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Welcome to EECS 150: Components and
Design Techniques for Digital Systems

 Course staff
 Randy Katz (Instructor), Po-Kai Chen (Head TA)
 Teaching Assistants: Bryan Brady, Jay Chen, Brian Gawalt, Jack Tzeng
 Readers: David Lin, Kevin Lin

 Course web
 inst.eecs.Berkeley.edu/~eecs150 (coming soon)

 This week
 What is logic design?
 What is digital hardware?
 What will we be doing in this class?
 Quick Review

 Class administration, overview of course web, and logistics
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Why Are We Here?

 Implementation basis for modern computing devices
 Constructing large systems from small components
 Another view of a computer: controller + datapath

 Inherent parallelism in hardware
 Parallel computation beyond 61C

 Counterpoint to software design
 Furthering our understanding of computation
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We Will Learn in EECS 150 …

 Language of logic design
 Logic optimization, state, timing, CAD tools

 Concept of state in digital systems
 Analogous to variables and program counters in software systems

 Hardware system building
 Datapath + control = digital systems

 Hardware system design methodology
 Hardware description languages: Verilog
 Tools to simulate design behavior: output = function (inputs)
 Logic compilers synthesize hardware blocks of our designs
 Mapping onto programmable hardware (code generation)

 Contrast with software design
 Both map specifications to physical devices
 Both must be flawless…the price we pay for using discrete math
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What is Logic Design?

 What is design?
 Given problem spec, solve it with available components
 While meeting quantitative (size, cost, power) and qualitative

(beauty, elegance)

 What is logic design?
 Choose digital logic components to perform specified control, data

manipulation, or communication function and their interconnection
 Which logic components to choose?

Many implementation technologies (fixed-function components,
programmable devices, individual transistors on a chip, etc.)

 Design optimized/transformed to meet design constraints
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What is Digital Hardware?

 Devices that sense/control wires carrying digital values
(physical quantity interpreted as “0” or “1”)
 Digital logic: voltage < 0.8v is “0”, > 2.0v is “1”
 Pair of wires where “0”/“1” distinguished by which has higher voltage

(differential)
 Magnetic orientation signifies “0” or “1”

 Primitive digital hardware devices
 Logic computation devices (sense and drive)

 Two wires both “1” - make another be “1” (AND)
 At least one of two wires “1” - make another be “1” (OR)
 A wire “1” - then make another be “0” (NOT)

 Memory devices (store)
 Store a value
 Recall a value previously stored
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What is the Current State of Digital
Design?

 Changes in industrial practice
 Larger designs
 Shorter time to market
 Cheaper products

 Scale
 Pervasive use of computer-aided design tools over hand methods
 Multiple levels of design representation

 Time
 Emphasis on abstract design representations
 Programmable rather than fixed function components
 Automatic synthesis techniques
 Importance of sound design methodologies

 Cost
 Higher levels of integration
 Use of simulation to debug designs

$39 DVD Player@Amazon.com
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Parts Cost:  $25
Sales Price: $30!
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New ability: perform logic design with computer-aided design tools, 
validating that design via simulation, and mapping its implementation 
into programmable logic devices; 
Appreciating the advantages/disadvantages hw vs. sw implementation

CS 150: Concepts/Skills/Abilities

 Basics of logic design (concepts)

 Sound design methodologies (concepts)

 Modern specification methods (concepts)

 Familiarity with full set of CAD tools (skills)

 Appreciation for differences and similarities (abilities) in
hardware and software design
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Administrative Details

 See course web page for gory details!
 MW 1-2:30 course lecture, F 2-3 lab lecture
 1x3 hour lab, 1x1=hour discussion per week
 No labs or discussions first week!

 Grading
 Midterm Exams (28 Sep, 9 Nov): 20%
 Final Exam (16 Dec): 20%
 Labs (1-5): 15%
 Project (Etch-a-Sketch): 30%
 Homeworks (10 problem sets): 10%
 In-class pop quizzes: 5%

 First one NOW: Diagnostic Quiz
(not graded!)
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Course Project: Electronic Etch-a-Sketch

 Not quite this
… but:
 Game controller

interface
 CRT video I/f
 Pen effects

 E.g., Color
 E.g., Width

 Implemented in a
Xilinx FPGA on the
Calinx boards you
will use in lab

 Groups of two
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Calinx EECS 150 Lab/Project Protoboard

Flash Card &
Micro-drive Port

Video Encoder &
Decoder

AC ’97 Codec &
Power Amp

Video & Audio Ports Four 100 Mb
Ethernet Ports

8 Meg x 32
SDRAM

Quad Ethernet
Transceiver

Xilinx
Virtex 2000ESeven Segment

LED Displays

Prototype
Area
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Computation: Abstract vs. Implementation

 Computation as a mental exercise (paper, programs)
 vs. implementation with physical devices using voltages to

represent logical values
 Basic units of computation:

 Representation: "0", "1" on a wire
set of wires (e.g., for binary integers)

 Assignment: x  =  y
 Data operations: x + y – 5
 Control:

Sequential statements: A; B; C
Conditionals: if   x == 1   then   y
Loops: for ( i = 1 ; i == 10, i++)
Procedures: A; proc(...); B;

 Study how these are implemented in hardware and composed into
computational structures
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Close switch (if A is “1” or asserted)
and turn on light bulb (Z)

A Z

Open switch (if A is “0” or unasserted)
and turn off light bulb (Z)

Switches: Basic Element of Physical
Implementations

 Implementing a simple circuit (arrow shows action if
wire changes to “1”):

Z  ≡  A

A
Z
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AND

OR

Z ≡  A and B

Z ≡  A or B 

A B

A

B

Switches (cont’d)

 Compose switches into more complex ones (Boolean
functions):
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Switching Networks

 Switch settings
 Determine whether conducting path exists to light the bulb

 To build larger computations
 Use bulb (output of the network) to set other switches (inputs to

another network)

 Interconnect switching networks
 Construct larger  switching networks, i.e., connect outputs of one

network to the inputs of the next.
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Transistor Networks

 Modern digital systems designed in CMOS
 MOS: Metal-Oxide on Semiconductor
 C for complementary: normally-open and normally-closed switches

 MOS transistors act as voltage-controlled switches
 Similar, though easier to work with, than relays.
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n-channel
open when voltage at G is low

closes when:
voltage(G) > voltage (S) + ε

p-channel
closed when voltage at G is low

opens when:
voltage(G) < voltage (S) – ε

MOS Transistors

 Three terminals: drain, gate, and source
 Switch action:

if voltage on gate terminal is (some amount) higher/lower than
source terminal then conducting path established between drain
and source terminals

G

S D

G

S D
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3v

X

Y 0 volts

x y

3 volts0v

what  is the 
relationship 

between x and y?

MOS Networks
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x y z

0 volts

3 volts

0 volts

3 volts

0 volts

0 volts
3 volts

3 volts

what  is the 
relationship 

between x, y and z?

Two Input Networks

3v

X Y

0v

Z

3v

X Y

0v

Z
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scope of CS 150

Representation of Digital Designs

 Physical devices (transistors,  relays)
 Switches
 Truth tables

 Boolean algebra
 Gates
 Waveforms
 Finite state behavior
 Register-transfer behavior
 Concurrent abstract specifications

more depth than 61C

focus on building systems
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Technology   State 0    State 1

Relay logic Circuit Open Circuit Closed
CMOS logic 0.0-1.0 volts 2.0-3.0 volts
Transistor transistor logic (TTL) 0.0-0.8 volts 2.0-5.0 volts
Fiber Optics Light off Light on
Dynamic RAM Discharged capacitorCharged capacitor
Nonvolatile memory (erasable) Trapped electrons No trapped electrons
Programmable ROM Fuse blown Fuse intact
Bubble memory No magnetic bubble Bubble present
Magnetic disk No flux reversal Flux reversal
Compact disc No pit Pit

Mapping Physical to Binary World
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inputs outputssystem

Combinational vs. Sequential Digital
Circuits

 Simple model of a digital system is a unit with inputs
and outputs:

 Combinational means "memory-less"
 Digital circuit is combinational if its output values

only depend on its inputs
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Combinational Logic Symbols

 Common combinational logic systems have standard symbols
called logic gates

 Buffer, NOT

 AND, NAND

 OR, NOR

Z

A
B

Z

Z

A

A
B

Easy to implement
with CMOS transistors
(the switches we have
available and use most)
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Sequential Logic

 Sequential systems
 Exhibit behaviors (output values) that depend

on current as well as previous inputs

 Time response of real circuits are sequential
 Outputs do not change instantaneously after an input change
 Why not, and why is it then sequential?

 Fundamental abstraction of digital design is to reason (mostly)
about steady-state behaviors
 Examine outputs only after sufficient time has elapsed for the system

to make its required changes and settle down
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Synchronous Sequential Digital Systems

 Combinational outputs depend only on current inputs
 After sufficient time has elapsed

 Sequential circuits have memory
 Even after waiting for transient activity to finish

 Steady-state abstraction: most designers use it when
constructing sequential circuits
 Memory of system is its state
 Changes in system state only allowed at specific times controlled by

external periodic signal (the clock)
 Clock period is time between state changes sufficiently long so that system

reaches steady-state before next state change
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B

A
C

Clock

Distinction: Combinational vs. Sequential
Logic

 Combinational:
 Input A, B
 Wait for clock edge
 Observe C
 Wait for another clock edge
 Observe C again: will stay the same

 Sequential:
 Input A, B
 Wait for clock edge
 Observe C
 Wait for another clock edge
 Observe C again: may be different
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Example: Combinational Design

 Calendar subsystem: number of days in a month (to
control watch display)
 Used in controlling the display of a wrist-watch LCD screen

 Inputs: month, leap year flag
 Outputs: number of days
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Implementation in Software

integer number_of_days (month,
leap_year_flag) {
switch (month) {

case 1: return (31);
case 2: if (leap_year_flag == 1) then return (29)
else return (28);

case 3: return (31);
...
case 12: return (31);
default: return (0);

}

}
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leapmonth

d28 d29 d30 d31

month leap d28 d29 d30 d31
0000 – – – – – 
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
0101 – 0 0 0 1
0110 – 0 0 1 0
0111 – 0 0 0 1
1000 – 0 0 0 1
1001 – 0 0 1 0
1010 – 0 0 0 1
1011 – 0 0 1 0
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –

Implementation as a
Combinational Digital System

 Encoding:
 How many bits for each input/output?
 Binary number for month
 Four wires for 28, 29, 30, and 31

 Behavior:
 Combinational
 Truth table

specification
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Combinational Example (cont’d)

 Truth-table to logic to switches to gates
 d28 = 1 when month=0010 and leap=0
 d28 = m8'•m4'•m2•m1'•leap'

 d31 = 1 when month=0001 or month=0011 or ... month=1100
 d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) + ... (m8•m4•m2'•m1')
 d31 = can we simplify more?

month leap d28 d29 d30 d31
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
...
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –
0000 – – – – –

symbol 
for and

symbol 
for or

symbol 
for not
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Combinational Example (cont’d)
 d28 = m8'•m4'•m2•m1'•leap’

 d29 = m8'•m4'•m2•m1'•leap

 d30 = (m8'•m4•m2'•m1') + (m8'•m4•m2•m1') + (m8•m4'•m2'•m1)
+  (m8•m4'•m2•m1)

 d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) + (m8'•m4•m2'•m1)
+  (m8'•m4•m2•m1) + (m8•m4'•m2'•m4') + (m8•m4'•m2•m1') +
(m8•m4•m2'•m1')
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Combinational Example (cont’d)
 d28 = m8'•m4'•m2•m1'•leap’

 d29 = m8'•m4'•m2•m1'•leap

 d30 = (m8'•m4•m2'•m1') + (m8'•m4•m2•m1') + (m8•m4'•m2'•m1)
+  (m8•m4'•m2•m1)

 d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) + (m8'•m4•m2'•m1)
+  (m8'•m4•m2•m1) + (m8•m4'•m2'•m4') + (m8•m4'•m2•m1') +
(m8•m4•m2'•m1')
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Example: Sequential Design

 Door combination lock:
 Punch in 3 values in sequence and the door opens; if there is an

error the lock must be reset; once the door opens the lock must be
reset

 Inputs: sequence of input values, reset
 Outputs: door open/close
 Memory: must remember combination

            or always have it available as an input
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Implementation in Software

integer combination_lock ( ) {
integer v1, v2, v3;
integer error = 0;
static integer c[3] = 3, 4, 2;

while (!new_value( ));
v1 = read_value( );
if (v1 != c[1]) then error = 1;

while (!new_value( ));
v2 = read_value( );
if (v2 != c[2]) then error = 1;

while (!new_value( ));
v3 = read_value( );
if (v2 != c[3]) then error = 1;

if (error == 1) then return(0); else return (1);

}
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Implementation as a
Sequential Digital System

 Encoding:
 How many bits per input value?
 How many values in sequence?
 How do we know a new input value is entered?
 How do we represent the states of the system?

 Behavior:
 Clock wire tells us when it’s ok to look at inputs

(i.e., they have settled after change)
 Sequential: sequence of values must be entered
 Sequential: remember if an error occurred
 Finite-state specification

resetvalue

open/closed

new

clock
state
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closed closedclosed
C1=value

& new
C2=value

& new
C3=value

& new

C1!=value
& new C2!=value

& new
C3!=value

& new

closed

reset

not newnot newnot new

S1 S2 S3 OPEN

ERR

open

Sequential Example (cont’d):
Abstract Control

 Finite state diagram
 States: 5 states

 Represent point in execution of machine
 Each state has outputs

 Transitions: 6 from state to state, 5 self transitions, 1 global
 Changes of state occur when clock says it’s ok
 Based on value of inputs

 Inputs: reset, new, results of comparisons
 Output: open/closed
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reset

open/closed

new

C1 C2 C3

comparator

value

equal

multiplexer

equal

controller
mux 
control

clock

Sequential Example (cont’d):
Datapath vs. Control

 Internal structure
 Data-path

 Storage for combination
 Comparators

 Control
 Finite state machine controller
 Control for data-path
 State changes controlled by clock
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closed

closed
mux=C1reset equal

& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 S3 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

Sequential Example (cont’d):
Finite State Machine

 Finite-state machine
 Refine state diagram to include internal structure
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reset new equal state state mux open/closed
1 – – – S1 C1 closed
0 0 – S1 S1 C1 closed
0 1 0 S1 ERR – closed
0 1 1 S1 S2 C2 closed
0 0 – S2 S2 C2 closed
0 1 0 S2 ERR – closed
0 1 1 S2 S3 C3 closed
0 0 – S3 S3 C3 closed
0 1 0 S3 ERR – closed
0 1 1 S3 OPEN – open 
0  – – OPEN OPEN – open
0  – – ERR ERR – closed

next

Sequential Example (cont’d):
Finite State Machine

 Finite State Machine
 Generate state table (much like a truth-table) closed

closed
mux=C1

reset equal
& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 S3 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open
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Sequential Example (cont’d):
Encoding

 Encode state table
 State can be: S1, S2, S3, OPEN, or ERR

 needs at least 3 bits to encode: 000, 001, 010, 011, 100
 and as many as 5: 00001, 00010, 00100, 01000, 10000
 choose 4 bits: 0001, 0010, 0100, 1000, 0000

 Output mux can be: C1, C2, or C3
 needs 2 to 3 bits to encode
 choose 3 bits: 001, 010, 100

 Output open/closed can be: open or closed
 needs 1 or 2 bits to encode
 choose 1 bits: 1, 0
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good choice of encoding!

mux is identical to 
last 3 bits of state

open/closed is
identical to first bit
of state

Sequential Example (cont’d):
Encoding

 Encode state table
 State can be: S1, S2, S3, OPEN, or ERR

 Choose 4 bits: 0001, 0010, 0100, 1000, 0000
 Output mux can be: C1, C2, or C3

 Choose 3 bits: 001, 010, 100
 Output open/closed can be: open or closed

 Choose 1 bits: 1, 0

reset new equal state state mux open/closed
1 – – – 0001 001 0 
0 0 – 0001 0001 001 0
0 1 0 0001 0000 – 0
0 1 1 0001 0010 010 0 
0 0 – 0010 0010 010 0
0 1 0 0010 0000 – 0
0 1 1 0010 0100 100 0 
0 0 – 0100 0100 100 0
0 1 0 0100 0000 – 0
0 1 1 0100 1000 – 1 
0  – – 1000 1000 – 1
0  – – 0000 0000 – 0

next
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reset

open/closed

new equal

controller
mux 
control

clock

reset

open/closed

new equal

mux 
control

clock

comb. logic

state

Special circuit element, 
called a register, for 
remembering inputs
when told to by clock

Sequential Example (cont’d):
Controller Implementation

 Controller Implementation
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system

datapath control

state
registers

combinational
logicmultiplexer comparatorcode

registers

register logic

switching
networks

Design Hierarchy
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Summary

 What the entire course is about
 Converting solutions to problems into combinational and sequential

networks effectively organizing the design hierarchically
 Doing so with a modern set of design tools that lets us handle large

designs effectively
 Taking advantage of optimization opportunities

 Now let’s do it again
 this time we'll take the rest of the semester!


