EPIC: A new generation of architectures beyond RISC

Presentation at UC Berkeley

by

Mike Schlansker�Hewlett-Packard Laboratories�March 3, 1999

�
The uniprocessor design problem:

o	How to provide ever increasing performance for existing applications without re-writing them?

o	Modest speedups (e.g. 2´) are critical!

o	How to exploit expanding VLSI circuit area?

o	Substantial area should be devoted to Instruction-Level Parallelism (ILP)

m	How to issue many operations per cycle? (4-16)

m	How to tolerate long pipelined latency? (1-50)

m	How to cope with a large number of operations in flight? (10’s to 100’s)

�
EPIC: a paradigm shift

o	RISC solution

m	Based on sequential execution semantics

m	Compiler’s role is limited by the instruction set architecture

m	Superscalar hardware identifies and exploits parallelism

o	EPIC solution – (the evolution of VLIW)

m	Based on parallel execution semantics

m	EPIC ISA enhancements support static parallelization

m	Compiler takes greater responsibility for exploiting parallelism

m	Compiler / hardware collaboration often resembles superscalar

�
Why pursue new architectures?

o	Disadvantages of continuing a pure out-of-order superscalar approach

m	Out-of-order execution is complex for high ILP

- expensive in real estate

- difficult to debug & verify

m	No existence proof at high levels of ILP

o	Advantages of pursuing EPIC architectures

m	Make wide issue & deep latency less expensive in hardware

m	Allow processor parallelism to scale with additional VLSI density

�
EPIC philosophy

o	Architect the processor to do well with in-order execution

m	Enhance the ISA to allow static parallelization

m	Use compiler technology to parallelize program

o	However, a purely static VLIW is not appropriate for general-purpose use

�
The fusion of VLIW and superscalar techniques

o	Superscalars need improved support for static parallelization

m	Static scheduling

m	Limited support for predicated execution

o	VLIWs need improved support for dynamic parallelization

m	Caches introduce dynamically changing memory latency

m	Compatibility: issue width and latency may change with new hardware

m	Application requirements - e.g. object oriented programming with dynamic binding

o	EPIC processors exhibit features derived from both

m	Interlock & out-of-order execution hardware are compatible with EPIC (but not required!)

m	EPIC processors can use dynamic translation to parallelize in software

�
Many EPIC features are taken from VLIWs

Minisupercomputer products stimulated VLIW research (FPS, Multiflow, Cydrome)

m	Minisupercomputers were specialized, costly, and short-lived

m	Traditional VLIWs not suited to general purpose computing

m	VLIW resurgence in single chip DSP & media processors

Minisupercomputers exaggerated forward-looking challenges:

m	High-speed clock

m	Long latency

m	Wide issue

m	Large number of architected registers

m	Compile-time scheduling to exploit exotic amounts of parallelism

EPIC exploits many VLIW techniques

�
 VLIW compilers must create

an efficient ILP record of execution

�

�
Trace scheduling (Fisher at Multiflow)

�

Use static program statistics to identify traces

Schedule code across basic blocks to maximize on-trace performance

Treats arbitrary scalar programs

�
Speculative code motion

�

Basic blocks are short & sufficient ILP requires motion across blocks

Speculation reduces height of program schedule by changing operation’s execution condition

Exceptions must be ignored – dismissable load (Multiflow)

�
Modulo scheduling (Cydrome)

�

Near optimal performance for innermost-loops

More flexible than vector - treats recurrences and while loops

Specialized branch and rotating registers eliminate code replication (Rau)

�
Predicated execution of if-converted code

�

Efficient treatment of many unbiased conditionals

Allow code motion without changing operation’s execution condition

�
Predicated execution: hardware support

��
��
�
compare operation�
predicated operation�
�

�
VLIW architectural features prior to 1989

Wide issue (MultiOp)

Exposed latency

Large number of architected registers

Dismissable loads

Rotating registers & specialized branches to support software pipelining

Predicated execution

Execution of multiple prioritized branches per instruction (Multiflow)

�
Shortcomings of first generation of VLIWs

Expensive multi-chip implementations

o	No data cache

Poor "scalar" performance

No strategy for object code compatibility

�
EPIC design challenges

o	Develop architectures applicable to general-purpose computing

m	Find substantial parallelism in “difficult to parallelize” scalar programs

m	Provide compatibility across hardware generations

m	Support emerging applications (e.g. multimedia)

o	Compiler must find or create sufficient ILP

o	Combine the best attributes of VLIW & superscalar RISC (incorporated best concepts from all available sources)

o	Scale architectures for modern single-chip implementation

�
HPL PlayDoh: a testbed for EPIC architectures

o	PlayDoh - HP Laboratories virtual processor for ILP research

o	Virtual platform provides compiler & simulator for PlayDoh ISA

o	Publicly available for external research

o	Remainder of talk highlights EPIC features found in PlayDoh

�
The second generation: some key EPIC features

o	Generational compatibility

o	Improved support for control speculation

o	Programmatic control of the cache hierarchy

o	Data speculation

o	Improved support for predication

o	Unbundled & concurrent branches

�
Latency compatibility

�

o	Schedule code using actual hardware latencies of target processor

o	Compile with “less than or equals semantics” to allow early arrival

o	Two approaches use hardware for late operand arrival:

m	Use exposed latency semantics & “latency stalling” (tardy operand stalls)

m	Use unit latency semantics & interlocks (tardy operand stalls if used)

�
Control speculation and exception reporting

�

o	Need: accurate error reporting

o	Need: ability to handle exceptions

�
Deferred exception handling

�

o	Speculative & non-speculative opcodes, operand tags, propagation rules [Cydrome; Ebcioglu; Mahlke, et al.]

o	 Software responsible for error isolation and recovery

�
Problems involving data caches

Absence of a data cache increases critical path length (especially for scalar code)

Presence of data cache degrades performance with poor data locality (cache thrashing and cache trashing)

Non-deterministic latencies are a problem for static scheduling

m	Assuming cache hits results in total dead time when the cache misses

m	Assuming cache misses results in pessimistic schedules

EPIC objectives: enhance run-time determinism using compile-time data cache management

�
Programmatic data cache management

��
��
�
bypass & latency specifying loads�
pretouch and prefetch�
�

Compiler directs motion of data through cache hierarchy

 [Convex C-1; Intel i860; Chi & Dietz 1989]

�
Memory dependences and static scheduling

�

�
“May” dependences on the critical path

Original Code

	*a=*b

	*c=*d

	*e=*f

�
��

�

Schedule height = 12

Memory latency =10 ?�
�
o	Cache alleviates problem by reducing latency - but may cause pollution

�
Data speculation

��
�

Schedule height = 9�
��

�

Schedule height = 5�
�
Dependence graph

with 2-cycle cache latency�
Dependence graph

with data speculation�
�
o	Data speculation: Stores in lds-ldv window checked in hardware [Chen 93]

o	Does not require cache and cache pollution

�
 Improved architecture for predicates

��

PlayDoh code for C conditional “r=(a<b)?a:b”

is written:

p1,p2=cmpp.w.<.UN.UC(a, b)if p

r = a if p1

r = b if p2

�
�

Predicate input�
Compare

result�
UN �
UC�
�
0�
0�
0�
0�
�
0�
1�
0�
0�
�
1�
0�
0�
1�
�
1�
1�
1�
0�
�
o	Compound & two-target compare minimizes latency & op count

o	Unconditional actions UN and UC support simple & nested conditionals

�
Unconditional compares do not support general if-conversion

�

�

 A if p

 p1, p2, p3 = ...

 B if p1;

 p4 = cmpp.w.<.UC(a, b)

 C if p2;

 p4 = cmpp.w.<.UC(c, d)

 D if p3

 p4 = cmpp.w.>.UN(e, f)

 E if p4

Wrong code�
�
o	For unstructured code:

m	A merge block has multiple operations that set its predicate

m	Need to compute: p4 = OR(p1�!(a < b) , p2�!(c < d) , p3�(e > f))

m	Results are incorrect if unconditional (UN, UC) compares are used

�
Solution "Wired-or compares"

Allows multiple writes per cycle

If they write identical values, the result is well-defined

Ops can be issued in any order or concurrently�
��
�

Predicate input�
Compare

result�
ON �
OC�
�
0�
0�
--�
--�
�
0�
1�
--�
--�
�
1�
0�
--�
1�
�
1�
1�
1�
--�
�

o	OR class compares use target action modifiers ON and OC

�
 Wired or compares (cont)

o	An n-term wired or is calculated with:

m	a single clear

m	n unary or operations

The following sequence computes predicate p4 as defined above:

	p4 = 0

	p4 = cmpp.w.<.OC(a, b) if p1

	p4 = cmpp.w.<.OC(c, d) if p2

	p4 = cmpp.w.>.ON(e, f) if p3

�
Chains of predicate computations inhibit ILP

��

Linked compare computation

If-converted code:

 ...

 p2 = cmpp.w.=.UN(t, 'M') if T

 p3 = cmpp.w.>.UC(r, 0) if p2

 p5 = cmpp.w.=.UN(r, 0) if p3

 s = 0.8 * s if p5

 ...

�
�

Need to compute: p5=AND((r=0), !(r>0), (t=‘M’))

"Wired and" works like "wired or" for fast evaluation of n-way AND

�
 Conventional conditional branch operation

�

o	 Problem: compound branch components are statically co-located

�
Unbundled conditional branch sequence

[Schorr 1971, Young & Goodman 1984]

�

�
Concurrent branching

 using Fully-Resolved Predicates (FRPs)

��
��
�
Branch dependences�
Unordered branches with FRPs�
�
�
Summary: key EPIC features

o	Motivations

m	To avoid out-of-order execution

m	To enhance ILP on "sequential" computations

m	To address the cache miss penalty

o	Some EPIC architectural features

m	Compatibility strategy for evolving implementation parallelism

m	Control speculative opcodes with exception tags & propagation

m	Programmatic control of cache hierarchy

m	Data speculative loads

m	Improved predication (two-target & unordered compares)

m	"Unbundled" branch architecture

m	Concurrent branching

�
Compiling for EPIC?

o	Complex portfolio of architectural innovations

o	New optimizations reduce path length rather than operation count

o	New compiler techniques will evolve for EPIC architectures

m	Expose ILP - analyze code to maximize available parallelism

m	Enhance ILP - transform code to increase available parallelism

m	Exploit ILP - map code onto available hardware to maximize efficiency

m	Manage the cache hierarchy

m	Extend traditional analyses and optimizations for predicated code

m	Object code translation

�
Control CPR - example compiler optimization

��
��

��
�
Superblock CFG�
Insert fall-through branch & lookahead compares�
Branches & compares move off-trace�
�
�
Summary

o	Uniprocessor performance remains a key product objective

o	EPIC processors:

m	Take advantage of evolving VLSI density

m	Exploit additional instruction-level parallelism using enhanced ISA

m	Shift responsibility for exploiting parallelism from hardware to software

m	Are designed to address general computing needs

o	Performance improves as EPIC compilers mine more ILP over a wider range of applications

�

��
�
UC Berkeley EPIC - Mar 3, 1999	- � -

HP Labs / CAR / Mike Schlansker	�
H�
�

