Convex Relaxations for Constraint Satisfaction Problems

Raaz Dwivedi, Riley Murray, Quico Spaen

University of California, Berkeley

EE227B Project
December 1, 2015
Constraint Satisfaction Problem

CSP = (V, C, w)
Constraint Satisfaction Problem

Set of variables:
Each variable ranges over a discrete finite domain.

CSP = (V, C, w)
Constraint Satisfaction Problem

Set of variables:
Each variable ranges over a discrete finite domain.

\[
\text{CSP} = (V, C, w)
\]

Set of constraints:
Each constraint consists of a \(\{0, 1\} \) valued function \(R \) and a scope \(S \subseteq V \).
Constraint Satisfaction Problem

Set of variables:
Each variable ranges over a discrete finite domain.

Vector of weights:
Non-negative weight for each constraint

CSP = (V, C, w)

Set of constraints:
Each constraint consists of a \{0, 1\} valued function \(R \)
and a scope \(S \subseteq V \)
Constraint Satisfaction Problem

Set of variables:
Each variable ranges over a discrete finite domain.

Vector of weights:
Non-negative weight for each constraint

CSP = (V, C, w)

Set of constraints:
Each constraint consists of a \{0, 1\} valued function \(R \)
and a scope \(S \subseteq V \)

Objective
Maximize weighted sum of satisfied constraints
Constraint Satisfaction Problem

- **Set of variables:** Each variable ranges over a discrete finite domain.

- **Vector of weights:** Non-negative weight for each constraint

\[\text{CSP} = (V, C, w) \]

- **Set of constraints:** Each constraint consists of a \{0, 1\} valued function \(R \) and a scope \(S \subseteq V \)

Objective

Maximize weighted sum of satisfied constraints

Examples:
- SAT: Constraints of the form \(x_1 \lor \bar{x}_4 \lor x_7, x_i \in \{0, 1\} \)
- Max-Cut
LP Relaxation

Idea

Choose an assignment to maximize weighted sum of satisfied constraints.
Idea

Choose an assignment to maximize weighted sum of satisfied constraints. Formulate it as an I.P. by introducing dummy \(\{0, 1\} \)-valued variables (indicators) for each variable and constraint.
LP Relaxation

Idea

Choose an assignment to maximize weighted sum of satisfied constraints. Formulate it as an I.P. by introducing dummy \(\{0, 1\} \)-valued variables (indicators) for each variable and constraint - *then relax it to get an LP.*
LP Relaxation

Idea

Choose an assignment to maximize weighted sum of satisfied constraints. Formulate it as an I.P. by introducing dummy \(\{0, 1\} \)-valued variables (indicators) for each variable and constraint - *then relax it to get an LP*.

For each \(i \in V \), \(\mu_i[\ell] \doteq 1 \) (variable \(i \) takes value \(\ell \)).
LP Relaxation

Idea

Choose an assignment to maximize weighted sum of satisfied constraints. Formulate it as an I.P. by introducing dummy \(\{0, 1\} \)-valued variables (indicators) for each variable and constraint - *then relax it to get an LP.*

For each \(i \in V \), \(\mu_i[\ell] \doteq 1 \) (variable \(i \) takes value \(\ell \))

For each \(j \in C \), \(\lambda_j[L] \doteq 1 \) (assignment \(L \) is used for constraint \(j \))
LP Relaxation

Idea

Choose an assignment to maximize weighted sum of satisfied constraints. Formulate it as an I.P. by introducing dummy \(\{0, 1\} \)-valued variables (indicators) for each variable and constraint - then relax it to get an LP.

For each \(i \in V \), \(\mu_i[\ell] \doteq 1 \) (variable \(i \) takes value \(\ell \))

For each \(j \in C \), \(\lambda_j[L] \doteq 1 \) (assignment \(L \) is used for constraint \(j \))

We impose two consistency conditions

\[\sum_{\ell \in D} \mu_i[\ell] = 1, \quad \sum_L \lambda_j[L] = 1 \Rightarrow \text{exactly one indicator is non-zero.} \]
LP Relaxation

Idea

Choose an assignment to maximize weighted sum of satisfied constraints. Formulate it as an I.P. by introducing dummy \(\{0, 1\} \)-valued variables (indicators) for each variable and constraint - then relax it to get an LP.

For each \(i \in V \), \(\mu_i[\ell] \doteq \mathbbm{1}(\text{variable } i \text{ takes value } \ell) \)

For each \(j \in C \), \(\lambda_j[L] \doteq \mathbbm{1}(\text{assignment } L \text{ is used for constraint } j) \)

We impose two consistency conditions

- \(\sum_{\ell \in D} \mu_i[\ell] = 1, \sum_{L} \lambda_j[L] = 1 \Rightarrow \text{exactly one indicator is non-zero.} \)

- \(\mu_i[\ell] = \sum_{L(i) = \ell} \lambda_j[L] \Rightarrow \text{Consistency in assignments} \)
LP Relaxation

Idea

Choose an assignment to maximize weighted sum of satisfied constraints. Formulate it as an I.P. by introducing dummy \(\{0, 1\} \)-valued variables (indicators) for each variable and constraint - *then relax it to get an LP*.

For each \(i \in V \), \(\mu_i[\ell] = \mathbb{1}(\text{variable } i \text{ takes value } \ell) \)

For each \(j \in C \), \(\lambda_j[L] = \mathbb{1}(\text{assignment } L \text{ is used for constraint } j) \)

We impose two consistency conditions

1. \(\sum_{\ell \in D} \mu_i[\ell] = 1, \sum_{L} \lambda_j[L] = 1 \Rightarrow \text{exactly one indicator is non-zero.} \)

2. \(\mu_i[\ell] = \sum_{L(i)=\ell} \lambda_j[L] \Rightarrow \text{Consistency in assignments} \)

Relax \(\mu_i[\ell] \in \{0, 1\} \rightarrow \mu_i[\ell] \in [0, 1] \) and \(\lambda_j[L] \in \{0, 1\} \rightarrow \lambda_j[L] \in [0, 1] \).
LP Relaxation

Idea

Choose an assignment to maximize weighted sum of satisfied constraints. Formulate it as an I.P. by introducing dummy \(\{0, 1\} \)-valued variables (indicators) for each variable and constraint - then relax it to get an LP.

For each \(i \in V \), \(\mu_i[\ell] \doteq 1 \) (variable \(i \) takes value \(\ell \))

For each \(j \in C \), \(\lambda_j[L] \doteq 1 \) (assignment \(L \) is used for constraint \(j \))

We impose two consistency conditions

- \(\sum_{\ell \in D} \mu_i[\ell] = 1, \sum_L \lambda_j[L] = 1 \Rightarrow \) exactly one indicator is non-zero.

- \(\mu_i[\ell] = \sum_{L(i) = \ell} \lambda_j[L] \Rightarrow \) Consistency in assignments

Relax \(\mu_i[\ell] \in \{0, 1\} \rightarrow \mu_i[\ell] \in [0, 1] \) and \(\lambda_j[L] \in \{0, 1\} \rightarrow \lambda_j[L] \in [0, 1] \).

Notice \(\lambda_j, \mu_i \) are \(\geq 0 \) and sum to 1. Think “probability distributions”!
An SDP Relaxation

Idea

- The LP formulation has no information on *joint* distributions of variables. This information could be valuable!
An SDP Relaxation

Idea

- The LP formulation has no information on *joint* distributions of variables. This information could be valuable!
- Find a joint distribution by introducing a **covariance matrix**.
An SDP Relaxation

Idea

- The LP formulation has no information on joint distributions of variables. This information could be valuable!
- Find a joint distribution by introducing a covariance matrix.

Build on the LP: introduce “$X(i,\ell, (i', \ell')$” with interpretation
An SDP Relaxation

Idea

- The LP formulation has no information on joint distributions of variables. This information could be valuable!
- Find a joint distribution by introducing a covariance matrix.

Build on the LP: introduce “$X_{(i,\ell),(i',\ell')}$” with interpretation

$$X_{(i,\ell),(i',\ell')} = \Pr(\hat{L}_j(i) = \ell \text{ and } \hat{L}_j(i') = \ell')$$
An SDP Relaxation

Idea

- The LP formulation has no information on joint distributions of variables. This information could be valuable!
- Find a joint distribution by introducing a covariance matrix.

Build on the LP: introduce "$X_{(i,\ell),(i',\ell')}$" with interpretation

$$X_{(i,\ell),(i',\ell')} = \Pr \left(\hat{L}_j(i) = \ell \text{ and } \hat{L}_j(i') = \ell' \right)$$

where $\hat{L}_j = L$ w.p. $\lambda_j [L]$.

An SDP Relaxation

Idea

- The LP formulation has no information on *joint* distributions of variables. This information could be valuable!
- Find a joint distribution by introducing a **covariance matrix**.

Build on the LP: introduce “$X_{(i,\ell),(i',\ell')}$” with interpretation

$$X_{(i,\ell),(i',\ell')} = \Pr\left(\hat{L}_j(i) = \ell \text{ and } \hat{L}_j(i') = \ell'\right)$$

where $\hat{L}_j = L$ w.p. $\lambda_j [L]$. Enforce this interpretation with
An SDP Relaxation

Idea

- The LP formulation has no information on joint distributions of variables. This information could be valuable!
- Find a joint distribution by introducing a covariance matrix.

Build on the LP: introduce “$X_{(i,\ell),(i',\ell')}$” with interpretation

$$X_{(i,\ell),(i',\ell')} = \Pr\left(\hat{L}_j(i) = \ell \text{ and } \hat{L}_j(i') = \ell'\right)$$

where $\hat{L}_j = L$ w.p. $\lambda_j[L]$. Enforce this interpretation with

\begin{align*}
(LMI) \quad X &\succeq 0 \quad (\text{Affine}) \quad X_{(i,\ell),(i',\ell')} = 0 \quad \forall \ell \neq \ell' \\
\text{and (Affine)} \quad &\sum_{L \in \mathcal{L}_j \land L(i) = \ell \land L(i') = \ell'} \lambda_j[L] = X_{(i,\ell),(i',\ell')}
\end{align*}

Solve this SDP to get covariance matrix X. Now how do we use it?
An SDP Relaxation

Idea

- The LP formulation has no information on *joint* distributions of variables. This information could be valuable!
- Find a joint distribution by introducing a **covariance matrix**.

Build on the LP: introduce "$X_{(i,\ell),(i',\ell')}$" with interpretation

$$X_{(i,\ell),(i',\ell')} = \Pr \left(\hat{L}_j(i) = \ell \text{ and } \hat{L}_j(i') = \ell' \right)$$

where $\hat{L}_j = L$ w.p. $\lambda_j [L]$. Enforce this interpretation with

\[
\text{(LMI)} \quad X \succeq 0 \quad \text{(Affine)} \quad X_{(i,\ell),(i',\ell')} = 0 \quad \forall \ \ell \neq \ell' \\
\text{and (Affine)} \quad \sum_{L \in \mathcal{L}_j \land L(i) = \ell \land L(i') = \ell'} \lambda_j [L] = X_{(i,\ell),(i',\ell')}\]
An SDP Relaxation

Idea

- The LP formulation has no information on joint distributions of variables. This information could be valuable!
- Find a joint distribution by introducing a covariance matrix.

Build on the LP: introduce “$X_{(i,\ell),(i',\ell')}$” with interpretation

$$X_{(i,\ell),(i',\ell')} = \Pr \left(\hat{L}_j(i) = \ell \text{ and } \hat{L}_j(i') = \ell' \right)$$

where $\hat{L}_j = L$ w.p. $\lambda_j [L]$. Enforce this interpretation with

(LMI) $X \succeq 0$ (Affine) $X_{(i,\ell),(i',\ell')} = 0 \quad \forall \ell \neq \ell'$

and (Affine) $\sum_{L \in \mathcal{L}_j} \lambda_j [L] = X_{(i,\ell),(i',\ell')} = X_{(i,\ell),(i',\ell')}$

Solve this SDP to get covariance matrix X.
An SDP Relaxation

Idea

- The LP formulation has no information on joint distributions of variables. This information could be valuable!
- Find a joint distribution by introducing a covariance matrix.

Build on the LP: introduce “$X_{(i,\ell),(i',\ell')}$” with interpretation

$$X_{(i,\ell),(i',\ell')} = \Pr\left(\hat{L}_j(i) = \ell \text{ and } \hat{L}_j(i') = \ell'\right)$$

where $\hat{L}_j = L$ w.p. $\lambda_j [L]$. Enforce this interpretation with

(LMI) $X \succeq 0$ (Affine) $X_{(i,\ell),(i,\ell')} = X_{(i',\ell),(i',\ell')} = 0$ $\forall \ell \neq \ell'$

and (Affine) $\sum_{L \in \mathcal{L}_j \land L(i) = \ell \land L(i') = \ell'} \lambda_j [L] = X_{(i,\ell),(i',\ell')}$

Solve this SDP to get covariance matrix X. Now how do we use it?
Rounding Schemes

Given the solution of relaxations, we need to find a good assignment.
Rounding Schemes

Given the solution of relaxations, we need to find a good assignment.

Rounding LP

For LP, we have a probability mass function $\mu_i[\cdot]$ for each variable.
Rounding Schemes

Given the solution of relaxations, we need to find a good assignment.

Rounding LP

For LP, we have a probability mass function $\mu_i[\cdot]$ for each variable. We can generate random numbers ”independently” for each variable according to these pmf’s and assign it to the variable to get an assignment.
Rounding Schemes

Given the solution of relaxations, we need to find a good assignment.

Rounding LP

For LP, we have a probability mass function \(\mu_i[\cdot] \) for each variable. We can generate random numbers “independently” for each variable according to these pmf’s and assign it to the variable to get an assignment. Is it good enough?
Rounding Schemes

Given the solution of relaxations, we need to find a good assignment.

Rounding LP

For LP, we have a probability mass function $\mu_i[.]$ for each variable. We can generate random numbers "independently" for each variable according to these pmf’s and assign it to the variable to get an assignment. Is it good enough? We have (for MAX-SAT)

$$\mathbb{E}[\text{LP Rounding}] \geq \left(1 - \frac{1}{e}\right) \text{Opt}(C')$$
Rounding Schemes

Given the solution of relaxations, we need to find a good assignment.

Rounding LP

For LP, we have a probability mass function $\mu_i[\cdot]$ for each variable. We can generate random numbers "independently" for each variable according to these pmf’s and assign it to the variable to get an assignment. Is it good enough? We have (for MAX-SAT)

$$\mathbb{E}[\text{LP Rounding}] \geq \left(1 - \frac{1}{e}\right) \text{Opt}(C')$$

SDP Rounding

The random variables are no longer independent and hence we need to generate "dependent" set of random numbers whose covariance matrix is related to X.