CS 261, Fall 2015 Scribe notes

September 8: Capabilities

Scribe: Riyaz Faizullabhoy

1 Motivation for Capabilities

In The Confused Deputy, the compiler had two sets of rights: one from the user to access user files
such as source code to compile, and another set granted to the compiler intended to access a special
statistics file that would collect information about language feature usage.

The compiler was installed in the SYSX directory, where it was granted access to write to any file
in this directory. Naturally, the statistics file SYSX/STAT was also located in this directory such that
the compiler (SYSX/FORT) could add language feature information. To achieve this, the compiler’s
privileges were set with a home files license that was allowed by the operating system to write to
any file in the SYSX directory.

A billing information file SYSX/BILL was also stored in SYSX — due to its sensitive nature, this
billing file was not directly accessible to users. However, since the compiler was granted access to
the entire SYSX directory, users could subvert their access restrictions on the billing information file
by using the compiler like so:

SYSX/FORT foo.f -o SYSX/BILL

The above user-invoked command to the compiler would allow the compiler to first read the
user’s source code in foo.f, but then the compiler’s privilege to SYSX would cause the SYSX/BILL
file to be overwritten with the user’s binary. In effect, the compiler is the confused deputy having
to reconcile both its own and the user’s set of privileges, but unfortunately allows for unintended
behavior.

2 UNIX Solutions for The Confused Deputy

The UNIX operating system offers some primitives that allow for better methods for understanding
the confusing privileges presented in The Confused Deputy.
2.1 setuid

setuid (“set user ID upon execution”) - a UNIX construct to allow running a process with the
privilege of the owner. The owner is not necessarily the same as the caller, and so setuid could be
used to escalate user privilege. A similar setgid primitive exists to change group privilege.

2.2 Strawman Solutions

While setuid provides a promising function, it is limited in this setting. Consider the following
scenarios:



CS 261, Fall 2015 Scribe notes

2.2.1 User privilege setuid

If we use setuid on the compiler to user privilege with only SYSX/STAT access, then the compiler
itself cannot open user files (and therefore cannot compile the desired user source code).

2.2.2 Root privilege setuid

If we use setuid on the compiler to root privilege, then we remain with the original problem of
being able to overwrite SYSX/BILL.

2.2.3 File open checks

A different approach could be to check every file open in the following manner, in order to ensure
that users are allowed access:

1. Check that the user has access to the file
2. If so, open() .. .write

While this approach could notice that the user should not have access to SYSX/BILL, it suffers from
a TOCTTOU (time of check to time of use) bug! Between the access check and actual access steps,
an attacker could change the file and point the open call to a different (and even disallowed) file.

2.3 General Problems

In general, while UNIX provides primitives for and notions of privilege, it suffers from overarching
classes of problems that make privilege separation more difficult to understand:

1. Ambient authority: Authority and privileges are automatically used by the process due to
the context (ex: firewalls, UNIX groupids).

2. Complex permission checks: It is difficult to understand and decide when and how to
check permissions.

3 Capabilities and Capsicum

3.1 Capability

For a finer-grained and more transparent notion of privileges, we introduce capabilities.

A capability is simply a file descriptor. To enable a process to open a certain subset of files, we
can pass capabilities (file descriptors) of these files to the process to describe its privileges. Note
that for a process to generate a file descriptor, the process must be able to open the corresponding
file and convert to a descriptor — this prevents processes from escalating privilege by delegating
capabilities to child processes for files it cannot open.

3.1.1 Confused Deputy Solution

One can use capabilities to solve the problem presented in The Confused Deputy by wrapping the
compiler with a FORT_FRONTEND that runs with user privilege. FORT_FRONTEND would then spawn



CS 261, Fall 2015 Scribe notes

FORT with setuid user 0, and pass the file descriptors for the input and output files from the
original user invocation as capabilities.

This approach would prevent the compiler from overwriting SYSX/BILL — consider the user
invoking the compiler as follows, attempting to confuse it as before:

SYSX/FORT_FRONTEND foo.f -o SYSX/BILL

Because FORT_FRONTEND runs with user privilege, it cannot actually open the SYSX/BILL and
generate a file descriptor for it, so FORT_FRONTEND cannot grant a capability to FORT for the billing
file as an output.

3.2 Capsicum

Capsicum is a system presented by Watson, Anderson, Laurie, and Kennaway that builds on top
of the mechanism of capabilities to reduce the privilege of untrustworthy applications, effectively
sandboxing them. Capscium’s architecture borrows elements from previous sandbox approaches
while adding the notion of capabilities.

3.2.1 Classical Sandbox Designs

1. Virtual machines: emulation of a particular computer system.
Advantages:
e Great isolation

e Can sandbox unmodified code
Disadvantages:

e Large CPU + memory overhead
e Difficult to share data between VMs, and to the user’s original OS

2. Discretionary Access Control (DAC): each object has a permissions list, access is deter-
mined by the privilege of the process in combination with the permissions of an object. DAC
was designed to protect users from each other.

Advantages:

e Currently used in UNIX

e Can customize permissions per object
Disadvantages:

e Laborious and difficult to fine-tune permissions of every file and ensure granted files are
as intended

Mandatory Access Control (MACQC): fixes a policy detailing which application can do
which operations on certain files, access is determined by how the policy applies to the given
process and object in question. MAC was designed to enforce system policies.

Advantages:



CS 261, Fall 2015 Scribe notes

e The policy is fixed and cannot change at runtime

e Paradigm is used commonly, often in firewalls
Disadvantages:

e Difficult to predict which operations should be allowed ahead of time for a certain ap-
plication

e May need to specify different operations for different users on the same application

e Cannot support a program to run separate tasks with different privileges on behalf of
the same user

3.2.2 Capsicum Design

Capsicum extends UNIX file descriptors in order to use capabilities to grant permission to certain
file objects for the sandboxed process. Capsicum also assigns file descriptors to each process, for
compatibility with Capsicum capabilities. For Capsicum to access objects with its file descriptors,
it passes the file descriptor to the kernel which stores a table for the process ID and looks up the
file descriptor to find the underlying file.

Capsicum adds new primitives to the kernel in order to restrict system calls from accessing
global name spaces. As a result, Capsicum does not allow use of the open() syscall, and instead
users must use open_at(directory_fd, name) where directory_fd refers to the file descriptor
capability for a directory. Capsicum imposes further restrictions on the scope of capabilities for
the name argument — for example, the “..” capability is not allowed, such that directories cannot
attempt to traverse past capabilities for a given directory, and absolute paths are also disallowed.

Capsicum introduces two different constructs for sandboxing processes: one for sandboxing the
current process, and another for starting a different process in a sandbox:

1. cap_enter(): Sets a flag for capability mode for the current process, only allowing this process
to open files for which it has already received a capability

2. 1ch_start(): Starts another process in capability mode, and passes it £d_list: a list of file
descriptors that the other process is allowed to access. In this case, the caller can have a
superset of capabilities from the new process. Moreover, spawning a new process prevents
the new sandbox from accessing the memory of the caller.

3.2.3 Sandboxing a component with Capsicum

In order to use Capsicum, components must be modified to be compatible with capabilities and
abide by Capsicum’s restrictions. The necessary transformations can be summarized in three steps:

1. Component cannot use pathnames or other global name spaces

2. For every necessary directory and file to the component, the file descriptor must be opened
ahead of time (to get the capability)

3. Component must use open_at () to interact with these files

In the paper, the authors implement Capsicum for a variety of programs including tcpdump and
Chromium. In the instance of Chromium, 1ch_start () can be used to spawn each rendering engine
into a separate Capsicum sandbox.



CS 261, Fall 2015 Scribe notes

3.2.4 Evaluation of Capsicum

Advantages:

e Low performance overhead

e Fine tuned privileges, can run different tasks with different capabilities
Disadvantages:

e Need to change application code to be compatible (ex: using open_at())

e Limited to FreeBSD



