
CoSA: Scheduling by
Constrained Optimization for

Spatial Accelerators
Qijing Jenny Huang*, Minwoo Kang, Grace Dinh, Thomas Norell,

Aravind Kalaiah†, James Demmel, John Wawrzynek, Yakun Sophia Shao
*NVIDIA, UC Berkeley, †Meta

jennyhuang@nvidia.com

1

http://jennyhuang@nvidia.com

Scheduling is required everywhere

algorithmic states
to be run

● Algorithm ● Hardware

hardware resources
to be allocated

2Motivation

Scheduling

Scheduling is a big challenge

● Algorithm

3Motivation

1. Exponentially growing algorithm complexity

Exponentially growing algorithm complexity

4

Alexnet ResNet
25M

340M

YOLO
GNMT BERT-LG

1.5B

8B

GPT-2

GPT-2 8B

Time

Model Complexity
(# of parameters)

175B

GPT-3

20202012

DNN model size doubles
every 3.5 months

* source from Intel AI

Scheduling is a big challenge

5

● Algorithm ● Hardware

1. Exponentially growing algorithm complexity
2. Rapidly increasing hardware capacity

Rapidly increasing hardware capacity

6

Cerebras2
84 Interconnected Chips

Wafer-scale Chip NoC/NoP Chip

Simba1

16PEs x 36 Chiplets

1 Shao, Yakun Sophia, and et al. "Simba: Scaling Deep-Learning Inference with Multi-Chip-Module-Based Architecture." 2019 MICRO.
2 “Wafer-Scale Deep Learning”, https://cerebras.net/blog/wafer-scale-deep-learning-hot-chips-2019-presentation/

Scheduling is a big challenge

● Algorithm ● Hardware

7Motivation

1. Exponentially growing algorithm complexity
2. Rapidly increasing hardware capacity

Scheduling

Intractable scheduling space

Scheduling significantly affects performance

Motivation 8

7.2x

State-of-the-art DNN accelerator schedulers

Motivation

Brute-force
Timeloop

dMazeRunner Triton
Interstellar Marvel

Feedback-
based

AutoTVM Halide
FlexFlow Gamma

MindMapping

Constrained
Optimization

Polly+Pluto TC
Tiramisu

- Costly
- Sample invalid space
- Hard to generalize

- Unable to determine
tiling factor sizes

CoSA

One-shot solution

9

Opportunities

Motivation

Workload
Regularity

Hardware
Regularity

Explicit Data
Movement

10

Target Workload

CoSA

(P - 1) x Stride + R

∗

(Q
 -

1)
 x

 S
tr

id
e

+
S

 C

R

S

...

C

R, S: weight width and height
P, Q: output width and height
C: input channel size
K: output channel size
N: batch size

K

Q

P

K

Inputs (IA) Weights (W) Outputs

DNN Layer :
for n in [0:N)

for k in [0:K)
for c in [0:C)

for p in [0:P)
for q in [0:Q)

for r in [0:R)
for s in [0:S)

OA[n,p,q,k] +=
IA[n,p+r-(R-1)/2,q+s-(S-1)/2,c]

× W[r,s,c,k]

11

Target Architecture

CoSA

ReductionR

R R R R

R R R R

R R R R

Processing Element

Router

G
lo

ba
l B

uf
fe

r
DR

AM

DNN Accelerator

Accumulation
Buffer

Weight Buffer

In
pu

t
Bu

ffe
r

MULT Adder

R R R R

• Spatial PEs
• Multi-level Memory Hierarchy

Registers
8x8

entries: 1
size: 64B

64 MAC

WeightBuffer
1x8

entries: 4096
size: 4KB

AccumBuffer
1x8

entries: 128
size: 384B

InputBuffer
1x1

entries: 8192
size: 8KB

12

DNN scheduling problem formulation with CoSA

CoSA

Reduction

(P - 1) x Stride + R

∗

(Q
 -

1)
 x

 S
tr

id
e

+
S

 C

R

S

...

DNN Layer

C

R, S: weight width and height
P, Q: output width and height
C: input channel size
K: output channel size
N: batch size

K

Q

P

K

R

R R R R

R R R R

R R R R

Processing Element

Router

G
lo

ba
l B

uf
fe

r
DR

AM

DNN Accelerator

Accumulation
Buffer

Weight Buffer
Inputs Weights Outputs

In
pu

t
Bu

ffe
r

MULT Adder

R R R R

Constraints

Variables

Objectives

CoSA

Schedule

13

Three scheduling decisions
DRAM level
for q2 = [0 : 2) :
Global Buffer level
for q1 = [0 : 7) :
for n0 = [0 : 3) :
spatial_for r0 = [0 : 3) :
spatial_for k1 = [0 : 2) :

Input Buffer level
for c1 = [0 : 2) :
for p1 = [0 : 2) :

Weight Buffer level
for p0 = [0 : 2) :
spatial_for k0 = [0 : 2) :

… CoSA

1. Tiling Factors

2. Spatial / Temporal

3. Loop Permutation

14

Key idea: prime factor allocation problem

Prime factor items:

CoSA Variable

Weight Buffer
(Size = 4)

Global Buffer
(Size = 20)

Local buffers:
- Weight buffer
- Global buffer

C = 28 K = 15

Matrix-vector mult:
for c in [0:C) // C = 28

for k in [0:K) // K = 15
OA[k] += IA[c] × W[c,k]

15

CoSA Variable X – Tiling Factors

CoSA Variable

Weight Buffer
(Size = 4)

Global Buffer
(Size = 80)

Local buffers:
C = 28 K = 15
Prime factor items :

C=28 K=15

Prime Factors 2 2 7 3 5

WeightBuf ✓
GlobalBuf ✓ ✓ ✓

DRAM ✓

Binary allocation var X:

Utilized: 2

Utilized:
(2x3x5)x(2)=60

16

CoSA Variable X – Spatial/Temporal Mapping

CoSA Variable

Global Buffer
(Size = 80)

4 PEs in the accelerator:
K = 15

Prime factor items :

C=28 K=15

Prime Factors 2 2 7 3 5

Spatial ✓
Temporal ✓ ✓

Binary allocation var X:

Spatial Factors
(Limit=4)

Temporal Factors

17

K = 15C = 28

G
lo

ba
lB

uf

CoSA Variable X – Loop Permutation

CoSA Variable

Global Buffer
(Size = 80)

Rank in global buf:
C = 28 K = 15
Prime factor items :

C=28 K=15

Prime Factors 2 2 7 3 5

rank0 ✓
rank1 ✓
rank2

rank3

rank4

Binary allocation var X:

18

G
lo

ba
lB

uf

CoSA Variable X – Putting it altogether

CoSA Variable

Memory Perm C=28 K=15
Prime Factors 2 2 7 3 5

WeightBuf ... t
GlobalBuf rank0 t

s
rank1 t
rank2
rank3
rank4

DRAM … t

s - Spatial, t - Temporal

DRAM level
for c2 = [0 : 7) :
Global Buffer level
for k1 = [0 : 5) :
for c1 = [0 : 2) :
spatial_for k0 = [0 : 3) :

Weight Buffer level
for c0 = [0 : 2) :

19

CoSA Constraints: Buffer Utilization

CoSA Constraints

Weight Buffer
(Size = 4)

Weight Buffer
(Size = 4)

Weight Buffer
(Size = 4)

20

CoSA Constraints: Spatial Resources

CoSA Constraints

Spatial PEs
(Limit = 4)

Spatial PEs
(Limit = 4)

Spatial PEs
(Limit = 4)

21

CoSA Binary Constants A and B

CoSA 22

K = 3

Constant A

Constant B

Weight Buffer
(Utilization = 3)

CoSA Constraints
A. Buffer Utilization

CoSA 23

Not a linear function of X

Log trick: turning products into linear sums
● Non-linear formula:

○ !3, 𝑖𝑓 𝑋!_#= 1
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 × !

2, 𝑖𝑓 𝑋$_# = 1
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 × !

2, 𝑖𝑓 𝑋$_% = 1
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ≤ 4

○ 𝑋&_' represents the 𝑖 th prime factor with value 𝑝

● Linear formula:

○ 𝑙𝑜𝑔 3 𝑋!! + log(2) 𝑋$_# + log(2) 𝑋$_% ≤ 𝑙𝑜𝑔(4)

CoSA Constraints

Taking 𝑙𝑜𝑔

24

CoSA Constraints
A. Buffer Utilization

CoSA 25

Not a linear function of X

Linear function of X

Taking
log

CoSA Constraints
B. Spatial Resources

CoSA 26

1) each problem factor can only be mapped to either spatial or temporal execution

2) Spatially-mapped factors do not exceed exceed the resource limit

CoSA Objectives

● Utilization-driven

CoSA Objectives

● Compute-driven ● Traffic-driven

27

CoSA Objectives

● Utilization-driven

CoSA Objectives

● Compute-driven ● Traffic-driven

28

CoSA Objectives

● Utilization-driven

CoSA Objectives

● Compute-driven ● Traffic-driven

29

CoSA Objectives

● Utilization-driven

CoSA Objectives

● Compute-driven ● Traffic-driven

30

CoSA Traffic-driven Objective

CoSA Objectives

DRAM level
for c2 = [0 : 7) :
Global Buffer level
for k1 = [0 : 5) :
for c1 = [0 : 2) :
spatial_for k0 = [0 : 3) :

Weight Buffer level
for c0 = [0 : 2) :

𝐿 – Unicast/multicast traffic

𝑆 – Temporal iteration

Overall Traffic = 𝑆 × 𝐿 × 𝐷

𝐷 – Data transfer size

31

Constant A Implied NoC Traffic Patterns

CoSA 32

The variable X and constant A
determine the traffic types of
different data tensors from
global buffer to PEs:
• Multicast
• Unicast
• Reduction

CoSA Objective Functions
1. Utilization-Driven Objective

CoSA 33

CoSA Objective Functions
2. Compute-Driven Objective

CoSA 34

Temporal Mapping

CoSA Objective Functions
3. Traffic-Driven Objective

a. Data size for each NoC transfer

b. Spatial factors to indicate the NoC traffic patterns

c. Temporal iteration count for different tensors to indicate data reuse

d. Overall

CoSA 35

• Baselines:
• Random (best out of 5 valid schedules)
• Timeloop Hybrid (best out of 16K valid schedules)

• DNN workloads:
• AlexNet, ResNet-50, ResNext-50, DeepBench

• Platforms:
• Timeloop Simulator
• SystemC NoC Simulator
• GPU

CoSA Evaluation

36Evaluation

1.5x latency speedup

● 5.2x better than Random
● 1.5x better than Timeloop Hybrid

Evaluation 37

1.2x better energy efficiency

Evaluation

● 3.3x better than Random
● 1.2x better than Timeloop Hybrid

38

90x faster time-to-solution with CoSA

● Generates schedules within seconds
● Significantly reduces the number of samples and evaluations

39Evaluation

CoSA Random Timeloop Hybrid

Runtime / Layer 4.2s 4.6s (1.1x) 379.9s (90.5x)

Samples / Layer 1 20K 67M

Evaluations/ Layer 1 5 16K

CoSA generalizes to different architectures
● Larger Buffers – 1.4x speedup

Evaluation 40

● GPU – 1.2x speedup, 2500x faster time-to-solution over TVM (50 samples)

● 8x8 PEs – 1.1x speedup

• We formulate DNN accelerator scheduling as a constrained optimization that
can be solved in one shot.

• We take a communication-oriented approach in the formulation and
exposes the cost through clearly-defined objective functions.

• We demonstrate that CoSA can quickly generate high-performance
schedules outperforming state-of-the-art approaches.

Conclusion

41Conclusion

Github: https://github.com/ucb-bar/cosa

Questions?
jennyhuang@nvidia.com

https://github.com/ucb-bar/cosa

