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�
The uniprocessor design problem:





o	How to provide ever increasing performance for existing applications without re-writing them?


o	Modest speedups (e.g.  2´) are critical!


o	How to exploit expanding VLSI circuit area? 


o	Substantial area should be devoted to Instruction-Level Parallelism (ILP)


m	How to issue many operations per cycle?  (4-16)


m	How to tolerate long pipelined latency?  (1-50)


m	How to cope with a large number of operations in flight?  (10’s to 100’s)


�
EPIC: a paradigm shift








o	RISC solution


m	Based on sequential execution semantics


m	Compiler’s role is limited by the instruction set architecture


m	Superscalar hardware identifies and exploits parallelism








o	EPIC solution – (the evolution of VLIW)


m	Based on parallel execution semantics 


m	EPIC ISA enhancements support static parallelization


m	Compiler takes greater responsibility for exploiting parallelism


m	Compiler / hardware collaboration often resembles superscalar


�
Why pursue new architectures?





o	Disadvantages of continuing a pure out-of-order superscalar approach


m	Out-of-order execution is complex for high ILP


- expensive in real estate


- difficult to debug & verify 


m	No existence proof at high levels of ILP





o	Advantages of pursuing EPIC architectures


m	Make wide issue & deep latency less expensive in hardware


m	Allow processor parallelism to scale with additional VLSI density


�
EPIC philosophy





o	Architect the processor to do well with in-order execution


m	Enhance the ISA to allow static parallelization


m	Use compiler technology to parallelize program








o	However, a purely static VLIW is not appropriate for general-purpose use





�
The fusion of VLIW and superscalar techniques


o	Superscalars need improved support for static parallelization


m	Static scheduling


m	Limited support for predicated execution


o	VLIWs need improved support for dynamic parallelization


m	Caches introduce dynamically changing memory latency


m	Compatibility: issue width and latency may change with new hardware 


m	Application requirements - e.g. object oriented programming with dynamic binding


o	EPIC processors exhibit features derived from both


m	Interlock & out-of-order execution hardware are compatible with EPIC    (but not required!)


m	EPIC processors can use dynamic translation to parallelize in software


�
Many EPIC features are taken from VLIWs





Minisupercomputer products stimulated VLIW research (FPS, Multiflow, Cydrome)


m	Minisupercomputers were specialized, costly, and short-lived


m	Traditional VLIWs not suited to general purpose computing


m	VLIW resurgence in single chip DSP & media processors


Minisupercomputers exaggerated forward-looking challenges:


m	High-speed clock


m	Long latency


m	Wide issue


m	Large number of architected registers


m	Compile-time scheduling to exploit exotic amounts of parallelism


EPIC exploits many VLIW techniques


�
 VLIW compilers must create 


an efficient ILP record of execution


�


�
Trace scheduling (Fisher at Multiflow)





�


Use static program statistics to identify traces


Schedule code across basic blocks to maximize on-trace performance


Treats arbitrary scalar programs


�
Speculative code motion 








�


Basic blocks are short & sufficient ILP requires motion across blocks


Speculation reduces height of program schedule by changing operation’s execution condition


Exceptions must be ignored – dismissable load (Multiflow)


�
Modulo scheduling (Cydrome)





�


Near optimal performance for innermost-loops


More flexible than vector - treats recurrences and while loops


Specialized branch and rotating registers eliminate code replication (Rau)


�
Predicated execution of if-converted code





�


Efficient treatment of many unbiased conditionals


Allow code motion without changing operation’s execution condition


�
Predicated execution: hardware support











��
��
�
compare operation�
predicated operation�
�






�
VLIW architectural features prior to 1989





Wide issue (MultiOp)


Exposed latency


Large number of architected registers


Dismissable loads


Rotating registers & specialized branches to support software pipelining


Predicated execution


Execution of multiple prioritized branches per instruction (Multiflow)


�
Shortcomings of first generation of VLIWs





Expensive multi-chip implementations





o	No data cache





Poor "scalar" performance





No strategy for object code compatibility





�
EPIC design challenges


o	Develop architectures applicable to general-purpose computing


m	Find substantial parallelism in “difficult to parallelize” scalar programs


m	Provide compatibility across hardware generations


m	Support emerging applications (e.g. multimedia)





o	Compiler must find or create sufficient ILP





o	Combine the best attributes of VLIW & superscalar RISC                           (incorporated best concepts from all available sources)





o	Scale architectures for modern single-chip implementation


�
HPL PlayDoh: a testbed for EPIC architectures








o	PlayDoh - HP Laboratories virtual processor for ILP research





o	Virtual platform provides compiler & simulator for  PlayDoh ISA





o	Publicly available for external research





o	Remainder of talk highlights EPIC features found in PlayDoh





�
The second generation: some key EPIC features





o	Generational compatibility


o	Improved support for control speculation


o	Programmatic control of the cache hierarchy


o	Data speculation


o	Improved support for predication


o	Unbundled & concurrent branches


�
Latency compatibility


�


o	Schedule code using actual hardware latencies of target processor


o	Compile with “less than or equals semantics”  to allow early arrival


o	Two approaches use hardware for late operand arrival:


m	Use exposed latency semantics & “latency stalling” (tardy operand stalls) 


m	Use unit latency semantics & interlocks (tardy operand stalls if used)


�
Control speculation and exception reporting





�


o	Need: accurate error reporting


o	Need: ability to handle exceptions


�
Deferred exception handling





�


o	Speculative & non-speculative opcodes, operand tags, propagation rules   [Cydrome; Ebcioglu; Mahlke, et al.]


o	 Software responsible for error isolation and recovery  


�
Problems involving data caches








Absence of a data cache increases critical path length (especially for scalar code) 


Presence of data cache degrades performance with poor data locality (cache thrashing and cache trashing)





Non-deterministic latencies are a problem for static scheduling


m	Assuming cache hits results in total dead time when the cache misses


m	Assuming cache misses results in pessimistic schedules


EPIC objectives: enhance run-time determinism using compile-time data cache management


�
Programmatic data cache management





��
��
�
bypass & latency specifying loads�
pretouch and prefetch�
�



Compiler directs motion of data through cache hierarchy


       [Convex C-1; Intel i860; Chi & Dietz 1989]


�
Memory dependences and static scheduling





�


�
“May” dependences on the critical path

















Original Code





	*a=*b


	*c=*d


	*e=*f


�
��



�


Schedule height = 12


Memory latency =10 ?�
�
o	Cache alleviates problem by reducing latency - but may cause pollution


�
Data speculation





��
�


Schedule height = 9�
��



�


Schedule height = 5�
�
Dependence graph 


with 2-cycle cache latency�
Dependence graph


with data speculation�
�
o	Data speculation: Stores in lds-ldv window checked in hardware [Chen 93]


o	Does not require cache and cache pollution


�
 Improved architecture for predicates





��



PlayDoh code for C conditional    “r=(a<b)?a:b”


is written:





p1,p2=cmpp.w.<.UN.UC(a, b)if p


r = a if p1


r = b if p2


�
�






Predicate input�
Compare


result�
UN �
UC�
�
0�
0�
0�
0�
�
0�
1�
0�
0�
�
1�
0�
0�
1�
�
1�
1�
1�
0�
�
o	Compound & two-target compare minimizes latency & op count


o	Unconditional actions UN and UC support simple & nested conditionals


�
Unconditional compares do not support general  if-conversion








�


�









  A if p


  p1, p2, p3  = ...


  B if p1;


  p4 = cmpp.w.<.UC(a, b)


  C if p2;


  p4 = cmpp.w.<.UC(c, d)


  D if p3


  p4 = cmpp.w.>.UN(e, f)


  E if p4





Wrong code�
�
o	For unstructured code:


m	A merge block has multiple operations that set its predicate 


m	Need to compute:  p4 = OR(  p1�!(a < b) ,   p2�!(c < d) ,   p3�(e > f))


m	Results are incorrect if unconditional (UN, UC) compares are used


�
Solution "Wired-or compares"








Allows multiple writes per cycle





If they write identical values, the result is well-defined





Ops can be issued in any order or concurrently�
��
�






Predicate input�
Compare
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--�
�
0�
1�
--�
--�
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o	OR class compares use target action modifiers ON and OC


�
 Wired or compares (cont)





o	An n-term wired or is calculated with:


m	a single clear


m	n unary or operations





The following sequence computes predicate p4 as defined above:





	p4 = 0


	p4 = cmpp.w.<.OC(a, b)  if p1


	p4 = cmpp.w.<.OC(c, d)  if p2


	p4 = cmpp.w.>.ON(e, f)  if p3


�
Chains of predicate computations inhibit ILP








��






Linked compare computation





If-converted code:





 ...


 p2 = cmpp.w.=.UN(t, 'M') if T


 p3 = cmpp.w.>.UC(r, 0)   if p2


 p5 = cmpp.w.=.UN(r, 0)   if p3


  s = 0.8 * s if p5


  ...








�
�



Need to compute:  p5=AND(  (r=0),   !(r>0),   (t=‘M’)  )


"Wired and" works like "wired or" for fast evaluation of n-way AND


�
 Conventional conditional branch operation








�





o	 Problem: compound branch components are statically co-located


�
Unbundled conditional branch sequence


[Schorr 1971, Young & Goodman 1984]


�


�
Concurrent branching


 using Fully-Resolved Predicates (FRPs)





��
��
�
Branch dependences�
Unordered branches with FRPs�
�
�
Summary: key EPIC  features


o	Motivations


m	To avoid out-of-order execution


m	To enhance ILP on "sequential" computations


m	To address the cache miss penalty


o	Some EPIC architectural features


m	Compatibility strategy for evolving implementation parallelism


m	Control speculative opcodes with exception tags & propagation


m	Programmatic control of cache hierarchy


m	Data speculative loads


m	Improved predication (two-target & unordered compares)


m	"Unbundled" branch architecture


m	Concurrent branching


�
Compiling for EPIC?


o	Complex portfolio of architectural innovations


o	New optimizations reduce path length rather than operation count


o	New compiler techniques will evolve for EPIC architectures


m	Expose ILP - analyze code to maximize available parallelism


m	Enhance ILP - transform code to increase available parallelism


m	Exploit ILP - map code onto available hardware to maximize efficiency


m	Manage the cache hierarchy


m	Extend traditional analyses and optimizations for predicated code


m	Object code translation


�
Control CPR - example compiler optimization








��
��






��
�
Superblock CFG�
Insert fall-through branch & lookahead compares�
Branches & compares move off-trace�
�
�
Summary


o	Uniprocessor performance remains a key product objective





o	EPIC processors:


m	Take advantage of evolving VLSI density 


m	Exploit additional instruction-level parallelism using enhanced ISA


m	Shift responsibility for exploiting parallelism from hardware to software


m	Are designed to address general computing needs





o	Performance improves as EPIC compilers mine more ILP over a wider range of applications





�
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