

Some are easier, others harder, to implement

- Each has a cost associated with the number of switches needed
- 0 (F0) and 1 (F15): require 0 switches, directly connect output to low/high
- X (F3) and Y (F5): require 0 switches, output is one of inputs
- X' (F12) and Y' (F10): require 2 switches for "inverter" or NOT-gate
- X nor Y (F4) and X nand Y (F14): require 4 switches
- X or Y (F7) and X and Y (F1): require 6 switches
- X = Y (F9) and $X \oplus Y (F6)$: require 16 switches
- Because NOT, NOR, and NAND are the cheapest they are the functions we implement the most in practice

Axioms and Theorems of Boolean Algebra I Identity

1. X + 0 = X	1D. X • 1 = X
Null 2. X + 1 = 1	2D. X • 0 = 0
<pre>Idempotency: 3. X + X = X</pre>	3D. X • X = X
Involution: 4. (X')' = X	
Complementarity: 5. X + X' = 1	5D. X • X' = 0
Commutativity: 6. X + Y = Y + X	6D. X • Y = Y • X
Associativity: 7. (X + Y) + Z = X + (Y + Z)	7D. $(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$
CS 150 - Fall 2005 – Lec #2: Combinational Logic - 8	

Axioms and Theorems of Boolean Algebra (cont'd)

CS 150 - Fall 2005 - Lec #2: Combinational Logic - 9

Axioms and Theorems of Boolean Algebra (cont'd)

- deMorgan's: 14. $(X + Y + ...)' = X' \cdot Y' \cdot ...$ 14D. $(X \cdot Y \cdot ...)' = X' + Y' + ...$
- Generalized de Morgan's: 15. f'(X1,X2,...,Xn,0,1,+,•) = f(X1',X2',...,Xn',1,0,•,+)
- Establishes relationship between and +

Reduce number of inputs

- I literal: input variable (complemented or not)
 - I can approximate cost of logic gate as 2 transistors per literal
 - I why not count inverters?
- Fewer literals means less transistors
 - I smaller circuits
- Fewer inputs implies faster gates
 - I gates are smaller and thus also faster
- Fan-ins (# of gate inputs) are limited in some technologies

Reduce number of gates

- Fewer gates (and the packages they come in) means smaller circuits
 - I directly influences manufacturing costs

CS 150 - Fall 2005 - Lec #2: Combinational Logic - 21

Which is the Best Realization? (cont'd)

- I Fewer level of gates implies reduced signal propagation delays
- Minimum delay configuration typically requires more gates
 - I wider, less deep circuits

How do we explore tradeoffs between increased circuit delay and size?

- Automated tools to generate different solutions
- I Logic minimization: reduce number of gates and complexity
- Logic optimization: reduction while trading off against delay

Simplification of Two-level Combinational Logic

- Finding a minimal sum of products or product of sums realization
 Exploit don't care information in the process
- Algebraic simplification
 - Not an algorithmic/systematic procedure
 - How do you know when the minimum realization has been found?
- Computer-aided design tools
 - Precise solutions require very long computation times, especially for functions with many inputs (> 10)
 - I Heuristic methods employed "educated guesses" to reduce amount of computation and yield good if not best solutions
- Hand methods still relevant
 - I Understand automatic tools and their strengths and weaknesses
 - Ability to check results (on small examples)

Mapping Truth Tables onto Boolean Cubes

Uniting theorem combines two "faces" of a cube into a larger "face"

Definition of Terms for Two-level Simplification

Implicant

Single element of ON-set or DC-set or any group of these elements that can be combined to form a subcube

Prime implicant

I Implicant that can't be combined with another to form a larger subcube

Essential prime implicant

- Prime implicant is essential if it alone covers an element of ON-set
- I Will participate in ALL possible covers of the ON-set
- DC-set used to form prime implicants but not to make implicant essential

Objective:

- Grow implicant into prime implicants (minimize literals per term)
- Cover the ON-set with as few prime implicants as possible (minimize number of product terms) CS 150 - Fall 2005 - Lec #2: Combinational Logic - 59

Two-level Logic Using NAND and NOR Gates

