Combinational Logic (mostly review!)

- Logic functions, truth tables, and switches

I NOT, AND, OR, NAND, NOR, XOR, ...
I Minimal set

- Axioms and theorems of Boolean algebra

I Proofs by re-writing
I Proofs by perfect induction

- Gate logic

I Networks of Boolean functions
I Time behavior

- Canonical forms

I Two-level
I Incompletely specified functions

Possible Logic Functions of Two Variables

- 16 possible functions of 2 input variables:

I $2^{* *}\left(2^{* *} n\right)$ functions of n inputs

Cost of Different Logic Functions

Some are easier, others harder, to implement

I Each has a cost associated with the number of switches needed
I 0 (FO) and 1 (F15): require 0 switches, directly connect output to low/high
I X (F3) and Y (F5): require 0 switches, output is one of inputs
I X^{\prime} (F12) and Y^{\prime} (F10): require 2 switches for "inverter" or NOT-gate
I X nor Y (F4) and X nand Y (F14): require 4 switches
I X or $Y(F 7)$ and X and $Y(F 1)$: require 6 switches
I $X=Y$ (F9) and $X \oplus Y(F 6)$: require 16 switches

I Because NOT, NOR, and NAND are the cheapest they are the functions we implement the most in practice

Minimal Set of Functions

- Implement any logic functions from NOT, NOR, and NAND?

I For example, implementing X and Y
is the same as implementing not (X nand Y)

- Do it with only NOR or only NAND

I NOT is just a NAND or a NOR with both inputs tied together

I and NAND and NOR are "duals", i.e., easy to implement one using the other
X nand $Y \equiv$ not $(($ not $X)$ nor (not $Y))$
X nor $Y \equiv$ not $(($ not $X)$ nand (not $Y))$

- Based on the mathematical foundations of logic: Boolean Algebra

Algebraic Structure

- Consists of

I Set of elements B
I Binary operations $\{+, \cdot\}$
I Unary operation \{ ' \}
I Following axioms hold:

1. set B contains at least two elements, a, b, such that $a \neq b$
2. closure: $\quad a+b$ is in $B \quad a \cdot b$ is in B
3. commutativity: $\quad a+b=b+a \quad a \cdot b=b \cdot a$
4. associativity: $\quad a+(b+c)=(a+b)+c \quad a \cdot(b \cdot c)=(a \cdot b) \cdot c$
5. Identity: $\quad a+0=a \quad a \cdot 1=a$
6. distributivity: $\quad a+(b \cdot c)=(a+b) \cdot(a+c) a \cdot(b+c)=(a \cdot b)+(a \cdot c)$
7. complementarity: $a+a^{\prime}=1 \quad a \cdot a^{\prime}=0$

Boolean Algebra

- Boolean algebra

I $B=\{0,1\}$
I + is logical OR, • is logical AND
I ' is logical NOT

- All algebraic axioms hold

Logic Functions and Boolean Algebra

- Any logic function that can be expressed as a truth table can be written as an expression in Boolean algebra using the operators: ',+ , and \cdot

X	Y	$\mathrm{X} \cdot \mathrm{y}$	X	Y	X^{\prime}	$\mathrm{X}^{\prime} \cdot \mathrm{y}$
0	0	0	0	0	1	0
0	1	0	0	1	1	1
1	0	0	1	0	0	0
1	1	1	1	1	0	0

x	y	X^{\prime}	y^{\prime}	$x \cdot y$	$X^{\prime} \cdot y^{\prime}$	$(x \cdot y)+\left(X^{\prime} \cdot y^{\prime}\right)$
0	0	1	1	0	1	1
0	1	1	0	0	0	0
1	0	0	1	0	0	0
1	1	0	0	1	0	1

Axioms and Theorems of Boolean

Algebra

- Identity

1. $X+0=x \quad$ 1D. $x \cdot 1=x$
\| Null
2. $X+1=1 \quad$ 2D. $X \cdot 0=0$

- Idempotency:

3. $X+X=X$

3D. $x \cdot x=x$

- Involution:

4. $\left(X^{\prime}\right)^{\prime}=X$

- Complementarity:

5. $X+X^{\prime}=1$

5D. $x \cdot X^{\prime}=0$

- Commutativity:

6. $X+Y=Y+X \quad$ 6D. $X \cdot y=y \cdot x$

- Associativity:

7. $(X+Y)+Z=X+(Y+Z) \quad$ 7D. $(X \cdot Y) \cdot Z=X \cdot(Y \cdot Z)$

Axioms and Theorems of Boolean Algebra (cont'd)

- Distributivity:

8. $X \cdot(Y+Z)=(X \cdot Y)+(X \cdot Z) 8 D . X+(Y \cdot Z)=(X+Y) \cdot(X+Z)$

- Uniting:

9. $X \cdot Y+X \cdot Y^{\prime}=X \quad$ 9D. $(X+Y) \cdot\left(X+Y^{\prime}\right)=X$

- Absorption:

10. $X+X \cdot Y=X$
10D. $X \cdot(X+Y)=X$
11. $\left(X+Y^{\prime}\right) \cdot Y=X \cdot Y$
11D. $\left(X \cdot Y^{\prime}\right)+Y=X+Y$

- Factoring:

12. $(X+Y) \cdot\left(X^{\prime}+Z\right)=$

12D. $x \cdot y+x^{\prime} \cdot z=$ $X \cdot Z+X^{\prime} \cdot Y$
$(X+Z) \cdot\left(X^{\prime}+Y\right)$

- Consensus:

13. $(X \cdot Y)+(Y \cdot Z)+\left(X^{\prime} \cdot Z\right)=13 D \cdot(X+Y) \cdot(Y+Z) \cdot\left(X^{\prime}+Z\right)=$ $x \cdot y+X^{\prime} \cdot z$ $(X+Y) \cdot\left(X^{\prime}+Z\right)$

Axioms and Theorems of Boolean Algebra (cont'd)

- deMorgan's:

14. $(X+Y+\ldots)^{\prime}=X^{\prime} \cdot Y^{\prime} \cdot \ldots \quad 14 D .(X \cdot Y \cdot \ldots)^{\prime}=X^{\prime}+Y^{\prime}+\ldots$

- Generalized de Morgan's:

15. $f^{\prime}(X 1, X 2, \ldots, X n, 0,1,+\cdot \cdot)=f\left(X 1^{\prime}, X 2^{\prime}, \ldots, X n^{\prime}, 1,0, \cdot,+\right)$

- Establishes relationship between • and +

Axioms and Theorems of Boolean Algebra (cont'd)

- Duality

I Dual of a Boolean expression is derived by replacing • by,++ by $\cdot, 0$ by 1 , and 1 by 0 , and leaving variables unchanged
I Any theorem that can be proven is thus also proven for its dual!
I Meta-theorem (a theorem about theorems)

- Duality:

$$
\text { 16. } X+Y+\ldots \Leftrightarrow X \cdot Y \cdot \ldots
$$

- Generalized duality:

17. $f(X 1, X 2, \ldots, X n, 0,1,+\cdot \cdot) \Leftrightarrow f\left(X 1, X 2, \ldots, X_{n}, 1,0, \cdot,+\right)$

- Different than deMorgan's Law

I This is a statement about theorems
I This is not a way to manipulate (re-write) expressions

Proving Theorems (Rewriting Method)

- Using the axioms of Boolean algebra:
I e.g., prove the theorem: $x \cdot y+x \cdot y^{\prime}=x$
distributivity (8) $x \cdot y+x \cdot y^{\prime}=x \cdot\left(y+y^{\prime}\right)$
complementarity (5)
$X \cdot\left(Y+Y^{\prime}\right)=X \cdot(1)$
identity (1D)
$X \cdot(1) \quad=X \checkmark$
I e.g., prove the theorem:
$x+x \cdot y=x$
identity (1D)
$x+x \cdot y=x \cdot 1+x \cdot y$
distributivity (8)
$X \cdot 1+X \cdot Y=X \cdot(1+Y)$
identity (2)
identity (1D)
$X \cdot(1+Y) \quad=X \cdot(1)$
$X \cdot(1) \quad=X \vee$

Proving Theorems (Perfect Induction)

- Using perfect induction (complete truth table):

I e.g., de Morgan's:

$$
(x+y)^{\prime}=x^{\prime} \cdot y^{\prime}
$$ NOR is equivalent to AND with inputs complemented

$(X \cdot y)^{\prime}=X^{\prime}+y^{\prime}$
NAND is equivalent to $O R$ with inputs complemented

x	y	x^{\prime}	y^{\prime}	$(x \cdot y)^{\prime}$	$x^{\prime}+y^{\prime}$
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

Simple Example

- 1-bit binary adder

I Inputs: A, B, Carry-in
I Outputs: Sum, Carry-out

A	B	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$
\begin{aligned}
& S=A^{\prime} B^{\prime} C \text { in }+A^{\prime} B C i n '+A B^{\prime} C i n '+A B C i n \\
& C o u t=A^{\prime} B C i n+A B^{\prime} C i n+A B C i n '+A B C i n
\end{aligned}
$$

Apply the Theorems to Simplify Expressions

- Theorems of Boolean algebra can simplify Boolean expressions
I e.g., full adder's carry-out function (same rules apply to any function)

```
Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin
= A' BCin + A B' Cin + A BCin' + A BCin + A B Cin
= A' BCin + A BCin + A B'Cin + A BCin' + A B Cin
=(A' +A)BCin + A B'Cin + ABCin' + ABCin
=(1) BCin + A B'Cin + ABCin' + A BCin
= BCin + A B' Cin + A BCin' + A BCin + A BCin
= BCin + A B' Cin + A BCin + A BCin' + A B Cin
= BCin +A(B' + B)Cin +ABCin' + A BCin
= BCin + A (1)Cin +ABCin' + A BCin
= B Cin + A Cin + A B (Cin' + Cin)
= BCin + A Cin + A B (1)
= BCin + ACin + AB
```

From Boolean Expressions to Logic Gates

- NOT $X^{\prime} \bar{X} \sim X$

AND X•Y XY X^Y

- OR X + Y X Y
 Z

x	y	z
0	0	0
0	1	0
1	0	0
1	1	1

From Boolean Expressions to Logic Gates (cont'd)

- NAND

x	y	Z
0	0	1
0	1	1
1	0	1
1	1	0

NOR

I XOR
$X \oplus Y$

$X \operatorname{xor} Y=X Y^{\prime}+X^{\prime} Y$ X or Y but not both ("inequality", "difference")
I XNOR
$\mathrm{X}=\mathrm{y}$

$X \times n o r Y=X Y+X^{\prime} Y$ X and Y are the same ("equality", "coincidence")

From Boolean Expressions to Logic Gates (cont'd)

I More than one way to map expressions to gates

Waveform View of Logic Functions

- Just a sideways truth table

I But note how edges don't line up exactly
I It takes time for a gate to switch its output!

Choosing Different Realizations of a Function

A	B	C	Z
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Which Realization is Best?

- Reduce number of inputs

I literal: input variable (complemented or not)
I can approximate cost of logic gate as 2 transistors per literal
I why not count inverters?
I Fewer literals means less transistors
I smaller circuits
I Fewer inputs implies faster gates
I gates are smaller and thus also faster
I Fan-ins (\# of gate inputs) are limited in some technologies

- Reduce number of gates

I Fewer gates (and the packages they come in) means smaller circuits
I directly influences manufacturing costs

Which is the Best Realization?
 (cont'd)

- Reduce number of levels of gates

I Fewer level of gates implies reduced signal propagation delays
I Minimum delay configuration typically requires more gates
I wider, less deep circuits

- How do we explore tradeoffs between increased circuit delay and size?
I Automated tools to generate different solutions
I Logic minimization: reduce number of gates and complexity
I Logic optimization: reduction while trading off against delay

Are All Realizations Equivalent?

- Under the same inputs, the alternative implementations have almost the same waveform behavior
I Delays are different
I Glitches (hazards) may arise
I Variations due to differences in number of gate levels and structure
- Three implementations are functionally equivalent

CS 150 - Fall 2005 - Lec \#2: Combinational Logic - 23

Implementing Boolean Functions

- Technology independent

I Canonical forms
I Two-level forms
I Multi-level forms

- Technology choices

I Packages of a few gates
I Regular logic
I Two-level programmable logic
I Multi-level programmable logic

Canonical Forms

- Truth table is the unique signature of a Boolean function
- Many alternative gate realizations may have the same truth table
- Canonical forms

I Standard forms for a Boolean expression
I Provides a unique algebraic signature

Sum-of-Products Canonical Forms

- Also known as disjunctive normal form
- Also known as minterm expansion

Sum-of-Products Canonical Form

(cont'd)

- Product term (or minterm)

I ANDed product of literals - input combination for which output is true
I Each variable appears exactly once, in true or inverted form (but not both)

A	B	C	minterms
0	0	0	$A^{\prime} B^{\prime} C^{\prime} m 0$
0	0	1	$A^{\prime} B^{\prime} C$
0	1	0	$A^{\prime} B C^{\prime}$
0	$m 2$		
0	1	1	$A^{\prime} B C$
1	0	0	$A B^{\prime} C^{\prime}$
1	$m 4$		
1	0	1	$A B^{\prime} C$
1	1	0	$A B C^{\prime}$
1	1	1	$A B C$

short-hand notation for minterms of 3 variables

Product-of-Sums Canonical Form

- Also known as conjunctive normal form
- Also known as maxterm expansion

$$
\mathrm{F}^{\prime}=\left(\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)
$$

Product-of-Sums Canonical Form (cont'd)

- Sum term (or maxterm)

I ORed sum of literals - input combination for which output is false
I Each variable appears exactly once, in true or inverted form (but not both)

A	B	C	maxterms	
0	0	0	$A+B+C$	$M 0$
0	0	1	$A+B+C^{\prime}$	$M 1$
0	1	0	$A+B^{\prime}+C$	$M 2$
0	1	1	$A+B^{\prime}+C^{\prime}$	$M 3$
1	0	0	$A^{\prime}+B+C$	$M 4$
1	0	1	$A^{\prime}+B+C^{\prime}$	$M 5$
1	1	0	$A^{\prime}+B^{\prime}+C$	$M 6$
1	1	1	$A^{\prime}+B^{\prime}+C^{\prime}$	$M 7$

F in canonical form:
$F(A, B, C)=\Pi M(0,2,4)$
$=M 0 \cdot M 2 \cdot M 4$
$=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$
canonical form \neq minimal form
$F(A, B, C)=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$
$=(A+B+C)\left(A+B^{\prime}+C\right)$
$(A+B+C)\left(A^{\prime}+B+C\right)$
$=(A+C)(B+C)$
short-hand notation for maxterms of 3 variables

S-o-P, P-o-S, and deMorgan's

Theorem

Sum-of-products
I $F^{\prime}=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}$

- Apply de Morgan's

I $\left(F^{\prime}\right)^{\prime}=\left(A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}\right)^{\prime}$
I $F=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$

Product-of-sums
I $F^{\prime}=\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)$

- Apply de Morgan's

I $\left(F^{\prime}\right)^{\prime}=\left(\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)\right)^{\prime}$
I $F=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C$

Four Alternative Two-level Implementations of $F=A B+C$

Waveforms for the Four Alternatives

- Waveforms are essentially identical

I Except for timing hazards (glitches)
I Delays almost identical (modeled as a delay per level, not type of gate or number of inputs to gate)

Mapping Between Canonical Forms

- Minterm to maxterm conversion

I Use maxterms whose indices do not appear in minterm expansion
I e.g., $F(A, B, C)=\Sigma m(1,3,5,6,7)=\Pi M(0,2,4)$

- Maxterm to minterm conversion

I Use minterms whose indices do not appear in maxterm expansion
I e.g., $F(A, B, C)=\Pi M(0,2,4)=\Sigma m(1,3,5,6,7)$

- Minterm expansion of F to minterm expansion of F^{\prime}

I Use minterms whose indices do not appear
I e.g., $F(A, B, C)=\Sigma m(1,3,5,6,7) \quad F^{\prime}(A, B, C)=\Sigma m(0,2,4)$

- Maxterm expansion of F to maxterm expansion of F^{\prime}

I Use maxterms whose indices do not appear
I e.g., $F(A, B, C)=\Pi M(0,2,4)$
$F^{\prime}(A, B, C)=\Pi M(1,3,5,6,7)$

Incompletely Specified Functions

Example: binary coded decimal increment by 1
I BCD digits encode decimal digits 0-9 in bit patterns 0000-1001

Notation for Incompletely Specified Functions

- Don't cares and canonical forms

I So far, only represented on-set
I Also represent don't-care-set
I Need two of the three sets (on-set, off-set, dc-set)

- Canonical representations of the BCD increment by 1 function:

I $Z=m 0+m 2+m 4+m 6+m 8+d 10+d 11+d 12+d 13+d 14+d 15$
I $Z=\Sigma[m(0,2,4,6,8)+d(10,11,12,13,14,15)]$

I $Z=\Pi[M(1,3,5,7,9) \cdot D(10,11,12,13,14,15)]$

Simplification of Two-level Combinational Logic

- Finding a minimal sum of products or product of sums realization

I Exploit don't care information in the process

- Algebraic simplification

I Not an algorithmic/systematic procedure
I How do you know when the minimum realization has been found?

- Computer-aided design tools

I Precise solutions require very long computation times, especially for functions with many inputs (> 10)
I Heuristic methods employed - "educated guesses" to reduce amount of computation and yield good if not best solutions

- Hand methods still relevant

I Understand automatic tools and their strengths and weaknesses
I Ability to check results (on small examples)

Administrative Announcement

- All discussion sections to meet in 125 Cory
- Moving F 10-11 AM discussion to F 11-noon
- Students on wait list:

I W 9-12 Lab is still available
I W 5-8 lab is at capacity
I We can take a VERY small number of students into the Tu labs
I Email your preference to Head TA Po-Kai

- Instructional Web now mirrors Randy's web site

I http://inst.eecs.Berkeley.edu/~cs150
I HW \#1 and Lab \#1 now on-line

The Uniting Theorem

- Key tool for simplification: $A\left(B^{\prime}+B\right)=A$
- Essence of simplification:

I Find two element subsets of the ON -set where only one variable changes its value - this single varying variable can be eliminated and a single product term used to represent both elements

$$
F=A^{\prime} B^{\prime}+A B^{\prime}=\left(A^{\prime}+A\right) B^{\prime}=B^{\prime}
$$

Boolean Cubes

- Visual technique for indentifying when the uniting theorem can be applied
- n input variables $=n$-dimensional "cube"

1-cube

Mapping Truth Tables onto Boolean

Cubes

- Uniting theorem combines two "faces" of a cube into a larger "face"
- Example:

A	B	F
0	0	1
0	1	0
1	0	1
1	1	0

ON-set = solid nodes OFF-set = empty nodes DC-set $=x$ 'd nodes

Three Variable Example

- Binary full-adder carry-out logic

A	B	Cin	Cout
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

the on-set is completely covered by the combination (OR) of the subcubes of lower dimensionality - note that "111" is covered three times

Cout $=B C$ in $+A B+A C$ in

Higher Dimensional Cubes

- Sub-cubes of higher dimension than 2

m-Dimensional Cubes in an n-Dimensional Boolean Space

- In a 3-cube (three variables):

I 0-cube, i.e., a single node, yields a term in 3 literals
I 1-cube, i.e., a line of two nodes, yields a term in 2 literals
I 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
I 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

- In general,

I m-subcube within an n-cube $(m<n)$ yields a term with $n-m$ literals

Karnaugh Maps

- Flat map of Boolean cube

I Wrap-around at edges
I Hard to draw and visualize for more than 4 dimensions
I Virtually impossible for more than 6 dimensions

- Alternative to truth-tables to help visualize adjacencies

I Guide to applying the uniting theorem
I On-set elements with only one variable changing value are adjacent unlike the situation in a linear truth-table

A	B	F
0	0	1
0	1	0
1	0	1
1	1	0

CS 150 - Fall 2005-Lec \#2: Combinational Logic - 44

Karnaugh Maps (cont'd)

- Numbering scheme based on Gray-code

I e.g., 00, 01, 11, 10
I Only a single bit changes in code for adjacent map cells

$13=1101=A B C^{\prime} D$

Adjacencies in Karnaugh Maps

- Wrap from first to last column
- Wrap top row to bottom row

Karnaugh Map Examples

B^{\prime}

More Karnaugh Map Examples

F' simply replace 1 ' s with 0 's and vice versa $F^{\prime}(A, B, C)=\sum m(1,2,3,6)=B C^{\prime}+A^{\prime} C$

Karnaugh Map: 4-Variable Example

- $F(A, B, C, D)=\Sigma m(0,2,3,5,6,7,8,10,11,14,15)$

$$
F=C+A^{\prime} B D+B^{\prime} D^{\prime}
$$

find the smallest number of the largest possible subcubes to cover the ON-set (fewer terms with fewer inputs per term)

Karnaugh Maps: Don'† Cares

- $f(A, B, C, D)=\Sigma m(1,3,5,7,9)+d(6,12,13)$

I without don't cares
। $f=A^{\prime} D+B^{\prime} C^{\prime} D$

Karnaugh Maps: Don't Cares (cont'd)

- $f(A, B, C, D)=\Sigma m(1,3,5,7,9)+d(6,12,13)$
I $f=A^{\prime} D+B^{\prime} C^{\prime} D$
without don't cares
\| $f=A^{\prime} D+C^{\prime} D$ with don'† cares

by using don't care as a "1" a 2-cube can be formed rather than a 1-cube to cover this node don't cares can be treated as 1 s or 0 s
depending on which is more advantageous

Design Example: Two-bit Comparator

we'll need a 4-variable Karnaugh map for each of the 3 output functions

Design Example: Two-bit Comparator (cont'd)

K-map for LT

K-map for EQ

K-map for GT
$L T=A^{\prime} B^{\prime} D+A^{\prime} C+B^{\prime} C D$
$E Q=A^{\prime} B^{\prime} C^{\prime} D^{\prime}+A^{\prime} B C^{\prime} D+A B C D+A B^{\prime} C D^{\prime} \quad=(A$ xnor $C) \cdot(B \times n o r D)$
$G T=B C^{\prime} D^{\prime}+A C^{\prime}+A B D^{\prime}$
LT and GT are similar (flip A / C and B / D)

Design Example: Two-bit Comparator (cont'd)

two alternative implementations of EQ with and without XOR

XNOR is implemented with at least 3 simple gates

Design Example: 2×2-bit Multiplier

block diagram and
truth truth table

4-variable K-map for each of the 4 output functions

Design Example: 2x2-bit Multiplier (cont'd)

Design Example: BCD Increment by 1

block diagram
and truth table

18	I4	I2	I1	08	04	02	01
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0
1	0	1	0	\times	\times	\times	\times
1	0	1	1	\times	\times	\times	\times
1	1	0	0	-	-	-	-
1	1	0	1	\times	\times	\times	\times
1	1	1	0	-	-	X	\times
1	1	1	1	X	X	X	X

4-variable K-map for each of the 4 output functions

Design Example: BCD Increment by 1 (cont'd)

$\mathrm{O}=\mathrm{I} 4 \mathrm{I} 2 \mathrm{I} 1+\mathrm{I} 8 \mathrm{I} 1^{\prime}$
$\mathrm{O} 4=\mathrm{I} 4 \mathrm{I}^{\prime}+\mathrm{I} 41^{\prime}+\mathrm{I} 4^{\prime} \mathrm{I} 2 \mathrm{I} 1$
$O 4=I 4 I 2^{\prime}+I 4 I 1^{\prime}+I{ }^{\prime}$
$O 2=I 8^{\prime} I 2^{\prime} I 1+I 2 I 1^{\prime}$
O1 = I1

O4		I8		
	0	1	x	0
	0	1	X	0
	1	0	x	\times
12	0	1	x	X

Definition of Terms for Two-level Simplification

- Implicant

I Single element of ON-set or DC-set or any group of these elements that can be combined to form a subcube

- Prime implicant

I Implicant that can't be combined with another to form a larger subcube

- Essential prime implicant

I Prime implicant is essential if it alone covers an element of ON -set
I Will participate in ALL possible covers of the ON-set
I DC-set used to form prime implicants but not to make implicant essential

- Objective:

I Grow implicant into prime implicants (minimize literals per term)
I Cover the ON-set with as few prime implicants as possible (minimize number of product terms)

Examples to Illustrate Terms

Algorithm for Two-level Simplification

- Algorithm: minimum sum-of-products expression from a K-map

I Step 1: choose an element of the ON-set
I Step 2: find "maximal" groupings of 1 s and Xs adjacent to that element
I consider top/bottom row, left/right column, and corner adjacencies
I this forms prime implicants (number of elements always a power of 2)

I Repeat Steps 1 and 2 to find all prime implicants

I Step 3: revisit the 1s in the K-map
I if covered by single prime implicant, it is essential, participates in final cover
I 1s covered by essential prime implicant do not need to be revisited
I Step 4: if there remain 1s not covered by essential prime implicants I select the smallest number of prime implicants that cover the remaining $1 s$

Algorithm for Two-level Simplification (example)

3 primes around $A B^{\prime} C^{\prime} D^{\prime}$

2 primes around $A^{\prime} B C^{\prime} D^{\prime}$

2 essential primes

2 primes around $A B C^{\prime} D$

minimum cover (3 primes)

Implementations of Two-level Logic

- Sum-of-products

I AND gates to form product terms (minterms)

I OR gate to form sum

- Product-of-sums

I OR gates to form sum terms (maxterms)
I AND gates to form product

Two-level Logic Using NAND Gates

- Replace minterm AND gates with NAND gates
- Place compensating inversion at inputs of OR gate

CS 150 - Fall 2005 - Lec \#2: Combinational Logic - 64

Two-level Logic Using NAND Gates (cont'd)

- OR gate with inverted inputs is a NAND gate
I de Morgan's:
$A^{\prime}+B^{\prime}=(A \cdot B)^{\prime}$
- Two-level NAND-NAND network

I Inverted inputs are not counted
I In a typical circuit, inversion is done once and signal distributed

Two-level Logic Using NOR Gates

- Replace maxterm OR gates with NOR gates
- Place compensating inversion at inputs of AND gate

Two-level Logic Using NOR Gates (cont'd)

- AND gate with inverted inputs is a NOR gate I de Morgan's: $\quad A^{\prime} \cdot B^{\prime}=(A+B)^{\prime}$
- Two-level NOR-NOR network

I Inverted inputs are not counted
I In a typical circuit, inversion is done once and signal distributed

Two-level Logic Using NAND and NOR Gates

- NAND-NAND and NOR-NOR networks

I de Morgan's law:

$$
\begin{aligned}
& (A+B)^{\prime}=A^{\prime} \cdot B^{\prime} \\
& (A \cdot B)^{\prime}=A^{\prime}+B^{\prime} \\
& A+B=\left(A^{\prime} \cdot B^{\prime}\right)^{\prime} \\
& (A \cdot B)=\left(A^{\prime}+B^{\prime}\right)^{\prime}
\end{aligned}
$$

I written differently

- In other words --

I OR is the same as NAND with complemented inputs
I AND is the same as NOR with complemented inputs
I NAND is the same as OR with complemented inputs
I NOR is the same as AND with complemented inputs

CS 150-Fall 2005-Lec \#2: Combinational Logic -68

Conversion Between Forms

- Convert from networks of ANDs and ORs to networks of NANDs and NORs
I Introduce appropriate inversions ("bubbles")
- Each introduced "bubble" must be matched by a corresponding "bubble"
I Conservation of inversions
I Do not alter logic function
- Example: AND/OR to NAND/NAND

Conversion Between Forms (cont'd)

- Example: verify equivalence of two forms

$$
\begin{aligned}
Z & =\left[(A \cdot B)^{\prime} \cdot(C \cdot D)^{\prime}\right]^{\prime} \\
& =\left[\left(A^{\prime}+B^{\prime}\right) \cdot\left(C^{\prime}+D^{\prime}\right)\right]^{\prime} \\
& =\left[\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime}\right] \\
& =(A \cdot B)+(C \cdot D)^{\prime}
\end{aligned}
$$

Conversion Between Forms (cont'd)

- Example: map AND/OR network to NOR/NOR network

Conversion Between Forms (cont'd)

- Example: verify equivalence of two forms

$$
\begin{aligned}
Z & \left.=\left\{\left[\left(A^{\prime}+B^{\prime}\right)\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime}\right]^{\prime}\right\}^{\prime} \\
& =\left\{\left(A^{\prime}+B^{\prime}\right) \cdot\left(C^{\prime}+D^{\prime}\right) \quad\right\}^{\prime} \\
& =\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime} \\
& =(A \cdot B)+(C \cdot D)^{\prime} \checkmark
\end{aligned}
$$

Combinational Logic Summary

- Logic functions, truth tables, and switches

I NOT, AND, OR, NAND, NOR, XOR, . . ., minimal se \dagger

- Axioms and theorems of Boolean algebra

I Proofs by re-writing and perfect induction

- Gate logic

I Networks of Boolean functions and their time behavior

- Canonical forms

I Two-level and incompletely specified functions

- Simplification

I Two-level simplification

