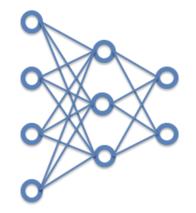
CoSA: Scheduling by <u>Constrained Optimization for</u> <u>Spatial Accelerators</u>

Qijing Jenny Huang*, Minwoo Kang, Grace Dinh, Thomas Norell, Aravind Kalaiah⁺, James Demmel, John Wawrzynek, Yakun Sophia Shao

*NVIDIA, UC Berkeley, †Meta

jennyhuang@nvidia.com

Scheduling is required everywhere



 \longrightarrow

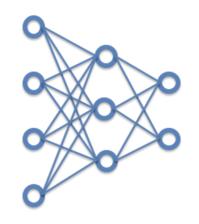
Scheduling

• Algorithm

algorithmic states to be run hardware resources to be allocated

Hardware

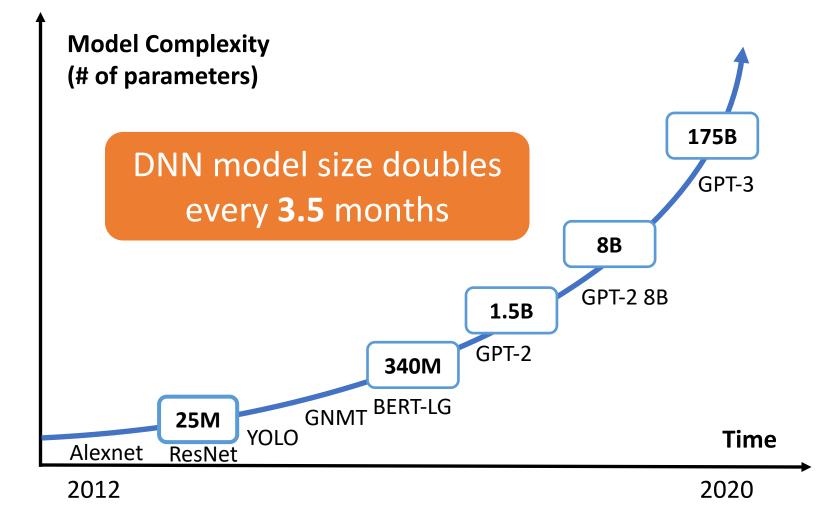
Scheduling is a big challenge



• Algorithm

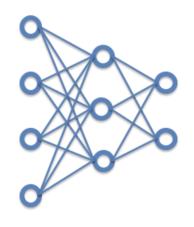
1. Exponentially growing algorithm complexity

Exponentially growing algorithm complexity

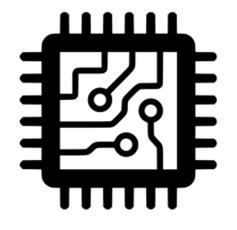


* source from Intel AI

Scheduling is a big challenge



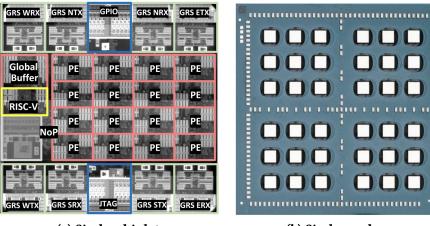
• Algorithm



- Hardware
- **1. Exponentially growing algorithm complexity**
- 2. Rapidly increasing hardware capacity

Rapidly increasing hardware capacity

NoC/NoP Chip

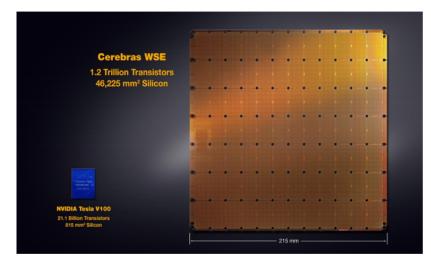


(a) Simba chiplet

(b) Simba package

Simba¹ 16PEs x 36 Chiplets

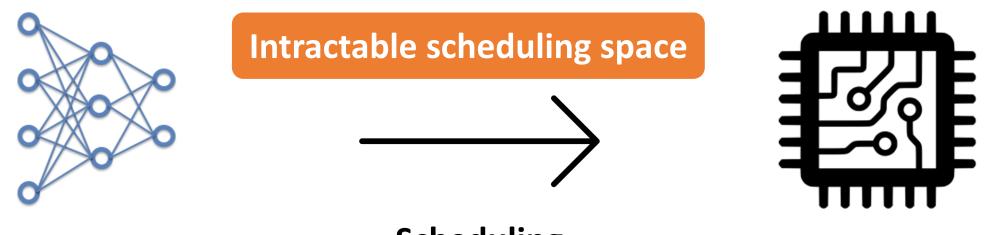
Wafer-scale Chip



Cerebras² 84 Interconnected Chips

¹ Shao, Yakun Sophia, and et al. "Simba: Scaling Deep-Learning Inference with Multi-Chip-Module-Based Architecture." 2019 MICRO. ² "Wafer-Scale Deep Learning", https://cerebras.net/blog/wafer-scale-deep-learning-hot-chips-2019-presentation/

Scheduling is a big challenge



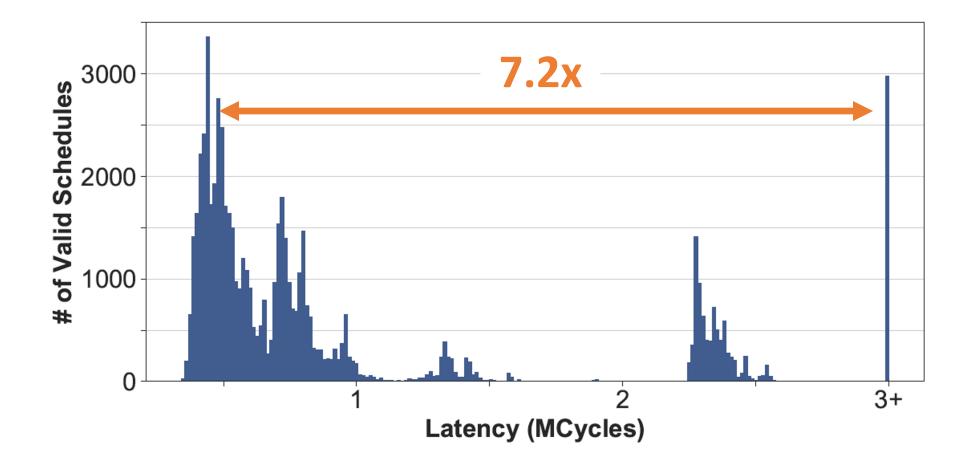
• Algorithm

Scheduling

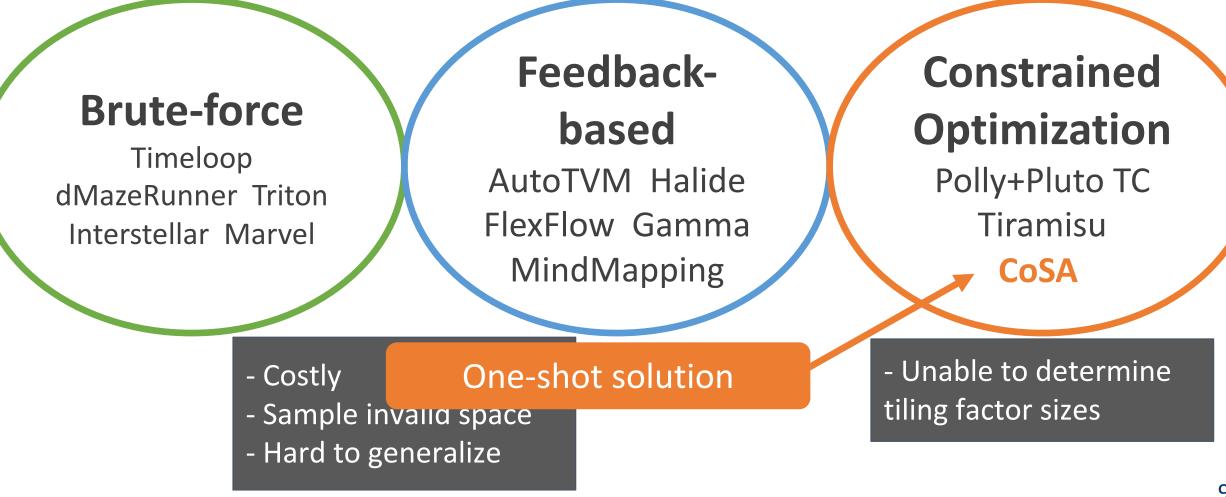
• Hardware

- **1. Exponentially growing algorithm complexity**
- 2. Rapidly increasing hardware capacity

Scheduling significantly affects performance



State-of-the-art DNN accelerator schedulers

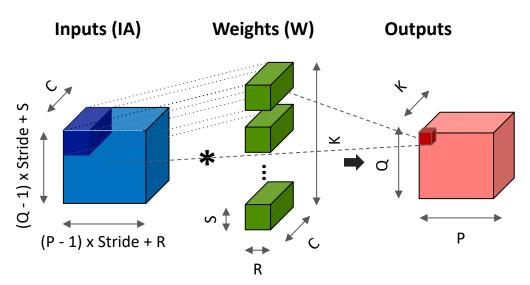


Opportunities

Workload Regularity

Hardware Regularity Explicit Data Movement

Target Workload

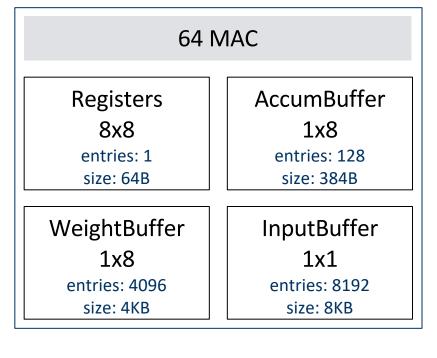


R, S: weight width and height **P, Q**: output width and height **C**: input channel size **K**: output channel size **N**: batch size

DNN Layer : for n in [0:N) for k in [0:K) for c in [0:C) for p in [0:P) for q in [0:Q) for r in [0:R) for s in [0:S) OA[n,p,q,k] +=IA[n,p+r-(R-1)/2,q+s-(S-1)/2,c] \times W[r,s,c,k]

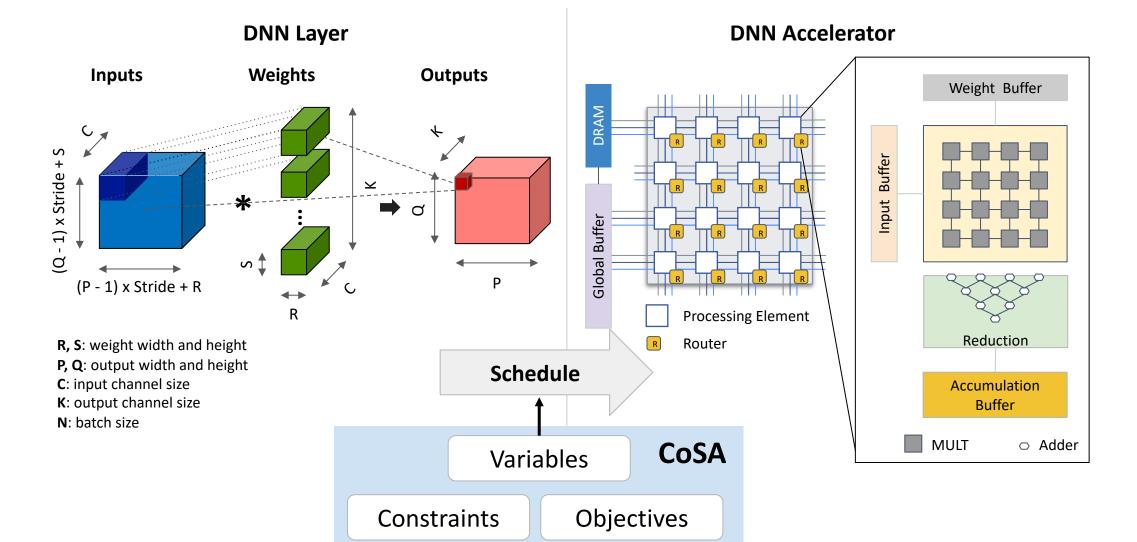
Target Architecture

- Spatial PEs
- Multi-level Memory Hierarchy

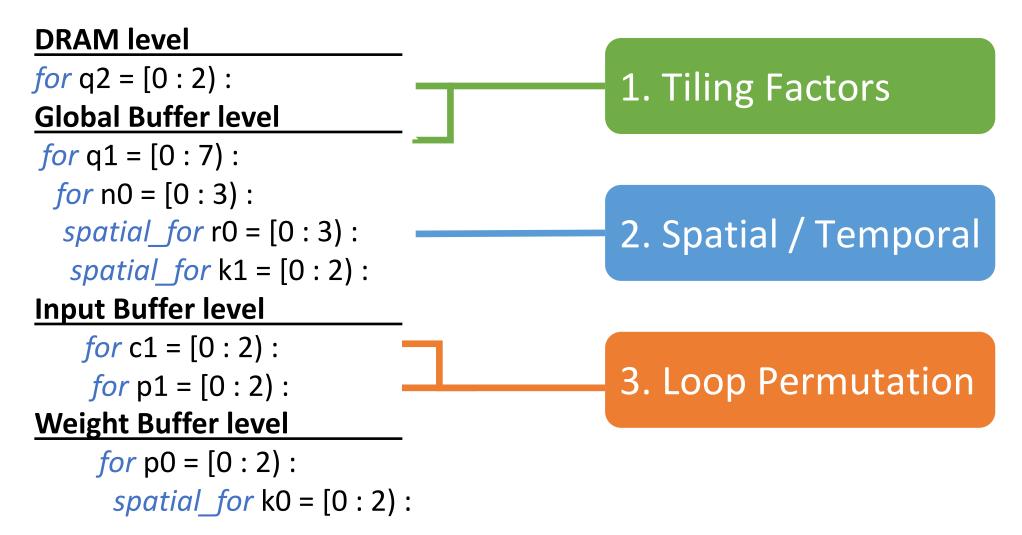


DNN Accelerator Weight Buffer DRAM Buffer Input Buffer Global I R R **Processing Element** Reduction Router R Accumulation Buffer MULT ○ Adder

DNN scheduling problem formulation with CoSA



Three scheduling decisions

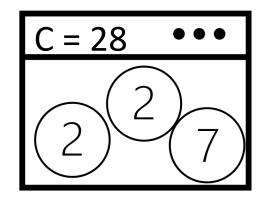


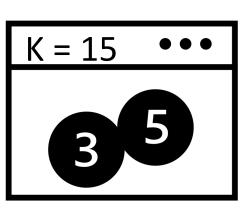
Key idea: prime factor allocation problem

Matrix-vector mult:

```
for c in [0:C) // C = 28
for k in [0:K) // K = 15
OA[k] += IA[c] × W[c,k]
```

Prime factor items:





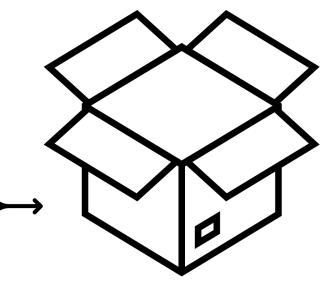
Weight Buffer (Size = 4)

Local buffers:

- Weight buffer

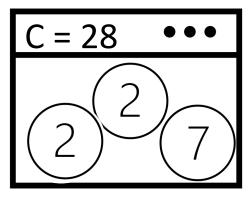
- Global buffer

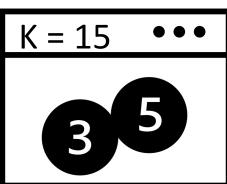
Global Buffer (Size = 20)



CoSA Variable X – Tiling Factors

Prime factor items :

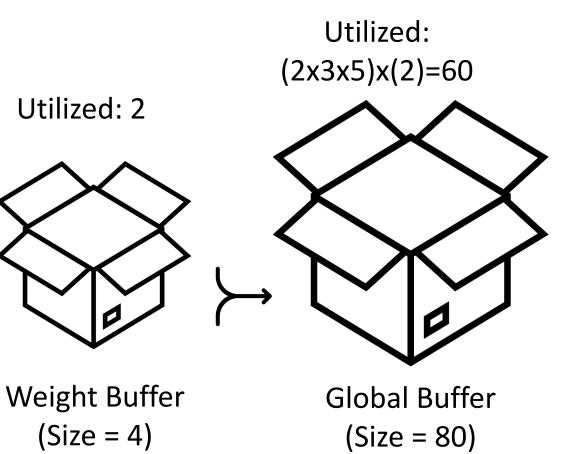




Binary allocation var X:

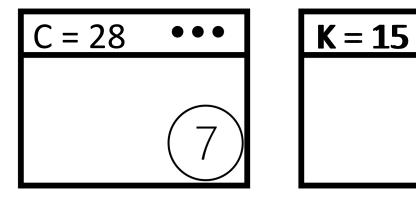
		C=28	K=15		
Prime Factors	2	2	7	3	5
WeightBuf	\checkmark				
GlobalBuf		\checkmark		\checkmark	\checkmark
DRAM			\checkmark		

Local buffers:



CoSA Variable X – Spatial/Temporal Mapping

Prime factor items :

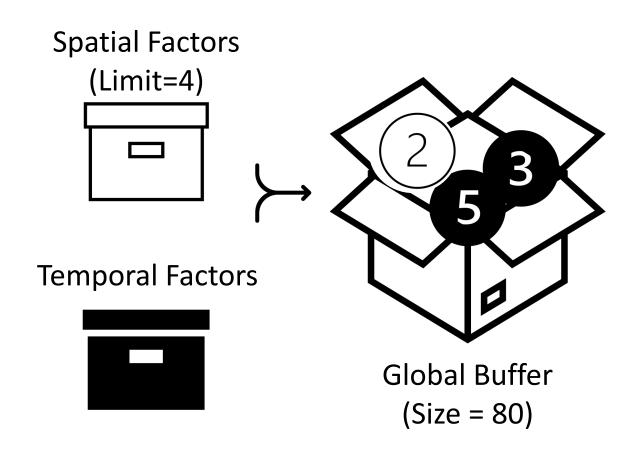


Binary allocation var X:

GlobalBuf

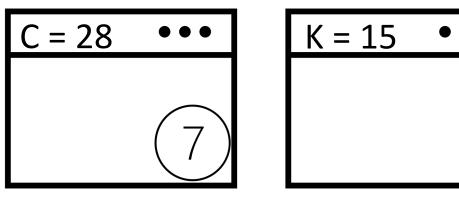
		C=28	K=15		
Prime Factors	2	2	7	3	5
Spatial				\checkmark	
Temporal	\checkmark				\checkmark

4 PEs in the accelerator:



CoSA Variable X – Loop Permutation

Prime factor items :

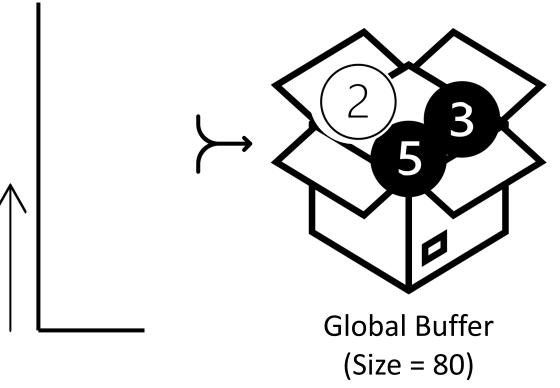


Binary allocation var X:

GlobalBuf

		C=28	K=15		
Prime Factors	2	2	7	3	5
rank0	\checkmark				
rank1					\checkmark
rank2					
rank3					
rank4					

Rank in global buf:



18

CoSA Variable X – Putting it altogether

	Memory	Perm		C=28	3	K=	15	
Prime Factors			2	2	7	3	5	
	WeightBuf		t					
	GlobalBuf	rank0		t				
		rank1					t	
		rank2				S		
		rank3						
		rank4						
	DRAM	•••			t			

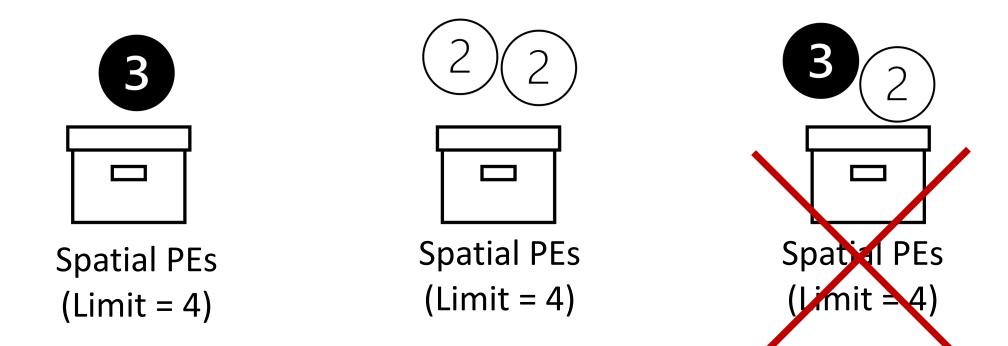
s - Spatial, t - Temporal

DRAM level for c2 = [0:7): Global Buffer level for k1 = [0:5): for c1 = [0:2): spatial_for k0 = [0:3): Weight Buffer level for c0 = [0:2):

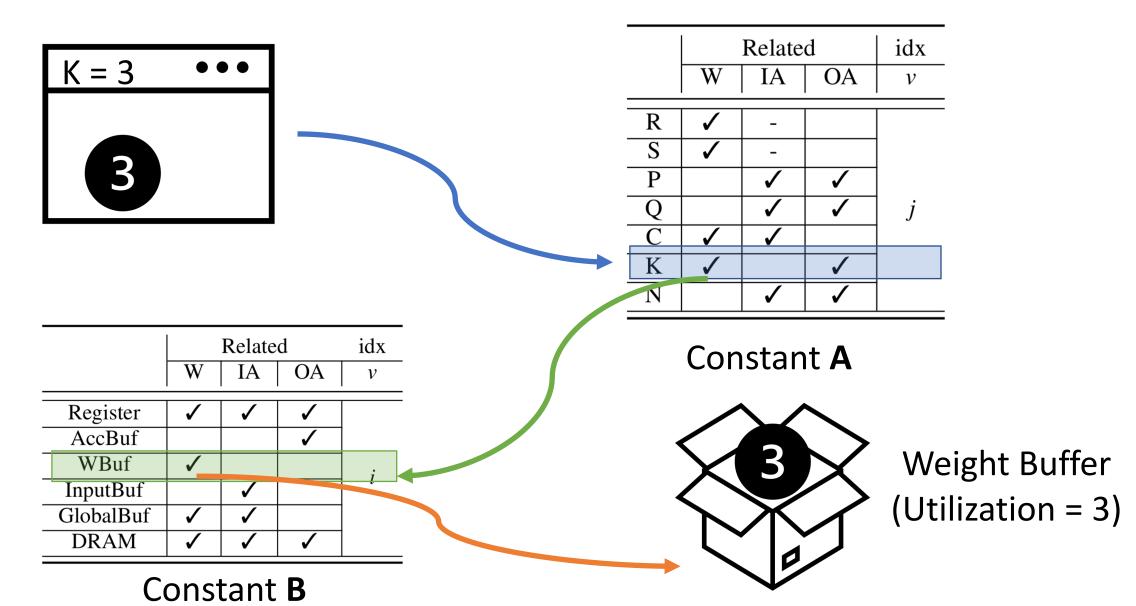
CoSA Constraints: Buffer Utilization

Weight Buffer (Size = 4) Weight Buffer (Size = 4)

CoSA Constraints: Spatial Resources



CoSA Binary Constants A and B



CoSA Constraints

A. Buffer Utilization

$$U_{I,v} = \prod_{i=0}^{I-1} \prod_{j=0}^{6} \prod_{k=0}^{1} \begin{cases} prime_factor_{j,n}, & X_{(j,n),i,k}A_{v,j}B_{v,I} = 1\\ 1, & \text{otherwise} \end{cases}$$
(1) Not a linear function of X

Log trick: turning products into linear sums

• Non-linear formula:

$$\begin{array}{c} & & & & & & & & \\ 3, \ if \ X_{3_0} = 1 \\ 1, \ otherwise \end{array} \times \begin{cases} 2, \ if \ X_{2_0} = 1 \\ 1, \ otherwise \end{cases} \times \begin{cases} 2, \ if \ X_{2_1} = 1 \\ 1, \ otherwise \end{cases} \leq 4 \end{array}$$

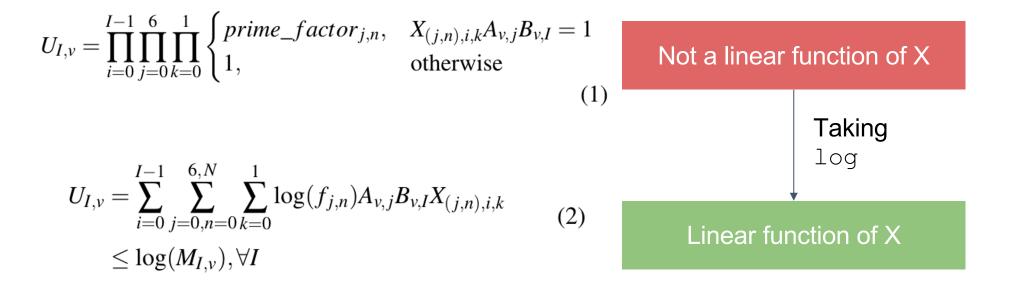
 \circ X_{p_i} represents the *i* th prime factor with value *p*

```
Taking log
```

- Linear formula:
 - $\circ \quad \log(3)X_{3_0} + \log(2)X_{2_0} + \log(2)X_{2_1} \le \log(4)$

CoSA Constraints

A. Buffer Utilization



CoSA Constraints

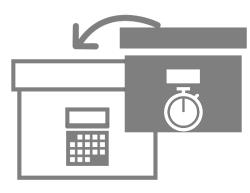
B. Spatial Resources

1) each problem factor can only be mapped to either spatial or temporal execution

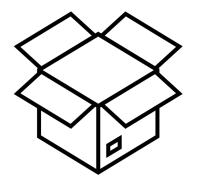
$$\sum_{k=0}^{1} X_{(j,n),i,k} == 1, \forall (j,n), i$$
(3)

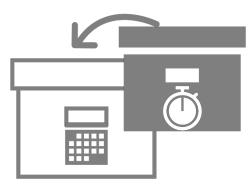
2) Spatially-mapped factors do not exceed exceed the resource limit

$$\sum_{j=0,n=0}^{6,N} \log(prime_factor_{j,n}) X_{(j,n),I,0} \le \log(S_I), \forall I$$
(4)

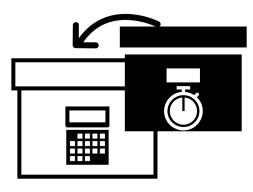


Utilization-driven
 Compute-driven
 Traffic-driven

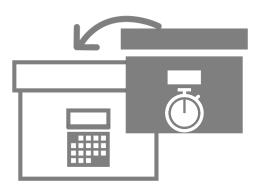




Utilization-driven
 Compute-driven
 Traffic-driven

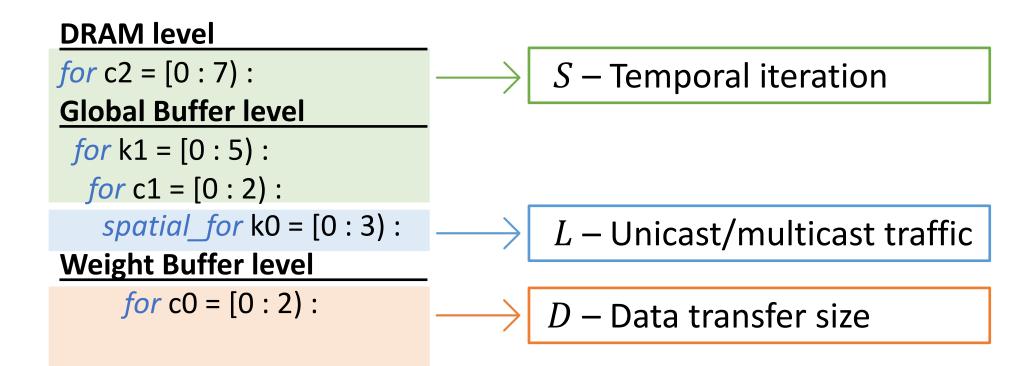


- Utilization-driven
 Compute-driven
- Traffic-driven



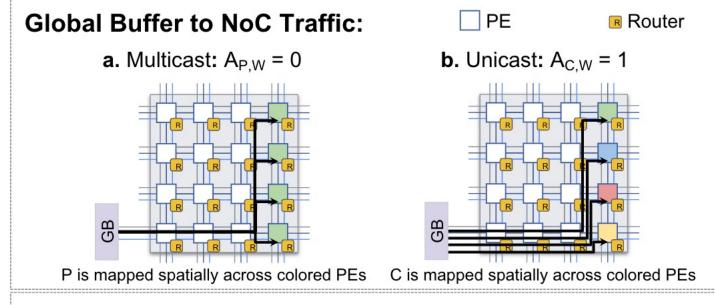
- Utilization-driven
 Compute-driven
- Traffic-driven

CoSA Traffic-driven Objective

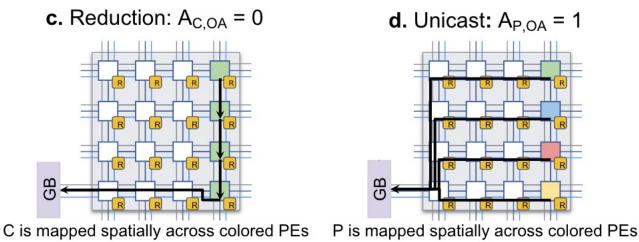


Overall Traffic = $S \times L \times D$

Constant A Implied NoC Traffic Patterns



NoC to Global Buffer Traffic:



The variable **X** and constant **A** determine the traffic types of different data tensors from global buffer to PEs:

- Multicast
- Unicast
- Reduction

CoSA Objective Functions

1. Utilization-Driven Objective

$$\hat{U} = \sum_{i=0}^{I} \sum_{v=0}^{2} U_{i,v}$$

(5)

CoSA Objective Functions

2. Compute-Driven Objective

$$\hat{C} = \sum_{i=0}^{I} \sum_{j=0,n=0}^{6,N} \log(prime_factor_{j,n}) X_{(j,n),i} 1)$$
(11)
Temporal Mapping

CoSA Objective Functions

- 3. Traffic-Driven Objective
 - a. Data size for each NoC transfer

$$D_{\nu} = \sum_{i=0}^{I-1} \sum_{j=0,n=0}^{6,N} \sum_{k=0}^{1} \log(prime_factor_{j,n}) A_{\nu,j} X_{(j,n),i,k} \quad (6)$$

b. Spatial factors to indicate the NoC traffic patterns

$$L_{v} = \sum_{j=0,n=0}^{6,N} \log(prime_factor_{j,n}) X_{(j,n),I,0} A_{v,j}$$
(7)

c. Temporal iteration count for different tensors to indicate data reuse

$$R_{\nu} = \sum_{p=0}^{P-1} \sum_{j=0,n=0}^{6,N} \log((prime_factor_{j,n})Y_{p_{\nu}}X(j,n), p, 1) \quad (9)$$

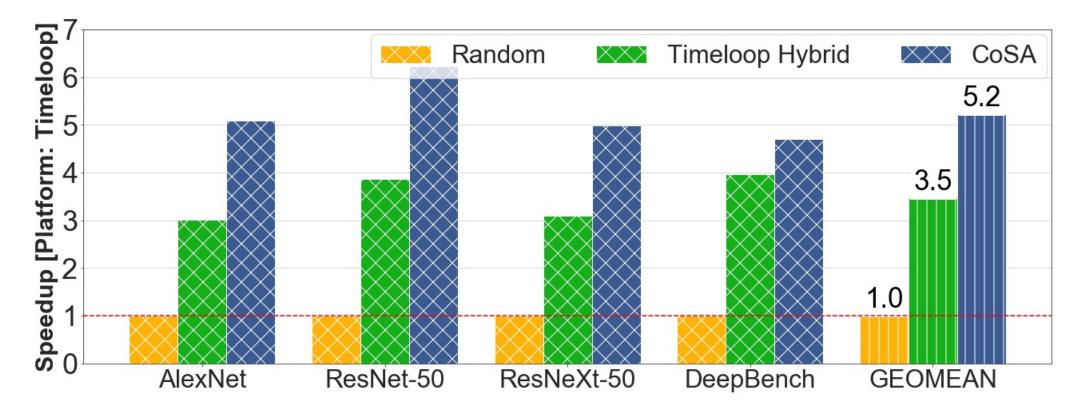
d. Overall

$$\hat{T} = \sum_{\nu=0}^{2} D_{\nu} + L_{\nu} + R_{\nu}$$
(10)

CoSA Evaluation

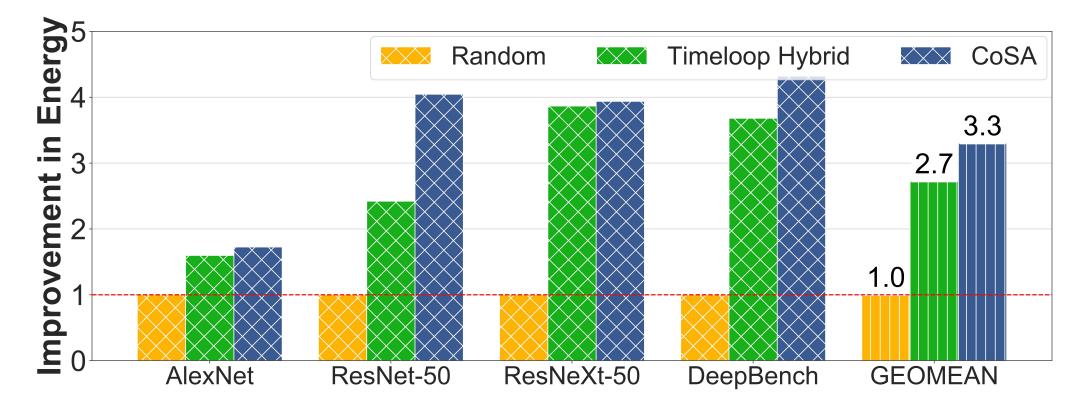
- Baselines:
 - Random (best out of 5 valid schedules)
 - Timeloop Hybrid (best out of 16K valid schedules)
- DNN workloads:
 - AlexNet, ResNet-50, ResNext-50, DeepBench
- Platforms:
 - Timeloop Simulator
 - SystemC NoC Simulator
 - GPU

1.5x latency speedup



- 5.2x better than Random
- 1.5x better than Timeloop Hybrid

1.2x better energy efficiency



- 3.3x better than Random
- 1.2x better than Timeloop Hybrid

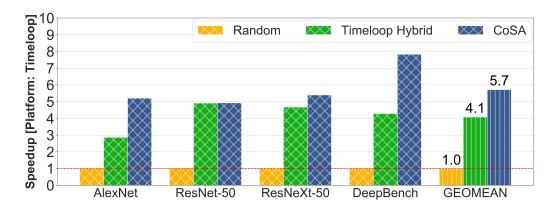
90x faster time-to-solution with CoSA

	CoSA	Random	Timeloop Hybrid
Runtime / Layer	4.2s	4.6s (1.1x)	379.9s (90.5x)
Samples / Layer	1	20K	67M
Evaluations/ Layer	1	5	16K

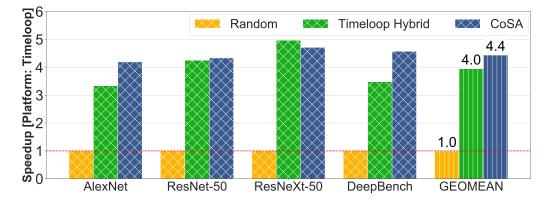
- Generates schedules within seconds
- Significantly reduces the number of samples and evaluations

CoSA generalizes to different architectures

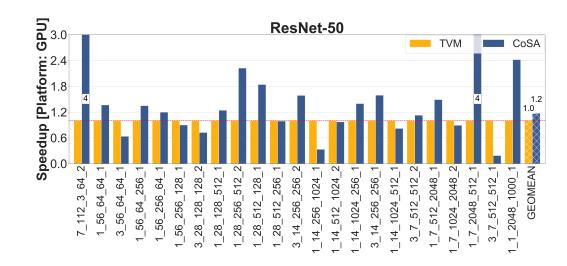
• Larger Buffers – 1.4x speedup



• 8x8 PEs – 1.1x speedup



GPU – 1.2x speedup, 2500x faster time-to-solution over TVM (50 samples)



Conclusion

- We formulate DNN accelerator scheduling as a constrained optimization that can be solved in *one shot*.
- We take *a communication-oriented* approach in the formulation and exposes the cost through clearly-defined objective functions.
- We demonstrate that CoSA can *quickly* generate *high-performance* schedules outperforming state-of-the-art approaches.

Github: https://github.com/ucb-bar/cosa

Questions? jennyhuang@nvidia.com