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I. ABSTRACT

To overcome the end of traditional scaling, modern SoC systems
consist of general-purpose compute augmented with large numbers
of specialized accelerators. However, building and evaluating these
systems is extremely expensive and time-consuming, even in early
stages of development. While high-level modeling and back-of-the-
envelope calculations can provide early insights into a new system,
there are key effects that only manifest at the full-system level.
However, full-system design has traditionally required writing RTL
or developing complex software models for the entire design.

In this paper, we describe a methodology and implement an open-
source flow (“Centrifuge”) that can rapidly generate and evaluate
heterogeneous SoCs by combining an HLS toolchain with the open-
source FireSim FPGA-accelerated simulation platform. Our system
can quickly produce complete SoC systems with many integrated
HLS-generated accelerators as specified by the user, simulate
them quickly and cycle-accurately on FPGAs, and run complete
software stacks on top, including booting Linux and running full
application frameworks. Our system allows users to easily explore
a variety of accelerator integration techniques, by automatically
integrating accelerators in several ways—as tightly coupled RoCC
accelerators, as accelerators that communicate over the standard
on-chip network, and lastly as “disaggregated” accelerators that
are directly attached to an Ethernet network between SoCs. By
integrating these tools, our methodology allows users to rapidly
generate an entire hardware/software stack for a customized SoC
that can be fabricated as an ASIC and evaluate its end-to-end
performance using cycle-exact FPGA simulation, allowing for agile
design-space exploration of novel accelerator-based systems.

II. INTRODUCTION

Due to the end of Moore’s law and classical scaling, architects
today must resort to building heterogeneous and specialized systems
to continue to satisfy the ever-growing appetite for compute of
today’s applications. Today’s systems-on-chips (SoCs) contain
a multitude of accelerators to optimize for common workloads.
However, this heterogeneity comes at the expense of increased
hardware development time, not only including the design of
individual accelerators, but also the selection and evaluation of
the set of accelerators that should be included in a particular system.
Early in the process of selecting a set of accelerators to include in
a system, architects frequently rely on high-level/abstract software
modeling. While this kind of modeling is sufficient for early design
space exploration and saves the time of traditional cycle-accurate
modeling or RTL design-entry, it generally does not account for
effects that only manifest when an accelerator is integrated into a
complex system.

To achieve a greater level of detail in evaluation, architects
frequently use cycle-accurate full-system simulation platforms.
These simulators span a wide range of design points, making
tradeoffs in simulation accuracy, simulation performance, and ease-
of-use. Broadly speaking, these simulators can be broken into
software-based simulators and hardware-accelerated simulators. In
comparison with hardware-accelerated simulation, software-based
simulation is simpler to use, but requires significant modeling
expertise and validation. Furthermore, due to low simulation
performance, software-based cycle-accurate simulation is unable to
run long-running workloads, which makes it difficult to determine
if an accelerator is actually beneficial when deployed in a system.
In comparison, FPGA-accelerated simulators are able to simulate
systems at much higher simulation rates, but require specifying an
accelerator design by writing RTL, which drastically slows down
early design-space exploration. With either of these simulation
techniques, a key hurdle is the fact that a design must be developed
and converted into RTL or a software model, which requires a
significant time investment.

To bypass this issue, High-Level Synthesis (HLS) tools have
been developed, which allow users to specify designs in a more
software-centric manner but produce an RTL design that can later
be used in hardware-accelerated simulation. While HLS tools have
traditionally been restricted to producing accelerators that run on
FPGAs, recently there has been an explosion in the use of HLS
tools to generate and refine accelerator designs that are ultimately
integrated into a complex system and taped-out, including those
at Google, NVIDIA, Bosch, Qualcomm, etc [1]. A key advantage
of using HLS to generate accelerators is that the accelerators can
be verified at the C-code-level and the HLS tool can be trusted to
produce correct output. Verification in this form is considerably
faster and more productive than traditional hardware verification [2].

In this paper, we describe a methodology and open-source
toolchain that we developed to rapidly generate, and evaluate
heterogeneous SoCs by combining an HLS toolchain with the
open-source FireSim FPGA-accelerated simulation platform:

1) We provide a flow that generates full SoC systems containing
user-defined accelerators written in HLS. This flow integrates
the Rocket Chip SoC generator with custom accelerators
generated with Vivado HLS. Accelerators in the generated
system can be attached to the system in three ways: 1©
coprocessor-style RoCC accelerators, 2© accelerators that
connect to the SoC’s on-chip network, and 3© disaggregated
accelerators that attach directly to Ethernet.

2) We provide a flow that automatically generates software
infrastructure to interact with the accelerators on the generated
SoC systems from within accelerators.

3) We add a Verilog FAME-1 [3] pass to the open-source FireSim



simulator to support simulating designs that contain Chisel
blackboxes of Verilog designs, in our case, the accelerator
designs produced by Vivado HLS.

4) We generate SoCs with several integrated accelerators and
evaluate accelerators with different coupling and software stack.
In addition, we conduct three case-studies to demonstrate the
capability of the toolchain.

With this methodology, we can rapidly generate an entire
hardware/software stack for a customized SoC that can be fabricated
as an ASIC and evaluate its end-to-end performance using FPGA
simulation, allowing for rapid design-space exploration of novel
accelerator-based systems, while providing cycle-exact performance
measurements with little user effort. We call our implementation of
this approach Centrifuge. Once a user is satisfied with the baseline
accelerated system produced by Centrifuge, they can then continue
to hand-optimize the design, as if they had written RTL from scratch.

III. RELATED WORK

With the increasing complexity of workload and systems in the
datacenter, hardware-software co-design is becoming critical to truly
optimize full-systems. Several projects have explored high-level
modeling for accelerator design. Aladdin [4] is a software simulator
that takes C code as input and estimates performance, power, and
area of a target accelerator design. The program behavior is modeled
with dynamic data dependence graphs (DDDG), which can be
generated from C code directly. This model assumes that all data
can be preloaded into the local scratchpads, which falls short for real
designs with limited on-chip memory budget and complex memory
access patterns. [5] addresses this issue by extending Aladdin with
the gem5 full-system simulator [6] to provide support for simulating
complex accelerator-system interactions. This work shows that the
pareto-optimal Energy-Delay Product (EDP) points for accelerators
evaluated in isolation differ from ones explored through full-system
co-design. While this approach is fast and easy to deploy, detailed
accelerator design insights are difficult to gain as no true hardware
is generated. Besides, its simulator speed (∼50KIPS) limits the
deployment of full-stack software, whereas in our system that runs
at tens of MIPS [7], [8], the real impact of accelerators can be
manifested at the application level. PARADE [9] is another extension
to gem5 that leverages HLS to generate accurate accelerator models
for accelerator-rich architecture(ARA) on complex network-on-
chips (NoCs). It provides a global accelerator manager to manage
the accelerator runtime. In all of these cases however, the prior
work does not move the designer towards obtaining an actual
implementation—once these tools generate an accelerator design
and a designer selects a particular set of accelerators, the designer
must then write RTL or HLS for the accelerators or the glue logic.
Thus, our methodology differs critically from these past approaches
because it directly evaluates a rapidly-generated RTL-ready design
which requires less additional architectural work to be realized in
silicon. Embedded Scalable Platforms (ESP) [10] proposed a similar
approach to design accelerator SoCs using HLS. Cosmos [11] has
leveraged both HLS and memory optimization tools to improve
design space exploration (DSE) for accelerators. Differing from ESP
and Cosmos, we aim to provide a fast simulation environment to
evaluate an accelerator in a full-stack setting. Our framework quickly
provides a baseline set of interfaces and an easy-to-use simulation
environment that software developers can program against and use
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Figure 1: Block Diagram of FireSim Simulating Centrifuge-
generated SoC with Accelerators

for performance optimization of the software stack, even before
real silicon is available.

IV. CENTRIFUGE

In this section, we detail the key components of our flow for
agile generation and evaluation of multi-accelerator SoCs, named
Centrifuge1. We first describe how we build an SoC with integrated
HLS-generated accelerators, then outline our extensions to the
FireSim FPGA-accelerated simulation platform [12] to enable fast
cycle-exact simulation of our generated SoCs.

A. Generating a Base SoC with Rocket Chip

As the basis for our SoC system, we use the Rocket Chip
generator [13], an open-source SoC generator written in Chisel that
provides standard SoC components including the RISC-V Rocket
Core (replaceable with the BOOM Out-of-Order core) and uncore
components. FireSim provides several standard peripherals including
a UART, Block Device, and NIC [12]. Altogether, this produces
a Linux-capable RISC-V SoC that can interface with a standard
Ethernet network. The base SoC components are shown in the
“RTL” box in Figure 1, excluding the gray accelerator boxes. We
configure the system to have 16 KB L1 I/D Caches, a 4 MiB LLC,
16GB of DDR memory, and a 200 Gbit/s Ethernet NIC. The gray
boxes in Figure 1 show three methods for integrating accelerators
into the SoC. We detail these in the following section.

B. Integrating Accelerators into the SoC

To enable exploration of various accelerator designs, we supply
shim infrastructure to incorporate HLS-generated accelerators into
the aforementioned SoC in three distinct ways:

1© RoCC accelerators (coprocessor sharing L1 and LLC with the
processor, invoked by RoCC instruction)

2© TileLink accelerators (closely-coupled accelerator sharing LLC
with the processor, invoked by either RoCC instruction or
memory-mapped I/Os(MMIO))

3© Network-attached accelerators (TileLink accelerators with
direct connection to the Ethernet)

These three models are representative of recent academic and
commercial designs [14]–[16]. Below we outline these three
configurations in detail.

1Our tool is named Centrifuge because it lets us rapidly iterate on novel
many-accelerator SoCs and separates the good accelerators from the bad.
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Figure 2: RoCC Accelerator

1) RoCC Accelerators: The RoCC accelerator interface provided
by Rocket Chip allows a user to integrate an accelerator closely with
the processor in the SoC. The accelerator can receive commands
directly from the general-purpose processor through a dedicated
command queue. Programs can issue these commands using
custom RoCC instructions that fit within the RISC-V ISA. RoCC
accelerators also have ports directly into the private L1 data cache
of the general-purpose core, as well as a port into the next-level
cache in the system. These interfaces are shown in 2. The L1 data
cache access that the RoCC interface provides is architected around
a request/response model. One key aspect of the RoCC memory
interface is that requests are not guaranteed to execute and return
in order. A tag field in the request and response packets is used to
associate responses to their corresponding requests.

Our HLS-generated RoCC accelerators use the Vivado HLS
ap bus interface for pointer type arguments. The ap bus interface
is a standard interface used by Vivado HLS. One key difference
between ap bus and RoCC is that ap bus assumes that dependent
memory operations occur in order. It is important to note that
Vivado HLS generates separate ap bus ports for each pointer and
array argument given when specifying an accelerator. This means
that order must be maintained between buses as well as within a
single bus. With ap bus, the behavior of simultaneous reads and
writes to the same address in the same cycle is undefined as there
is no mechanism to determine the expected ordering between buses
in the same cycle. This is not an issue experienced by software C
developers who expect sequential access to memory and do not
expect multiple memory transactions to occur simultaneously. While
Vivado will check for scheduling conflicts within one variable, a
conflict could potentially occur if two pointer or array arguments
address an overlapping range of memory.

To resolve these issues, we implement a custom memory/accelera-
tor controller bridges that allow Vivado HLS generated accelerators
to be attached to the RoCC interface. To maintain the relative
order of dependent memory accesses, we add issue logic on the
memory request path that is similar to scoreboarding in a single-
issue out-of-order processor. To handle responses, we add return
logic that resembles a network switch. A detailed block diagram of
the memory bridge is presented in 3.

2) TileLink-attached accelerators: Looser coupling of acceler-
ators to a local application core’s LLC is achieved by attaching
accelerators to the on-chip TileLink interconnect [17] in Rocket
Chip. TileLink is an open and free chip-scale cache-coherent
interconnect standard used by the Rocket Chip SoC-generator to
connect devices on low-latency SoC buses. It supports a MOESI-
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Figure 3: RoCC-ap bus Memory Bridge Architecture

equivalent protocol to provide coherent access for an arbitrary
mix of caching or non-caching masters. There are three levels
of conformance protocols and five channels implemented as five
physically distinct unidirectional parallel buses with one sender
and one receiver on each. The completion of data transactions is
out-of-order to improve throughput.

The Rocket Chip generator also takes advantage of a library called
Diplomacy [18], which supports automatic parameter negotiation
and checking between SoC components. Users only need to specify
protocol requirements on the master and slave nodes on a TileLink
bus. At elaboration time, diplomacy automatically negotiates
protocol implementations, then generates bus and interrupt signal
connections. In HLS C programs, pointer-type arguments to a C
function are synthesized into AXI4 master ports when the m axi
interface pragma is specified. Each memory access in the C code
is turned into an AXI4 request in the generated hardware. To
attach accelerators with these AXI-4 memory systems generated by
Vivado HLS, we use an open TileLink-to-AXI4 bridge adapter [17]
to connect accelerators to the Rocket Chip SoC.

3) Network-attached accelerators: The last accelerator-
integration option we provide is to allow accelerators to
directly interface with an external Ethernet network by directly
communicating with the in-SoC NIC to send/receive packets,
without the intervention of the general-purpose processor. There
are two ways for the accelerator to directly send and receive data
to and from the network.

Accelerator MMIO to NIC. The accelerator can directly post
send and receive commands to the NIC in the SoC by accessing
the NIC’s MMIO control registers in the HLS code. The send and
receive buffers are pre-allocated as local buffers and set to the
s axilite interface in the HLS wrapper, so both buffers appear to
be memory-mapped slaves on the TileLink bus. The accelerator
can issue a send command by telling the NIC the base address and
the length of the data it intends to send and a destination MAC
address. If the accelerator is expecting incoming data, it issues a
post recv command to the NIC with the address of the receive
buffer. Currently, we require that the general-purpose processor not
simultaneously access the network interface while the accelerator
is using the NIC.

Dedicated Send/Receive Queues. Accelerators can also directly
communicate with the NIC and thus the external Ethernet network
through dedicated send and receive queue pairs. To implement this
functionality, we extend the NIC design with routing/tagging based
on the Ethernet Ethertype field. The NIC automatically directs

3
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network packets to the accelerator’s queues if the Ethertype value
is “ACCEL_ONLY”.

In this mode, rather than issuing commands and polling the
NIC, the accelerator can directly send and receive the Ethernet
packets through decoupled FIFO queues. We split each queue into
two sub-queues, one for passing the Ethernet header and one for
passing the payload. We can then treat the payload queue as a
data stream in a dataflow programming model with blocking read
and non-blocking write. This allows us to take a design written in
the Vivado HLS dataflow model and split it into multiple network-
attached accelerators. Currently, the flow requires that you have
sufficient buffering and that the send and receive rate are matched.
In future work, we plan to add a flow-control mechanism to designs.

C. Generating Accelerators with Vivado HLS

As alluded to earlier in this section, we generate accelerator RTL
by taking advantage of Vivado High-Level Synthesis (HLS) rather
than requiring users to manually write RTL for accelerator designs.
While HLS tools have previously been relegated to FPGA-based
deployment [19], [20], ASIC CAD tool vendors have begun to ship
HLS tools geared towards ASIC designers [1], [21], [22].

The process of converting a high-level (C) description of an
application to a hardware accelerator in Centrifuge is detailed in 4.

At a high-level, the flow to integrate HLS-generated accelerators
into the SoC is as follows:

1. The programmer develops a standard C program and identifies
a function to accelerate (HLS-compatible).

2. Our LLVM pass replaces all calls to the accelerated function
with calls to a new wrapper function. This wrapper function calls
the accelerator.

3. LLVM writes a RISC-V assembly file which is assembled and
linked by the standard RISC-V GCC toolchain.

4. The function name to be accelerated is placed into a tcl script
that is used to drive HLS.

5. Vivado HLS produces a Verilog implementation of the
accelerated function.

6. Our custom FAME-1 transformation is applied to the generated
Verilog.

7. A pair of controllers are attached to the accelerator and act as
bridges between the accelerator and the RoCC/TileLink2/Network
interfaces. They handle the command/response messages between
the processor and the accelerator and memory request/response
messages.

8. The accelerator is added to the SoC and the design is elaborated
by Chisel.

The following sections outline the key differences between
generating local (RoCC or Tilelink) accelerators and disaggregat-
ed/distributed accelerators from high-level specifications.

1) Generating RoCC or Tilelink Accelerators: We developed an
LLVM pass to collect information about the function to accelerate
and to replace the accelerated function with custom instructions or
wrapper functions that invoke the accelerator. Once LLVM receives
a function name as command line input, our LLVM Module Pass
iterates through the function list in the program module and finds
the function with the input function name. Since C does not support
overloading, each function should have a unique name and function
names can be used as function identifiers.

Upon finding the function, our LLVM pass can emit the type
information of the function arguments and the return value, which
is used in our automation flow. We then create a new wrapper
function that shares the same prototype as the accelerated function
and construct the new function body using the LLVM IRBuilder.

For a RoCC-attached accelerator, the main part of the function
body is formed by three lines of RISC-V inline assembly: one
RISC-V custom instruction that calls the accelerator and two
fence instructions before and after the custom instruction to ensure
memory consistency. The custom inline assembly takes the function
arguments as its register inputs and returns the output to the return
register. Once the accelerator finishes running, the function will
return the value of the return register.

For TileLink-attached accelerators, the flow generates code to
supply the accelerator’s arguments by writing the input values
to corresponding MMIO addresses that map to registers inside
the generated accelerator. The MMIO addresses are parsed from
generated Verilog code for the accelerator. The control code to start
and poll for the accelerator done signal is also emitted.

Finally, the pass loops through the function call site and replaces
all uses of the accelerated function with calls to the accelerator
wrapper.

2) Generating Network-attached Accelerators: For this acceler-
ator integration, the user must write the application in a dataflow
model that conforms to the Kahn Process Network model [23]. The
user must first verify that the implementation does not deadlock in
software. Then, the user can partition their dataflow implementation
into many standalone accelerators and directly connect the data
streams to the network interface wrapper generated by Centrifuge,
then expose the network interface arguments to the top level of each
HLS design. This flow allows users to build large disaggregated
accelerator systems at a much higher-level of abstraction than
manually writing RTL and manually interacting with a NIC.

D. Generating the software stack for a complete SoC

To complete the generation of our SoC system, we need to
produce software shims that provide access to the generated
accelerators from various levels of the software stack. In the previous
section, we discussed how our LLVM pass will generate workload
binaries with calls to the accelerator, either as bare-metal programs
or programs that expect to run on Linux. Below, we outline the
system-level software shims to provide access to accelerators.

1) Running Bare-metal: In a bare-metal environment, the interac-
tion between software and accelerators is straightforward. In order
to invoke a RoCC accelerator, the custom instruction assigned to
the target accelerator needs to be called with arguments stored in
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processor registers. For TileLink accelerators, we need to perform
store operations to the memory-mapped registers to pass function
arguments and control commands. In both cases, similar to a
software function call, we pass in scalar arguments directly and
pointer arguments as physical memory addresses. The accelerator
can directly access memory through the caches (L1 for RoCC, L2
for Tilelink). All requests are serviced by the memory controller
without directly involving the processor.

2) Running on Linux: In Linux, RoCC-based accelerators are
invoked using custom instructions and can use the processor TLB
to perform translations; they do not require special operating system
drivers. Tilelink accelerators, however, become more complex with
an operating system due to virtual memory handling. Specifically,
the drivers and software wrappers for an accelerator/application
must support the following three features:

Accessing MMIO from user space. TileLink accelerators are
controlled through memory-mapped physical addresses. In order for
the application to access these addresses, they must first be mapped
into the application’s virtual address space. On Linux, physical
memory can be accessed through the “/dev/mem/” special file. By
calling mmap with the offset set to the desired physical address,
we can map any physical address into our virtual memory. This
procedure is handled automatically in our generated wrapper code.

Translating from virtual to physical addresses. To handle
address translation, the software wrappers for TileLink accelerators
call an automatically-generated RoCC accelerator that interacts with
the hardware page-table walker to translate from virtual to physical
addresses.

Ensuring physically contiguous data-layout. For pointer argu-
ments that fit within a single page, translation alone is sufficient.
However, if the argument spans multiple pages, the allocated
memory may not be physically contiguous. In lieu of maintaining a
TLB in each accelerator, Centrifuge requires that all arguments be
made physically contiguous before invoking an accelerator. To allow
this, we provide a Linux driver that allocates a large, physically-
contiguous, region of memory at boot time and exposes it to users
through a modified mmap system call. Users can allocate space
for their arguments using this system call (minimizing overheads).
If the user would prefer to not modify their source, the generated
function wrappers can copy arguments into contiguous memory
automatically when the accelerator is invoked.

V. CASE STUDIES

In this section, we evaluate several microbenchmarks and perform
three case studies to demonstrate the capability of our methodology.
We ran our experiments on FireSim on Amazon F1 instances and
use Vivado HLS to synthesize application C code into hardware as
it is stable and free to the community. Our microbenchmarks are
adapted from CHStone [24] and HLSpolito on GitHub [25]. With
the microbenchmarks, we demonstrate that Centrifuge can be used
to evaluate the following design tradeoffs:

Acceleration Region. We first conducted a sweep to extract
functions from the microbenchmarks and compiled them to the
RoCC accelerators with Centrifuge. Results in Figure 5 showing
the accelerator speedup can be used to direct decision on which
code region to accelerate. For example, the adpcm example should
be accelerated at the encode level instead of at the basic operation
level (e.g. logsch, quantl, logscl) .
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Software Stack. We then generated five TileLink accelerators
and ran them under Linux. Figure 6 shows the runtime breakdown
of the accelerators normalized to the software performance. The
slowdown of Tilelink accelerators on Linux is mostly due to
performing address translation on each argument. Note that RoCC
accelerators do not experience any slowdown on Linux because
they are virtually-addressed. With Centrifuge, we can evaluate and
optimize the physically-addressed TileLink accelerator and its Linux
driver together.

Accelerator Coupling. Lastly, we show how different coupling
affects the accelerator performance with Centrifuge by accelerating a
communication-bound kernel vadd in different sizes. From Figure 7,
we see that the RoCC accelerator outperforms software when the
vector size is small. As we increase the vector size, the TileLink
accelerator gets a higher speedup compared to software. There are
three main factors that affect the accelerator speedup: the interface
bandwidth, the cache hit latency and the cache size. The TileLink
system bus is 512-bit wide, whereas the RoCC memory interface is
64-bit wide. The L2 hit latency is 20× longer than L1 hit latency.
For the RoCC accelerator, once it starts to miss in L1 cache, it
will suffer from a similar cache access latency as the TileLink
accelerator. However, since TileLink accelerator has wider memory
accesses, it performs better in a more bandwidth-bound scenario.
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Figure 8: Breakdown of key computational kernels in a hypothetical
smart-house assistant SoC. The top-3 accelerators for end-to-end
performance are adpcm encode, gemm 256, and encrypt.

A. Putting it all together: Smart-House Hub

In this case study, we demonstrate Centrifuge using a hypothetical
SoC intended for a smart-house assistant (e.g. Alexa, Google Home,
etc...). Our device will need to listen for user audio commands,
encode them into an appropriate format, perform machine-learning
inference to detect commands, and finally encrypt the command
for transfer to the cloud over a wireless network.

1) Evaluating the Baseline Application: We begin by measuring
runtimes for each of these kernels without accelerators. Figure 8
shows how the runtimes of these steps might compare in a typical
deployment (”Software Only”). Notice that the lion’s share of
time is spent in audio preprocessing (adpcm encode) and the
matrix-multiply underlying command classification (gemm 256).
The remaining time is split roughly evenly between hashing (sha),
encryption (encrypt), and wireless encoding (gsm).

2) Generating Accelerators: Having identified the key kernels
in our application, we begin by adding HLS annotations to each
function. This mostly involves identifying inputs and outputs, and
ensuring the function prototype has the correct number of arguments.
By modifying the source code and annotations, the design can be
further specialized for hardware deployment if appropriate. We then
run Centrifuge on our annotated application, specifying each kernel.
The result is RTL for a new SoC with the specified accelerators and
a new application binary with each accelerated function replaced
with a call to an accelerator.

3) Evaluating Accelerators: The next step is to evaluate our
accelerators in an end-to-end system using FireSim. With FireSim,
we can run our code as if it were on a real machine, including any
timing measurements. Figure 8 shows the runtime breakdown using
our new accelerators (”All Accelerators”). We notice that gemm 256
shows the greatest improvement, both local (250×) and end-to-end
(11.5×), and should likely be included. The adpcm encoder shows
a more modest local improvement (about 5×) but has the second
largest impact on total runtime (6% end-to-end improvement). Both
encryption and gsm-encoding show 4-5x improvements in local
runtime, but have a modest 1% impact on end-to-end performance;
we may choose to include these if power and area permit. Finally,
the sha accelerator sees little improvement locally, and has a very
small impact on end-to-end runtime; we would likely choose to not
accelerate that function.

4) Continue Hardware and Software Development: Putting it all
together, we decide to include the gemm 256, adpcm encode, and
encrypt accelerators and leave the remaining kernels to the CPU.
This results in an 8x improvement in end-to-end runtime (including
all the accelerators would result in an 11.5% improvement). In
addition, we now have a consistent hardware/software interface and
a high-performance simulator for use by our software team, while
hardware engineers can continue to optimize the kernels, using
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Figure 9: CPU Roofline Model
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Figure 10: Accelerator Roofline Model

either HLS or hand-written RTL.

B. Distributed Matrix Multiplication Accelerator

We applied Centrifuge to a MPI-based distributed matrix mul-
tiplication implementation [26]. This algorithm employs MPI’s
one-sided communication protocol, along with extensive tiling and
prefetching. We used two separate implementations for the core
matrix-multiplication algorithm; an HLS-optimized kernel (adapted
from [27]), and a CPU-optimized tiling algorithm. The accelerator
is integrated as a TileLink accelerator. It runs 441 × faster than
the CPU for performing 8-bit integer matrix multiplication.

We first validated the HLS design by running the C simulation
and comparing the output against a golden reference. This takes
less than a minute for each debugging iteration. We then used
Centrifuge to generate the SoC and simulated the accelerator on
FireSim. It took ˜3 hours to generate the FPGA images and seconds
to return the test results for multiplying matrices of size 256×256.
In comparison, it would take around half a day to run the bare-metal
program on a commercial software-based RTL simulator. Using a
software-based RTL simulator, it would be infeasible to validate
the design in a more realistic setting, for example, using a larger
input size, running under Linux, and in a network environment.

We can further evaluate the complex interaction between the
accelerator, CPU, and the network by employing Centrifuge. To
evaluate the design, we first calculate peak performance using a
roofline model [28]. Because we are running a full-system cycle-
level simulator, we were able to use standard evaluation tools
like STREAM [29] and iperf [30] to find the actual bounds for
the roofline model. The distributed dgemm framework described
above was taken from an existing high-performance library and
run unmodified (except for calls to the accelerator and special
memory allocation of arguments as described in section IV-D1).
We ran the experiments on 1, 4, and 16-node configurations with
2.0 GB/s measured DRAM bandwidth and 1.2 Gbit/s measured
network bandwidth.

Figure 9 shows that the performance of the workload on CPU is
dominated by a lower bound than its peak compute bound. As
shown in Figure 10, by running the accelerator, the workload
becomes communication bound, and our accelerator performance
matches the measured roofline. The accelerator achieves a peak
throughput of 344 GOp/s for 16-bit integer multiply-accumulates
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Figure 12: DGEMM Runtime Breakdown for 1024×1024 Tiles

(a ∼ 600× improvement compared to our processor). On one
node, the performance of accelerator follows the DRAM roofline
(memory communication bound), while on four or sixteen nodes,
its performance tracks the network roofline instead (network
communication bound). Therefore, for the distributed workload
in this example, major improvement should be made to the network
bandwidth instead of the accelerator itself. Figure 11 shows the
strong and weak scaling efficiency of the distributed workload
running on the accelerators. A detailed runtime breakdown for the
distributed workload with tile size 1024×1024 is shown Figure 12.

C. Deep Learning Accelerators

Our flow, with fast design feedback, is particularly suited
for developing accelerators for rapidly changing deep learning
algorithms. In this section, we will describe several deep learning
accelerators developed with Centrifuge. Note that all the accelerators
in this section took less than one month to implement.

1) Design for New Algorithms: Figure 13 shows the ba-
sic building block for a new efficient network design called
DiracDeltaNet [31]. In this design, all 3x3 convolutions are replaced
with a 1x1 convolution and shift operation, while the addition-skip
connection is replaced with concatenation and shuffle operations.
Figure 14 shows our hardware dataflow design for the building
block. In the design, all layers are spatially mapped to corresponding
hardware units. There are three 8×8 Multiply-Accumulate(MAC)
units to support the three 1x1 convolution layers. The weights
are pre-fetched into the on-chip buffers. The input activations are
loaded to the FIFOs from DRAM. Each hardware unit starts its
execution based on the arrival of data. Since we preload all the
weights, each input activation can be reused output channel size
times after it is fetched from DRAM. Table I shows the Ops/cycle
for different DiracDeltaNet subgraphs on our TileLink accelerator.
As the compute-to-communication ratio varies among different
subgraphs, the empirical performance of the accelerator varies
drastically (∼4×). The algorithm designer can then leverage the
information from current hardware architecture to optimize the
DNN design to include more hardware-efficient layers.

2) Distributed Accelerators: The dataflow architecture with large
weight buffers mentioned in the previous example is also known to
have low latency for inference with a small batch size. However, it
might not be economical to have such a large design with all the
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Figure 13: DiracDeltaNet
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Figure 14: Hardware Design

Table I: Accelerator Performance(The workload size
is represented as image width × channel depth)

Workload Size Total Ops Ops/cycle
32×16 196608 4.55
32×32 786432 15.12
32×64 3145728 20.59
16×128 3145728 21.35
8×64 196608 17.09

layers hard wired together. Instead, we can have many composable
deep neural network accelerators with different dataflow modules,
and have them directly communicate with each other through a
high-performance network as shown in Figure 15. We implement
this design based on VGG16 [32]. We first tested the idea with
a small 2-layer neural network with two 16×16 Conv3×3. By
replacing the data stream with the Ethernet connection, we reduced
the total latency by 1.5%. This indicates that the overhead from
the direct network connection is tolerable. We then prototyped two
accelerators with our framework: one with only the convolution
clusters, and one with both convolution and fully connected layers
for reducing the results. Both designs can directly send and receive
Ethernet packets to the network through the NIC. The weights are
2-bits and the activations are 4-bits in the hardware. Assuming
the chip is running at 3.2 GHz, for a 64 × 64 large image, it
takes 13191136 cycles (4.1ms) to classify 1 frame on a single
node accelerator, and 11151953 cycles (3.5ms) to finish the same
task on a two-node system that has direct accelerator-to-accelerator
network connections. While both designs have the same number
of compute units, the two node design benefits from increased
aggregate memory bandwidth. In this case, the benefits of increased
memory bandwidth outweigh any overheads from the network.

VI. CONCLUSION

In this paper, we described a methodology and flow, Centrifuge,
that can rapidly generate and evaluate heterogeneous SoCs by
combining an HLS toolchain with the open-source FireSim FPGA-
accelerated simulation platform. Our system can quickly produce
complete SoC systems with many integrated HLS-generated accel-
erators as specified by the user, simulate them quickly and cycle-
accurately on FPGAs, and run complete software stacks on top,
including booting Linux and running full application frameworks.
Our system allows users to easily explore a variety of accelerator
integration techniques, by automatically integrating accelerators in
several ways—as tightly coupled RoCC accelerators, as accelerators
that communicate over the standard on-chip network, and lastly as
“disaggregated” accelerators that are directly attached to an Ethernet
network between SoCs. We extended the FireSim simulation
platform with a new FAME-1 transformation that operates on the
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Figure 15: Multi-node accelerators, connected via Ethernet

Verilog designs emitted by Vivado HLS rather than Chisel RTL.
By integrating these tools, our methodology allows users to rapidly
generate an entire hardware/software stack for a customized SoC
that can be fabricated as an ASIC and evaluate its end-to-end
performance using cycle-exact FPGA simulation, allowing for agile
design-space exploration of novel accelerator-based systems. We
plan to open-source our flow in the near future, allowing users to
prototype their own accelerators using the Centrifuge methodology.
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