
Learning A Continuous and Reconstructible
Latent Space for Hardware Accelerator Design
Qijing Huang∗

NVIDIA
Charles Hong
UC Berkeley

John Wawrzynek
UC Berkeley

Mahesh Subedar
Intel Labs

Yakun Sophia Shao
UC Berkeley

Abstract—The hardware design space is high-dimensional and
discrete. Systematic and efficient exploration of this space has
been a significant challenge. Central to this problem is the
intractable search complexity that grows exponentially with the
design choices and the discrete nature of the search space.
This work investigates the feasibility of learning a meaningful
low-dimensional continuous representation for hardware designs
to reduce such complexity and facilitate the search process.
We devise a variational autoencoder (VAE)-based design space
exploration framework called VAESA, to encode the hardware
design space in a compact and continuous representation. We
show that black-box and gradient-based design space exploration
algorithms can be applied to the latent space, and design points
optimized in the latent space can be reconstructed to high-
performance realistic hardware designs. Our experiments show
that performing the design space search on the latent space
consistently leads to the optimal design point under a fixed
number of samples. In addition, the latent space can improve
the sample efficiency of the original algorithm by 6.8× and can
discover hardware designs that are up to 5% more efficient
than the optimal design searched directly in the high-dimensional
input space.

I. INTRODUCTION

Hardware design space exploration is a challenging problem
due to its intractable search space with a large number of
different design parameters, many of which cannot be made
independently as they have intricate interactions with each
other. The search space grows exponentially in size with the
number of hardware configurations. In addition, a majority
of the hardware design decisions are discrete, ranging from
different dataflow choices to different buffer sizes across the
memory hierarchy [1], [2]. Collectively, the nature of the design
space exploration problem results in a non-linear and non-
continuous performance function that relies heavily on the
expert knowledge of designers.

Existing works approach the hardware design problem
from its high-dimensional and discrete search space [3]–[11].
Typically, designers use heuristics-driven approaches to prune
the large space [1], [3]. More recently, motivated by the great
success of machine learning (ML) algorithms in performing
difficult tasks such as image recognition [12]–[14], natural
language processing [15], [16], and system optimization [17],
[18], ML-based algorithms have also been used to search for
optimal solutions in the discrete hardware design space [4]–
[11]. However, these approaches focus on the development

*Work done when author was at UC Berkeley

of intelligent search algorithms, with little attention to the
structure of the search space.

In fact, the performance of a search algorithm heavily
depends on the smoothness of the search landscape. In a
continuous search space where points close to each other
are also semantically similar, any continuous optimization
algorithm can quickly move towards the optimal regions of
the search space [19]. In addition, in the context of hardware
design space exploration, the search space should also be
reconstructible so that we can map the searched optimal design
points back to the original hardware design space and generate
valid configurations. Therefore, constructing a continuous and
reconstructible search space of hardware design is key to
reducing the dimensionality and improving the search efficiency
of hardware design space exploration.

Recent advances in representation learning [19] have demon-
strated that variational autoencoders (VAEs) are capable of
learning a latent space and reconstructing the points in the latent
space to the input space [20]. Specifically, VAEs compress
the input information into a continuous latent distribution
(encoding) and reconstruct it as accurately as possible (de-
coding). Different from vanilla autoencoders, the latent space
of VAEs is regularized during training so that VAEs can
be used in a generative process that produces new data by
decoding points sampled from the latent space. Leveraging the
generative property of VAEs, researchers have adopted VAEs
in image synthesis [21], [22], chemical design [23], robot
motion planing [24], neural architecture search [25], and other
generative tasks.

In this paper, we investigate the feasibility of using VAEs
for learning a meaningful reconstructible representation for
hardware designs. The potential benefits of such representations
are twofold. First, VAEs can reduce the dimensionality of
the hardware design space as the encoded representation
space typically has a lower dimension compared to the input
space, making the overall search problem simpler. Second, the
latent space features are normal distribution regularized and
its performance surface is continuous, making it easier for
optimization algorithms like gradient-based approaches [26] to
navigate the search space.

Specifically, we present VAESA, a VAE-based design space
exploration (DSE) framework for spatial accelerators. Unlike
prior works that explore the original design space, VAESA
learns a low-dimensional, continuous latent space represen-
tation that can be searched by any continuous optimization

1



method. The searched high-quality solutions can also be
reconstructed back to the original space to produce valid
hardware configurations. To demonstrate the generality of
the encoded representation, we apply two popular search
algorithms, Bayesian Optimization (BO) [27] and Gradient
Descent (GD), on the encoded design space and evaluate the
searched hardware designs generated from the decoder. Our
results show that the learned latent space significantly improve
both the performance and sample efficiency for hardware design
space exploration.

In summary, this paper makes the following contributions:

1) We propose VAESA, a novel VAE-based approach that
learns a continuous and reconstructible latent space
to compactly represent the high-dimension, discrete
hardware design space.

2) We show that our approach is able to learn a well-
structured latent search space through rigorous ablation
studies.

3) We demonstrate that the learned search space significantly
improve performance and sample efficiency by up to
5% and 6.8×, respectively, using two different search
strategies.

II. MOTIVATION AND BACKGROUND

This section discusses the challenges associated with hard-
ware design space exploration, the state-of-the-art DSE ap-
proaches, and background on variational autoencoders (VAEs).

A. Hardware Design Space

Hardware designs have evolved in both complexity and
heterogeneity. The ever-growing and complex hardware exposes
many intervening knobs to tune in its design. This work aims
to optimize neural network accelerator designs described using
a range of parameters, e.g. number of processing elements
(PEs), number of multiply-and-accumulate (MAC) units per PE,
and capacity of different buffers across the memory hierarchy.
Many of these parameters have a large range of discrete values,
resulting in a design space size on the order of 1017 with six
different hardware parameters. Furthermore, the performance
surface of the hardware design space is highly non-linear and
non-convex, as demonstrated by the irregular shapes of the
latency and energy landscapes, shown in Figure 1a and 1b.
These properties make it challenging to quickly find optimal
hardware configurations in the large and irregular hardware
design space.

B. DSE Approaches

Design space exploration for hardware has been actively
studied with a range of optimization techniques, shown
in Table I. While these approaches significantly prune the
hardware design space, they focus on developing effective
search strategies to navigate the original high-dimensional
design space itself.

Search Method Original Input Space Learned Search Space

Heuristics-Driven: Interstellar [3] N/A

Black-Box
Optimization:

Bayesian Optimization [4]
Apollo: P3BO [5]

NAAS: Evolutionary [28]
VAESA + BO

Gradient-Based
Optimization:

EDD [10]
DiffTune [29] VAESA + GD

TABLE I: Hardware design space exploration approaches. Prior
works focus on developing intelligent search heuristics and algorithms
while VAESA aims to learn a continuous and reconstructible latent
search space to improve the search efficiency.

# of MAC Units
1K

2K
3K

4K
AccBuf %

0.1
0.2

0.3
0.4

Latency (M
Cycles)

3.8

4.0

4.2

(a) Latency

# of MAC Units
1K

2K
3K

4K
AccBuf %

0.1
0.2

0.3
0.4

Energy usage (m
J) 5.8

6.0

6.2

(b) Energy

Fig. 1: The irregular landscapes of the latency and energy
functions across a small slice of the design space for ResNet50.
Accumulation buffer size is represented as a percentage of the
total buffer capacity (2.7 MB). All other hardware parameters
are held constant.

1) Heuristics-Driven Approaches: Common DSE practice
leverages heuristics of designers to prune the search space,
followed by a random or brute-force search. However, the
performance of this approach heavily relies on the insights of
the designers, and the heuristically pruned space can limit
the discovery of new optimal design points. For instance,
Interstellar [3] confines its search to specific dataflows and
adjacent memory buffer ratios that are known to be efficient.

2) Reinforcement Learning (RL): RL obtains observations
from the environment that the agent continually interacts with
in addition to the reward after sampling each configuration.
RL can learn a policy that maximizes the expected reward
for a sequence of decisions. Recent works illustrates how RL
co-optimizes the hardware design and the DNNs by continually
updating the policy based on the reward feedback [6]–[8].

3) Black-box Optimization: Black-box optimization is a
class of algorithms designed for optimizing tasks with unknown
objective functions but achievable reward feedback given
different inputs. For example, Bayesian optimization (BO)
iteratively updates a statistical model to approximate the
unknown objective function and uses an acquisition function
to decide which input to sample next. Recent work [4] shows
that BO achieves better performance more sample-efficiently
compared to random search and algorithms used in TVM
(XGBoost and TreeGRU) [30], [31].

2



Encoder Decoder
mean

stddev

Input Output 

Latent Space 

A compressed hardware representation
                            , where 

Fig. 2: Example variational autoencoder (VAE) model to learn
a low dimensional representation z for hardware design. gφ is
the encoder function that takes input design parameters x and
outputs a mean µ and a standard deviation σ for sampling the
compressed latent feature z. The sampled latent feature z is
then fed to the decoder fθ to reconstruct x′. The training of
VAE aims to minimize the difference between the input x and
the output x′.

4) Gradient-based Optimization: Gradient-based approaches
are commonly used for optimizing sophisticated objective
functions that are differentiable, where the search directions are
determined by the gradient of the function at the current point.
Recent works demonstrate differentiable surrogate models can
be constructed or trained to represent the performance of
hardware designs [11], [29].

C. Variational Autoencoder

An autoencoder is a type of ML algorithm designed to learn a
compressed representation of input data and the corresponding
encoding and decoding functions [32], [33] . As shown in
Figure 2, it is a feed-forward model that predicts output x′

from input x through a bottleneck layer and the encoder gφ
and decoder fθ are trained to minimize the difference between
x and x′, where x′ = fθ(gφ(x)). z is a representation of
x in the latent space, usually with reduced dimensionality.
Auto-encoders are used in multiple domains including image
compression, image generation [21], [22], and representation
learning [23], [25], [34].

Different from an autoencoder, a variational autoencoder [20]
(VAE) maps the input to a distribution instead of a fixed
vector. Figure 2 demonstrates how a VAE is implemented
in practice. Assuming that the data distribution of the latent
space is a multivariate Gaussian, the encoder network first
predicts the means µ and the standard deviations σ of the
distribution from input x. A latent point is sampled from the
multivariate Gaussian distribution and decoded to the output
during training. The output feature is then used to compare to
the input feature to calculate the reconstruction loss. In addition,
the predicted multivariate Gaussian distribution is regularized
by the Kullback-Leibler (KL) divergence [35], which measures
the difference between the learned distribution and the standard
normal distribution and is minimized during training. The

Dataset

Input

Predicted 
HW Config

Encoder Decoder

Latent Space HW Config

Latency & 
Energy

Predicted 
Latency & 

Energy

Loss Function

Latency & Energy 
Predictor

DNN Layer

Fig. 3: The VAESA training pipeline to learn the latent space of
hardware design. The dataset includes the latency and energy
costs of DNN layers running on different DNN accelerator
architectures. The encoder encodes the hardware configurations
into the latent space, while the decoder reconstructs the
hardware configurations from the latent space representation.
Latency and energy predictors are trained together with the
VAE pipeline to add semantics to the latent space construction.
The overall loss function used in the VAE training consists
of both the VAE loss and the MSE losses of the latency and
energy predictors.

overall loss function can be writen as:

LVAE = Lrecon + αLkld (1)

where the Lrecon is the mean square error (MSE) between x
and x′, and Lkld is the KL divergence loss weighted by the
α coefficient. VAEs turn the encoded point into a distribution
and use the KL divergence measure to improve the continuity
of the latent space, which is a critical property that can be
exploited by many search algorithms. Therefore, in this work,
we integrate VAE into existing hardware DSE frameworks to
complement the search algorithms with an easy-to-navigate
search space.

III. VAESA FRAMEWORK

To improve the hardware DSE efficiency and leverage
existing hardware design data, we introduce VAESA, an end-
to-end DSE framework that enables the DSE to run on a
low-dimensional and continuous latent space where optimized
latent points can be decoded to realistic hardware designs.

A. Overview

The VAESA framework takes problem specifications and
existing hardware designs as input, performs design space
exploration over the trained latent space, then outputs optimized
hardware designs and the corresponding mappings to boost the
overall performance and efficiency of the system. This work
specifically targets the hardware DSE towards DNNs due to
their popularity.

The VAESA framework decomposes the hardware design
space exploration process into two separate steps. The first
step (discussed in Section III-B) is a VAE training pipeline

3



2 0 2
Latent Dim. 1

2

1

0

1

2

3
La

te
nt

 D
im

. 2

1000

2000

3000

4000

# 
of

 M
AC

 U
ni

ts

(a) Number of MAC units

2 0 2
Latent Dim. 1

2

1

0

1

2

3

La
te

nt
 D

im
. 2

100

200

Gl
ob

al
Bu

f S
ize

 (K
B)

(b) Global buffer size

2 0 2
Latent Dim. 1

2

1

0

1

2

3

La
te

nt
 D

im
. 2

0.02

0.04

ED
P 

(M
Cy

cle
s *

 m
J)

(c) Energy-delay product

Fig. 4: Visualization of training data (about 5000 randomly selected points) after encoding to a 2-dimensional latent space.

1.5
1.0

0.5
0.0

0.5
1.0

1.5

1.51.0
0.5

0.0
0.5

1.0
1.5

P
re

d
icte

d
 La

te
n

cy
 (M

C
y
cle

s)

5

10

15

20

1.5
1.0

0.5
0.0

0.5
1.0

1.5

1.5 1.0
0.5

0.0
0.5

1.0
1.5

P
re

d
icte

d
 E

n
e
rg

y
 (m

J)

4
5
6
7
8
9

10

(a) Predicted performance of decoded accelerator

1.5
1.0

0.5
0.0

0.5
1.0

1.5

1.5 1.0
0.5

0.0
0.5

1.0
1.5

R
e
a
l La

te
n
cy

 (M
C

y
cle

s)
5

10

15

20

1.5
1.0

0.5
0.0

0.5
1.0

1.5

1.5 1.0
0.5

0.0
0.5

1.0
1.5

R
e
a
l E

n
e
rg

y
 (m

J) 4
5
6
7
8
9

10

(b) Real performance of decoded accelerator

Fig. 5: Visualization of the two predictors and how they compare to real ResNet-50 performance. Left: latency and energy
values, predicted from points across the latent space. Right: decoded and evaluated latency and energy values of points from
the same area of the latent space.

which learns to construct a continuous, low-dimensional latent
space, where each point of the latent space can be recon-
structed through the decoder. The second step (discussed in
Section III-C) applies different search algorithms onto the latent
space to efficiently find optimal and reconstructible design
points. VAESA utilizes four key components for hardware
accelerator DSE:

1) A VAE training pipeline to learn the compressed latent
search space,

2) Hardware design space exploration algorithms to perform
search over the latent space,

3) A scheduler to efficiently map the execution of the task
to hardware

4) An evaluator to measure the quality of hardware and
mapping

To evaluate the performance of different DNNs on a wide
range of DNN hardware, we harness CoSA, a constrained
optimization-based scheduler [36], to automatically generate
high-performance mappings and Timeloop, an accurate latency
and energy simulator [1], to estimate the performance of
different design points.

B. Latent Space Generation: VAE Training and Visualization

To obtain a new latent space for hardware DSE, we first
need to design and train a VAE model. The VAE is the key
component in VAESA but hasn’t been studied by the prior

hardware DSE work. In this section, we take a deep dive into
our VAE model design, training, as well as visualization of
the latent space.

1) VAE Model Design: The VAE model, as shown in
Figure 3, takes a real input hardware configuration as input,
encodes it to a latent distribution, and decodes from a sample
drawn from this distribution to an output. Training of VAE
minimizes the difference between the predicted output and
input as well as regularizes the latent space data distribution.
The VAE model used in VAESA is a feed-forward multilayer
perceptron (MLP) network with symmetric encoder and decoder
designs. It uses leaky ReLU in between the MLP layers to
introduce non-linearity in the model.

2) Performance Predictors: A drawback to the existing
vanilla VAE design is that its latent space has no semantic
meaning. Shown in Figure 3, we augment the VAE design with
two performance predictors in order to introduce structure to
the latent space. Conditional on different input layer features,
the predictors are used to estimate the latency and energy of
the latent design points. Such a design is motivated by the
prior VAE work [23] that demonstrates the structuring effect
of latent space property predictors.

In order for the predictors to impact the VAE behavior, we
need to train the VAE and the predictor models together in
an end-to-end manner. The overall loss function of the VAE

4



Statistical Performance 
Model

Latent Space 
HW Evaluator 

(Timeloop)

Scheduler
(CoSA) Latency

Energy
Decoder

Generated 
HW Config

DNN LayerDNN Layer

Feedback from 
HW Simulation

DNN Layer

Acquisition Function

Bayesian Optimization

(a) VAESA + BO

Latent Space 

Predicted EDP 
Minimization w/ GD

HW Evaluator 
(Timeloop)

Scheduler
(CoSA) Latency

Energy
Decoder

Generated 
HW Config

DNN LayerDNN LayerDNN Layer

(b) VAESA + GD

Fig. 6: Design space exploration with VAESA. Once the latent representation and the decoder are trained, different search
algorithms can be directly applied to the latent space, where the searched optimal points in the latent space will be decoded
back to the hardware configurations. We demonstrate two search algorithms: Bayesian Optimization (BO) and Gradient Descent
(GD), as illustrated in Figure 6a and Figure 6b, respectively.

training pipeline thus becomes:

L = LVAE + Lpredictors (2)

where LVAE is the VAE loss as in Equation 1. Lpredictors is the
sum of the MSE losses of the latency and energy predictors.

Another usage of the performance predictors is to enable
gradient-based optimization over the latent space. During
inference, the differentiable MLP-based performance predictor
model with fixed model weights can be used as a proxy of
the unknown real performance function over the latent space
for gradient-based optimization. The accuracy of the predictor
models is thus of critical importance to the gradient-based
search algorithms. We will illustrate the use of predictor models
by GD in Section III-C2.

3) Dataset Construction and Training: Training VAE re-
quires a large amount of data. In VAESA, we collect a dataset of
500K samples to train the VAE with the per layer performance
prediction. Each data sample consists of hardware design
features, DNN layer features, and the corresponding energy
and latency labels. We gather these data points by running grid
search and random search over the original design space. We
only add valid design points to the training dataset because
we want the VAE to learn the distribution of valid designs and
generate points that resemble realistic designs. As we explore
more and more hardware designs during DSE, we can expand
the dataset and retrain or fine tune the VAE and predictor
models.

Normalization is a critical technique for training with the
hardware and DNN features as the scales of their values can
vary massively. We need to bring the magnitudes of different
features down to a similar range to speed up the training
process. In VAESA, we perform min-max normalization for all
hardware design features and DNN layer features. We then train
the model end-to-end until the loss function converges. Once we
finish training, the VAE can predict hardware configurations that
resemble realistic hardware designs. We also obtain a compact
and continuous latent space where samples can be decoded to
the original design space. Retraining of VAE is not required

for new workloads or new hardware designs in our flow, but is
needed if we change the number of original hardware features
as we currently represent hardware configurations as fixed-
length vectors. Adding a sequence or graph-based feature
embedding to VAE can address this limitation.

4) Visualization of the Latent Space: A natural question
arises from our system: how does the trained VAE map discrete
design points to the continuous latent space? To visualize the
latent design space, we train a VAE with a 2-dimensional
latent space. Figure 4a and 4b demonstrate that even with a
two-dimensional latent space, the VAE successfully encodes
the structure it finds in the training data, as input data points
are clearly grouped by feature values when they are encoded
in the latent space.

Inspecting the encoder also reveals some of the relationships
between architectural parameters and hardware performance
metrics. The plots provide evidence that for the current
workload, a large number of compute elements is necessary
for a more efficient accelerator design, as the purple points
(smaller energy-delay product) in Figure 4c tend to overlap
with the dark blue points in Figure 4a. We can also see that
some of the least efficient designs in the training data, drawn
in yellow, have both a small number of PEs (light blue) and
small global buffer sizes (light orange).

5) Visualization of Predictor Performance: We can also
visualize our trained MLP-based predictors using the same
2-D latent space as Section III-B4. In Figure 5, plotting the
predicted latency and energy usage of designs decoded from
across the latent space against the real latency and energy usage
of these designs allows us to visually inspect how similar these
two surfaces are. In areas where there is plenty of training
data (within a radius of about 1.5 units from the origin), the
predictors for both latency and energy accurately represent the
performance surface. Outside of this region, the predictor shows
some potential to extrapolate beyond our training data at points
such as (latent dim. 1, latent dim. 2) = (1.5, -1.5), where latency
and energy are accurately predicted to have higher values than
at neighboring points. However, the predictor fails at other

5



points such as (-1.5, -1.5), where latency is correctly predicted
to increase relative to neighboring points, but the value itself
is incorrect by a multiple of 5. Despite the fact that there is a
relatively high degree of quantifiable error in the predictor, this
visualization allows us to see the qualitative accuracy of the
latency and energy predictors, which match closely with the
contours in the real performance surface. This indicates that
gradient-based optimization in the latent space will be effective
in quickly identifying relatively well-performing designs within
a few samples. Additionally, the presence of several different
areas of similarly low latency and energy usage in the predictors
suggests that if a more exhaustive search is carried out, usage
of the performance predictors will not hamper exploration of
unique but similarly well-performing designs.

C. Latent Design Space Exploration: BO and GD

Once the latent space and the real-world design mapping
is established through training, DSE can then be performed
with respect to the latent design space. We implement two
representative search strategies under two different categories
of algorithms for DSE over the latent space: the black-box
Bayesian optimization (BO) and the predictor-based gradient
descent (GD).

1) Black-box BO: The first search strategy we employ
is Bayesian Optimization (BO). BO assumes the objective
function is a black box or unknown and maintains its own
statistical model for the objective function using Gaussian
processes. It updates its model every time it receives a new
pair of latent feature to performance label sample. Based on the
statistical model, the acquisition function makes the exploration-
exploitation trade-off to determine the next sample. Since BO
models the objective function using Gaussian processes, it is
hard for the model to predict the performance of discrete inputs.
The continuous and KL-regularized latent space intuitively
should be more amenable for BO compared to the original
design space.

Figure 6a illustrates how BO performs the latent space
DSE in VAESA: BO first samples a design from the latent
space, then invokes the decoder to map the latent design to
the original design space. With the reconstructed hardware
configuration, BO runs the scheduling and evaluation tools
to obtain performance feedback. BO updates its statistical
performance model and the acquisition function (computed
using the statistical model) with the new performance feedback
for the sampled latent design. In the next iteration of DSE,
BO selects the latent space design that optimizes the updated
acquisition function value. This search process continues
iteratively to perform exploration and exploitation on the latent
search space.

2) Predictor-based GD: GD, on the other hand, requires a
known and differentiable objective function to perform DSE.
The trained predictors in our VAESA model suit this need. GD
is an iterative method to approximate the optimal design by
taking gradient steps. The gradient in GD is computed based on
a subset of randomly drawn samples from the training set. To
achieve the global optimum, it relies on the objective function to

Lat
en

t D
im

. 1

0.8
0.4

0.0
0.4

Latent Dim. 2

0.4
0.0

0.4
0.8

1.2

Predicted EDP (M
Cycles * m

J)

0
10
20
30
40
50
60
70

Fig. 7: Interpolation in the latent space between the worst (red)
and best (blue) points in the training data.

z0 (Worst) z0+0.5(z1-z0) z1 (Best) z0 + 1.5(z1-z0)

Interpolated Point

10

20

30

40

50

60

70

P
re

d
ic

te
d

 E
D

P
 (

M
C

y
cl

e
s 

* 
m

J)

(a) 2-dimensional latent space. L2
distance between worst and best
points: 0.96

z0 (Worst) z0+0.5(z1-z0) z1 (Best) z0+1.5(z1-z0)

Interpolated Point

20

40

60

80

100

120

140

160

P
re

d
ic

te
d
 E

D
P
 (

M
C

y
cl

e
s 

* 
m

J)

(b) 4-dimensional latent space. L2
distance between worst and best
points: 2.58

Fig. 8: Contour of the predicted surface "above" (projected
onto) the worst point-best point axis.

be very smooth. Otherwise, GD may get stuck at local minima.
In VAESA, the latent search space can potentially also address
the non-smooth objective proxy issue by rearranging design
points in latent space based on their performance.

In Figure 6b, we show the VAE + GD flow that optimizes
the latent space design points towards a performance proxy.
Unlike the VAE + BO flow, the GD-based DSE flow performs
iterative gradient updates on the latent space performance
predictor, and only invokes the scheduler and simulator after
an optimized latent space design is found with respect to the
predictor performance.

As discussed in Section III-C, continuity and smoothness
are two important indicators to show how good a search space
is for both BO and gradient-based search algorithms. In this
section, we thus visualize the latent space to qualitatively
evaluate its smoothness and usefulness for accelerator design
space exploration.

For gradient-based optimization methods to be effective,
we require that there are not too many local minima where
optimization can stall. With a 2-D latent space, the performance
surface can be visually inspected for local minima. However,
this can not easily be done for latent spaces of higher

6



dimensionality. In higher dimensions, we can instead interpolate
between the worst and best points to predict whether a
gradient-based search would have successfully arrived at a
good accelerator design even if it started at a poor one. Figure 7
shows how our visualization works. First, we encode the worst
point (red, call it z0) and best point (blue, call it z1) for
the predicted workload in our training data. Then, for each
point z0 + i

N (z1− z0), where i ranges from 1 to N, between
z0 and z1, we predict the energy-delay product pEDP of
the corresponding output accelerator. We also include some
points z0+ j

N (z1− z0), where j > N , in order to understand
whether a gradient-based search would have stopped near the
best-known point, or continued elsewhere. Finally, we project
each pEDP onto its corresponding point on worst-best point
axis, and plot this in 2 dimensions. In Figure 7, the worst-best
point axis is the line of gray dots parallel to the x-y plane; in
Figure 8, it corresponds to each x-axis.

We carried out this study for VAESA trained with 2- and
4-dimensional latent spaces. The result of the interpolation
shows that for both variants, the contours of the predictor
surface are conducive to an improvement in real performance
of the decoded architecture, as the gradient of the predicted
performance surface tends to be negative in the direction of
the worst-best point axis. However, we also see that with a
2-dimensional latent space, there is a local minimum between
the worst and best known points, where gradient descent, if
carried out starting from the worst known point, could become
trapped. This indicates that a 4-dimensional latent space’s
greater representational capacity may create a more monotonic
performance surface where gradient descent can find better
solutions. We further investigate the potential costs and benefits
of changing latent space dimensionality in Section IV-B1.

IV. EXPERIMENTS

In order to evaluate the effectiveness of VAESA, we first
justify the design of the framework through the following
experiments:
• VAE hyperparameter tuning. In this experiment, we

vary design points specific to VAE, namely KL divergence
vs reconstruction loss weighting and latent space dimen-
sionality, and explain the selection of each hyperparameter
for the subsequent evaluation of VAESA (Section IV-B1).

Then, we examine the optimization benefit of VAESA
in hardware accelerator design space exploration with the
following use cases:
• Bayesian optimization. We test the effectiveness of

VAESA as tool to augment current popular iterative
optimization techniques. We can use the latent space as
a continuous and compressed space that increases the
efficiency of Bayesian Optimization on the accelerator
design space (Section IV-C).

• Predictor-based gradient descent. We explore the po-
tential of VAESA to optimize for new neural network
workloads within a very small number of samples (Sec-
tion IV-D).

Parameter Max # Possible Values

No. of PEs 64 5
No. of MAC units 4096 64
Accum. buffer size 96 KB 128
Weight buffer size 8 MB 32768
Input buffer size 256 KB 2048
Global buffer size 256 KB 131072

TABLE II: Summary of the design space.

Target Workload # of Unique Layers

AlexNet [12] 8
ResNet-50 [13] 24

ResNeXt-50 [37] 25
DeepBench [38]

(OCR and Face Recognition) 9

TABLE III: Summary of DNN workloads whose layers are used
to train the VAE (Section III-B3). We optimize the performance
of these models in the VAE-BO study in Section IV-C.

Layer # Dimensions

1. 1 1 1 1 2208 1000 1 1
2. 1 1 1 1 512 256 1 1
3. 1 1 28 28 512 512 1 1
4. 3 3 14 14 192 48 1 1
5. 3 3 14 14 512 512 1 1
6. 3 3 28 28 192 48 1 1
7. 3 3 28 28 512 512 1 1
8. 3 3 350 80 64 64 1 1
9. 3 3 56 56 192 48 1 1

10. 3 3 56 56 256 256 1 1
11. 3 3 7 7 192 48 1 1
12. 5 5 700 161 1 64 2 2

TABLE IV: Twelve different DNN layer workloads used in the
VAE-GD study in Section IV-D. Format (8-columns): weight
width, weight height, output width, output height, input channel,
output channel, stride width and stride height.

A. Experimental Setup

1) Hardware Design Space: We apply VAESA to explore the
hardware design space of a Simba [39]-like DNN accelerator.
We considered six design parameters to search (given in
Table II) including the number of PEs/MACs and the size
of different memory buffers. Various design parameters have
a different number of possible discrete values ranging from
5 to 131K. The total design space size of this architecture is
3.6× 1017.

2) Workloads and Evaluation Metrics: Four of the main
workloads evaluated are described in Table III. Three workloads
(ResNet-50, ResNeXt-50-32x4d, and AlexNet) are convolu-
tional neural networks used for computer vision applications,
while the last, DeepBench, is a collection of different layer
types purposed for benchmarking [38]. Layers from these
four neural networks are used for training, as described
in Section III-B3, and in the Bayesian optimization study
in Section IV-C. An unseen set of 12 convolutional and
fully connected layers (Table IV), selected for diversity from
networks other than these four, is used in the gradient descent

7



1 0 1
Latent Dim. 1

0

1

2

3

La
te

nt
 D

im
. 2

1000

2000

3000

4000

# 
of

 M
AC

 U
ni

ts

(a) α = 0

1 0 1 2
Latent Dim. 1

2

1

0

1

2

La
te

nt
 D

im
. 2

1000

2000

3000

4000

# 
of

 M
AC

 U
ni

ts

(b) α = 0.0001

4 2 0 2
Latent Dim. 1

2

0

2

4

La
te

nt
 D

im
. 2

1000

2000

3000

4000

# 
of

 M
AC

 U
ni

ts

(c) α = 0.01

Fig. 9: Encoders trained with different values of α. For α = 0, encoder does not learn a continuous representation for the
training data, while α = 0.01 generates an almost normal distribution. We select an intermediate value of α = 0.0001, which
generates a distribution that is both continuous and reconstructible.

0 200 400 600 800 1000
Epoch

0.000

0.002

0.004

0.006

0.008

0.010

Re
co

ns
tru

ct
io

n 
lo

ss

Latent Dimensions
1
2
4
6

Fig. 10: Value of the autoencoder reconstruction loss term
during training for different latent space dimensions. For this
problem, there are diminishing returns beyond 4 dimensional
latent space.

study in Section IV-D. We use a batch size of 1 for evaluating
the workloads.

In our experiments, the objective is to minimize the energy-
delay product (EDP, i.e. latency × energy) of deep neural
network workloads. Although our flow can optimize the
latency and energy separately, we select EDP as the hardware
performance metric because it allows us to investigate Pareto-
optimal design points that trade off latency and energy, creating
a difficult but important search problem.

To evaluate search performance, we use the following
metrics:
• Best EDP found, among all searched points. This evaluates

the ability of each search method to explore the design
space and identify high-performance points that other
methods may not achieve.

• Sample efficiency, which we estimate by the rate at which
each search method finds an accelerator within 3% of best
known EDP for a workload. This evaluates the ability
of each search method to exploit existing knowledge
about accelerator performance and quickly identify a near-
optimal solution to the search problem.

Given the hardware DSE is a stochastic process, the DSE
performance is affected by randomness. Therefore, in our study,
we run each experiment three times with different random seeds
and show the average performance and the standard deviation
of the runs in the figures.

3) Scheduler and Simulation Tool: We use optimization-
based scheduler CoSA [36] to solve for mappings that minimize
the overall data transfer size and maximize the buffer and PE
utilization. Given a problem and an architecture specification,
CoSA returns a high-performance mapping in one shot,
significantly reducing the mapping search time compared to
iterative schedulers.

Once a mapping for the architecture of interest is generated,
we pass it, the architecture specification, and the target problem
to a fast and accurate analytical performance model from
Timeloop [1]. Timeloop statically analyzes the data access
patterns of the input tensor-algebra workloads and reports the
latency, energy, and area estimation. It derives the operation
counts from the data access patterns and multiplies them with
the energy per operation to estimate its total energy. In our
experiments, we use the energy numbers gathered from the
40nm technology node.

4) Normalization of Features and Labels: To facilitate the
training of the VAE and the performance predictors, we use
two normalization schemes to scale the feature and label values
to the desired range. First, we take the logarithm of the values,
as they change by orders of magnitude. Then, we perform min-
max normalization of the values by looking for the minimum
and maximum log values in the dataset and dividing the values
by the difference between these. After a series of normalization
operations, the range of the features and labels should be close
to [0,1).

B. VAE Hyperparameter Tuning

1) Weighting KL Divergence: Kullback-Leibler (KL) di-
vergence is one of the loss terms minimized during training
of VAESA. During training, we backpropagate on the KL
divergence between the normal distribution of training data
and the standard normal, which regularizes the encoder-decoder

8



0 500 1000 1500 2000
# of samples

8

9

10

11
ED

P 
(M

Cy
cle

s *
 m

J)
resnet50

vae_bo
bo
random

0 500 1000 1500 2000
# of samples

40

41

42

43

44

ED
P 

(M
Cy

cle
s *

 m
J)

alexnet
vae_bo
bo
random

0 500 1000 1500 2000
# of samples

8.0

8.5

9.0

9.5

10.0

ED
P 

(M
Cy

cle
s *

 m
J)

resnext50_32x4d
vae_bo
bo
random

0 500 1000 1500 2000
# of samples

2.2

2.4

2.6

2.8

3.0

ED
P 

(M
Cy

cle
s *

 m
J)

1e 1 deepbench
vae_bo
bo
random

Fig. 11: DSE performance comparison of BO running with the VAE-generated latent space (vae_bo), BO, and random search.
Each line represents the mean EDP across three random seeds and the shaded region shows the standard deviation across the
three runs. vae_bo converges to an optimal design point fastest for all four DNNs.

ResNet-50 AlexNet ResNeXt-50 DeepBench

DSE Method Search Performance (SP) Sample Efficiency (SE) SP SE SP SE SP SE

Random Search (random) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Bayesian Optimization (bo) 0.98 0.61 1.00 0.31 1.00 0.94 0.96 1.00

VAESA + Bayesian Optimization (vae_bo) 1.01 4.17 1.00 2.00 1.01 1.27 1.01 4.46

TABLE V: Search performance and sample efficiency of DSE methods. Search performance is measured by the EDP of the
best design point achieved over 2000 samples, relative to the average random search result. Sample efficiency is estimated by
measuring the rate at which each search method finds an accelerator within 3% of best known EDP for a workload.

network by encouraging the encoder to cluster points closer
to the origin. Reconstruction loss, on the other hand, tends to
encourage distinct data to be encoded further apart so that they
can be reconstructed more accurately [40]. During training,
we can weight these losses and their backpropagated gradients,
so that they are prioritized accordingly.

There are several prior works on determining how to weight
the two VAE loss terms, including some that introduce schemes
for scheduling these values [41], [42]. However, it is non-
obvious how changing these weights affects VAESA, due to the
introduction of predictor networks that are trained in tandem
with the VAE. In order to study these effects, we train a 2-
dimensional latent space VAESA with three different options
for the weight α on the second term in Equation 1.

Visualization of the encoded training data in Figure 9
illuminates some key changes that occur as α changes. The
smallest selected value, 0, removes the variational component
of VAESA’s autoencoder and creates a clear gradient in the
encoding of accelerator configurations with different number
of MAC units. However, some points in the training data
are encoded far apart from one another, as there is no KL
divergence term to drive latent space encodings towards
the origin. This creates regions of high uncertainty, leading
to inaccurate performance prediction. With α = 0.0001,
accelerators with different numbers of MAC units are encoded
to a distinctly patterned, but mostly continuous cloud of points.
An α value of 0.01 is too large, weighting the KL divergence
loss term so heavily that the distribution of encoded data
appears completely random (as it approaches the standard
normal). Quantitatively, VAESA trained with α = 0.0001
also reconstructs input data the most accurately of these three
options. Therefore, we use α = 0.0001 for most of our studies.

2) Latent Space Dimensionality: VAEs learn a lower-
dimensional representation of input data in the latent space.

However, there are several tradeoffs involved when selecting
the dimensionality of the latent space. In Section III-B4 we
used 2 dimensions to interpretably visualize the latent space,
but Figure 10 shows that increasing latent space dimensionality
increases reconstruction accuracy (the first term in Equation 1).
We VAESA with a latent space dimensionality of 4 as it reduces
the dimensionality of the design space without compromising
a significant amount of accuracy.

C. Bayesian Optimization with VAE

For the first experiment, we utilize VAESA to augment
Bayesian optimization, an iterative black-box search algorithm.
We evaluate VAESA with Bayesian optimization (vae_bo) in
the latent space in comparison to the same implementation
of Bayesian optimization (bo) in the original hardware input
feature space. Random search (random) is used as another
baseline. In Figure 11, we show that vae_bo finds the optimal
hardware configuration that minimizes EDP within 2000
samples for all target DNN workloads. The curves in Figure 11
also show that vae_bo in general converges faster than the two
other baseline approaches.

Table V summarizes the results of combining the latent space
of VAESA with Bayesian optimization. We measure both the
EDP of the best architecture found by each method over 2000
samples, relative to the result found by random search, as well
as the number of samples taken to reach an EDP within 3%
of the known best architecture, to estimate sample efficiency.
Sample efficiency is important in cases where an accelerator
must quickly be tuned to a new neural network workload, such
as when accelerator and neural network architecture are co-
designed. The use of VAESA improves the search performance
by up to 5% and the sample efficiency of hardware design
space exploration by up to 6.8× versus Bayesian optimization
in the original design space. On average, best performance

9



0 5 10 15 20 25 30 35
# of samples

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

E
D

P
 (

M
C

y
cl

e
s 

* 
m

J)

1e 2

vae_gd

gd

random

Fig. 12: Average EDP improvement of vae_gd compared to
gd and random over 12 test layers. Experiments repeated for
5 random seeds.

increases by 2% and sample efficiency increases by 4.8×
versus Bayesian optimization. vae_bo also improves sample
efficiency by 3.0× on average versus random search on the
original search space. This demonstrates that the continuous,
compressed latent space in VAESA increases the rate at which
black-box optimization finds a good solution to the hardware
search problem, while still allowing exploration of the design
space over a large number of samples.

D. Gradient Descent with VAE

Because VAESA predicts the performance for an accelerator
on an arbitrary convolutional or fully connected layer, we can
attempt to optimize accelerator design for a certain layer or
combination of layers by using gradient descent. With GD,
we start from randomly selected points in the latent space and
minimize predicted performance using the gradient of VAESA’s
predictors, then decode the selected latent space point. If the
performance predictor is accurate, this method should be able
to produce relatively good accelerator designs in just a few
samples. Ideally, a user who wants to quickly optimize an
accelerator for an arbitrary neural network design could predict
performance for the full network by summing latency and
energy predictions for multiple layers. Since neural network
architecture search is not the objective of this work, we evaluate
this method on individual layers and leave the exploration of
neural network architectures to future work. These individual
layers, listed in Table IV, are not part of the dataset used to
train VAESA’s performance predictors.

We first evaluate the effectiveness of GD in the latent space
(vae_gd) as opposed to GD in the original discrete space (gd).
For gd, we train a separate performance predictor taking input
from the original design space and round the GD optimized
input to valid discrete values. Figure 12 shows that on average,
vae_gd consistently outperforms both gd and random for any
small number (approx. ≤ 30) of samples. For example, it
achieves 16% lower EDP in 10 samples than random. To
remove the possible effects of confounding factors such as
random selection of GD start points, we also examine the
performance of decoded accelerator designs after 0, 100, and
200 steps of gradient descent. Figure 13 shows that vae_gd

0 50 100 150 200
GD Steps

0

100

200

300

400

500

A
v
e
ra

g
e
 E

D
P
 I
m

p
ro

v
e
m

e
n
t

1x

306x

390x

Fig. 13: Average GD improvement over different number of
gradient update steps over 200 randomly generated sample
points.

improves EDP of decoded accelerator designs by 306× after
100 steps and 390× after 200 steps relative to the corresponding
randomly selected start points. This improvement explicitly
demonstrates how VAESA allows users to improve accelerator
performance before even beginning simulation.

V. CONCLUSION

In this work, we introduce a new VAE-based hardware design
space exploration framework called VAESA where the search
is performed on a continuous and reconstructible latent space.
Through experimentation, visualization, and ablation studies,
we demonstrate properties of the latent space and study how
they vary with different hyperparameter settings. We devise and
train a rigorous VAE model based on our observations and use
the trained models to enhance two state-of-the-art algorithms:
the black-box BO and the predictor-based GD. Experiments
show that algorithms running over the latent space converge
faster and are more likely to discover the optimal design within
a fixed number of samples. Performing search over the learned
latent space achieves up to 5% performance improvement
and 6.8× better sample efficiency for BO and improves the
performance of GD consistently.

ACKNOWLEDGEMENTS

This work was supported in part by the UC Berkeley
ADEPT/SLICE Lab industrial sponsors and a Facebook Faculty
Research Award.

10



REFERENCES

[1] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop: A
systematic approach to dnn accelerator evaluation,” in Proceedings of
the International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2019.

[2] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T. Krishna,
“Understanding reuse, performance, and hardware cost of dnn dataflow:
A data-centric approach,” in Proceedings of the International Symposium
on Microarchitecture (MICRO), 2019.

[3] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao, H. Ha,
P. Raina, C. Kozyrakis, and M. Horowitz, “Interstellar: Using halide’s
scheduling language to analyze dnn accelerators,” in Proceedings of
the International Conference on Architectural Support for Programming
Languages and Operation Systems (ASPLOS), 2020.

[4] Z. Shi, C. Sakhuja, M. Hashemi, K. Swersky, and C. Lin, “Using bayesian
optimization for hardware/software co-design of neural accelerators,” in
Workshop on ML for Systems at the Conference on Neural Information
Processing Systems (NeurIPS), 2020.

[5] A. Yazdanbakhsh, C. Angermueller, B. Akin, Y. Zhou, A. Jones,
M. Hashemi, K. Swersky, S. Chatterjee, R. Narayanaswami, and
J. Laudon, “Apollo: Transferable architecture exploration,” arXiv preprint
arXiv:2102.01723, 2021.

[6] S.-C. Kao, G. Jeong, and T. Krishna, “ConfuciuX: Autonomous Hardware
Resource Assignment for DNN Accelerators using Reinforcement Learn-
ing,” in Proceedings of the International Symposium on Microarchitecture
(MICRO), 2020.

[7] W. Jiang, L. Yang, S. Dasgupta, J. Hu, and Y. Shi, “Standing on the
shoulders of giants: Hardware and neural architecture co-search with
hot start,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2020.

[8] W. Jiang, L. Yang, E. H.-M. Sha, Q. Zhuge, S. Gu, S. Dasgupta, Y. Shi,
and J. Hu, “Hardware/software co-exploration of neural architectures,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), 2020.

[9] Y. Zhou, X. Dong, B. Akin, M. Tan, D. Peng, T. Meng, A. Yazdanbakhsh,
D. Huang, R. Narayanaswami, and J. Laudon, “Rethinking co-design
of neural architectures and hardware accelerators,” arXiv preprint
arXiv:2102.08619, 2021.

[10] Y. Li, C. Hao, X. Zhang, X. Liu, Y. Chen, J. Xiong, W.-m. Hwu,
and D. Chen, “Edd: Efficient differentiable dnn architecture and
implementation co-search for embedded ai solutions,” arXiv preprint
arXiv:2005.02563, 2020.

[11] P. Achararit, M. A. Hanif, R. V. W. Putra, M. Shafique, and Y. Hara-
Azumi, “Apnas: Accuracy-and-performance-aware neural architecture
search for neural hardware accelerators,” IEEE Access, vol. 8, 2020.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet Classification
with Deep Convolutional Neural Networks,” in Proceedings of the
Conference on Neural Information Processing Systems (NeurIPS), 2012.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[16] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” arXiv preprint arXiv:2005.14165, 2020.

[17] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource manage-
ment with deep reinforcement learning,” in Proceedings of the ACM
workshop on hot topics in networks, 2016.

[18] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou,
N. Kumar, M. Norouzi, S. Bengio, and J. Dean, “Device placement opti-
mization with reinforcement learning,” in Proceedings of the International
Conference on Machine Learning (ICML), 2017.

[19] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE transactions on pattern analysis
and machine intelligence, 2013.

[20] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in 2nd
International Conference on Learning Representations (ICLR), 2014.

[21] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, and A. Lerchner, “beta-vae: Learning basic visual concepts
with a constrained variational framework,” 2017.

[22] D. P. Kingma and M. Welling, “An introduction to variational
autoencoders,” Foundations and Trends® in Machine Learning,
vol. 12, no. 4, p. 307–392, 2019. [Online]. Available: http:
//dx.doi.org/10.1561/2200000056

[23] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato,
B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel,
R. P. Adams, and A. Aspuru-Guzik, “Automatic chemical design using a
data-driven continuous representation of molecules,” ACS central science,
vol. 4, no. 2, 2018.

[24] B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions
for robot motion planning,” 2019.

[25] J. Li, Y. Liu, J. Liu, and W. Wang, “Neural architecture optimization
with graph vae,” arXiv preprint arXiv:2006.10310, 2020.

[26] L. Bottou, “Large-scale machine learning with stochastic gradient descent,”
in Proceedings of COMPSTAT. Springer, 2010.

[27] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” 2012.

[28] Y. Lin, M. Yang, and S. Han, “Naas: Neural accelerator architecture
search,” in Design Automation Conference (DAC), 2021.

[29] A. Renda, Y. Chen, C. Mendis, and M. Carbin, “Difftune: Optimizing
cpu simulator parameters with learned differentiable surrogates,” in
Proceedings of the International Symposium on Microarchitecture
(MICRO), 2020.

[30] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “TVM:
An Automated End-to-end Optimizing Compiler for Deep Learning,” in
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2018.

[31] T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho et al.,
“xgboost: extreme gradient boosting,” R package version 0.4-2, 2015.

[32] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” science, 2006.

[33] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and
composing robust features with denoising autoencoders,” in Proceedings
of the International Conference on Machine Learning (ICML), 2008.

[34] A. Hottung, B. Bhandari, and K. Tierney, “Learning a latent search space
for routing problems using variational autoencoders,” in Proceedings of
the International Conference on Learning Representations (ICLR), 2020.

[35] S. Kullback, Information Theory and Statistics. Courier Corporation,
1968.

[36] Q. Huang, A. Kalaiah, M. Kang, J. Demmel, G. Dinh, J. Wawrzynek,
T. Norell, and Y. S. Shao, “CoSA: Scheduling by Constrained Opti-
mization for Spatial Accelerators,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), 2021.

[37] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[38] S. Narang and G. Diamos, “Baidu deepbench,” GitHub Repository, 2017.
[Online]. Available: http://www.github.com/baidu-research/DeepBench

[39] Y. S. Shao, J. Cemons, R. Venkatesan, B. Zimmer et al., “Simba:
Scaling deep-learning inference with chiplet-based architecture,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019.

[40] A. Alemi, B. Poole, I. Fischer, J. Dillon, R. A. Saurous, and K. Murphy,
“Fixing a broken ELBO,” in Proceedings of the 35th International
Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, J. Dy and A. Krause, Eds., vol. 80. PMLR, 10–15 Jul 2018,
pp. 159–168.

[41] B. Dai and D. Wipf, “Diagnosing and enhancing VAE models,” in
International Conference on Learning Representations (ICLR), 2019.

[42] A. Asperti and M. Trentin, “Balancing reconstruction error and kullback-
leibler divergence in variational autoencoders,” 2020.

11

http://dx.doi.org/10.1561/2200000056
http://dx.doi.org/10.1561/2200000056
http://www.github.com/baidu-research/DeepBench

	Introduction
	Motivation and Background
	Hardware Design Space
	DSE Approaches
	Heuristics-Driven Approaches
	Reinforcement Learning (RL)
	Black-box Optimization
	Gradient-based Optimization

	Variational Autoencoder

	VAESA Framework
	Overview
	Latent Space Generation: VAE Training and Visualization
	VAE Model Design
	Performance Predictors
	Dataset Construction and Training
	Visualization of the Latent Space
	Visualization of Predictor Performance

	Latent Design Space Exploration: BO and GD
	Black-box BO
	Predictor-based GD


	Experiments
	Experimental Setup
	Hardware Design Space
	Workloads and Evaluation Metrics
	Scheduler and Simulation Tool
	Normalization of Features and Labels

	VAE Hyperparameter Tuning
	Weighting KL Divergence
	Latent Space Dimensionality

	Bayesian Optimization with VAE
	Gradient Descent with VAE

	Conclusion
	References

