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Abstract

The human brain transforms visual inputs into information that is useful for se-
mantic tasks like object recognition and scene interpretation. How the brain per-
forms this transformation is an open question in neuroscience. Recently, Convolu-
tional Neural Networks (ConvNets) have been successfully used for transforming
image pixels into features useful for object recognition. Just like the early and late
stages of visual processing in the brain, the lower and higher layers of a ConvNet
represent gabor like and semantically meaningful features respectively. Based on
this, we hypothesized that intermediate layers of ConvNets and the human brain
may use similar features for representing visual information. Using fMRI record-
ings of human subjects viewing natural images, we show that the hierarchy of
visual representations in a ConvNet trained for object recognition mimics the hi-
erarchy of visual representations in the human brain. This result suggests that
understanding visual representations in the ConvNet can help us understand the
visual representations in the human brain.

1 Introduction

How does the human brain transform visual information captured by the retina into information
useful for semantic tasks like object recognition and scene interpretation? We know that this trans-
formation is performed by a hierarchically organized system of visual areas within the visual cortex.
However, we do not know how the brain computes this transformation. Past studies have found
that visual regions of interests (ROIs [1]) like V1, V2 located in posterior visual cortex appear to
represent low-level visual features such as oriented edges [2] , gabors [3] and local motion-energy
features [4]. Visual ROIs like Fusiform Face Area (FFA [5, 6]), Extrastriate Body Area (EBA [7])
and Parahippocampal Place Area (PPA[8]) located in anterior visual cortex appear to represent high-
level semantically meaningful features useful for detecting faces, bodies and understanding visual
scenes. Further, it is believed that visual ROIs like V4 located in intermediate visual cortex represent
mid-level visual features that are useful grouping, figure-ground segmentation and representing con-
tours [9]. However, the visual representations and computations performed in intermediate visual
ROIs is poorly understood.

One way to address the question of understanding how the brain transforms low-level visual rep-
resentations into high-level visual representation is to build a computational model that takes im-
ages/videos as inputs and outputs an accurate prediction of brain activity across the visual cortex. An
accurate prediction of brain activity would imply that the constructed model and the brain represent
visual information using similar features. The similarity of features by itself would be insufficient
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to make conclusions about the exact computations performed by the brain. However, such a finding
would suggest that the constructed model is a plausible computational hypothesis for how the brain
transforms low-level features into high-level features. Further, such a model could also be used to
investigate the nature of visual representations in different parts of the visual cortex.

Given that brain is a complex non-linear processing system, it is unlikely that an analytical solution
to the problem of constructing such a model would exist. Past studies have addressed this concern
by breaking down the process of predicting brain activity elicited in response to stimulus images into
two steps. In the first step, a feature space that provides a linearizing transformation between the
stimulus images and measured brain activity is constructed. In the second step, regularized linear
regression is used to find a set of weights that predict brain activity from the feature representation of
images. This framework for predicting brain activity has been called the encoding model approach
[10, 11, 12, 13, 14, 3]. Past studies used manually constructed feature spaces for predicting brain
activity. For instance, [3, 4] predicted brain activity in visual ROIs like V1, V2 using Gabor fea-
tures. [13, 12] used linguistically constructed feature spaces that indicated the presence or absence
of multiple object categories in images. These studies were only only able to predict brain activity
in anterior visual cortex (i.e. ROIs like FFA, EBA, PPA). Moreover, these studies were unsatisfy-
ing because they did not provide any explanation for how the brain converts stimulus images into
semantically meaningful information. To date, there exists no model that can predict brain activity
throughout the visual cortex starting from image pixels.

Instead of manually defining features, an alternative is to use machine learning techniques to learn
features that are optimal for predicting brain activity. However, it is unlikely that these techniques
would work because non-linear machine learning methods require large amounts of training data
and brain activity recordings are not available in plenty. This is because, collecting brain activity
data is both a tedious and a costly process. Another way to learn features is by training models
for performing the same tasks that the human visual system performs. After all, it is reasonable
to assume that visual processing and representations in the brain are optimized for the visual tasks
it must perform. Moreover, large amounts of data are publically available for training models for
performing tasks like object recognition that are also performed by humans [15].

Recently in the field of computer vision, a class of computational models called as Convolutional
Neural Networks (ConvNets [16]) have been found to be very successful on the task of object recog-
nition [17]. Multiple considerations suggest that the visual features of a ConvNet are a good candi-
date for studying visual features represented by the brain. Firstly, the brain and the ConvNet are both
adept at the common task of object recognition. Secondly, the brain and the ConvNet both represent
visual information hierarchically. For instance, the ConvNet architecture proposed by [17] repre-
sented images by a seven-layered hierarchy of visual features. Lastly, some past studies have shown
that the lower layers of the ConvNet feature hierarchy represent visual features such as edges and
corners whereas the higher layers represent visual features that are more useful for object recognition
[18, 19]. These three facts taken together suggest that low and high-level visual features represented
by the brain and the ConvNet are likely to be similar. If it is the case that low and high-level features
represented by the brain and the ConvNet are similar, it is likely that mid-level features represented
by the brain and the ConvNet are also similar.

In this work we tested the above hypothesis by investigating the relationship between the hierarchies
of visual representations in the human brain and a ConvNet trained for the task of object recognition.
The method and results of our investigation are presented in section 2 and section 3 respectively. We
provides a discussion of the implication of the results and a comparison with related previous work
in section 4. The conclusions of our study are mentioned in section 5.

2 Method

For studying the relationship between the visual representations of the ConvNet and the human brain
we constructed computational models for predicting brain activity from visual representations of the
ConvNet (see figure 1). First, we trained a seven layered ConvNet with the architecture proposed
by [17] for the task of classifying 1.2M million natural images into 1000 distinct object categories
(ILSVRC-2012 challenge [15]) using the publically available software [20]. In the remainder of this
paper, the term ConvNet refers to this particular ConvNet. This ConvNet transformed input images
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Figure 1: Description of the method for predicting brain activity using ConvNet features. First,
a seven layered ConvNet was trained for the task of recognizing 1000 distinct object categories
using a collection of 1.2M labelled images (panel A) [17, 15]. This ConvNet extracted seven sets
of features (from seven layers) for a given input image (panel B). ConvNet features were used to
predict brain activity (i.e. BOLD activity measured using fMRI) of four human subjects while they
passively viewed a separate collection of natural images (panel C). For every voxel, seven separate
models for predicting BOLD activity were constructed using features extracted from seven layers of
the ConvNet. Based on the accuracy of prediction (measured as correlation coefficient), an optimal
ConvNet layer was assigned to every voxel (panel D).

into seven set of features (one from each of the seven layers). These features were used to predict
brain activity.

The brain activity data for this study were functional magnetic resonance imaging (fMRI [21])
recordings of human brain activity (specifically, the blood-oxygenation-level-dependent (BOLD)
signal), recorded continuously while four subjects passively viewed a series of static photos of color
natural scenes. These subjects have been referred to as S1, S2, S3 and S4 in the remainder of the
paper. We used the fMRI data that was previously used by [12]. This study measured brain activity
elicited by 1260 images shown twice each (train set of images), and another set of 126 images shown
12 times each (test set of images). Activity was measured in approximately 100,000 voxels (i.e., vol-
umetric pixels) located in the cerebral cortex of each subject. We followed the same procedure for
pre-processing the fMRI data as outlined in [12].

2.1 Constructing Models for Predicting Brain Activity

For every voxel, a separate model was constructed for predicting its BOLD activity from the given
feature representation of the image. Ridge regression was used to find a set of weights that predicted
voxel’s BOLD activity using the training set of 1260 images. A single regularization parameter was
chosen for all voxels, using five-fold cross-validation [13]. The accuracy of each model for each
voxel was expressed as the correlation (r) between predicted and recorded voxel activity in response
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to images in the test set. The explained variance in each voxel’s responses was calculated as the
square of correlation coefficient (r2) [10]. Prediction accuracy was deemed statistically significant
if the correlation had a p-value < 0.001 (see supplementary materials for more details).

The modelling framework described above implicitly assumes that voxel responses are stationary
(i.e. the BOLD activity of a voxel is only a function of the input image and will be the same every
time the same image is presented as stimulus). However, the voxel responses can be non-stationary
due to either the inherent non-stationarity in firing of individual neurons that constitute the voxel
or due to noise in fMRI measurements. As our modelling framework is incapable of dealing with
non-stationarity, we only fit models to voxels that are approximately stationary. The stationarity of a
voxel can be estimated by calculating the repeatability in BOLD activity of the voxel expressed as the
Signal to Noise Ratio (SNR). The method for computing the SNR is detailed in the supplementary
materials. In this work, SNR has been expressed in terms of p-values (pSNR). Note that this pSNR is
different measure than the p-value of the prediction accuracy. In this work, we have only considered
voxels with pSNR < 0.001.

2.1.1 Convolutional Neural Network (ConvNet) Model

After the ConvNet was trained for object recognition, it was used to transform all images used in
the fMRI study into seven sets of features. The images used in the fMRI study were seperate from
images used for training the ConvNet. Each set of feature corresponded to the feature representation
of images produced by a single layer of the ConvNet. The first five layers of the ConvNet performed
convolutions (denoted conv-1 through conv-5) and the last two layers were fully connected (fc-6,
fc-7) (see supplementary materials for more details). For every voxel, seven separate sets of weights
were estimated for predicting brain activity from these seven feature spaces. An optimal ConvNet
layer was determined for every voxel based on the prediction accuracy of voxel activity measured
during the cross-validation stage (see figure 1).

2.1.2 Baseline Model

In order to compare the prediction accuracy of the ConvNet with previously published models, a
baseline model was constructed by combining the Gabor Wavelet model (GW; [3]) and the 19-
Category model (19-Cat; [11, 12]). The GW and 19-Cat model have been shown to accurately
predict brain activity in early (V1, V2) and late (PPA, FFA, EBA, OPA) visual areas respectively.
More details on these two models has been provided in the supplementary materials. The Baseline
model was constructed in the following way: For every voxel two sets of weights were independently
estimated for predicting BOLD activity from GW and 19-Cat features. Each voxel was then assigned
either to the GW or the 19-Cat model. This assignment was made based on the accuracy of the GW
and the 19Cat models in predicting BOLD activity of the voxel measured during the cross validation
stage. The model obtained after this assignment has been called the Baseline model.

3 Results

3.1 ConvNet predicts brain activity across the visual cortex

Any hypothesized feature space provides useful insights into brain representations only to the ex-
tent that it accurately predicts brain activity elicited under naturalistic conditions. The prediction
accuracy of the ConvNet model was evaluated using the test set of 126 images and evoked BOLD
activity (that were separate from set of images used for fitting the model). Figure 2 shows prediction
accuracy of the ConvNet model fit to voxels distributed across visual cortex for subject S1. From
this figure it can be concluded that the ConvNet model transforms image pixels into features that
make significant predictions (i.e. p-value < 0.001) of BOLD activity across the visual cortex.

If it is the case that ConvNet model can provide insights into visual representations in the human
brain beyond what is already known, then the ConvNet model must predict brain activity with accu-
racy higher than previously published models. We compared the accuracy of ConvNet model with
the Baseline model across multiple visual ROIs using the following two metrics: The percentage of
significantly predicted voxels in a ROI and the percentage explained variance in the BOLD response
within a ROI.
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Figure 2: Accuracy of the ConvNet model in predicting brain activity of subject S1. The accuracy
was measured as the correlation coefficient (Pearsons r) between the predicted and recorded brain
activity in response to the test set of images. The color of each voxel reflects the prediction ac-
curacy of the ConvNet model. Hotter colors reflect higher accuracy of prediction. The statistical
significance of each voxel was evaluated individually and the mean cutoff value of r for the voxels
with p-value < 0.001 was found to be 0.306 ± 0.008. The voxels with low SNR (i.e. pSNR-value
> 0.001) have been shown in gray.

Table 1: Comparing the accuracy of the ConvNet with the Baseline model for predicting brain
activity across several visual ROIs. The accuracy was quantified using two metrics - the percentage
of significantly predicted voxels (% Significant) and the mean explained variance (expressed as
percentage, % Variance) in the BOLD activity of each ROI. The table reports the mean ± standard
deviation of these metrics computed using 1000 bootstrap runs (see supplementary materials for
details). The ConvNet model is as good or better than the baseline model in almost all ROIs and
outperforms the baseline model in intermediate visual ROIs like V4, LO and OFA.

Measure Model ROI
V1 V2 V3 V4 LO OFA FFA EBA PPA

% Significant ConvNet 32.8 ± 2.9 24.6 ± 1.9 16.3 ± 1.6 17.7 ± 1.6 41.7 ± 2.2 67.3 ± 4.3 69.2 ± 3.1 60.1 ± 3.4 47.7 ± 2.0
Baseline 32.6 ± 2.9 26.6 ± 2.6 13.9 ± 1.9 11.0 ± 1.5 32.4 ± 1.9 53.3 ± 3.6 65.0 ± 3.5 57.6 ± 3.3 47.7 ± 2.6

% Variance ConvNet 8.1 ± 0.6 6.4 ± 0.4 4.5 ± 0.3 4.7 ± 0.3 10.8 ± 0.8 17.4 ± 2.0 19.7 ± 2.2 15.5 ± 1.6 14.8 ± 1.3
Baseline 7.5 ± 0.6 6.4 ± 0.5 4.0 ± 0.3 3.5 ± 0.2 8.4 ± 0.6 13.8 ± 1.3 17.8 ± 1.7 14.6 ± 1.4 14.2 ± 1.4

For making this comparison, voxels belonging to the same ROI were grouped across all the subjects.
The percentage of significantly predicted voxels was calculated as the percentage of voxels within
a ROI for which BOLD responses were predicted with p-value < 0.001. The explained variance in
BOLD response of each ROI was calculated as the mean explained variance in BOLD responses of
voxels assigned to the ROI (see supplementary materials for more details). The results are reported
in table 1 indicate that ConvNet and the Baseline model make comparable predictions in early and
late visual areas. The ConvNet model outperforms the Baseline model in intermediate visual areas.
This suggests that the ConvNet model might provide novel insights about visual features represented
by the intermediate visual cortex.

3.2 The hierarchy of visual representations in the ConvNet mimics the hierarchy of visual
representations in the human brain

Does the ConvNet model provide insights into how the brain transforms low-level visual features
into high-level visual features? If it is the case that the ConvNet provides a plausible computational
hypothesis for how the brain transforms low-level visual features into high-level visual features then
the low, mid and high-level features represented in both the systems must match.

To investigate if this was the case, we plotted the ConvNet layer assigned to every voxel on a flatmap
of the brain (figure 3). Each voxel in this figure has been color-coded to reflect its corresponding
ConvNet layer. The figure shows that lower, middle and higher layers of the ConvNet were optimal
for predicting BOLD responses in posterior, intermediate and anterior parts of the visual cortex.
This implies that low, mid and high-level visual features represented by the ConvNet are related
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Figure 3: Relationship between the feature hierarchies of ConvNet and the human brain. Voxels
have been color coded to show the ConvNet layer that was found to be optimal for predicting their
activity. The voxels with pSNR-value > 0.001 are shown in gray. The alpha channel of the voxel
colors has been modulated to reflect the accuracy of the ConvNet model in predicting the BOLD
activity of voxels. The alpha value for all voxels predicted with p-value < 0.001 has been set to
1. The alpha values for the remaining voxels has been set in proportion to r on linear scale ranging
from 0 to 1. The lower (conv-1, conv-2, conv-3), intermediate (conv-4, conv-5) and higher (fc-6, fc-
7) layer of the ConvNet were found to be optimal for voxels in posterior, intermediate and anterior
areas of the visual cortex respectively. This shows that the hierarchy of visual representations in the
ConvNet mimics the hierarchy of visual representations in the human brain.

to the low, mid and high-level visual features represented by the brain by a linear transformation.
From this it can be concluded that the hierarchy of visual representations in the ConvNet mimics the
hierarchy of visual representations in the human brain.

3.3 Investigating Visual Representations in the Human Brain

Insights into visual representations of the human brain can be developed by visualizing the features
represented by individual voxels. For this, we used the ConvNet model to predict BOLD activity of
individual voxels to a collection of more than 280K natural images (see supplementary material for
a detailed description of this image collection). Then for every voxel independently, these images
were rank-ordered according to the predicted BOLD activity. The top and bottom images within
this ranking provide qualitative intuition about the features that are represented by a particular voxel
(see supplementary material for more details). Figure 4 shows the top and bottom six images for
two voxels in V1, V4, FFA and PPA. As there were too many voxels to visualize, only two sample
voxels from each ROI were chosen in the following way: For each ROI, all voxels predicted with
a p-value < 0.0001 were pooled across the four subjects. From this set, two voxels were manually
chosen to illustrate the range of visual representations in a ROI. A random sample of voxels from
V1, V4, FFA and PPA is shown in the supplementary materials.

The V1 voxels are predicted to increase activity when images consist of high texture and to decrease
activity when images contain landscapes. This result is not surprising because V1 is known to
contain neurons that respond to oriented edges and images with high texture are likely to excite a
large number of V1 neurons. This in turn would cause the V1 voxels to elicit large responses to
textured images. The FFA voxels are predicted to increase activity when images contain human
and animal faces and to decrease activity when they contain scenes. These results are consistent
with previous accounts of FFA [5, 6]. The PPA voxels are predicted to increase activity when
images contain scenes and trains and to decrease activity when they contain animate objects. The
geometric structure of trains is not very different from that of buildings. This suggests PPA voxels
encode specific geometric structures useful for identifying scenes/places and are not likely to be
selective for any object categories. This interpretation of features represented in PPA is consistent
with the findings of [22] and previous accounts of PPA [8]. These results demonstrate that using the
ConvNet model, results of multiple previous fMRI studies that investigated visual representations in
individual ROIs [5, 8, 7, 3] can be reproduced using only a single fMRI study.
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Figure 4: Using the ConvNet model to probe the stimulus tuning of individual voxels. Each row
represents the tuning of a single voxel. The visual tuning of two voxels from the visual areas V1,
V4, FFA and PPA is shown. These voxels were manually chosen from a set of voxels obtained after
pooling voxels from all four subjects. The ConvNet model fit to each voxel was used to filter a
set of 280K natural images. The six columns at left show the six images that the ConvNet model
for each voxel predicts will most increase BOLD activity, and the six columns at right show the
images that the model predicts will most decrease BOLD activity. The V1 voxels are predicted to
increase activity when images consist of high texture and to decrease activity when images contain
landscapes. The V4 voxels are predicted to increase activity when images contain a circular shapes
and to decrease activity when they contain landscapes. The FFA voxels are predicted to increase
activity when images contain human and animal faces and to decrease activity when they contain
scenes. The PPA voxels are predicted to increase activity when images contain scenes and trains and
to decrease activity when they contain animate objects.

Despite several past studies, the understanding of visual representations in V4 is unsatisfactory [9,
23, 24]. Our analysis reveals that a subset of V4 voxels are predicted to increase BOLD activity when
images contain a circular shapes and to decrease activity when they contain landscapes. This result
is qualitatively consistent with neurophysiological reports that area V4 is selective for curvature and
radial patterns [24] and shows that ConvNet can be used to investigate visual representations in
intermediate visual ROIs.

4 Discussion

Understanding how the brain transforms low-level visual features into high-level visual features re-
quires developing computational theories that make testable predictions about visual representations
in the brain. In the past, such theories have either been based purely on the neurophysiological find-
ings or have been inspired by Barlow’s redundancy reduction hypothesis [25]. Hubel and Wiesel’s
finding of simple and complex cells [2] led to the computational hypothesis that the hierarchy of
visual features in the brain was constructed by consequent stages of linear filtering, pooling and
point-wise non-linearities. This idea was first championed by the Neocognitron model [26] and later
by the HMAX model [27]. In a different line of work, past studies found that computational models
based on Barlows idea predicted what features were represented by neurons in V1 [28, 29]. Since
then, several studies have attempted to use the redundancy reduction hypothesis for building compu-
tational models that explain features represented in visual areas beyond V1 [30, 31]. However, these
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studies have met with limited success and no prior study has been able to construct a computational
model that provides plausible predictions about features represented across the visual cortex.

In this work we demonstrated that hierarchy of visual representations in the ConvNet mimics the
hierarchy of visual representations in the human brain. In contrast to past studies that proposed a
similar model of computation [26, 27], the key difference is that the ConvNet model was trained
for the task of object recognition. Models used in these previous studies were not optimized for
performing any particular task and it is likely that feature representations of these models simply
captured natural image statistics. This suggests that computational theories relying only on natural
image statistics (i.e. unsupervised learning) maybe insufficient in providing good hypotheses about
how the brain represents visual information. As an additional support to this claim we have presented
results in the supplementary materials that show that ConvNet outperform a feature descriptor called
as Fisher Vectors [32] on the task of predicting brain activity. Fisher vectors capture higher order
natural image statistics and were the state of art feature descriptor for computer vision tasks [32]
before the advent of deep neural networks in 2012 [17]. While the critics may argue that FV is not
the optimal representation for natural image statistics, alternative methods such as autoencoders [33]
and boltzmann machines [34] have not been shown to work on complex real world imagery.

These facts taken together suggest that computational models developed for solving the same tasks
that the human visual system performs can provide good hypothesis about how the brain processes
and represents visual information. In the hindsight, this is not surprising. The representations of a
complex information processing system such as the brain must depend on the tasks that it performs.
The visual system of the brain is not only adept at object recognition but is also involved in motor
tasks such as navigation and manipulation of tools. This suggests that computational models that
seek to jointly optimize visual and motor tasks may lead to a better understanding of the human
visual system. Some recent works such as [35, 36, 37] that have proposed models for solving
visuomotor tasks provide interesting directions for future research in this area.

Some recent studies [38, 39] have provided evidence that ConvNets can explain visual representa-
tions in the Inferior Temporal (IT) cortex of macaques and humans. However, these results are not
surprising because IT appears to represent semantically meaningful features such as faces and places
and the ConvNet was trained for object recognition. What our results show is that the ConvNet mim-
ics the hierarchy of visual representations across the visual cortex. This implies that not only is the
ConvNet plausible model of visual processing but it can also be used to study visual representations
throughout the visual cortex. Such claims cannot be made based on the results of any previous work.

One potential critique of our work is that unlike the brain, the ConvNet has no feedback or recurrent
connections. How is it then that the ConvNet is able to predict brain activity across the visual
cortex? One explanation is provided by past studies that have shown that the brain can perform
object recognition using feed-forward computations only [40]. Moreover, although the ConvNet
model outperforms previously proposed models for predicting brain activity, there still is substantial
amount of variance in brain activity that is not explained by the ConvNet model (see table 1).

Another potential critique of our work is that several architectural choices involved in designing the
ConvNet (such as the number of layers) were simply made as a result of the fact that they led to good
performance on the task of object recognition [17]. These choices may not be optimal for predicting
brain activity and consequently the ConvNet model we used is probably sub-optimal. Modifying
the ConvNet architecture to incorporate computational mechanisms like recurrence and feedback,
and optimally choosing parameters such as the number of layers, the number of units in a layer, and
the choice of specific non-linearity will lead to models that make more accurate predictions of brain
activity. Future work on developing such models is likely to provide a more nuanced understanding
of how the brain processes and represents visual stimuli.

5 Conclusion

The main result of our work is that the hierarchy of visual representations in the ConvNet mimics
the hierarchy of visual representations in the human brain. This suggests that understanding visual
representations in the ConvNet can help us understand the visual representations in the human brain.
As evidence, we have shown that the ConvNet model reveals visual features represented by individ-
ual voxels. Our results also provide evidence that computational models optimized for executing
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ecologically relevant tasks (like object recognition, performing actions) as opposed to models opti-
mized solely for estimating natural image statistics can provide better hypothesis about how brain
transforms low-level visual representations into high-level visual representations.
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