQ K-map for NE

K-map for GTK-map for LT

CS 150 - Spring 2001 - Combinational Implementation - 55

decoder

0 n-1

Address

2 -1
n

0

1 1 1 1

word[i] = 0011

word[j] = 1010

bit lines (normally pulled to 1 through
resistor � selectively connected to 0
by word line controlled switches)

j

i

internal organization

word lines (only one
is active � decoder is
just right for this)

Read-only Memories

z Two dimensional array of 1s and 0s
y Entry (row) is called a "word"

y Width of row = word-size

y Index is called an "address"

y Address is input

y Selected word is output

CS 150 - Spring 2001 - Combinational Implementation - 56

F0 = A' B' C + A B' C' + A B' C

F1 = A' B' C + A' B C' + A B C

F2 = A' B' C' + A' B' C + A B' C'

F3 = A' B C + A B' C' + A B C'

truth table

A B C F0 F1 F2 F3
0 0 0 0 0 1 0
0 0 1 1 1 1 0
0 1 0 0 1 0 0
0 1 1 0 0 0 1
1 0 0 1 0 1 1
1 0 1 1 0 0 0
1 1 0 0 0 0 1
1 1 1 0 1 0 0

block diagram

ROM
8 words x 4 bits/word

address outputs
A B C F0F1F2F3

ROMs and Combinational Logic

z Combinational logic implementation (two-level
canonical form) using a ROM

CS 150 - Spring 2001 - Combinational Implementation - 57

ROM Structure

z Similar to a PLA structure but with a fully decoded
AND array
y Completely flexible OR array (unlike PAL)

n address lines

� � �

inputs

decoder 2n word

lines

� � �

outputs

memory
array

(2n words
by m bits)

m data lines

CS 150 - Spring 2001 - Combinational Implementation - 58

ROM vs. PLA

z ROM approach advantageous when
y Design time is short (no need to minimize output functions)
y Most input combinations are needed (e.g., code converters)
y Little sharing of product terms among output functions

z ROM problems
y Size doubles for each additional input
y Can't exploit don't cares

z PLA approach advantageous when
y Design tools are available for multi-output minimization
y There are relatively few unique minterm combinations
y Many minterms are shared among the output functions

z PAL problems
y Constrained fan-ins on OR plane

CS 150 - Spring 2001 - Combinational Implementation - 59

Regular Logic Structures for Two-level Logic

z ROM � full AND plane, general OR plane
y Cheap (high-volume component)
y Can implement any function of n inputs
y Medium speed

z PAL � programmable AND plane, fixed OR plane
y Intermediate cost
y Can implement functions limited by number of terms
y High speed (only one programmable plane that is much smaller

than ROM's decoder)

z PLA � programmable AND and OR planes
y Most expensive (most complex in design, need more

sophisticated tools)
y Can implement any function up to a product term limit
y Slow (two programmable planes)

CS 150 - Spring 2001 - Combinational Implementation - 60

Regular Logic Structures for Multi-level Logic

z Difficult to devise a regular structure for arbitrary
connections between a large set of different types
of gates
y Efficiency/speed concerns for such a structure

y Xilinx field programmable gate arrays (FPGAs) are just such
programmable multi-level structures

x Programmable multiplexers for wiring

x Lookup tables for logic functions (programming fills in the table)

x Multi-purpose cells (utilization is the big issue)

z Use multiple levels of PALs/PLAs/ROMs
y Output intermediate result

y Make it an input to be used in further logic

CS 150 - Spring 2001 - Combinational Implementation - 61

Combinational Logic Implementation Summary

z Multi-level Logic
y Conversion to NAND-NAND and NOR-NOR networks
y Transition from simple gates to more complex gate building

blocks
y Reduced gate count, fan-ins, potentially faster
y More levels, harder to design

z Time Response in Combinational Networks
y Gate delays and timing waveforms
y Hazards/glitches (what they are and why they happen)

z Regular Logic
y Multiplexers/decoders
y ROMs
y PLAs/PALs
y Advantages/disadvantages of each

