
CS 261, Fall 2015 Scribe notes

September 17: Kerberos

Scribe: Rishabh Poddar

Kerberos is an authentication system in an open network computing environment, where a
workstation cannot be trusted to identify its users correctly to network services. In such an envi-
ronment, Kerberos runs as a trusted third-party service to verify the identities of the users, using
credentials-based authentication (as opposed to, say, simple IP-based authentication which was
used by services such as rlogin and rsh).

1 Overview

Consider a network consisting of multiple servers providing various services, such as mail, printing,
remote login, etc. The network also includes multiple workstations that are either public or private.
Users log into their workstations and use the network services; however, not all services are available
to everyone, and services are under access control.

Goal. The goal of Kerberos is to authenticate users to services and vice versa, in the setting
described above.

Threat model. An adversary in the network may attempt to take control of a workstation, or
even a service. The adversary may also intercept communication in the network, and read or forge
messages.

Trust model. The third-party Kerberos server is trusted. Neither the network nor any other
machine in the network is trusted.

2 Architecture

Kerberos maintains a database of all clients and services in the network, along with their private
keys. The private key of a client is derived from a password using, effectively, a hash function.
Network services that require authentication, and clients wishing to use those services, register
with Kerberos during which the private keys are negotiated and stored in the database. Kerberos
uses these keys to achieve mutual authentication between users and services. Thus, users do not
need to set up accounts and passwords on each individual server providing a network service. Note
that Kerberos does not provide authorization, i.e. whether or not a user can access a particular
resource. Authorization is the services’ prerogative.

Two interfaces are provided to the database: the Kerberos authentication server, and the ticket
granting server. These two servers may or may not be located on the same machine. The architec-
ture diagram of the system is shown in Figure 1.



CS 261, Fall 2015 Scribe notes

Figure 1: Kerberos architecture. c and s refer to the client and service respectively; Kc is the
private key of the client, and Ks is the private key of the service.

The authentication server grants the client an initial ticket for the ticket granting server. The
ticket granting server then issues tickets to the client for network services. Thus, the client doesn’t
need to store the user’s password on the workstation, and can delete it once it receives the initial
ticket.

3 Names in Kerberos

In Kerberos, the principals (i.e. the users and services) are named. Each name consists of three
parts: a primary name, an instance, and a realm, expressed as name.instance@realm (e.g. al-
ice.root@berkeley.edu). The names are used to identify the users and services, and the process of
authentication entails verifying that the client is the one named in a request.

In the rest of this document, we use c to refer to the name of the client, and s to refer to the
name of the service requested by c.

4 How Kerberos works

A client that requests a network service needs to establish its identity to the service by authenti-
cating itself through Kerberos. To do this, it first obtains credentials to be used in service requests.
Next, it requests authentication for a specific service. Finally, it presents the credentials to the
requested service.

4.1 Credentials

There are two types of credentials that are used in the authentication process: tickets and authen-
ticators. Tickets are issued to clients by the authentication server, and are used to securely pass
the identity of the client to the end service. Specifically, a ticket Tc,s used to identify a client c to
a service s, contains the following information:

Tc,s = {s, c, addr, timestamp, life,Ks,c}Ks



CS 261, Fall 2015 Scribe notes

Figure 2: Kerberos authentication protocol

where addr is the client’s network address; life refers to the lifetime of the ticket (i.e. validity
period); and Ks,c is the session key for s and c, i.e. the key with which the communication between
s and c will be encrypted. Further, the tuple < s, c, addr, timestamp, life,Ks,c > is encrypted with
Ks, the private key of s. (We use the notation {M}K to mean that a message M is encrypted
with key K.) Once a ticket is issued, it may be used multiple times by the client until it expires,
based on its lifetime. Note that since the ticket is encrypted with the private key of s, it is safe to
assume that the client cannot tamper with its contents.

An authenticator Ac,s contains additional information which, when compared against the ticket,
proves to s that the client presenting the ticket is the same one to which the ticket was issued.
Unlike tickets, authenticators can be used only once, and a new authenticator must be generated
each time a client wants to use a service. Specifically, an authenticator contains the following
information:

Ac,s = {c, addr, timestamp}Kc,s

i.e. an authenticator consists of the tuple < c, addr, timestamp > encrypted with the session key
Kc,s, where the timestamp is the current timestamp at the client’s workstation. Note that the
authenticator can be built by the client once it has the session key.

The service decrypts Tc,s, uses the session key Kc,s included in the ticket to decrypt the authen-
ticator Ac,s, compares the information in the ticket with the authenticator, the IP address from
which the request was received, and the current time. If everything matches, it allows the request
to proceed. Note that this mechanism also safeguards an adversary that captures an old ticket
and attempts to mount a ticket replay attack, because the service checks the timestamp of the
authenticator (indicating the current time of use) against its own time. (However, this safeguard
depends on how well-synchronized the system times are.)

4.2 Kerberos authentication protocol

The authentication protocol consists of five steps (see Figure 2). The client first obtains an initial
ticket from the authentication server in steps 1 and 2. It uses the initial ticket to request a service,
and obtains a service ticket in steps 3 and 4 from the ticket granting server. Finally, it authenticates
itself to the service in step 5 using the service ticket.



CS 261, Fall 2015 Scribe notes

4.2.1 Getting the initial ticket

The client first sends a request to the authentication server (step 1) consisting of its name c, and
the name of the ticket granting server tgs.

The authentication server looks up c in the database, and verifies that it knows about the client.
It then generates a random session key Kc,tgs which will be used to encrypt the communication
between c and tgs. Next, it creates the initial ticket Tc,tgs and encrypts it with Ktgs. The ses-
sion key along with the initial ticket are then encrypted with Kc and returned to the client (step 2).

Note that the authentication server does not verify the identity of c. Since the response is encrypted
with Kc, no one but c will be able to decrypt it. This also serves as a means of authenticating the
Kerberos server to the client.

4.2.2 Getting the service ticket

The client now sends a request to the ticket granting server (step 3), to request a ticket for service
s. The request contains the name of the service, the initial ticket Tc,tgs, and an authenticator Ac,tgs.

The ticket granting server uses Tc,tgs and Ac,tgs to authenticate the client c as described in § 4.1. If
valid, it generates a new random session key Kc,s to be used between c and s, and crafts a new ticket
Tc,s for the service. It then returns the new session key and ticket to c, encrypting the information
with Kc,tgs (step 4).

4.2.3 Requesting the service

The client finally uses the service ticket Tc,s along with an authenticator Ac,s to request the service
s (step 5). Authentication of the client by s is done in the manner described earlier.



CS 261, Fall 2015 Scribe notes

5 General weaknesses

DES encryption. Each step in the authentication protocol of Kerberos is based on symmetric
encryption, which was originally DES. DES, however, is not secure anymore, as its 56-bit key size
is too small and can easily be broken with current systems. Moreover, Kerberos assumed that
encryption provides message integrity. However, DES does not provide unforgeability guarantees
(as opposed to a MAC), i.e. it is possible for an adversary to forge a valid ciphertext corresponding
to some plaintext.

Password-guessing attacks. Since the private key Kc of a client is derived from the password,
an adversary can attempt to mount an offline dictionary attack to guess the user’s password (and
hence private key). This can be fixed by using better alternatives such as SRP and PAKE.

Persistent session keys. The session key Kc,s is used for all communication between c and s
over a long period of time. This has been fixed in Kerberos v5, where fresh session keys are used
each time. This is accomplished by keeping the original Kc,s locally at c an s, and using it to
encrypt temporary session keys.

6 Using Kerberos

Network services register with Kerberos, run Kerberos libraries and choose a private key.
From the perspective of users, Kerberos is transparent except when tickets expire. After a ticket

has expired, the user needs to run kinit and re-enter the password. A user that wishes to change
her password can do so easily by using a password-changing service. Recovering a lost password
requires using a new trusted service.

7 Replication

For the purposes of high availability and performance, multiple copies of the Kerberos system are
maintained. In addition to a master server which houses the main copy of the authentication
database, multiple copies of the database are kept on slave machines. Hence, if the master server
is down, a slave can still be used for the purposes of authentication.

In the original version of Kerberos these slaves were cold replicas of the master. This means that
they were updated with the master’s copy of the database only at hourly intervals. (As a result,
when the master was down, it was possible for a revoked user to continue using the system if the
update had not been copied to the slaves. Similarly, an attacker could use a user’s old compromised
password even if the user changed the password within the last hour.) Moreover, these slaves were
read-only copies, enabling the system to avoid complicated consistency problems.


