
 0

 10000

 20000

 30000

 40000

 50000

 1 2 3 4 5 6 7 8

Q
u
er

ie
s

/
se

c

Number of server cores

MySQL
CryptDB

Figure 10: Throughput for TPC-C queries, for a varying number of
cores on the underlying MySQL DBMS server.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Equality

Join
Range

Sum
D

elete

Insert

U
pd. set

U
pd. inc

Q
u
er

ie
s

/
se

c

MySQL
CryptDB

Strawman

Figure 11: Throughput of different types of SQL queries from the TPC-
C query mix running under MySQL, CryptDB, and the strawman design.
“Upd. inc” stands for UPDATE that increments a column, and “Upd. set”
stands for UPDATE which sets columns to a constant.

8.4.1 TPC-C
We compare the performance of a TPC-C query mix when running
on an unmodified MySQL server versus on a CryptDB proxy in front
of the MySQL server. We trained CryptDB on the query set (§3.5.2)
so there are no onion adjustments during the TPC-C experiments.
Figure 10 shows the throughput of TPC-C queries as the number of
cores on the server varies from one to eight. In all cases, the server
spends 100% of its CPU time processing queries. Both MySQL and
CryptDB scale well initially, but start to level off due to internal
lock contention in the MySQL server, as reported by SHOW STATUS
LIKE ’Table%’. The overall throughput with CryptDB is 21–26%
lower than MySQL, depending on the exact number of cores.

To understand the sources of CryptDB’s overhead, we measure
the server throughput for different types of SQL queries seen in
TPC-C, on the same server, but running with only one core enabled.
Figure 11 shows the results for MySQL, CryptDB, and a strawman
design; the strawman performs each query over data encrypted with
RND by decrypting the relevant data using a UDF, performing the
query over the plaintext, and re-encrypting the result (if updating
rows). The results show that CryptDB’s throughput penalty is great-
est for queries that involve a SUM (2.0× less throughput) and for
incrementing UPDATE statements (1.6× less throughput); these are
the queries that involve HOM additions at the server. For the other
types of queries, which form a larger part of the TPC-C mix, the
throughput overhead is modest. The strawman design performs
poorly for almost all queries because the DBMS’s indexes on the

Query (& scheme) MySQL CryptDB
Server Server Proxy Proxy�

Select by = (DET) 0.10 ms 0.11 ms 0.86 ms 0.86 ms
Select join (JOIN) 0.10 ms 0.11 ms 0.75 ms 0.75 ms
Select range (OPE) 0.16 ms 0.22 ms 0.78 ms 28.7 ms
Select sum (HOM) 0.11 ms 0.46 ms 0.99 ms 0.99 ms
Delete 0.07 ms 0.08 ms 0.28 ms 0.28 ms
Insert (all) 0.08 ms 0.10 ms 0.37 ms 16.3 ms
Update set (all) 0.11 ms 0.14 ms 0.36 ms 3.80 ms
Update inc (HOM) 0.10 ms 0.17 ms 0.30 ms 25.1 ms
Overall 0.10 ms 0.12 ms 0.60 ms 10.7 ms

Figure 12: Server and proxy latency for different types of SQL queries
from TPC-C. For each query type, we show the predominant encryption
scheme used at the server. Due to details of the TPC-C workload, each
query type affects a different number of rows, and involves a different
number of cryptographic operations. The left two columns correspond to
server throughput, which is also shown in Figure 11. “Proxy” shows the
latency added by CryptDB’s proxy; “Proxy�” shows the proxy latency
without the ciphertext pre-computing and caching optimization (§3.5).
Bold numbers show where pre-computing and caching ciphertexts helps.
The “Overall” row is the average latency over the mix of TPC-C queries.
“Update set” is an UPDATE where the fields are set to a constant, and
“Update inc” is an UPDATE where some fields are incremented.

Scheme Encrypt Decrypt Special operation
Blowfish (1 int.) 0.0001 ms 0.0001 ms —
AES-CBC (1 KB) 0.008 ms 0.007 ms —
AES-CMC (1 KB) 0.016 ms 0.015 ms —
OPE (1 int.) 9.0 ms 9.0 ms Compare: 0 ms
SEARCH (1 word) 0.01 ms 0.004 ms Match: 0.001 ms
HOM (1 int.) 9.7 ms 0.7 ms Add: 0.005 ms
JOIN-ADJ (1 int.) 0.52 ms — Adjust: 0.56 ms

Figure 13: Microbenchmarks of cryptographic schemes, per unit of
data encrypted (one 32-bit integer, 1 KB, or one 15-byte word of text),
measured by taking the average time over many iterations.

RND-encrypted data are useless for operations on the underlying
plaintext data. It is pleasantly surprising that the higher security of
CryptDB over the strawman also brings better performance.

To understand the latency introduced by CryptDB’s proxy, we
measure the server and proxy processing times for the same types
of SQL queries as above. Figure 12 shows the results. We can
see that there is an overall server latency increase of 20% with
CryptDB, which we consider modest. The proxy adds an average
of 0.60 ms to a query; of that time, 24% is spent in MySQL proxy,
23% is spent in encryption and decryption, and the remaining 53% is
spent parsing and processing queries. The cryptographic overhead is
relatively small because most of our encryption schemes are efficient;
Figure 13 shows their performance. OPE and HOM are the slowest,
but the ciphertext pre-computing and caching optimization (§3.5)
masks the high latency of queries requiring OPE and HOM. Proxy�
in Figure 12 shows the latency without these optimizations, which
is significantly higher for the corresponding query types. SELECT
queries that involve a SUM use HOM but do not benefit from this
optimization, because the proxy performs decryption, rather than
encryption.

In all TPC-C experiments, the proxy used less than 20 MB of
memory. Caching ciphertexts for the 30,000 most common values
for OPE accounts for about 3 MB, and pre-computing ciphertexts
and randomness for 30,000 values at HOM required 10 MB.

8.4.2 Multi-User Web Applications
To evaluate the impact of CryptDB on application performance, we
measure the throughput of phpBB for a workload with 10 parallel
clients, which ensured 100% CPU load at the server. Each client
continuously issued HTTP requests to browse the forum, write and

97

