
CS 261, Fall 2015 Scribe notes

Oct 13: Web security II

Scribe: Jingcheng Liu

Recall from last lecture, there are simple yet popular attacks. Here is a list from OWASP 2013:

1. SQL Injection

2. Hacking session management

3. XSS

4. Insecure direct object reference: this happens with the web application, say an application
with a line of code as follows:

SELCT * FROM table WHERE name = user_supplied;

5. Security misconfiguration

6. Sensitive data exposure

7. Mising proper access control

8. CSRF

1 How to secure web applications?

Unfortunately there is no systematic theory to secure web applications. Existing approaches are
based on experience and case-studies. Here are some good practices:

1. use a web framework that has security mechanisms built-in. e.g. Instagram uses Django.

2. protect against top 10 attacks.

3. design web servers using privilege separation (split in different origins), isolate trusted vs.
untrusted.

4. set various flags/policies that restrict attackers.

• e.g. httponly, secure cookies

• CSP (content security policy)

• research projects e.g. Mylar, Hails;

5. think hard(er)!

CS 261, Fall 2015 Scribe notes

2 (Django) security measures

Next we have a look at some common practices (especially what’s adopted by Django) against some
of the attacks.

2.1 SQL injection

This happens when a web application constructs a SQL query directly from user input. Here is an
example:

server: process_request(req)

user=req.GET(’username’);

sql="SELECT * FROM table WHERE username=’"+user+"’";

send results to client;

Given such a web application, an example attack would go like:

user="’alice’ or ’1’=’1"

This would traverse the whole table. If one replace the predicate with some other test predicate,
one could use the standard self-reduction of search problems to decision problem, and simulate
searching the whole database just by testing the predicate.

Solution: escape user input, Django abstracts construction of a SQL query, not allowing direct
manipulation of SQL.

3 Email header injection

Here is a sample web feedback form, where the user types in the subject and body, hit send and
the web application constructs an email that sends email to admin@web.com.

subject:

body:

[send] sends email to admin@...

The attacker can then inject END-OF-LINE character to insert or overwrite fields in the email
header.

subject: hi \n cc: ...

body:

[send] sends email to admin@...

Solution: escape user input!

4 XSS (cross-site scripting)

Here is a typical scenario. An attacker submits a script in a comment to a blog post, which renders
into an executable script to other user viewing the blog post.

CS 261, Fall 2015 Scribe notes

Solution:

• escape user input, Django would render: < script >

• disallow http://foo.com? q=<script src=.../>

• Privilege separation(e.g. multiple origins for web server)

– googleusercontent.com vs. google.com

– script, apply same-origin policy to protect script from accessing sensitive data

• content security policy: default-src ’self’: *.mydomain.com, also specify source of scripts,
frames, images.

5 CSRF: cross-site request forgery

Here is an artificial BOA transfer form.

<form action="bankofamerica.com/transfer" method=POST>

<input name=recipient value="alice">

<input name=amount value=$100>

</form>

<script> form.submit()</script>

The attacker would attempt to forge a user’s request as follows:

<form action...>

<input ... value=’attacker’>

<input ... value=100k>

</form>

<script> form.submit()</script>

CSRF fix: each form embeds a random id, server checks ID upon form post.
As an aside, for backward compatibility, HTTP referer checking could be bypassed by opening

a new tab and execute the html there.

CS 261, Fall 2015 Scribe notes

6 Session forging/hijacking

Here is a typical session management scheme through cookies:
user browser: cookie (contains session ID); Server: session ID, user, time-duration.
This is not a good practice as the user could forge the cookie, and attackers could steal the

cookie.
Here is another one that puts the session id in URL: http://example.com/?PHPSSEID=fa2921....
This is not a good idea either. As a user may share the URL directly to his/her friends or in

the public. Don’t put session id in URL.
Stateless cookies: sign {cookie: userID, info about user, session ID} with a MAC, or
encrypt it. The caveat is that revocation is hard; it cannot be remotely revoked.

7 Directory traversal

Say a web application takes user input filename and outputs its content.

def dump_file(request):

filename = request.GET("filename")

filename=os.path.join(base_path, filename)

open(filename).read()

A malicious user may try: filename="../../../etc/passwd" or to some setting files.
Solution: sanitize the input, check directory, access control etc.

