
CS 150 - Fall 2005 – Lec #2: Combinational Logic - 1

Combinational Logic (mostly review!)
 Logic functions, truth tables, and switches

 NOT, AND, OR, NAND, NOR, XOR, . . .
 Minimal set

 Axioms and theorems of Boolean algebra
 Proofs by re-writing
 Proofs by perfect induction

 Gate logic
 Networks of Boolean functions
 Time behavior

 Canonical forms
 Two-level
 Incompletely specified functions

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 2

X Y 16 possible functions (F0–F15)
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

X
Y F

X Y

X nor Y
not (X or Y)

X nand Y
not (X and Y)

10 not X
X and Y

X or Y

not YX xor Y X = Y

Possible Logic Functions of Two
Variables

 16 possible functions of 2 input variables:
 2**(2**n) functions of n inputs

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 3

Cost of Different Logic Functions

 Some are easier, others harder, to implement
 Each has a cost associated with the number of switches needed
 0 (F0) and 1 (F15): require 0 switches, directly connect output to

low/high
 X (F3) and Y (F5): require 0 switches, output is one of inputs
 X' (F12) and Y' (F10): require 2 switches for "inverter" or NOT-gate
 X nor Y (F4) and X nand Y (F14): require 4 switches
 X or Y (F7) and X and Y (F1): require 6 switches
 X = Y (F9) and X ⊕ Y (F6): require 16 switches

 Because NOT, NOR, and NAND are the cheapest they are the
functions we implement the most in practice

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 4

X Y X nand Y
0 0 1

1 1 0

X Y X nor Y
0 0 1

1 1 0

X nand Y ≡ not ((not X) nor (not Y))
 X nor Y ≡ not ((not X) nand (not Y))

Minimal Set of Functions

 Implement any logic functions from NOT, NOR, and NAND?
 For example, implementing X and Y

is the same as implementing not (X nand Y)

 Do it with only NOR or only NAND
 NOT is just a NAND or a NOR with both inputs tied together

 and NAND and NOR are "duals", i.e., easy to implement one using the other

 Based on the mathematical foundations of logic: Boolean Algebra

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 5

Algebraic Structure

 Consists of
 Set of elements B
 Binary operations { + , • }
 Unary operation { ' }
 Following axioms hold:

1. set B contains at least two elements, a, b, such that a ≠ b
2. closure: a + b is in B a • b is in B
3. commutativity: a + b = b + a a • b = b • a
4. associativity: a + (b + c) = (a + b) + c a • (b • c) = (a • b) • c
5. Identity: a + 0 = a a • 1 = a
6. distributivity: a + (b • c) = (a + b) • (a + c) a • (b + c) = (a • b) + (a • c)
7. complementarity: a + a' = 1 a • a' = 0

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 6

Boolean Algebra

 Boolean algebra
 B = {0, 1}
 + is logical OR, • is logical AND
 ' is logical NOT

 All algebraic axioms hold

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 7

X, Y are Boolean algebra variables

X Y X • Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X' Y' X • Y X' • Y' (X • Y) + (X' • Y')
0 0 1 1 0 1 1
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 1 0 1

(X • Y) + (X' • Y') ≡ X = Y

X Y X' X' • Y
0 0 1 0
0 1 1 1
1 0 0 0
1 1 0 0

Boolean expression that is
true when the variables X
and Y have the same value
and false, otherwise

Logic Functions and Boolean Algebra

 Any logic function that can be expressed as a truth
table can be written as an expression in Boolean
algebra using the operators: ', +, and •

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 8

Axioms and Theorems of Boolean
Algebra
 Identity

1. X + 0 = X 1D. X • 1 = X
 Null

2. X + 1 = 1 2D. X • 0 = 0
 Idempotency:

3. X + X = X 3D. X • X = X
 Involution:

4. (X')' = X
 Complementarity:

5. X + X' = 1 5D. X • X' = 0
 Commutativity:

6. X + Y = Y + X 6D. X • Y = Y • X
 Associativity:

7. (X + Y) + Z = X + (Y + Z) 7D. (X • Y) • Z = X • (Y • Z)

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 9

Axioms and Theorems of Boolean Algebra
(cont’d)
 Distributivity:

8. X • (Y + Z) = (X • Y) + (X • Z) 8D. X + (Y • Z) = (X + Y) • (X + Z)

 Uniting:
9. X • Y + X • Y' = X 9D. (X + Y) • (X + Y') = X

 Absorption:
10. X + X • Y = X 10D. X • (X + Y) = X
11. (X + Y') • Y = X • Y 11D. (X • Y') + Y = X + Y

 Factoring:
12. (X + Y) • (X' + Z) = 12D. X • Y + X' • Z =

 X • Z + X' • Y (X + Z) • (X' + Y)

 Consensus:
13. (X • Y) + (Y • Z) + (X' • Z) = 13D. (X + Y) • (Y + Z) • (X' + Z) =
 X • Y + X' • Z (X + Y) • (X' + Z)

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 10

Axioms and Theorems of Boolean Algebra
(cont’d)

 deMorgan's:
14. (X + Y + ...)' = X' • Y' • ... 14D. (X • Y • ...)' = X' + Y' + ...

 Generalized de Morgan's:
15. f'(X1,X2,...,Xn,0,1,+,•) = f(X1',X2',...,Xn',1,0,•,+)

 Establishes relationship between • and +

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 11

Axioms and Theorems of Boolean Algebra
(cont’d)

 Duality
 Dual of a Boolean expression is derived by replacing • by +, + by •, 0

by 1, and 1 by 0, and leaving variables unchanged
 Any theorem that can be proven is thus also proven for its dual!
 Meta-theorem (a theorem about theorems)

 Duality:
16. X + Y + ... ⇔ X • Y • ...

 Generalized duality:
17. f (X1,X2,...,Xn,0,1,+,•) ⇔ f(X1,X2,...,Xn,1,0,•,+)

 Different than deMorgan’s Law
 This is a statement about theorems
 This is not a way to manipulate (re-write) expressions

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 12

Proving Theorems (Rewriting Method)

 Using the axioms of Boolean algebra:
 e.g., prove the theorem: X • Y + X • Y' = X

 e.g., prove the theorem: X + X • Y = X

distributivity (8) X • Y + X • Y' = X • (Y + Y')
complementarity (5) X • (Y + Y') = X • (1)
identity (1D) X • (1) = X

identity (1D) X + X • Y = X • 1 + X • Y
distributivity (8) X • 1 + X • Y = X • (1 + Y)
identity (2) X • (1 + Y) = X • (1)
identity (1D) X • (1) = X

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 13

(X + Y)' = X' • Y'
NOR is equivalent to AND
with inputs complemented

(X • Y)' = X' + Y'
NAND is equivalent to OR
with inputs complemented

X Y X' Y' (X + Y)' X' • Y'
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

X Y X' Y' (X • Y)' X' + Y'
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

Proving Theorems (Perfect Induction)

 Using perfect induction (complete truth table):
 e.g., de Morgan's:

1
0
0
0

1
1
1
0

1
0
0
0

1
1
1
0

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 14

Simple Example

 1-bit binary adder
 Inputs: A, B, Carry-in
 Outputs: Sum, Carry-out

A

B

Cin
Cout

S

A B Cin S Cout
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin
S = A' B' Cin + A' B Cin' + A B' Cin' + A B Cin

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 15

Apply the Theorems to Simplify
Expressions

 Theorems of Boolean algebra can simplify Boolean
expressions
 e.g., full adder's carry-out function (same rules apply to any function)

Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin
= A' B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin
= A' B Cin + A B Cin + A B' Cin + A B Cin' + A B Cin
= (A' + A) B Cin + A B' Cin + A B Cin' + A B Cin
= (1) B Cin + A B' Cin + A B Cin' + A B Cin
= B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin
= B Cin + A B' Cin + A B Cin + A B Cin' + A B Cin
= B Cin + A (B' + B) Cin + A B Cin' + A B Cin
= B Cin + A (1) Cin + A B Cin' + A B Cin
= B Cin + A Cin + A B (Cin' + Cin)
= B Cin + A Cin + A B (1)
= B Cin + A Cin + A B

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 16

X Y Z
0 0 0
0 1 0
1 0 0
1 1 1

X Y
0 1
1 0

X Y Z
0 0 0
0 1 1
1 0 1
1 1 1

X Y

X

X

Y

Y

Z

Z

From Boolean Expressions to Logic
Gates

 NOT X' X ~X

 AND X • Y XY X ∧ Y

 OR X + Y X ∨ Y

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 17

X
Y Z

X Y Z
0 0 1
0 1 1
1 0 1
1 1 0

X Y Z
0 0 1
0 1 0
1 0 0
1 1 0

Z
X
Y

X
Y Z

X Y Z
0 0 1
0 1 0
1 0 0
1 1 1

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

Z
X
Y

X xor Y = X Y' + X' Y
X or Y but not both

("inequality", "difference")

X xnor Y = X Y + X' Y'
X and Y are the same

("equality", "coincidence")

From Boolean Expressions to Logic Gates
(cont’d)

 NAND

 NOR

 XOR
 X ⊕ Y

 XNOR
 X = Y

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 18

T1

T2

use of 3-input gate

A

B

C
D T2

T1

Z A

B

C
D

Z

From Boolean Expressions to Logic Gates
(cont’d)

 More than one way to map expressions to gates

 e.g., Z = A' • B' • (C + D) = (A' • (B' • (C + D)))

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 19

time

change in Y takes time to "propagate" through gates

Waveform View of Logic Functions

 Just a sideways truth table
 But note how edges don't line up exactly
 It takes time for a gate to switch its output!

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 20

A B C Z
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Choosing Different Realizations of a
Function

two-level realization
(we don't count NOT gates)

XOR gate (easier to draw
but costlier to build)

multi-level realization
(gates with fewer inputs)

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 21

Which Realization is Best?

 Reduce number of inputs
 literal: input variable (complemented or not)

 can approximate cost of logic gate as 2 transistors per literal
 why not count inverters?

 Fewer literals means less transistors
 smaller circuits

 Fewer inputs implies faster gates
 gates are smaller and thus also faster

 Fan-ins (# of gate inputs) are limited in some technologies

 Reduce number of gates
 Fewer gates (and the packages they come in) means smaller circuits

 directly influences manufacturing costs

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 22

Which is the Best Realization?
(cont’d)

 Reduce number of levels of gates
 Fewer level of gates implies reduced signal propagation delays
 Minimum delay configuration typically requires more gates

 wider, less deep circuits

 How do we explore tradeoffs between increased
circuit delay and size?
 Automated tools to generate different solutions
 Logic minimization: reduce number of gates and complexity
 Logic optimization: reduction while trading off against delay

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 23

Are All Realizations Equivalent?

 Under the same inputs, the alternative implementations
have almost the same waveform behavior
 Delays are different
 Glitches (hazards) may arise
 Variations due to differences in number of gate levels and structure

 Three implementations are functionally equivalent

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 24

Implementing Boolean Functions

 Technology independent
 Canonical forms
 Two-level forms
 Multi-level forms

 Technology choices
 Packages of a few gates
 Regular logic
 Two-level programmable logic
 Multi-level programmable logic

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 25

Canonical Forms

 Truth table is the unique signature of a Boolean
function

 Many alternative gate realizations may have the same
truth table

 Canonical forms
 Standard forms for a Boolean expression
 Provides a unique algebraic signature

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 26

A B C F F'
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F =

F' = A'B'C' + A'BC' + AB'C'

Sum-of-Products Canonical Forms

 Also known as disjunctive normal form

 Also known as minterm expansion

F = 001 011 101 110 111

 + A'BC + AB'C + ABC' + ABCA'B'C

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 27

short-hand notation for
minterms of 3 variables

A B C minterms
0 0 0 A'B'C' m0
0 0 1 A'B'C m1
0 1 0 A'BC' m2
0 1 1 A'BC m3
1 0 0 AB'C' m4
1 0 1 AB'C m5
1 1 0 ABC' m6
1 1 1 ABC m7

F in canonical form:
F(A, B, C) = Σm(1,3,5,6,7)

= m1 + m3 + m5 + m6 + m7
= A'B'C + A'BC + AB'C + ABC' + ABC

canonical form ≠ minimal form
F(A, B, C) = A'B'C + A'BC + AB'C + ABC + ABC'

= (A'B' + A'B + AB' + AB)C + ABC'
= ((A' + A)(B' + B))C + ABC'
= C + ABC'
= ABC' + C
= AB + C

Sum-of-Products Canonical Form
(cont’d)

 Product term (or minterm)
 ANDed product of literals – input combination for which output is true
 Each variable appears exactly once, in true or inverted form (but not

both)

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 28

A B C F F'
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F = 000 010 100
F =

F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')

Product-of-Sums Canonical Form

 Also known as conjunctive normal form

 Also known as maxterm expansion

(A + B + C) (A + B' + C) (A' + B + C)

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 29

A B C maxterms
0 0 0 A+B+C M0
0 0 1 A+B+C' M1
0 1 0 A+B'+C M2
0 1 1 A+B'+C' M3
1 0 0 A'+B+C M4
1 0 1 A'+B+C' M5
1 1 0 A'+B'+C M6
1 1 1 A'+B'+C' M7

short-hand notation for
maxterms of 3 variables

F in canonical form:
F(A, B, C) = ΠM(0,2,4)

= M0 • M2 • M4
= (A + B + C) (A + B' + C) (A' + B + C)

canonical form ≠ minimal form
F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)

= (A + B + C) (A + B' + C)
 (A + B + C) (A' + B + C)
= (A + C) (B + C)

Product-of-Sums Canonical Form
(cont’d)

 Sum term (or maxterm)
 ORed sum of literals – input combination for which output is false
 Each variable appears exactly once, in true or inverted form (but not

both)

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 30

S-o-P, P-o-S, and deMorgan’s
Theorem

 Sum-of-products
 F' = A'B'C' + A'BC' + AB'C'

 Apply de Morgan's
 (F')' = (A'B'C' + A'BC' + AB'C')'
 F = (A + B + C) (A + B' + C) (A' + B + C)

 Product-of-sums
 F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')

 Apply de Morgan's
 (F')' = ((A + B + C')(A + B' + C')(A' + B + C')(A' + B' + C)(A' + B' + C'))'
 F = A'B'C + A'BC + AB'C + ABC' + ABC

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 31

canonical sum-of-products

minimized sum-of-products

canonical product-of-sums

minimized product-of-sums

F1

F2

F3

B

A

C

F4

Four Alternative Two-level
Implementations of F = AB + C

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 32

Waveforms for the Four Alternatives

 Waveforms are essentially identical
 Except for timing hazards (glitches)
 Delays almost identical (modeled as a delay per level, not type of

gate or number of inputs to gate)

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 33

Mapping Between Canonical Forms

 Minterm to maxterm conversion
 Use maxterms whose indices do not appear in minterm expansion
 e.g., F(A,B,C) = Σm(1,3,5,6,7) = ΠM(0,2,4)

 Maxterm to minterm conversion
 Use minterms whose indices do not appear in maxterm expansion
 e.g., F(A,B,C) = ΠM(0,2,4) = Σm(1,3,5,6,7)

 Minterm expansion of F to minterm expansion of F'
 Use minterms whose indices do not appear
 e.g., F(A,B,C) = Σm(1,3,5,6,7) F'(A,B,C) = Σm(0,2,4)

 Maxterm expansion of F to maxterm expansion of F'
 Use maxterms whose indices do not appear
 e.g., F(A,B,C) = ΠM(0,2,4) F'(A,B,C) = ΠM(1,3,5,6,7)

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 34

A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

off-set of W

these inputs patterns should
never be encountered in practice
– "don't care" about associated
output values, can be exploited
in minimization

Incompletely Specified Functions

 Example: binary coded decimal increment by 1
 BCD digits encode decimal digits 0 – 9 in bit patterns 0000 – 1001

don't care (DC) set of W

on-set of W

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 35

Notation for Incompletely Specified
Functions

 Don't cares and canonical forms
 So far, only represented on-set
 Also represent don't-care-set
 Need two of the three sets (on-set, off-set, dc-set)

 Canonical representations of the BCD increment by 1
function:

 Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15
 Z = Σ [m(0,2,4,6,8) + d(10,11,12,13,14,15)]

 Z = M1 • M3 • M5 • M7 • M9 • D10 • D11 • D12 • D13 • D14 • D15
 Z = Π [M(1,3,5,7,9) • D(10,11,12,13,14,15)]

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 36

Simplification of Two-level
Combinational Logic

 Finding a minimal sum of products or product of sums realization
 Exploit don't care information in the process

 Algebraic simplification
 Not an algorithmic/systematic procedure
 How do you know when the minimum realization has been found?

 Computer-aided design tools
 Precise solutions require very long computation times, especially for

functions with many inputs (> 10)
 Heuristic methods employed – "educated guesses" to reduce amount of

computation and yield good if not best solutions

 Hand methods still relevant
 Understand automatic tools and their strengths and weaknesses
 Ability to check results (on small examples)

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 37

Administrative Announcement

 All discussion sections to meet in 125 Cory

 Moving F 10-11 AM discussion to F 11-noon

 Students on wait list:
 W 9-12 Lab is still available
 W 5-8 lab is at capacity
 We can take a VERY small number of students into the Tu labs
 Email your preference to Head TA Po-Kai

 Instructional Web now mirrors Randy’s web site
 http://inst.eecs.Berkeley.edu/~cs150
 HW #1 and Lab #1 now on-line

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 38

A B F

0 0 1

0 1 0

1 0 1

1 1 0

B has the same value in both on-set rows
– B remains

A has a different value in the two rows
– A is eliminated

F = A'B'+AB' = (A'+A)B' = B'

The Uniting Theorem

 Key tool for simplification: A (B' + B) = A

 Essence of simplification:
 Find two element subsets of the ON-set where only one variable

changes its value – this single varying variable can be eliminated and
a single product term used to represent both elements

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 39

1-cube
X

0 1

Boolean Cubes

 Visual technique for indentifying when the uniting
theorem can be applied

 n input variables = n-dimensional "cube"

2-cube

X

Y

11

00

01

10

3-cube

X

Y Z

000

111

101
4-cube

W

X

Y
Z

0000

1111

1000

0111

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 40

A B F

0 0 1

0 1 0

1 0 1

1 1 0

ON-set = solid nodes
OFF-set = empty nodes
DC-set = ×'d nodes

two faces of size 0 (nodes)
combine into a face of size 1(line)

A varies within face, B does not
this face represents the literal B'

Mapping Truth Tables onto Boolean
Cubes

 Uniting theorem combines two "faces" of a cube into a
larger "face"

 Example:

A

B

11

00

01

10

F

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 41

A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Cout = BCin+AB+ACin

A(B+B')Cin

the on-set is completely covered by
the combination (OR) of the subcubes
of lower dimensionality - note that “111”
is covered three times

Three Variable Example

 Binary full-adder carry-out logic

A

B C

000

111

101

(A'+A)BCin

AB(Cin'+Cin)

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 42

F(A,B,C) = Σm(4,5,6,7)
on-set forms a square
i.e., a cube of dimension 2
represents an expression in one variable
i.e., 3 dimensions – 2 dimensions

A is asserted (true) and unchanged
B and C vary

This subcube represents the
literal A

Higher Dimensional Cubes

 Sub-cubes of higher dimension than 2

A

B C

000

111

101

100

001

010

011
110

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 43

m-Dimensional Cubes in an
n-Dimensional Boolean Space

 In a 3-cube (three variables):
 0-cube, i.e., a single node, yields a term in 3 literals
 1-cube, i.e., a line of two nodes, yields a term in 2 literals
 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

 In general,
 m-subcube within an n-cube (m < n) yields a term with n – m literals

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 44

A B F
0 0 1
0 1 0
1 0 1
1 1 0

Karnaugh Maps

 Flat map of Boolean cube
 Wrap–around at edges
 Hard to draw and visualize for more than 4 dimensions
 Virtually impossible for more than 6 dimensions

 Alternative to truth-tables to help visualize adjacencies
 Guide to applying the uniting theorem
 On-set elements with only one variable changing value are adjacent unlike the

situation in a linear truth-table

0 2

1 3

0 1
A

B
0

1

1

0 0

1

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 45

Karnaugh Maps (cont’d)

 Numbering scheme based on Gray–code
 e.g., 00, 01, 11, 10
 Only a single bit changes in code for adjacent map cells

0 2

1 3

00 01
AB

C
0

1
6 4

7 5

11 10

C

B

A

0 2

1 3

6 4

7 5
C

B

A

0 4

1 5

12 8

13 9 D

A

3 7

2 6

15 11

14 10
C

B
13 = 1101= ABC’D

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 46

Adjacencies in Karnaugh Maps

 Wrap from first to last column

 Wrap top row to bottom row

000 010

001 011

110 100

111 101C

B

A

A

B C

000

111

101

100

001

010

011
110

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 47

obtain the
complement
of the function
by covering 0s
with subcubes

Karnaugh Map Examples

 F =

 Cout =

 f(A,B,C) = Σm(0,4,6,7)
0 0

0 1

1 0

1 1Cin

B

A

1 1

0 0B

A

1 0

0 0

0 1

1 1C
B

A

B’

AB

AC

 + ACin+ BCin

+ B’C’ + AB’

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 48

F(A,B,C) = Σm(0,4,5,7)

F'(A,B,C) = Σ m(1,2,3,6)
F' simply replace 1's with 0's and vice versa

G(A,B,C) =

More Karnaugh Map Examples

0 0

0 0

1 1

1 1C

B

A

1 0

0 0

0 1

1 1C

B

A

0 1

1 1

1 0

0 0C

B

A

A

= AC + B’C’

= BC’ + A’C

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 49

C + B’D’

find the smallest number of the largest possible
subcubes to cover the ON-set

(fewer terms with fewer inputs per term)

Karnaugh Map: 4-Variable Example

 F(A,B,C,D) = Σm(0,2,3,5,6,7,8,10,11,14,15)
F =

D

A

B

A
B

C
D

0000

1111

1000

0111
1 0

0 1

0 1

0 0

1 1

1 1

1 1

1 1
C

+ A’BD

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 50

+ B’C’D

Karnaugh Maps: Don’t Cares

 f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)
 without don't cares

 f =

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0
B

C

A’D

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 51

Karnaugh Maps: Don’t Cares (cont’d)

 f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)
 f = A'D + B'C'D without don't cares
 f = with don't cares

don't cares can be treated as
1s or 0s

depending on which is more
advantageous

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0
B

C

A'D

by using don't care as a "1"
a 2-cube can be formed
rather than a 1-cube to cover
this node

+ C'D

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 52

we'll need a 4-variable Karnaugh map
for each of the 3 output functions

Design Example: Two-bit Comparator

block diagram

LT
EQ
GT

A B < C D
A B = C D
A B > C D

A
B
C
D

N1

N2

A B C D LT EQ GT
0 0 0 0 0 1 0

0 1 1 0 0
1 0 1 0 0
1 1 1 0 0

0 1 0 0 0 0 1
0 1 0 1 0
1 0 1 0 0
1 1 1 0 0

1 0 0 0 0 0 1
0 1 0 0 1
1 0 0 1 0
1 1 1 0 0

1 1 0 0 0 0 1
0 1 0 0 1
1 0 0 0 1
1 1 0 1 0

and
truth table

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 53

A' B' D + A' C + B' C D

B C' D' + A C' + A B D'

LT =
EQ =
GT =

K-map for EQK-map for LT K-map for GT

Design Example: Two-bit Comparator
(cont’d)

0 0

1 0

0 0

0 0
D

A

1 1

1 1

0 1

0 0
B

C

1 0

0 1

0 0

0 0
D

A

0 0

0 0

1 0

0 1
B

C

0 1

0 0

1 1

1 1
D

A

0 0

0 0

0 0

1 0
B

C

= (A xnor C) • (B xnor D)

LT and GT are similar (flip A/C and B/D)

A'B'C'D' + A'BC'D + ABCD + AB'CD’

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 54

two alternative
implementations of EQ
with and without XOR

XNOR is implemented with
at least 3 simple gates

A B C D

EQ

EQ

Design Example: Two-bit Comparator
(cont’d)

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 55

block diagram
and

truth table

4-variable K-map
for each of the 4
output functions

A2 A1 B2 B1 P8 P4 P2 P1
0 0 0 0 0 0 0 0

0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0

0 1 0 0 0 0 0 0
0 1 0 0 0 1
1 0 0 0 1 0
1 1 0 0 1 1

1 0 0 0 0 0 0 0
0 1 0 0 1 0
1 0 0 1 0 0
1 1 0 1 1 0

1 1 0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 1 0
1 1 1 0 0 1

Design Example: 2x2-bit Multiplier

P1
P2
P4
P8

A1
A2
B1
B2

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 56

K-map for P8 K-map for P4

K-map for P2 K-map for P1

Design Example: 2x2-bit Multiplier
(cont’d)

0 0

0 0

0 0

0 0
B1

A2

0 0

0 0

0 1

1 1
A1

B2

0 0

0 1

0 0

1 0
B1

A2

0 1

0 0

1 0

0 0
A1

B2

0 0

0 0

0 0

1 1
B1

A2

0 1

0 1

0 1

1 0
A1

B2

0 0

0 0

0 0

0 0
B1

A2

0 0

0 0

1 0

0 0
A1

B2 P8 = A2A1B2B1

 P4 = A2B2B1'
+ A2A1'B2

P2 = A2'A1B2
+ A1B2B1'
+ A2B2'B1
+ A2A1'B1

P1 = A1B1

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 57

I8 I4 I2 I1 O8 O4 O2 O1
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X Xblock diagram

and
truth table

4-variable K-map for each of
the 4 output functions

O1
O2
O4
O8

I1
I2
I4
I8

Design Example: BCD Increment by 1

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 58

O8 = I4 I2 I1 + I8 I1'

O4 = I4 I2' + I4 I1' + I4’ I2 I1

O2 = I8’ I2’ I1 + I2 I1'

O1 = I1'

O8 O4

O2 O1

Design Example: BCD Increment by 1
(cont’d)

0 0

0 0

X 1

X 0
I1

I8

0 1

0 0

X X

X X
I4

I2

0 0

1 1

X 0

X 0
I1

I8

0 0

1 1

X X

X X
I4

I2

0 1

0 1

X 0

X 0
I1

I8

1 0

0 1

X X

X X
I4

I2

1 1

0 0

X 1

X 0
I1

I8

0 0

1 1

X X

X X
I4

I2

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 59

Definition of Terms for Two-level
Simplification

 Implicant
 Single element of ON-set or DC-set or any group of these elements that

can be combined to form a subcube

 Prime implicant
 Implicant that can't be combined with another to form a larger subcube

 Essential prime implicant
 Prime implicant is essential if it alone covers an element of ON-set
 Will participate in ALL possible covers of the ON-set
 DC-set used to form prime implicants but not to make implicant essential

 Objective:
 Grow implicant into prime implicants (minimize literals per term)
 Cover the ON-set with as few prime implicants as possible

(minimize number of product terms)

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 60

0 X

1 1

1 0

1 0
D

A

1 0

0 0

1 1

1 1
B

C

5 prime implicants:
BD, ABC', ACD, A'BC, A'C'D

Examples to Illustrate Terms

0 0

1 1

1 0

1 0
D

A

0 1

0 1

1 1

0 0
B

C

6 prime implicants:
A'B'D, BC', AC, A'C'D, AB, B'CD

minimum cover: AC + BC' + A'B'D

essential

minimum cover: 4 essential implicants

essential

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 61

Algorithm for Two-level Simplification

 Algorithm: minimum sum-of-products expression from a K-map
 Step 1: choose an element of the ON-set
 Step 2: find "maximal" groupings of 1s and Xs adjacent to that element

 consider top/bottom row, left/right column, and corner adjacencies
 this forms prime implicants (number of elements always a power of 2)

 Repeat Steps 1 and 2 to find all prime implicants

 Step 3: revisit the 1s in the K-map
 if covered by single prime implicant, it is essential, participates in final cover
 1s covered by essential prime implicant do not need to be revisited

 Step 4: if there remain 1s not covered by essential prime implicants
 select the smallest number of prime implicants that cover the remaining 1s

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 62

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

 3 primes around AB'C'D'

Algorithm for Two-level Simplification
(example)

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

2 primes around A'BC'D'

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

2 primes around ABC'D

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

minimum cover (3 primes)

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

2 essential primes

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 63

Implementations of Two-level Logic

 Sum-of-products
 AND gates to form product terms

(minterms)
 OR gate to form sum

 Product-of-sums
 OR gates to form sum terms

(maxterms)
 AND gates to form product

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 64

Two-level Logic Using NAND Gates

 Replace minterm AND gates with NAND gates

 Place compensating inversion at inputs of OR gate

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 65

Two-level Logic Using NAND Gates
(cont’d)

 OR gate with inverted inputs is a NAND gate
 de Morgan's: A' + B' = (A • B)'

 Two-level NAND-NAND network
 Inverted inputs are not counted
 In a typical circuit, inversion is done once and signal distributed

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 66

Two-level Logic Using NOR Gates

 Replace maxterm OR gates with NOR gates

 Place compensating inversion at inputs of AND gate

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 67

Two-level Logic Using NOR Gates
(cont’d)

 AND gate with inverted inputs is a NOR gate
 de Morgan's: A' • B' = (A + B)'

 Two-level NOR-NOR network
 Inverted inputs are not counted
 In a typical circuit, inversion is done once and signal distributed

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 68

OR

NAND NAND

OR AND

NOR NOR

AND

Two-level Logic Using NAND and NOR
Gates
 NAND-NAND and NOR-NOR networks

 de Morgan's law: (A + B)' = A' • B'
(A • B)' = A' + B'

 written differently: A + B = (A' • B')’
(A • B) = (A' + B')'

 In other words ––
 OR is the same as NAND with complemented inputs
 AND is the same as NOR with complemented inputs
 NAND is the same as OR with complemented inputs
 NOR is the same as AND with complemented inputs

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 69

A

B

C

D

Z

A

B

C

D

Z

NAND

NAND

NAND

Conversion Between Forms

 Convert from networks of ANDs and ORs to networks
of NANDs and NORs
 Introduce appropriate inversions ("bubbles")

 Each introduced "bubble" must be matched by a
corresponding "bubble"
 Conservation of inversions
 Do not alter logic function

 Example: AND/OR to NAND/NAND

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 70

Z = [(A • B)' • (C • D)']'
 = [(A' + B') • (C' + D')]'
 = [(A' + B')' + (C' + D')']
 = (A • B) + (C • D)

Conversion Between Forms (cont’d)

 Example: verify equivalence of two forms

A

B

C

D

Z

A

B

C

D

Z

NAND

NAND

NAND

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 71

Step 2
conserve
"bubbles"

Step 1
conserve
"bubbles"

NOR

NOR

NOR

\A

\B

\C

\D

Z

NOR

NORA

B

C

D

Z

Conversion Between Forms (cont’d)

 Example: map AND/OR network to NOR/NOR network
A

B

C

D

Z

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 72

Z = { [(A' + B')' + (C' + D')']' }'
 = { (A' + B') • (C' + D') }'
 = (A' + B')' + (C' + D')'
 = (A • B) + (C • D)

Conversion Between Forms (cont’d)

 Example: verify equivalence of two forms
A

B

C

D

Z

NOR

NOR

NOR

\A

\B

\C

\D

Z

CS 150 - Fall 2005 – Lec #2: Combinational Logic - 73

Combinational Logic Summary
 Logic functions, truth tables, and switches

 NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set

 Axioms and theorems of Boolean algebra
 Proofs by re-writing and perfect induction

 Gate logic
 Networks of Boolean functions and their time behavior

 Canonical forms
 Two-level and incompletely specified functions

 Simplification
 Two-level simplification

