
Centrifuge: Evaluating full-system HLS-
generated heterogeneous-accelerator SoCs

using FPGA-Acceleration

Qijing Huang, Christopher Yarp, Sagar Karandikar, Nathan Pemberton,
Benjamin Brock, Liang Ma†, Guohao Dai‡, Robert Quitt,

Krste Asanović, John Wawrzynek

University of California, Berkeley
†Politecnico di Torino
‡Tsinghua University

Outline

1

Motivation

What is a good methodology for designing
SoCs with many accelerators?

High-Performance System
Low NRE costs
Short Time-to-market

2

1. Workload Characterization
2. Accelerator Modeling

○ Analytical
○ Transaction-based

3. RTL Development
4. Emulation and Verification
5. Chip Tapeout
6. Software Development

Accelerator Design Flow

3

1. Workload Characterization
2. Accelerator Modeling

○ Analytical
○ Transaction-based

3. RTL Development
4. Emulation and Verification
5. Chip Tapeout
6. Software Development

Accelerator Design Flow

Hotspot detection is only valid
for the current system

● Profiling on existing
systems

Lack of detailed information
for hotspot detection

● ISA-independent IR trace
analysis

4

1. Workload Characterization
2. Accelerator Modeling

○ Analytical
○ Transaction-based

3. RTL Development
4. Emulation and Verification
5. Chip Tapeout
6. Software Development

Accelerator Design Flow

● Roofline Models
● Dynamic Data

Dependence Graphs
(DDDG) Analysis

Inaccurate

Lack of insights for
architectural variations in real
implementation

5

1. Workload Characterization
2. Accelerator Modeling

○ Analytical
○ Transaction-based

3. RTL Development
4. Emulation and Verification
5. Chip Tapeout
6. Software Development

Accelerator Design Flow

A. Build Software Models for
Hardware Components

B. Gather Costs from RTL
Synthesis

C. Verify Functionality

Engineering Intensive

6

Accelerator Design Flow
1. Workload Characterization
2. Accelerator Modeling

○ Analytical
○ Transaction-based

3. RTL Development
4. Emulation and Verification
5. Chip Tapeout
6. Software Development

Missing co-optimization
opportunities

7

Current Design Flow Complexities
1. Workload Characterization
2. Hardware Modeling and Verification
3. Software Integration

8

Our Objectives
1. Tradeoffs informed with full-system evaluation
2. Fast development and verification cycle for both HW/SW
3. Large design space for rapid algorithm-hardware

exploration

9

Accelerator Design Flow
1. Workload Characterization
2. Accelerator Modeling

○ Analytical
○ Transaction-based

3. RTL Development
4. Emulation and Verification
5. Chip Tapeout
6. Software Development

10

Run full-stack software with
target SoC simulation

Proposal 1: Native Simulation

Accelerator Design Flow
1. Workload Characterization
2. Accelerator Modeling

○ Analytical
○ Transaction-based

3. RTL Development
4. Emulation and Verification
5. Chip Tapeout
6. Software Development

Run full-stack software with
target SoC simulation

Proposal 1: Native Simulation

Combine 2 and 3 with one high-
level abstraction

Proposal 2: Rapid Prototyping

11

Accelerator Design Flow
1. Workload Characterization
2. Accelerator Modeling

○ Analytical
○ Transaction-based

3. RTL Development
4. Emulation and Verification
5. Chip Tapeout
6. Software Development

Run full-stack software with
target SoC simulation

Proposal 1: Native Simulation

Combine 2 and 3 with one high-
level abstraction

Proposal 2: Rapid Prototyping]

Improve software stack
concurrently with hardware
development

Proposal 3: Agile Development

12

Centrifuge Accelerator Design Flow
C Source File

HW Dev

Chip Tapeout

SW Dev

Workload
Characterization

1. Hotspot Detection on Native
System Simulation

2. Fast Accelerator SoC
Generation with HLS

3. Auto Generation of SW
Communication Primitives

4. Continue HW and SW
Development

5. Chip Tapeout

13

Background: FireSim
FireSim is an open-source, FPGA-accelerated, cycle-exact,
scalable hardware simulator:
o Ingests:

• RTL Design (e.g. Rocket Chip, BOOM, NVDLA)
• HW and/or SW IO Models (e.g. UART, Ethernet, DRAM)
• Workload Descriptions

o Produces:
• FPGA-accelerated Simulation (Not FPGA prototype)
• Deployment on Cloud FPGAs

14

Background: High-level Synthesis
High-level Synthesis (HLS) raises the level abstraction for
hardware design and verification:
o Ingests:

• High-level Algorithmic Description in C/C++/SystemC
o Produces:

• Hardware RTL, C and RTL Verification Models
o Commercial Tools:

15

Centrifuge Design Flow
Centrifuge is a unified accelerator design flow that generates
the interfaces and design automation scripts that leverages
existing tools:
o Injects:

• High-level Algorithmic Description in C/C++
• Accelerator Configuration

o Produces:
• Full Functional Accelerator SoC
• Corresponding Software Stack
• Tooling Scripts

16

Centrifuge Design Flow
Centrifuge provides the user with:

1. Full-system evaluation of the target workload
2. Fast development and verification cycle for both HW/SW
3. Large design space for rapid algorithm-hardware exploration

A. Hardware Integration
B. Architectural Design Variation
C. Software Integration

17

Centrifuge Tool Flow

18

Step 1: Hotspot Detection on FireSim

Base SoC

func1
func2
func3
…

Input Programs

func1 (90 %)
func2 (8 %)
func3 (1 %)
…

Profiled Programs
Transformed SoC

Inputs

19

Step 2: SoC Generation with HLS

SoC Definition

void func1 (){
for(i=0;i<n;i++)
#pragma pipeline II=N
for(j=0;j<m;j++)
#pragma unroll M }

HLS C Func Pragma

User Defines

1.RoCC
2.TileLink
3.Network-Attached

HW Interface

Auto-generated

Generated RTL

"RoCC":{
"custom0":{
"pgm": "pgm0",
"func": "func1"},

"TLL2":[
{"pgm":"vadd_tl",

"func": "vadd",
"addr":"0x20000"},

{"pgm":"aes_tl",
"func": "encrypt",
"addr":"0x30000"},]

Accel SoC

20

RoCC Insn
MMIO Wrapper
Linux Wrapper

SW Primitives

Auto-generated

Step 3: SW Primitives Generation

SoC Definition

"name" : ”pgm0",
"base" : ”linux.json",
"workdir" :/",
"files":[[”pgm0",]],
"command" : "/pgm0"

Runtime Env

User Defines

"RoCC":{
"custom0":{
"pgm": "pgm0",
"func": "func1"},

"TLL2":[
{"pgm":"vadd_tl",

"func": "vadd",
"addr":"0x20000"},

{"pgm":"aes_tl",
"func": "encrypt",
"addr":"0x30000"},]

RISC-V LLVM/GCC

SW Compiler

func1_accel
func2
func3
…

Accel Programs

21

Step 4: End-to-end Evaluation
Generated

func1_accel (8 %)
func2 (91 %)
func3 (1 %)
…

Accelerated ProgramsTransformed SoC

func1_accel
func2
func3
…

Accel Programs

Accel SoC

Repeat from Step 1
22

Exposed Design Space
1. Hardware Integration
2. Accelerator Design Variation
3. Software Integration

RoCC
Coprocessors

TileLink
Accelerators

Network-Attached
Accelerators

23

RoCC Coprocessors

● Invoked by RoCC
instruction

● Sharing L1 and LLC
with the CPU

● Sharing TLB with the
CPU

24

Exposed Design Space
1. Hardware Integration
2. Accelerator Design Variation
3. Software Integration

RoCC
Coprocessors

TileLink
Accelerators

Network-Attached
Accelerators

25

TileLink Accelerators

● Invoked by RoCC
instruction or MMIO

● Sharing LLC
with the CPU

● Physically-addressed

26

Exposed Design Space
1. Hardware Integration
2. Accelerator Design Variation
3. Software Integration

RoCC
Coprocessors

TileLink
Accelerators

Network-Attached
Accelerators

27

Network-attached Accelerators

● Same as TileLink
Accelerators

● With Direct Access to
the Ethernet

28

Network-Attached Accelerator
1. User includes the Centrifuge Ethernet streaming

interfaces and packet parser functions in the HLS code

2. Centrifuge generates the interconnect between the
accelerator and the Ethernet

hls::stream<ap_uint<128> >& resp_head,
hls::stream<ap_uint<65> >& resp_data,
hls::stream<ap_uint<128> >& req_head,
hls::stream<ap_uint<65> >& req_data,
ap_uint<64>srcmac, ap_uint<64>dstmac

Centrifuge Ethernet
Interfaces:

29

Hardware Integration DSE

Different Coupling for vadd Accelerator

Determine the best hardware
integration strategy

Three factors:
1. Cache Size
2. Cache Latency
3. Interface

Bandwidth

30

Exposed Design Space
1. Hardware Integration
2. Accelerator Design Variation
3. Software Integration

RoCC
Coprocessors

TileLink
Accelerators

Network-Attached
Accelerators

31

Exposed Design Space
1. Hardware Integration
2. Accelerator Design Variation
3. Software Integration

A. Loop Unrolling
Factors

B. Loop Pipelining
Factors

C. Memory Size and
Parallel Ports

D. Resource Binding

32

Exposed Design Space
1. Hardware Integration
2. Accelerator Design Variation
3. Software Integration

A. Bare-metal
B. Linux

33

Linux Wrapper Generation
• Allocates contiguous physical addresses
• Virtual to physical address lookup
• Map MMIO registers to the user space

34

Software Integration DSE

Tilelink Accelerators with Linux Driver

Determine whether the functions
can be accelerated under Linux

• In most cases, the Linux
overhead is not
significant

• RoCC-level integration
might be better option for
sort8

35

Case Study 1: Smart-House Hub
● Application: A smart-house assistant

Breakdown of key computational kernels

36

1. Apply Amdahl's law in hotspot
detection

Acceleration Region DSE

RoCC Accelerators Speedup Compared to Software

2. Determine whether the functions
can be accelerated with HW

37

Case Study 1: Smart-House Hub
● Application: A smart-house assistant

Breakdown of key computational kernels

8x Speedup

38

Other Case Studies
Case Study 2: Distributed GEMM Accelerator

1. Running Full-stack Linux with MPI
2. Distributed on 16 nodes

Case Study 3: Deep Learning Accelerators
1. Different Hardware Utilization
2. Network-attached Accelerators

39

Access to code: https://github.com/hqjenny/centrifuge
Email: qijing.huang@berkeley.edu

FireSim: https://fires.im @firesimproject

Conclusion
We present a methodology and flow, Centrifuge, that can
rapidly generate and evaluate heterogeneous SoCs by
combining an HLS toolchain with the open-source FireSim
FPGA-accelerated simulation platform

40

https://github.com/hqjenny/centrifuge
mailto:qijing.huang@berkeley.edu
https://fires.im/

42

Backup Slides

43

RoCC Coprocessor Integration

RoCC Interface

ap_bus to RoCC Decoupled Interface

44

Case Study 2: Distributed GEMM

● Application: MPI-based Distributed Matrix Multiplication (DGEMM)
● Tools: STREAM and iperf are used to generate the rooflines
● Observation: With the GEMM accelerators, the distributed workload

becomes more bandwidth-bound

CPU Accelerator

Roofline Models

45

Case Study 2: Distributed GEMM

DGEMM Runtime Breakdown for 1024×1024 Tiles

Scaling Efficiency for DGEMM with Accelerators

• Experiments on 1, 4, 16
nodes

• 2.0 GB/s measured DRAM
bandwidth

• 1.2 Gbit/s measured
network bandwidth

46

Case Study 3: Deep Learning
1. HW Utilization for Different Layer Sizes

DNN Building Block Spatial HW Design

Ops/Cycle for Different Workload Sizes

47

Multi-node accelerators, connected via Ethernet

Case Study 3: Deep Learning
2. Distributed Accelerators

48

Detailed Tool Flow
C Source File

● fns with
#pragma

● Other fns
LLVM Pass/
Scripts

C Src File
● Drivers
● SW fnsRISC-V LLVM/GCC

RISC-V Binary

C Src (HLS)
● Accelerated fns

HDL Accel. Verilog
Implementation

Centrifuge SoC Accel
Blackbox

Runs on Centrifuge Accelerated
SoC

49

FireSim
FireSim is an open-source, FPGA-accelerated, cycle-
exact, scalable hardware simulator
o Produces:

• FPGA-accelerated Simulation (Not FPGA prototype)
• Deployment on Cloud FPGAs

RTL
on FPGA

@100 MHz

DRAM

100ns
latency

FPGA Prototyping

RTL
taped-out
@ 1 GHz

DRAM

100ns
latency

Taped-out SoC Design

SoC sees 100 cycle DRAM latency SoC sees 10 cycle DRAM latency SoC sees 100 cycle DRAM latency

Latency-
Insensitive

RTL
on FPGA

@100 MHz

DRAM

100ns
latency

FPGA-accelerated Simulation

Queue

Queue

50

Accelerator Coupling
1. RoCC

Coprocessors
2. TileLink

Accelerators
3. Network-attached

Accelerators

51

New Applications to Accelerate
• Packet Processing
• Video/Audio Compression/Decompression
• DNN Acceleration
• Graph Acceleration
• Database Systems

52

Centrifuge Tool Flow

Func1
Func2
Func3
…

Program

Func1 (90 %)
Func2 (8 %)
Func3 (1 %)
…

Program

for(i=0;i<n;i++)
#pragma pipeline II=N
for(j=0;j<m;j++)
#pragma unroll M

Func 1

Accel SoC

Base SoC

HW Interface

Hotspot

HLS

RISC-V LLVM/GCC

SW Interface

1.RoCC
2.TileLink
3.Network-Attached Automated53

