University of California at Berkeley
 College of Engineering
 Department of Electrical Engineering and Computer Science

R. H. Katz

Problem Set \#1: Combinational Logic forms Assigned 31 August 2005, Due 9 September at 2 PM

1. Use Boolean algebra to simplify into two-level sum of products form the following Boolean expressions. Show your intermediate steps of applying Boolean algebra axioms and theorems!
a. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{A}^{\prime} \mathrm{B} \mathrm{C}^{\prime}+\mathrm{ABC} \mathrm{C}^{\prime}+\mathrm{A} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$
b. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}+\mathrm{A}^{\prime} \mathrm{B} \mathrm{C}^{\prime} \mathrm{D}+\mathrm{A}^{\prime} \mathrm{B} C \mathrm{D}+$ $A B^{\prime} C^{\prime} D^{\prime}+A B^{\prime} C^{\prime} D+A B C^{\prime} D+A B C D$
2. Given the following minimized two-level sum of products expressions, describe the functions in "little m" notation:
a. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{A}^{\prime} \mathrm{B}+\mathrm{A} \mathrm{B}^{\prime}$
b. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{B}^{\prime}+\mathrm{B} \mathrm{D}+\mathrm{A} \mathrm{B} \mathrm{C}$
3. Given the following minimized two-level product of sums expressions, describe the functions in "big M" notation:
a. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\left(\mathrm{A}^{\prime}+\mathrm{C}\right)\left(\mathrm{A}+\mathrm{C}^{\prime}\right)$
b. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\left(\mathrm{A}^{\prime}+\mathrm{D}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{C}^{\prime}\right)\left(\mathrm{C}^{\prime}+\mathrm{D}^{\prime}\right)$
4. Use K-maps to simplify the following logical expressions into minimized twolevel forms. Show how you have used K-maps to obtain your answers!
a. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{A}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{A} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{A} \mathrm{B}^{\prime} \mathrm{C}$ (answer in sum of products form)
b. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\Pi \mathrm{M}(3,6,7)$ (answer in product of sums form)
c. $F(A, B, C, D)=\Sigma m(1,2,3,6,9,10,14)$ (answer in sum of products form)
d. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=(\mathrm{A}+\mathrm{C}+\mathrm{D})\left(\mathrm{A}^{\prime}+\mathrm{C}+\mathrm{D}\right)\left(\mathrm{B}^{\prime}+\mathrm{C}+\mathrm{D}^{\prime}\right)\left(\mathrm{B}^{\prime}+\mathrm{C}^{\prime}+\mathrm{D}^{\prime}\right)$ (answer in product of sums form)
5. Given that the Boolean function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{B} \mathrm{C}^{\prime}+\mathrm{AB}$, answer the following questions. Show the intermediate work to arrive at the answer!
a. What is the corresponding expression in minimized product of sums form?
b. What is the corresponding expression for the complement of F in minimized sum of products form?
c. What is the corresponding expression for the complement of F in minimized product of sums form?
6. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{B}^{\prime}(\mathrm{C}+\mathrm{D})$ in minimized product of sums form. Answer the following questions, showing your intermediate steps:
a. Show a K-map for F .
b. What is F in Big M notation?
c. What is F in Little M notation?
d. What is F in minimized two-level sum of products form?
e. Apply DeMorgan's Law to derive the complement of F, starting with the original product of sums expression.
f. Apply DeMorgan's Law to derive the complement of F given your answer to part d.
g. Using the K-map you filled in for part a, show how to derive the minimized complement of F in product of sums form. Is your answer the same as in part e? If not, why not?
h. Using the K-map you filled in for part a, show how to derive the minimized complement of F in sum of products form. Is your answer the same as in part f ? If not, why not?
