Combinational Logic Implementation

Two-level logic
Implementations of two-level logic
NAND/NOR

Multi-level logic
Factored forms
And-or-invert gates

Time behavior
Gate delays
Hazards

Regular logic
Multiplexers
Decoders
PAL/PLAs
ROMs

CS 150 - Spring 2001 - Combingtional Tmplementation - 1

Implementations of Two-level Logic

Sum-of-products 1
AND gates to form product terms
(minterms)

OR gate to form sum

17

T
il
@M
i
[

Product-of-sums 1

OR gates to form sum terms
(maxterms) —
AND gates to form product

vl

CS 150 - Spring 2001 - Combingtional Implementation - 2

Two-level Logic using NAND Gates

Replace minterm AND gates with NAND gates

Place compensating inversion at inpﬁof OR gate

4

CS 150 - Spring 2001 - Combinational Implementation - 3

Two-level Logic using NOR Gates

Replace maxterm OR gates with NOR gates

Place compensating inversion at inputs\of AND gate

I

=]
>
pe=

Two-level Logic using NAND Gates (cont'd)

OR gate with inverted inputs is a NAND gate
de Morgan's: A'+B'=(A-B)

Two-level NAND-NAND network
Inverted inputs are not counted

In a typical circuit, inversion is done once and signal
distributed

0|
ol

C$ 150 - Spring 2001 - Combinational Tmplementation - 4

€3 150 - Spring 2001 - Combinational Tmplementation - 5

Two-level Logic using NOR Gates (cont'd)

AND gate with inverted inputs is a NOR gate
de Morgan's: A'-B'=(A+B)

Two-level NOR-NOR network
Inverted inputs are not counted

In a typical circuit, inversion is done once and signal
distributed

=Pl

€S 150 - Spring 2001 - Combinational Tmplementation - 6

Two-level Logic using NAND and NOR Gates

NAND-NAND and NOR-NOR networks
de Morgan's law: (A+B)= A':B'
(A-B)'= A'+B'
written differently: A+B = (A'-B'Y
(A-B) = (A'+B")
In other words --
OR is the same as NAND with complemented inputs
AND is the same as NOR with complemented inputs
NAND is the same as OR with complemented inputs
NOR is the same as AND with complemented inputs

o s orp faw) e D
e j@ :Z@— » TJNORY—

£S 150 - Spring 2001 - Combinational Implementation - 7

Conversion Between Forms

Convert from networks of ANDs and ORs to networks
of NANDs and NORs
Introduce appropriate inversions ("bubbles")
Each introduced "bubble" must be matched by a
corresponding "bubble"
Conservation of inversions
Do not alter logic function

Example: AND/OR to NAND/NAND

CS 150 - Spring 2001 - Combinational Ty lementation - 8

Conversion Between Forms (cont'd)

Example: verify equivalence of two forms

SRS
D UE -

D—

Z=[(A -8 -(C D) T
S[(AB) - (C+D) T
S[ABYH(C DY]
D (A D)

CS 150 - Spring 2001 - Combinational Implementation - 9

Conversion Between Forms (cont'd)

Example: verify equivalence of two forms

Z={[(A+B)+(C+D) T}
={ (A'+B) - (C'+D) ¥
= (A'+B')'¢(C'+D')'
= (A-B+(C-D)Y

€3 150 - Spring 2001 - Combinational Tmplementation - 11

Conversion Between Forms (cont'd)

Example: map AND/OR network to NOR/NOR network
2:13*1
=1

‘; :& o o)
i

; ; NOR)—‘ -
D — 0

— Z

/ Step 1 Step 2
conserve conserve
"bubbles" "bubbles"

C$ 150 - Spring 2001 - Combinational Implementation - 10

Multi-level Logic

x=ADF + AEF + BDF + BEF + CDF + CEF +
G

Reduced sum-of-products form - already simplified

6 x 3-input AND gates + 1 x 7-input OR gate (may not exist!)

25 wires (19 literals plus 6 internal wires)
x=(A+B+C)(D+E)F + 6

Factored form - not written as two-level S-o-P

1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate

10 wires (7 literals plus 3 internal wires)

e

€S 150 - Spring 2001 - Combinational Tmplementation - 12

Conversion of Multi-level Logic to NAND Gates

Level 1 Level 2 Level 3 Level 4
A =

@(DEDF

£S 150 - Spring 2001 - Combinational Implementgtion - 13

F=AB+CD)+BC(C'

original B
AND-OR
network

Cc
D

introduction and
conservation of
bubbles

redrawn in terms D]
of conventional \B.
NAND gates A

D0 0RO 0|0

Conversion of Multi-level Logic to NORs

Level 1 Level 2 Level 3 Level 4

F=A(B+CD)+BC"]
-

original
AND-OR
network

B.
A

\J

C
introduction and g
«

1 0f

bubbles A
B
(

010
;

VIV B[B0

\c
D] —]
redrawn in terms \L D foiDo—E})%F
of conventonal | ® | {
NOR gates
\B-]
(o8

CS 150 - Spring 2001 - Combinational Tmplementation - 14

Conversion Between Forms

Example
A A
C X C X
D D
original circuit add double bubbles at inputs

A
A X
c B F
© ¢ ™ 9 8 Dé P @
\D c W
\»

distribute bubbles

) insert inverters to fix mismatches
some mismatches

CS 150 - Spring 2001 - Combinational Implementation - 15

Conversion to AOT Forms

General procedure to place in AOI form
Compute complement of the function in sum-of-products form
By grouping the Os in the Karnaugh map

Example: XOR implementation--A xor B=A'B + AB'
AOLI form: F=(A'B' + AB)'

© 1]
1 "

B + b F
o[+ |© &

@ >

€3 150 - Spring 2001 - Combinational Tmplementation - 17

AND-OR-Invert Gates

AOI function: three stages of logic—AND, OR, Invert
Multiple gates "packaged" as a single circuit block

logical concept possible implementation

A

B
— Z

C

D.
AND OR Invert NAND NAND Invert

2x2 AQI gate H 3x2 AOI gate H
+ b + b
symbol H symbol H

CS 150 - Spring 2001 - Combinational Tmplementation - 16

on @>

Examples of using AOT gates

Example:
F=BC' +AC' +AB a
F'=A'"B'+A"C+B'C
Implemented by 2-input 3-stack AOL gate C[° | 0| 1] 0

F=(A+B)(A+C')(B+C")
F'=(B'+C)(A'+C) (A" +B')
Implemented by 2-input 3-stack OAI gate
Example: 4-bit equality function
Z = (AOBO+AQ'BO')(A1B1+A1'B1')(A2B2+A2'B2")(A3B3+A3'B3")

each implemented in a single 2x2 AOI gate

€S 150 - Spring 2001 - Combinational Tmplementation - 18

Examples of Using AOT Gates (cont'd)

Example: AOI implementation of 4-bit equality function

A0 2 e HhighifAD BO

B0 " low if AO = BO
w |

AL &

conservation of bubbles

output Z is high

A2 & '\
B2 + if all inputs are low
& then Ai = Bj, i=0,...,3

£S 150 - Spring 2001 - Combinational Implementation - 19

Time Behavior of Combinational Networks

Waveforms
Visualization of values carried on signal wires over time
Useful in explaining sequences of events (changes in value)

Simulation tools are used to create these waveforms
Input to the simulator includes gates and their connections
Input stimulus, that is, input signal waveforms

Some terms
Gate delay—time for change at input to cause change at output
Min delay-typical/nominal delay-max delay
Careful designers design for the worst case
Rise time—time for output to transition from low to high voltage
Fall time—time for output to transition from high to low voltage
Pulse width—time an output stays high or low between changes
€S 150 - SEl‘inﬂ 2001 - Combinational Imelememmwon - 21

Summary for Multi-level Logic

Advantages
Circuits may be smaller
Gates have smaller fan-in
Circuits may be faster

Disadvantages
More difficult to design
Tools for optimization are not as good as for two-level
Analysis is more complex

£S 150 - Spring 2001 - Combinational Implementation - 20

Momentary Changes in Outputs

Can be useful—pulse shaping circuits

Can be a problem—incorrect circuit
operation (glitches/hazards)

Example: pulse shaping circuit
A'-A=0
delays matter
in function

|
]

D remains high for \

three gate delays after
A changes from low to high

F is not always 0
pulse 3 gate-delays wide

Oscillatory Behavior

Another pulse shaping circuit

resistoé

close switch
initially open switch
undefined
Y P : -+
x [~
o T —— ——
c ’ ! ' ‘ ‘
. ¥ . ; - : =

€S 150 - Spring 2001 - Combinational Implementation - 23

CS 150 - Spring 2001 - Combinational Implementation - 22

Hazards/Glitches

Hazards/glitches: unwanted switching at the outputs
Occur when different paths through circuit have different
propagation delays

As in pulse shaping circuits we just analyzed
Dangerous if logic causes an action while output is unstable
May need to guarantee absence of glitches

Usual solutions
1) Wait until signals are stable (by using a clock): preferable
(easiest to design when there is a clock - synchronous design)

2) Design hazard-free circuits: sometimes necessary (clock not
used - asynchronous design)

£S 150 - Spring 2001 - Combinational Tmplementation - 24

Types of Hazards

Static 1-hazard
Input change causes output to go from 1 to O to 1

H
E
-

Static O-hazard 1
INput change causes output to go fromOto1to0 & 0

Dynamic hazards 1 | 1
Input change causes a double change 0 0

fromOto1toOto1ORfrom1to0tolto0
1 1
of o

CS 150 - Spring 2001 - Combingtional Tmplementation - 25

Dynamic Hazards

Due to the same versions of a literal taking on
opposite values

Thru different paths with different delays and reconverging
May cause an output that was to change value to
change 3 times instead of once N

Example: c

__Ju UL

dynamic hazards
CS 150 - Spring 2001 - Combinational Implementation - 27

hazard

Mux and Demux

Switch implementation of multiplexers and
demultiplexers
Can be composed to make arbitrary size switching networks
Used to implement multiple-source/multiple-destination
interconnections

A—./.—.\kv

.

B—.\._./O—z

*——o

B o—Z

*—9o

Static Hazards

Due to a literal and its complement momentarily taking
on the same value

Thru different paths with different delays and reconverging
May cause an output that should have stayed at the
same value to momentarily take on the wrong value

Example: A

:€D1D : -

\
B S
E
s e e N
static-0 hazard static-1 hazard hazard

£S 150 - Spring 2001 - Combinational Implementation - 26

Making Connections

Direct point-to-point connections between gates
Wires we've seen so far

Route one of many inputs to a single output ---

multiplexer

Route a single input to one of many outputs ---
demultiplexer

el 4

S —

multiplexer demultiplexer 4x4 switch

CS 150 - Spring 2001 - Combinational Implementation - 28

€S 150 - Spring 2001 - Combinational Implementation - 29

Mux and Demux (cont'd)

Uses of multiplexers/demultiplexers in multi-point
connections

A0 AL BO Bl

sb multiple input sources

multiple output destinations

€S 150 - Spring 2001 - Combinational Tmplementation - 30

Multiplexers/Selectors

Multiplexers/Selectors: general concept
2n data inputs, n control inputs (called "selects"), 1 output
Used to connect 2" points to a single point
Control signal pattern forms binary index of input connected

to output
Alz A
R 0
Z=A1, +AL 0 1
1)L
0
1
0
functional form 1
logical form 0
1

two alternative forms
for a 2:1 Mux truth table

£S 150 - Spring 2001 - Combinational Implementation - 31

Multiplexers/Selectors (cont'd)

2:lmux: Z=A"I0O+ATIl

4:1mux: Z=A'B'I0O+A'BI1+AB I2+ABI3

8:1mux: Z=A'B'C'IO+A'B'CI1+A'BC'I2+A'BCI3+
AB'C'I4 + AB'CI5 + ABC'I6 + ABCI7

Ingeneral, Z =k_02n'1 (m L)

in minterm shorthand form for a 2™1 Mux

10—

I1—»

22—

B— g1
10—»] A— mux | 2
I1— 41 I5—»
2 mux | 7 16—»|
13—»| 17—

! Mt

Gate Level Implementation of Muxes

2:1 mux E‘—}LD %

4:1 mux HH HH

B N

CS 150 - Spring 2001 - Combinational Implementation - 33

£S 150 - Spring 2001 - Combinational Implementation - 32

Cascading Multiplexers

Large multiplexers implemented by cascading smaller ones

10— 8:1
n—p 41 mux alternative
12— mux implementation
B 21
. }‘*Z 8:1
mux
4 —p] — mux
15— 41
6 —F mu
17— .
41
mux
B C A
control signals B and C simultaneously choose
one of I0, I1, I2, I3 and one of 14, IS, 16, I7
control signal A chooses which of the
upper or lower mux's output to gate to Z C‘ A B

Multiplexers as General-purpose Logic

2"1 multiplexer implements any function of n variables
With the variables used as control inputs and
Data inputs tied o O or 1
In essence, a lookup table

Example:
F(ABC)=m0+m2 +mé6 +m7

=A'B'C'+ A'BC' + ABC' + ABC 1 —To
= A'B'(C')+ A'B(C') + AB'(0) + AB(1) o —1
12
0 —3
0 {4 gimux [*F
o _|s
1 e
17
s2 S1 S0
T
A B C
CS 150 - SErmq 2001 - Combinational ImE\ememu’hon - 35

CS 150 - Spring 2001 - Combinational Implementation - 34

Multiplexers as General-purpose Logic (cont'd)

2"L:1 mux can implement any function of n variables
With n-1 variables used as control inputs and
Data inputs tied to the last variable or its complement

Example:
F(AB,C)=m0 +m2 +mé +m7
= A'B'C' + A'BC' + ABC' + ABC
= A'B'(C')+ A'B(C') + AB'(0) + AB(1)

1 o

o —1 A B cC|F

1 2 0 00 [Ig .

o 13 o o1 lo ¢ —0 F

0 {4 gimux > F 0 1 [0 [T St pamux |

o s o 1|1 o 0 —2

1 e T 0 [0 [0, 1 s1s0

1 7 1 01 lo]
s2 S1 SO 1170 114 A B

101 |1 |1

A B C £S 150 - Spring 2001 - Combinational Tmplementation - 36

Multiplexers as General-purpose Logic (cont'd) Demultiplexers/Decoders
Generalization Decoders/demultiplexers: general concept
L I ... L)L | F Single data input, n control inputs, 2" outputs
. . . 0|0 T 1 four possible Control inputs (called “selects” (S)) represent binary index o
n-1 mux contml/ conﬁgurations puT: (C 2 (S)) rep Y f
variables ..~ t]o 0 1 Sftrith table rows output to which the input is connected
single mux data i L i i can be expressed Data input usually called “enable” (6)
variable 0 L 1 1 as a function of I,
. . . 1:2 Decoder: 3:8 Decoder:
Example: F(A,B,C,D) implemented by an 8:1 MUX 0=6 & 0=6 52 Si so
A 1 —fo 01=G S 01=G S2 SU' SO
—{1 02=G S2 S1 SO
[|[2]][] 0 —e2 2:4 Decoder: 03=G 2 S S0
choose A,B,C as control variables 1 =3 L, 00=G S1° SO 04=G S2 St SO
Lol [Tl o] D& Emux 01=G SI' SO 05=G 52 SU SO
multiplexer implementation o _le 02=G S1 SO 06=G S2 S1 SO
okt BIBIE o7 03=G SISO 07=G S2 St SO
o M M o S2 S1 S0
T
CS 150 - Spring 2001 - Combinational Tmplementation - 37 A_B_C CS 150 - Spring 2001 - Combinational Implementation - 38
Gate Level iTmplementation of Demultiplexers Demultiplexers as General-purpose Logic
1:2 Decoders n:2" decoder implements any function of n variables
active-high active-low . . .
enable enable With the variables used as control inputs
G 0 \G 0 Enable inputs tied to 1 and
s s . Appropriate minterms summed to form the function
ot o1
2:4 Decoders
0> aBC
G \G o o
o 00 00 11— ABC
active-high :D active-low RAD % —» A'BC' demultiplexer generates appropriate
i — b 4 01 win — A'BC minterm based on control signals
enable R:DOI enable _D 1"—» 3.8 DEC g — AB'C' (it "decodes" control signals)
— AB'C
— o2 HE D02 § (> AsC
ABC
F o3 HHEL o3 s2 st 50| "
23R 23R ABoC
s1 s0 st so
€S 150 - Serma 2001 - Combinational Ime\ememmion -39 €S 150 - SEl'inﬂ 2001 - Combinational ImElememmwon - 40
Demultiplexers as General-purpose Logic (cont'd) Cascading Decoders
FI=A'BC'D+A'B'CD+ABCD 5:32 decoder
' 1x2:4 decoder 1 AeeE =
F2=ABC D+ABC Rl s 4x3.8 decoders e i
. . . . 1 —>ABCD E 3:8 DEC3 [* > 3:8 DEC3 >
F3=(A"+B'+C' +D") 2 |—»ABCD' DR g e
3 >ABCD e 5>
4 [—»ABCD' > s1 s
5 |—»ABCD 0
6 —»ABCD' F —»{214 DEC !
4:16 7 [—»ABCD 5
Enable —» pgc 8 —»ABCD' | _| - F2 5‘1 S‘O — Of—» ABCD'E'
9 |—»ABCD j h s e 1>
10—»ABCD' = A
11—»ABCD L) 3:8 pEC s 3:8 beC
12»aBCD! g Hind
13—»ABCD > ascoe R
14— ABCD' > s s
15 —»ABCD 74i So—F3
BER thk thk
ABCD
£S5 150 - Spring 2001 - Combinational Implementation - 41 £S5 150 - SEr‘mﬁ 2001 - Combinational ImEIcmcmmwon - 42

Programmable Logic Arrays

Pre-fabricated building block of many AND/OR gates
Actually NOR or NAND
“Personalized" by making or breaking connections among gates
Programmable array block diagram for sum of products form

‘ ‘. . ‘
i i inputs i
AND product or
array terms e
outputs
0.

CS 150 - Spring 2001 - Combinational Tmplementation - 43

Before Programming

All possible connections available before "programming"
In reality, all AND and OR gates are NANDs

vV

C$ 150 - Spring 2001 - Combinational Tmplementation - 45

Enabling Concept

Shared product terms among outputs

FO=A +B'C
example: C +AB
C' + AB
BC+ A
3 . input side:
personality matrix 1 = uncomplemented in term
0= complemenleq _in term
product ‘ inputs outputs — = does not participate
term A B C |FO FI F2 F3 .
AB 1 1 - |o 1 1 0 output side:
B'C - 0 1|0 0 0 1 1 = term connected to output
AC 1 - o0lo 1 o o 0 = no connection to output
BC P P reuse of terms
A 1 - - J1 0 0 1

£S 150 - Spring 2001 - Combinational Implementgtion - 44

After Programming

Unwanted connections are "blown"
Fuse (normally connected, break unwanted ones)
aAnti-fuse (normally disconnected, make wanted connections)
A c
T \AB
H
[BC
H
HHOAC
——gC
H

L oA

F2 F3|

FO| F1
CS 150 - Spring 2001 - Combinational Implementation - 46

Alternate Representation for High Fan-in
Structures

Short-hand notation--don't have to draw all the wires
Signifies a connection is present and perpendicular signal is
an input to gate

notation for implementing
FO=AB + A'B
Fl=CD + C'D

x A B CD
N N I
AB
AB
D'
L/
cD
AB+A'B'
CD'+CD

Programmable Logic Array Example

full decoder as for memory address
bits stored in memory

Multiple functions of A, B, C

F1=ABC ABC
ot
F2=A+B+C ABC
F3=A'B'C' o
F4=A"+B'+(C' o
F5 = A xor B xor C c
A'B
F6 = A xnor B xnor C = ABC
A B C|FLF2 F3F4F5 F6
000[00 1100 AB'C
001{0 1 01 11 \
010010111 ABC
011010100
100010111 [ABC
101(01 0100
110010100
111/1 10011 FLRFS b Es

€S 150 - Spring 2001 - Combinational Implementation - 47

£S 150 - Spring 2001 - Combinational Tmplementation - 48

PALs and PLAs

Programmable logic array (PLA)
What we've seen so far
Unconstrained fully-general AND and OR arrays

Programmable array logic (PAL) L.
Constrained topology of the OR array
Innovation by Monolithic Memories
Faster and smaller OR plane L)

a given column of the OR array
has access to only a subset of
the possible product terms

CS 150 - Spring 2001 - Combingtional Tmplementation - 49

PALs and PLAs: Design Example (cont'd)

Code converter: programmed PLA)
minimized functions:

ABCD
Vavavayd W=A+BD+BC
X=BC
A Y=B+C
BD Z=ABCD+BCD+AD +BCD
J BC
BC' not a particularly good
B candidate for PAL/PLA
implementation since no terms
C are shared among outputs
ABCD
BCD
AD' however, much more compact
and regular implementation

when compared with discrete
AND and OR gates

U™

PALs and PLAs: Design Example

BCD to Gray code converter
W

A B C D X Y 7 A A
0 0 0 0|0 0O 0 O —
000 0 1|0 0 0 1 olollx s o 1xle
0 0 1 0/ 0 0 1 1 o[t x][olltfx]e
0 0 1 1|0 0 1 0 ‘[]‘ P D
01 0 0o 1 1 o oo Jla llxd}x clolo|x|x
001 0 1|1 1 1 0 o 1 [x]x o Lo [x]x
0 1 1 0|1 0 1 O B B
0 1 1 1 1 0 1 1
1 0o 0 0 1 0 0 1 K-map for W K-map for X
1 0 0 1 1 0 0 o0
1 01 - |- - - = A A
L A o1 |x]o ool |1
minimized functions: 01 X0y 1lo]xfoly
11 [X|[X 1 XX
W=A+BD+BC C} } []x]
BC 11 [xlx [l o [x |x
B+C B B '
=ABCD+BCD+AD +BCD'
K-map for Y K-map for Z

£S 150 - Spring 2001 - Combinational Implementation - 50

W X Y Z
S 150 - Spring 2001 - Combinational Implementation - 51

PALs and PLAs: Design Example (cont'd)

ABCD
Ll U

Code converter:
programmed PAL

4 product terms
per each OR gate

PALs and PLAs: Design Example (cont'd)

Code converter: NAND gate implementation
Loss of regularity, harder to understand
Harder to make changes

So A
A B
T
B
c
D z

B 0

B
D
B
C

S 150 - Spring 2001 - Combinational Implementation - 52

€S 150 - Spring 2001 - Combinational Implementation - 53

PALs and PLAs: Another Design Example

. A B CD
Magnitude comparator Avavavavd
A A ABCD'
NARR ABCD
tlols sy ABCD
cfejtfo 1 ABCD'
11]1]o AC
5 L
AC
K-map for EQ K-map for NE [8D
A A BD'
olo]o o 1] A'BD
tfolololfy oloful)y BCD
ol 1o Jololoe ABC
1100 o o]0 BCD'
B B
K-map for LT K-map for GT WVWV
EQ NE LT GT

£S 150 - Spring 2001 - Combinational Implementation - 54

Read-only Memories

Two dimensional array of 1s and Os word lines (only one
Entry (row) is called a "word" ﬁ:fﬁ;ﬁt}gff;g)er ©
Width of row = word-size L1
Index is called an "address" popos

Address is input
Selected word is output

i word[i] = 0011

decoder L‘{ L‘i
J

word[j] = 1010

0
internal organization ‘ ‘ ‘ ‘ ‘ ‘
0 n-1

Address
bit lines (normally pulled to 1 through
resistor — selectively connected to 0
by word line controlled switches)

CS 150 - Spring 2001 - Combingtional Tmplementation - 55

ROM Structure

Similar to a PLA structure but with a fully decoded
AND array
Completely flexible OR array (unlike PAL)

n address lines

XN
l iinputs i
memory
decoder 2 word array
lines (Zn words
by m bits)
outputs
m data lines

€S 150 - Spring 2001 - Combinational Implementation - 57

ROMs and Combinational Logic

Combinational logic implementation (two-level
canonical form) using a ROM

FO=ABC+ ABC + ABC

F1=A'B'C + A'BC' + ABC

F2=A'B'C' + A'B'C + AB'C’

F3=A'BC + AB'C' +ABC

ROM
8 words x 4 bits/word

11 L

A BC FOF1F2F3
address outputs

A
0
0
0
0
1
1
1
1

truth table block diagram

£S 150 - Spring 2001 - Combinational Implementation - 56

ROM vs. PLA

ROM approach advantageous when
Design time is short (no need to minimize output functions)
Most input combinations are needed (e.g., code converters)
Little sharing of product terms among output functions

ROM problems
Size doubles for each additional input
Can't exploit don't cares

PLA approach advantageous when
Design tools are available for multi-output minimization
There are relatively few unique minterm combinations
Many minterms are shared among the output functions

PAL problems
Constrained fan-ins on OR plane

Regular Logic Structures for Two-level Logic

ROM - full AND plane, general OR plane
Cheap (high-volume component)
Can implement any function of n inputs
Medium speed

PAL - programmable AND plane, fixed OR plane
Intermediate cost
Can implement functions limited by number of terms
High speed (only one programmable plane that is much smaller
than ROM's decoder)

PLA - programmable AND and OR planes
Most expensive (most complex in design, need more
sophisticated tools)
Can implement any function up to a product term limit
Slow (two programmable planes)

€S 150 - Spring 2001 - Combinational Implementation - 59

S 150 - Spring 2001 - Combinational Implementation - 58

Regular Logic Structures for Multi-level Logic

Difficult to devise a regular structure for arbitrary
connections between a large set of different types
of gates
Efficiency/speed concerns for such a structure
Xilinx field programmable gate arrays (FPGAs) are just such
programmable multi-level structures
Programmable multiplexers for wiring
Lookup tables for logic functions (programming fills in the table)
Multi-purpose cells (utilization is the big issue)

Use multiple levels of PALs/PLAs/ROMs
Output intermediate result
Make it an input to be used in further logic

£S 150 - Spring 2001 - Combinational Implementation - 60

Combinational Logic Implementation Summary

Multi-level Logic
Conversion to NAND-NAND and NOR-NOR networks

Transition from simple gates to more complex gate building
blocks

Reduced gate count, fan-ins, potentially faster
More levels, harder to design
Time Response in Combinational Networks
Gate delays and timing waveforms
Hazards/glitches (what they are and why they happen)
Regular Logic
Multiplexers/decoders
ROMs
PLAs/PALs
Advantages/disadvantages of each
€5 150 - Spring 2001 - Combinational Implementation - 61

