Approximating NP-hard Problems
Efficient Algorithms and their Limits

Prasad Raghavendra

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Washington

2009

Program Authorized to Offer Degree: Computer Science and Engineering

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Prasad Raghavendra

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final
examining committee have been made.

Chair of the Supervisory Committee:

Venkatesan Guruswami

Reading Committee:

Venkatesan Guruswami

Paul Beame

James R Lee

Date:

In presenting this dissertation in partial fulfillment of the requirements for the doctoral
degree at the University of Washington, I agree that the Library shall make its copies
freely available for inspection. I further agree that extensive copying of this dissertation is
allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S.
Copyright Law. Requests for copying or reproduction of this dissertation may be referred
to Proquest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346,
1-800-521-0600, to whom the author has granted “the right to reproduce and sell (a) copies
of the manuscript in microform and/or (b) printed copies of the manuscript made from
microform.”

Signature

Date

University of Washington
Abstract

Approximating NP-hard Problems
Efficient Algorithms and their Limits

Prasad Raghavendra

Chair of the Supervisory Committee:
Associate Professor Venkatesan Guruswami
Computer Science and Engineering

Most combinatorial optimization problems are NP-hard to solve optimally. A natural
approach to cope with this intractability is to design an “approximation algorithm” — an
efficient algorithm that is guaranteed to produce a good approximation to the optimum
solution. The last two decades has witnessed tremendous developments in the design of
approximation algorithms mostly fueled by convex optimization techniques such as linear
or semidefinite programming.

In this thesis, we present algorithmic and lower bound results that characterize the power
and limitations of these techniques on large classes of combinatorial optimization problems.
The thesis identifies a specific simple semidefinite program and demonstrates the following:

— This semidefinite program yields the optimal approximation to every problem in one of
the large classes such as constraint satisfaction problems (CSP), metric labeling prob-
lems and ordering constraint satisfaction problems under the Unique Games Con-
jecture (UGC). To show this, we exhibit a general black-box reduction from hard
instances to a linear/semidefinite program to corresponding hardness results based on
the UGC. Not only does this confirm a widely suspected connection, it settles the
approximability of classic optimization problems such as CSPs, MULTIWAY CUT and
MAXIMUM AcycLIC SUBGRAPH under UGC.

— The thesis presents a generic algorithm for constraint satisfaction problems (CSP)
based on this semidefinite program. Irrespective of the truth of UGC, this generic
algorithm is guaranteed to obtain an approximation at least as good as all known
algorithms for specific CSPs.

— Independent of the truth of UGC, the approximation obtained by this semidefinite
program cannot be improved by any convex relaxation that is obtained by including

1
any valid constraints on at most O(2(0°81°eN)™) yectors.

TABLE OF CONTENTS

Page

List of Figures e e v
List of Tables e vi
Chapter 1: Introduction 1
1.1 Motivation 3

1.2 Relaxation and Rounding Methodology 5
1.3 Relaxation Techniques 6
1.4 Understanding the Limits 7

1.5 Integrality Gaps vs Hardness Results 10
1.6 Brief Summary of Contributions 11
Chapter 2: Preliminaries And Organization of Thesis 13
2.1 Relaxation and Rounding: Examples 13
2.2 Definitions and Terminology 18
2.3 Problem Classes e 20
2.4 Generalized Constraint Satisfaction Problems 22
2.5 Label Cover and UNIQUE GAMES o v v ittt 24
2.6 Results and Organization of thesis 25
Chapter 3: Mathematical Tools. 31
3.1 Notation 31
3.2 Probability Spaces and Random Variables 31
3.3 Harmonic Analysis of Boolean Functions 32
3.4 Functions on Product Spaces oL 36
3.5 Gaussian Random Variables L. 42
3.6 Invariance Principle 43
3.7 Noise Stability Bounds 45

Part I: Algorithmic Techniques 48
Chapter 4: Linear and Semidefinite Programming Relaxations 49
4.1 Introduction e 50
4.2 Comparing Relaxations oo 51
4.3 Local Distributions and Consistency 52
4.4 A Simple LP Relaxation 53
4.5 A Simple SDP Relaxation 57
4.6 Comparison with Relaxations in Literature 59
4.7 Stronger Relaxations 63
4.8 Robustness and Smoothing of the LC relaxation 65
4.9 Robustness of LH, and SA, relaxations 70
Chapter 5: A Generic Rounding Scheme o000 77
5.1 Introduction e 78
5.2 Result e 79
5.3 Proof Overview 79
5.4 Preliminaries 82
5.5 Rounding General CSPs 83
Part II: The Unique Games Barrier 88

Chapter 6: Dictatorship Tests, Rounding Schemes and Unique Games Conjecture 89

6.1 Dictatorship Tests 89
6.2 Emerging Connections (history) 92
6.3 From Dictatorship Tests to UG-hardness Results 94
6.4 From Integrality Gaps to Dictatorship Tests 98
6.5 Formal Proof of Reduction. 103
6.6 Dictatorship Tests and Rounding Schemes 108
6.7 From UG-hardness to Integrality Gaps 112
6.8 Implications L 115
Chapter 7: General Constraint Satisfaction Problems 119
7.1 Results. e 120
7.2 Preliminaries e 122
7.3 From Integrality Gaps to Dictatorship Tests 126
7.4 Soundness of Dictatorship Test DICTS, , 128

i

7.5 From Dictatorship Tests to UG-hardness Results 137

7.6 Optimal Algorithm 140
7.7 From UG-hardness to SDP integrality gaps 143
7.8 Implications e 143
Chapter 8: Metric Labeling Problems 146
8.1 Imtroduction 147
8.2 Proof Overview e 150
8.3 Preliminaries e 152
8.4 The Reduction e 155
Chapter 9: Ordering Constraint Satisfaction Problems 163
9.1 Introduction 164
9.2 Proof Overview e 166
9.3 Preliminaries e 169
9.4 Orderings e 171
9.5 Multiscale Gap Instances 172
9.6 Dictatorship Testo 174
9.7 Hardness Reduction o 176
9.8 Ordering CSP 180
9.9 Dictatorship Test for OCSP 184
9.10 Soundness Analysis for ¢-Orderings 187
Chapter 10: Grothendieck Inequality 192
10.1 Introduction L 193
10.2 Preliminaries e 195
10.3 From Integrality Gaps to Dictatorship Tests 197
10.4 From Dictatorship Tests to UG-hardness 201
10.5 From UG-hardness to Integrality Gaps 203
10.6 Implications L 204
Chapter 11: ~ Hardest CSP to Approximate? 207
11.1 Introduction e 208
11.2 Preliminaries e 209
11.3 Linearity Tests and MAX k-CSP Hardness 211
11.4 Hardness reduction from UNIQUE GAMES 212

iii

11.5 Gowers Norm and Multidimensional Arithmetic Progressions 216

11.6 Extending the CMM Algorithm for Non-Boolean CSPs 219
Part III: Unconditional Lower Bounds 221
Chapter 12: Limits of Semidefinite Programming 222

12.1 Introduction 223

12.2 Proof Overview e 227

12.3 Preliminaries 231

12.4 Weak Gaps for UNIQUE GAMES oo vttt 232

12.5 Integrality Gap Instance for UNIQUE GAMES 238

12.6 Integral Vectors 240

12.7 Local Distributions for UNIQUE GAMES 243

12.8 Construction of SDP Solutions for E2LIN(q) 246
Chapter 13: 3-Query PCP over Integers 253

13.1 Introduction e 254

13.2 Proof Overview 255

13.3 Results. o e 257

13.4 Analytic Machinery 258

13.5 LABEL COVER Test 261

13.6 Proof of Main Theorem 265
Chapter 14: Conclusions and Future Work 273

14.1 Directions for Future Work 274
Bibliography e 279
Appendix A: Problem Definitions o 0L 293

iv

LIST OF FIGURES

Figure Number Page
6.1 Dictator and Non-Dictator cuts 91
6.2 Connections Between SDP Integrality Gaps, UG-hardness Results and Dictatorship Tests 93
6.3 Construction of Sphere Graph o000 100
6.4 Extending the Cut from DICTS, to Sy 103
6.5 Rounding Scheme Round% 109
7.1 Rounding Scheme Round% for a function F 129
7.2 Round, Algorithm 141
8.1 The reduction. e 157
12.1 A Simple UNIQUE GAMES Integrality Gap 234
12.2 Reduction from UNIQUE GAMES to E2Ling 239
12.3 Local distribution over Fj-assignments 248

LIST OF TABLES

Table Number

1.1 Results on Approximability

vi

ACKNOWLEDGMENTS

It was after extensive deliberation, and with still lingering doubts that I flew a few
thousand miles away from home to start graduate school. With the four amazing years
that followed, this decision is no doubt the best I ever made. As this wonderful journey
draws to a close with this thesis, I take this opportunity to thank all the people that made
it possible.

I am greatly indebted to my advisor Venkat Guruswami, I couldn’t have asked for
a better advisor! Along with his brilliance, technical mastery, and an amazingly wide
research program, Venkat always seemed to have infinite amounts of time to patiently listen
to every one of my ridiculous ideas and accompany me on those thousand dead-ends before
a successful proof. Over these years, I have immensely enjoyed those conversations through
which I learnt a great deal both technically and otherwise. For all this and lot more left out
— Thank you Venkat!

My thanks to Paul Beame and James Lee for serving on the thesis committee. Special
thanks to Paul Beame for his meticulous proof reading of the thesis. All credit goes to him
for parts of the thesis that look immaculate, and any errors that have crept in are solely
due to me not giving him sufficient time to proof-read.

Many thanks to Rajsekar Manokaran, Seffi Naor and David Stuerer for their collabora-
tions that led to several of the results in this thesis. Special thanks are due to David Steurer
whose writing has influenced much of the notation in this thesis.

I had the rare opportunity to spend about half my time during graduate school visiting
a number of places. While still learning the ropes in my first year, I had the pleasure
of interning with Ramarathnam Venkatesan and Peter Montgomery at Microsoft Research
Crypto Group. Following year, I enjoyed the summer collaborating with Yossi Azar, Uriel
Feige, Seffi Naor and Mohit Singh at Microsoft Research Theory Group during which time
I started working on what became the core of this thesis.

A major portion of the work in this dissertation was carried out, in the invigorating and
vibrant environment of Princeton University between Sept 2007-June 2008. I am greatly in-
debted to Sanjeev Arora, Boaz Barak, Moses Charikar and the theory students at Princeton
University for the highly productive and wonderful time I spent there. My special thanks
to Parikshit Gopalan for making what was already a great time at Princeton even more
memorable.

In summer 2008, I had a wonderful time working with Vitaly Feldman, Swastik Kopparty
and T.S.Jayram at IBM Almaden Research Center. Finally, my last semester was spent
visiting Carnegie Mellon University in 2009 where I enjoyed talking to Yi Wu and Ryan 'O
Donnell.

I am greatly indebted to all these institutions I have visited and the the numerous people
involved for hosting me. These visits have widened my research interests, built valuable

vil

collaborations and greatly enriched my experience in graduate school. A sincere thanks to
the support from NSF grants CCF-0343672, CCF-0835814, and a David and Lucile Packard
Fellowship during the last four years.

Special thanks to my great roommates John and Vibhor for making the relatively short
period of two years that I spend at Seattle memorable. I thoroughly enjoyed the company
of friends/collaborators at UW: Atri, Ning, Gyanit, Thach, Punya, Alex, Abhay, Nilesh,
Sumit, Deepak and Sashi at UW. My thanks to the graduate students Aditya, Aravindan,
Rajsekar, David, Aniruddh, Moritz and Eddy, and my roommate Yogesh for all the good
times at Princeton. My heartfelt thanks to roommates Nitya and Hari for hosting me for
an entire semester at Pittsburgh.

I wish to thank C. Pandu Rangan, C.R. Pranesachar, B.J. Venkatachala, C.S. Yogananda
and all the other teachers who have inspired me to pursue the mathematics of computer
science over the years. Finally, it would be difficult to express the debt of gratitude that I
owe my family: my parents Nagaraj and Jayashree, my sister Chaitra and Murali, for their
love, relentless support and encouragement.

viii

DEDICATION

To my Parents

X

Chapter 1
INTRODUCTION

Combinatorial optimization is one of the most commonly arising computational tasks.
In a combinatorial optimization problem, the goal is to find a solution that maximizes or
minimizes a certain objective value among a discrete set of feasible solutions. To demon-
strate the ubiquity of combinatorial optimization problems, and to give the reader a flavor
of the problems studied in this dissertation, we present a few examples below.

Problem 1. A 3-CNF boolean formula consists of a set of variables and clauses of the form
x; V x; V xp. Find an assignment to the variables that satisfies the mazimum number of
clauses.

This problem belongs to the class of Constraint Satisfaction Problems (CSP) that have
numerous applications, from artificial intelligence and planning to VLSI chip design.

Problem 2. Given a graph and three designated nodes called terminals, decompose the
graph into three parts containing one terminal each, while minimizing the number of edges
between the partitions.

This is an example of a Metric Labelling Problem that arises naturally in several contexts
such as image segmentation.

Problem 3. Given the results of all chess games played in major tournaments over a year,
let us suppose we wish to rank the players. Specifically, we would like to find a ranking
that agrees with the results of mazimum number of games. Here the result of a game agrees
with the ranking if the higher ranked among the two players wins.

Here we are trying to find an ordering/permutation/ranking that satisfies the maximum
number of given constraints. This problem is a classic example of an Ordering CSP (OCSP).

Problem 4. Given a system of sparse linear equations over real numbers that is completely
consistent, it is easy to find a solution using Gaussian elimination. Suppose that the system
is not completely consistent in that some of the equations are erroneous. In this case, the
natural optimization problem to consider is to find a solution that satisfies the mazimum
number of equations.

While combinatorial optimization problems occur very naturally in practice, many seem-
ingly different tasks such as pattern classification, clustering, and learning can also be posed
as combinatorial optimization. For instance, consider the following problem,

Problem 5. Suppose that we are given a set of points labelled + or — in a high dimensional
space. For instance, this could be a representation of a set of emails with the labellings
indicating whether they are spam or non-spam. Find a halfspace (also referred to as a
perceptron) that correctly classifies the mazimum number of the given set of points.

Unfortunately, for an overwhelming majority of combinatorial optimization problems,
finding the optimal solution turns out to be NP-hard. Therefore, unless P = NP, there
are no efficient algorithms to solve any of the above problems optimally.

To cope with this intractability, one settles for solutions that are approximately optimal.
For instance, can one design an efficient algorithm that always outputs a solution that is at
least half as as good as the optimum? Formally, an algorithm is an a-approximation to a
problem, if on every instance the solution output by the algorithm has value within an a-
factor of the optimal solution. In this dissertation, in contrast to most previous work we will
consider not just a single approximation ratio, but the entire spectrum of approximations
that depend on the quality of the optimal solutions.

The following question stems naturally from the notion of approximation algorithms:

For a given combinatorial optimization problem, what is the best approximation
to the optimum that can be efficiently computed?

There are two important facets to answering the above question, designing approximation
algorithms and showing that no efficient algorithm can approximate better (hardness result).

In this dissertation, we present both optimal approximation algorithms and hardness
results that apply in general to entire classes of problems such as the constraint satisfaction
problems. More precisely, we exhibit a generic algorithm for every constraint satisfaction
problem whose approximation behaviour is at least as good as that of all known algorithms.
The generic algorithm relies on a convex optimization subroutine, specifically a simple
semidefinite program. Furthermore, we show that under the well-known Unique Games
Conjecture, this simple semidefinite program yields the best approximation for every prob-
lem in one of the classes: constraint satisfaction problem (CSP), ordering CSP and metric
labelling problem. Specifically, this demonstrates that existing algorithmic techniques have
reached a common barrier on every problem in these classes, a barrier that is achieved by
the generic algorithm and encapsulated by the Unique Games Conjecture.

In the remainder of the introduction, we lay out the motivation and context for our
work by surveying the relevant milestones in the study of approximation algorithms and
highlighting the main contributions of this dissertation.

1.1 Motivation

It is beyond any doubt that NP-hard combinatorial optimization problems are indispens-
able in many practical applications. Therefore, it is obligatory to develop heuristics to
cope with their intractability. Any systematic study of heuristics should provide ways to
measure, analyze, compare, and improve their performance. It is our viewpoint that the
study of approximation algorithms is an attempt in this direction, in that it is a systematic,
theoretical study of heuristics. In what follows, we make an attempt to justify this position.

Why worst-case analysis? By definition, an NP-hardness result concerns the perfor-
mance of any efficient algorithm over the worst-case choice of input. Therefore it is con-
ceivable that efficient algorithms could be designed for subclasses of inputs that occur in
practice. A large body of work has emerged motivated along these lines, some of whose
highlights include:

— Efficient algorithms for problems over special classes of graphs such as sparse graphs,
dense graphs, planar or low-genus graphs, and perfect graphs.

— Algorithms that are guaranteed to perform well with high probability when the input
is generated from a certain distribution.

— Parametrized Complexity: Here the running time of an algorithm is not only measured
in terms of the input size, but also an additional parameter associated with the input.
In particular, the goal is to design algorithms that are efficient on inputs where the
associated parameter is small.

In many real-life settings, the inputs are generated from complex processes that makes
discovering additional structure in them a daunting task. Furthermore, some optimization
problems remain hard even on special classes of inputs such as sparse graphs or those with
some small parameter.

There is little reason to believe that the general distributions that have been analyzed
truly reflect problems in real-life settings. The worst-case guarantees that approximation
algorithms provide make them applicable even in contexts where there is little or no addi-
tional information available about the inputs. In this dissertation, we restrict ourselves to
approximation algorithms that have provable guarantees over all inputs.

Why these problems? There are a few classic problems such as MAX CUT and MAX
3-SAT that have received considerable amount of attention in approximation algorithms
literature. Omne possible intent of this extensive study is to determine the best possible
approximation ratios/curves for these specific problems. However, the exact value of ap-
proximation ratio for, say, MAx CuT is probably of little value in practice. More often than
not, a combinatorial optimization problem that arises in practice is a variant or entirely
different from any problem appearing in approximation algorithms literature.

The real motivation to extensively study problems like MAX CuUT is that they serve
as simple examples that help us understand the power and limits of existing algorithmic
techniques. An ambitious goal is to translate insights from these classic examples to general
results for arbitrary combinatorial optimization problems, thereby making the results appli-
cable in practical scenarios. This dissertation makes progress towards this goal by exhibiting
very generic algorithms and hardness results that hold for every problem in large classes
such as constraint satisfaction problems and might be more likely effective in practice.

Approximation ratios and approximation curves Recall that an a-approximation
algorithm is one that always outputs a solution whose value is within « factor of the opti-
mum. This is just one possible measure for the quality of a heuristic. In some cases, the
correct measure would be an additive approximation where the algorithm’s output is within
« additive error of the optimum. A more refined measure is to plot the the output of the
algorithm as a function of the optimum value of the instance. Formally, the approzimation
curve a(c) of an algorithm A is the plot of the value of the solution returned by the algo-
rithm A on instances where the optimum value is ¢. The approzimation curve encodes a lot
of information about the performance of the heuristic algorithm A.

The study of approximation algorithms encompasses all these measures of performance
for heuristics. With this broad agenda, this dissertation studies the performance and limits
of approximation algorithms by attempting to map out their entire approximation curves
instead of approximation ratios alone.

1.2 Relaxation and Rounding Methodology

A vast majority of approximation algorithms follow a two step approach consisting of re-
laxation and rounding. To describe the context and contributions of the dissertation, a
rudimentary understanding of this popular paradigm would be useful.

Relaxation By virtue of the fact that the space of feasible solutions is discrete, every
combinatorial optimization problem can be reformulated as an optimization problem with
integer-valued variables, i.e., an integer program. In other words, given an instance of
a combinatorial optimization problem, we can encode it as maximizing or minimizing a
function of a set of variables (say {z1,...,z,}) that take certain integer values (say {0,1})
and are required to satisfy a set of constraints.

Being a reformulation, the resulting integer program is also NP-hard. Technically, the
intractability of the integer program stems from the non-convezity of the space of solutions.
The main idea is to relax the constraints of the integer program so as to make it tractable.
Specifically, we will relax the condition that the variables are to be assigned values 0 or 1
only, and permit them to be assigned real numbers, or even vectors.

By a suitable relaxation, the intractable integer program is converted to a convex opti-
mization problem that can be solved in polynomial time.

Clearly, the relaxation permits more solutions than the original integer program does.
Hence, it immediately follows that the optimum of the relaxation is at least as good as the
optimum of the integer program. Formally, let & be an instance of a minimization problem.
If opt(3) denotes the value of the optimum solution to the instance &, and Conv(S) denotes
the optimal value of the corresponding relaxation, then Conv(3) < opt(<y).

The value of Conv(S) serves as an efficiently computable estimate for opt(S). Of course,
it is completely unclear at this point how good an estimate Conv(S) is. The “integrality
gap” is a coarse measure of the quality of the estimate Conv(S). In particular, the integrality
gap is the worst-case ratio between opt(J) and its estimate Conv(S) over all instances .
The “hard” instances for the relaxation, where the worst-case ratio is achieved are referred
to as integrality gap instances.

Rounding The optimal solution to the relaxation will probably consist of an assignment of
real or possibly vector values to the variables. However, only integer-valued assignments to
the variables will correspond to a possible solution to the original combinatorial optimization
problem . In the next step, a procedure (a rounding scheme) is devised to “round” the
real or vector valued assignment to the variables into an integer assignment. The challenge
is to devise a rounding scheme that incurs only a small loss in the objective value.
Formally, a rounding scheme of an a-approximation algorithm is an algorithm that takes
as input the optimal solution to the relaxation Conv consisting of real or vector values and

rounds the solution to an integer/discrete solution by losing at most an a-factor in the
value.

Since Conv(S) < opt(S), the value of the rounded solution is at most a-times the value
of the optimal solution. Therefore, the convex relaxation along with the above rounding
scheme yields a a-approximation to the problem.

1.3 Relaxation Techniques

An overwhelming majority of approximation algorithms use a specific type of convex relax-
ation - linear programming. A linear program consists of either maximizing or minimizing
a linear function over real-valued variables while satisfying certain linear constraints among
them. There are numerous techniques to solve linear programs, while the simplex method
and its variants are used extensively in practice, others such as interior point methods (see
Alizadeh [2], Nemirovsky et al. [127]) are provably efficient.

Not only have linear programming been instrumental in the design of approximation
algorithms for a vast array of combinatorial optimization problems, it is a technique that is
extensively used in practice. We refer the reader to the book by Vazirani [158] for a glimpse
of the pervasiveness of linear programs in the field of approximation algorithms.

Apart from linear programs, the other relaxation technique that has proved useful in
this context are semidefinite programs. A semidefinite program consists of vector-valued
variables, with linear constraints on their inner products. The objective being optimized is
a linear function of the inner products of the variables. Semidefinite programs can be solved
in polynomial time using the ellipsoid method (see Grotschel et al. [70]) or interior point
methods (see Alizadeh [2], Nemirovsky et al. [127]). More precisely, semidefinite programs
can be optimized to within an error ¢ in time polynomial in In % and the size of the program.

Semidefinite programs (SDP) made their appearance in combinatorial optimization as
early as 1979 with the classic work of Lovész [117]. The Lovész Theta function, as it is
referred to today, is a semidefinite programming relaxation for the MAXIMUM INDEPENDENT
SET problem. In [117], this relaxation was used to show that the MAXIMUM INDEPENDENT
SET problem, and the MINIMUM VERTEX COVER problem can be solved efficiently on
perfect graphs.

After what seems to be a hiatus, semidefinite programming (SDP) made a comeback in
approximation algorithms with the seminal work of Goemans and Williamson [65] on the
Max CuT problem in 1994 . At the time, it was clear by the work of Poljak et al. [135]
that linear programming techniques cannot yield an approximation better than % for the
MAxX CuT problem. Using a simple semidefinite programming relaxation and an elegant
rounding scheme, Goemans and Williamson obtained a 0.878 factor approximation for MAX
Cut. Since the work of Goemans and Williamson, SDPs have fueled some of the major
advances in approximation algorithms. They have found application in problems ranging
from Constraint Satisfaction Problems (Charikar et al. [32], Lewin et al. [114], Karloff et
al. [93], Hast [79], Charikar et al. [35], Chlamtac et al. [41], Charikar and Wirth [36], Frieze
and Jerrum [62], Halperin and Zwick [78], Matuura et al. [122], Zwick [162], Goemans and
Williamson [66], Feige and Goemans [54], Zwick [161, 164]) to Vertex Coloring (Karger et al.
[90], Chlamtac [40], Arora and Chlamtac [12], Chlamtac and Singh [42]), Vertex Ordering

(Charikar et al. [33], Chor [43]) to Graph decomposition (Frieze and Jerrum [62] Arora et
al. [16]), and Discrete optimization (Alon and Naor [4], Charikar and Wirth [36], Khot and
Naor [100], Nesterov [128]).

Among the two techniques, linear programming is a special case of its semidefinite
counterpart. Therefore, semidefinite programming is arguably one of the most powerful
tools in the design of approximation algorithms.

Stronger Relaxations In general, there is no single canonical choice for a convex relax-
ation of a given optimization problem. There are multiple ways to formulate a combinatorial
optimization problem as an integer program and, more importantly, many possible convex
relaxations of the integer program.

Furthermore, given a convex relaxation of an integer program, it could be strengthened
by introducing additional constraints. As one includes more constraints into a convex re-
laxation Conv, the optimum Conv(SJ) of the relaxation may be a much better estimate of
the optimum of the instance. Here again, there are numerous choices of additional con-
straints that can be included to strengthen a given convex relaxation. In fact, there are
several hierarchies of increasingly stronger relaxations called the Lovész-Schriver [118], the
Lasserre [110] and the Sherali-Adams hierarchies [150]. On the flipside, including additional
constraints increases the size of the relaxation thereby increasing the complexity of opti-
mizing it. For instance, optimizing the relaxation in the k' level of the above mentioned
hierarchies takes roughly n®®) time.

Nearly every algorithm based on semidefinite programming actually makes use of a very
simple semidefinite relaxation. A notable exception is the breakthrough result of Arora,
Rao and Vazirani [16] that used a stronger semidefinite program with triangle inequalities
to obtain an O(y/log n) approximation for the SPARSEST CUT problem. This has sparked a
lot of interest in using stronger semidefinite programs to obtain better approximation algo-
rithms (Chlamtac [40], Arora and Chlamtac [12], Chlamtac and Singh [42]). In particular,
hierarchies of stronger SDP relaxations such as Lovédsz-Schriver [118], Lasserre [110] and
Sherali-Adams hierarchies [149] (see Laurent [112] for a comparison) have been touted as
tools to push the limits of approximability.

On one hand, this sounds like an opportunity, since stronger semidefinite programs
might yield much better approximation ratios. On the other hand, the lack of work in this
direction points to the difficulty of using stronger semidefinite programs in algorithms. In
the case of linear programming, there has been considerable progress in understanding the
limits of strong linear programming relaxations obtained via these hierarchies. However, for
the more powerful technique of semidefinite programming, the limits of stronger relaxations
are poorly understood.

1.4 Understanding the Limits

With every approximation algorithm devised, the question arises as to whether we could
find better approximations? Thus, the design of approximation algorithms is to be comple-
mented with the study of limits of approximability.

The first breakthrough in this direction came in the early 1990’s with the celebrated PCP
theorem by Arora et al. [15]. The PCP theorem is equivalent to the following hardness
result,

Theorem 1.1 (PCP Theorem). For some constraint satisfaction problem (3-SAT), it is not
only NP-hard to find an assignment satisfying all constraints, even satisfying more than
0.99999999-fraction of the constraints is NP-hard.

Thus, the PCP theorem is a hardness of approximation result for the problem of sat-
isfying the mazimum number of clauses in a 3-SAT formula. Over the last decade, using
fairly involved reductions starting from the PCP theorem, the approximability of several
important computational problems like MINIMUM SET COVER, MAXiMUM CLIQUE and
COLORING have been resolved. Table 1.1 lists a few of the NP-hardness results obtained
from the PCP theorem.

The pursuit of hardness of approximation results has been an extremely fruitful en-
deavor. In some cases like MINIMUM SET COVER, the lower bounds confirmed that a
simple heuristic (the greedy algorithm) is the best one can do. While in a few cases like the
work on EUCLIDEAN TRAVELING SALESMAN PROBLEM by Arora [8], it led to new algo-
rithms with better guarantees. From a theoretical standpoint, this pursuit enriched the area
with connections to testing, computational learning, and techniques from discrete geometry
and Fourier analysis.

Despite considerable success in showing hardness of approximation results, the approx-
imability of many basic problems such as MINIMUM VERTEX COVER still remain open. For
instance, the best known approximation algorithm for MINIMUM VERTEX COVER achieves
a factor 2 approximation, while the best known lower bound on the approximation possible
is 1.36 shown by Dinur and Safra [50]. Hence, either there exists a better approximation
algorithm for MINIMUM VERTEX COVER or the hardness result can be improved to a factor
2.

In 2002, Subhash Khot [97] introduced the Unique Games Conjecture, and observed
that it could imply tight hardness results. The Unique Games Conjecture is a hardness as-
sumption stating that a certain combinatorial optimization problem is hard to approximate
in a strong sense. For the sake of exposition, we present an equivalent formulation of the
Unique Games Conjecture (UGC) due to Khot et al. [99]. To this end, we first define a
special case of the UNIQUE GAMES problem referred to as the ['-MAX LIN.

Problem 6 (I'-MAX LIN (p)). For a natural number p, given a set of linear equations over
integers of the form x; — x; = ¢;; (mod p), find an assignment satisfying the maximum
number of equations.

(Unique Games Conjecture [97]). For any £,5 > 0, there is a large enough number
p such that: given a I'-MAX LIN (p) instance for which there is a solution satisfying a
1 — e-fraction of equations, it is NP-hard to find one that satisfies even a §-fraction of the
equations.

Assuming the UGC, hardness of approximation results have been obtained for several
fundamental optimization problems. Specifically, UNIQUE GAMES and, in turn, I'-MAX

Problem Best Algorithm | NP-hardness UG-Hardness
MAX 3-SAT z < [86]
SET COVER Inn In n[56]
INDEPENDENT SET %‘gi’ﬁ 26] | nl=c [85]
COLORING lOgLQn [77] n'=¢ [57]
MiNiMUM VERTEX COVER 2 1.36 [50] 2 [103]
Max Cur 0.878 [65] 0.941 [86] 0.878 [99]
MAX 2-SAT 0.9401 [114] 0.9546[86] 0.9401 [17]
SPARSEST CUT VIog n[16] 1+e¢ Every constant[38, 104]
MAX K-CSP QL) [32] | O(Z5)[143] O(4)[144, 19, 75]

Table 1.1: Results on Approximability

LIN (p) problems have been reduced to the task of approximating several problems like
MiINIMUM VERTEX COVER and MAX CUT up to a certain ratio. Therefore, if the UGC is
true (the UNIQUE GAMES problem is NP-hard), then it would imply that approximating
MiINIMUM VERTEX COVER and MAX CuUT are NP-hard beyond a specific threshold.

For the sake of clarity, we will say a problem is UNIQUE GAMES-hard or just UG-hard,
if there is a reduction from UNIQUE GAMES to the problem. For instance, by the work
of Khot and Regev [103], the problem of approximating MINIMUM VERTEX COVER better
than factor 2 is UG-hard. If the UGC is true, then a problem that is UG-hard is indeed
NP-hard.

We list a few of the UG-hardness results in Table 1.1. Observe that UG-hardness re-
sults exactly match the best algorithms known for classic problems like MINIMUM VERTEX
COVER, MAX CUT and MAX 2-SAT.

The Unique Games Conjecture (UGC) remains a notorious open problem today. Not
only is the conjecture unresolved, but there is no consensus among theorists about its truth.
There have been several attempts at disproving the conjecture (Trevisan [155], Gupta and
Talwar [72], Chlamtac et al. [41], Charikar et al. [35] and Arora et al. [14]) and much lesser
progress towards proving it (Feige and Reichman [60]).

While there is no consensus on its truth, studying the UGC and its implications has
been extremely fruitful. Several unconditional results (results that hold irrespective of
the truth of the UGC) have been obtained via UG-hardness reductions. Many of these
results have vastly improved our understanding of the power and limitations of semidef-
inite programming - arguably the most powerful technique in approximation algorithms.
For instance, the well-known Goemans-Linial conjecture asserted that a semidefnite pro-
gram yields a constant factor approximation for a fundamental graph partitioning problem,
namely the SPARSEST CUT problem. In a breakthrough result, Khot and Vishnoi [104] used
UG-hardness reductions to disprove the conjecture. Starting with this work, UG-hardness
reductions have exposed the limits of semidefinite programs on numerous combinatorial
optimization problems.

10

Finally, the study of the UGC and its implications could shed light on an approach
to its eventual resolution. A confirmation of the UGC will resolve the approximability of
fundamental combinatorial optimization problems, while a refutation is likely to lead to new
and powerful algorithmic techniques.

1.5 Integrality Gaps vs Hardness Results

The MINIMUM SET COVER problem is a classic combinatorial optimization problem. There
is a simple natural linear programming relaxation for the problem that has an integrality
gap of Inn. It was shown by Feige [56] that the best possible approximation ratio for the
problem is exactly Inn. It is rather surprising that the integrality gap of the relaxation
matches the best possible approximation ratio. Indeed, this is just one example of a long
and widely observed phenomena in approximation algorithms.

For a convex relaxation, recall that the integrality gap is the worst possible ratio between
the optimum of the relaxation and the optimal solution to the instance. An integrality gap
instance for a relaxation Conv is a hard instance for a particular algorithm given by the
relaxation Conv. Specifically, the integrality gap instance could possibly be an easy instance
(better approximated) for a different convex relaxation or algorithm.

For a combinatorial optimization problem, let the hardness threshold refer to the best
possible approximation computable in polynomial time. Therefore, the hardness threshold
measures the limits of all polynomial time algorithms, not just a specific convex relaxation.

Apriori, there is little reason to suspect that the integrality gap of a particular convex
relaxation to a problem would equal its hardness threshold. After all, the integrality gap is
the limit of a specific convex relaxation, while the hardness threshold measures the limit of
all polynomial time algorithms. Yet, it has often transpired that the integrality gap of a
simple convex relaxation exactly matches the hardness threshold. In other words, for many
classic combinatorial optimization problems, it has so transpired that certain simple convex
relaxations yield the optimal approximation computable in polynomial time.

This connection between integrality gaps and hardness thresholds have grown stronger
with the advent of the Unique Games Conjecture. For the MAX CUT problem, the semidef-
inite programming based algorithm of Goemans and Williamson yields an approximation
ratio which is an irrational number close to 0.878. Surprisingly, the UG-hardness result for
Max Cut by Khot et al. [99] exactly matches the approximation factor! Even in the case
of MAX 2-SAT, the UG-hardness result by Austrin [17] exactly matches the approximation
obtained using a semidefinite program due to Lewin et al. [114].

In earlier cases like MINIMUM SET COVER, the fact that integrality gap equals the
hardness threshold seemed more of a coincidence. However, with UG-hardness results as in
the case of MAX CuT, the integrality gap instances appeared to play a role in the proof
of the hardness result. Furthermore, in the reverse direction, UG-hardness results paved
the way to new SDP integrality gaps for SPARSEST CUT and MAX CuT (Khot and Vishnoi
[104]).

Summarizing, the somewhat mysterious and long-observed relation between integrality
gaps and hardness thresholds has grown stronger with the advent of the Unique Games
Conjecture. While many earlier works such as Khot et al. [99], Austrin [17] and, Khot

11

and O’Donnell [101] hinted at its existence, the work of Austrin [18] established a partial
connection between SDP integrality gaps and UG-hardness results.

1.6 Brief Summary of Contributions

The dissertation obtains both approximation algorithms and lower bound results, many
of which are based on the Unique Games Conjecture. Here, we present a brief summary
of the main contributions of this dissertation. By virtue of its brevity, the summary is
necessarily incomplete and imprecise. We refer the reader to Section 2.6 for a detailed
chapter-by-chapter description of the contributions of the dissertation.

The rest of the dissertation is organized into three parts: algorithmic techniques, the
UG Barrier and unconditional lower bounds.

Algorithmic Techniques We present a generic approximation algorithm that applies to
every constraint satisfaction problem (CSP). This generic algorithm obtains an approxima-
tion that is at least as good as all known algorithms designed for specific CSPs. In turn, it
unifies a large body of existing work on semidefinite programming based algorithms for con-
straint satisfaction problems. The SDP relaxation underlying the generic algorithm which
we term the LC relaxation, is also applicable to the classes of metric labelling problems and
ordering CSPs.

The Unique Games Barrier Among the main contributions of the dissertation is the
direct reduction from integrality gaps for semidefinite programs to UG-hardness results.
This confirms the long-suspected connection between integrality gaps and hardness of ap-
proximation.

Harnessing this connection, we show that the LC semidefinite program yields the optimal
approximation for every constraint satisfaction problem under the UGC. While this unifies
several earlier UG-hardness results for specific CSPs like MAx CuUT, it also asserts that the
generic algorithm presented in our algorithmic techniques section is optimal for every CSP
under the UGC.

Extending this connection further, we obtain optimal hardness results for every metric
labelling problem. More precisely, we show that a simple linear program that is referred
to in the literature as the “earthmover relaxation” yields the best approximation for every
metric labelling problem under the UGC. Specifically, this settles the approximability of
the classic problem of MULTIWAY CUT that belongs to this class.

Developing technical machinery to work with orderings, we show that the fundamental
ordering problem of MAXIMUM ACYCLIC SUBGRAPH is UG-hard to approximate to a factor
better than % More generally, the LC relaxation yields the optimal approximation for every
ordering CSP under UGC.

We also outline some other interesting consequences of the direct connection we establish
between integrality gaps and UG-hardness results. Specifically, we devise an algorithm to
compute the Grothendieck constant - an important mathematical constant determining
whose value remains a long-standing open question.

12

Summarizing, we demonstrate that the UNIQUE GAMES is a common barrier that ex-
isting algorithmic techniques seem to have reached on every problem in large classes like
CSPs, metric labelling problems and ordering CSPs. Furthermore, under UGC, the best
approximation for all these problems is given by one of the simplest semidefinite programs
— the LC relaxation.

Unconditional Lower Bounds The LC relaxation is simple enough that it can be solved
in near linear time up to any constant additive error (see Steurer [151]). This suggests that
a stronger relaxation could yield better approximations to these combinatorial optimization
problems, thus disproving the UGC. In Chapter 12, we obtain preliminary results towards
ruling out this possibility. Specifically, we show that for any constraint satisfaction, metric
labelling or ordering CSP, the SDP integrality gap does not improve on including all valid
constraints on O(2(oglog N)1/4) vectors to the LC relaxation (here NV denotes the number of
variables in the combinatorial optimization problem). We also obtain hard instances for
the BALANCED SEPARATOR problem thereby constructing metric spaces that are locally L;
embeddable yet require large distortiion to embedd in to L1 globally.

This result could be considered as very preliminary evidence for the intractability of
UNIQUE GAMES. In the final chapter, generalizing the work of Hastad [86], we present
strong NP-hardness result for approximating sparse linear equations over reals.

1.6.1 The Approximation Landscape

Here we succinctly summarize the rough picture of the landscape of approximability that
has emerged in the course of this dissertation.

— Under the UGC, the LC semidefinite program which is arguably one of the simplest
SDP relaxations yields the optimal approximation for every constraint satisfaction
problem, metric labelling or an ordering CSP. All known algorithms for these classes
of problems obtain an approximation weaker than the LC relaxation.

— For the LC relaxation applied to CSPs, there are generic algorithms to round the
fractional solution optimally (to its integrality gap), and also compute the value of
the optimal approximation ratio (integrality gap).

— While the LC relaxation is simple, there is evidence showing that certain more compli-
cated SDP relaxations do not yield any better approximation. Specifically, irrespective
of the UGC, including any additional constraints on up to 0(2(1"g log N)1/4) vectors in
the LC relaxation does not improve the approximation ratio.

13

Chapter 2

PRELIMINARIES AND ORGANIZATION OF THESIS

2.1 Relaxation and Rounding: Examples

In this section, we will describe the relaxation-rounding paradigm using two examples MIN-
IMUM VERTEX COVER and MAX CUT both of which have been fundamental and influential
combinatorial optimization problems.

2.1.1 MINIMUM VERTEX COVER

The MINIMUM VERTEX COVER problem is defined as follows,

Problem 7 (MiNIMUM VERTEX COVER). An instance of MINIMUM VERTEX COVER prob-
lem consists of a graph G = (V, E) over a set of vertices V' and edges E. A vertex cover is
a set of vertices S, such that every edge in the graph, has one of its endpoints in the set S.
The goal is to find a vertex cover S with the minimum number of vertices.

Relaxation By virtue of the fact that space of feasible solutions is discrete, every com-
binatorial optimization problem can be reformulated as a constrained optimization with
integer valued variables, i.e., an integer program. In other words, given an instance of a
combinatorial optimization problem, we can encode it as maximizing or minimizing a func-
tion of a set of variables that takes certain integer values (say {0,1}) and are required to
satisfy a set of constraints.

Let G = (V, E) be an instance of the MINIMUM VERTEX COVER problem. To formulate
it as an integer program, introduce a variable X, for every vertex v in the graph G. The
variable X, indicates whether the vertex v belongs to the vertex cover or not. Specifically,
X, is a {0, 1}-variable defined as follows:

1 if v is in vertex cover,
X, =

0 otherwise.

Consider an edge (u,v) in the graph G. In a valid vertex cover, at least one endpoint of the
edge (u,v) must belong to the vertex cover. Hence, the variables X,,, X, corresponding to
u and v must satisfy X,, + X, > 1. The integer program in variables X, is given by,

14

Integer Program for MINIMUM VERTEX COVER
Minimize Z Xy (size of the vertex cover)
veV
Subject to Xu+ X, 21 for each edge (u,v) in the graph
X, €{0,1} for every vertex w.

Being a reformulation, the resulting integer program is also NP-hard. Technically, the
intractability of the integer program stems from the non-convezity of the space of solutions.
The main idea is to relax the constraints of the integer program so as to make it tractable.
Specifically, we will relax the condition that the variables are to be assigned values 0 or
1 only. We will let the variables X, to take real values in the range [0,1]. The resulting
relaxation is what is referred to as a linear program, and can be solved efficiently.

Linear Programming Relaxation for MINIMUM VERTEX COVER
Minimize Z Xy (size of the vertex cover)
veV
Subject to X+ X, 21 for each edge (u,v) in the graph
0< X, <1 for every vertex u .

Clearly, any solution to the integer program is also a valid solution to the linear program-
ming relaxation. In other words, the relaxation permits more solutions than the original
integer program. Hence, it immediately follows that the optimum of the linear program is
at most the optimum of the integer program. Formally, if opt(G) denotes the size of the
minimum vertex cover of graph G, and Conv(G) denotes the optimal value of the linear
program, then Conv(G) < opt(G).

The value of Conv(G) serves as an efficiently computable estimate for opt(G). Of course,
it is completely unclear at this point how good an estimate Conv(G) is. The worst case ratio
between opt(G) and its estimate Conv(G) over all graphs G is referred to as the integrality
gap of the relaxation. The “hard” graphs for the relaxation, where the worst case ratio is
achieved are referred to as em integrality gap instances. Integrality gap serves as a coarse
measure of the quality of the estimate opt(G) and more refined measures will be used
whenever possible.

Consider the complete graph on 5 vertices, denoted by K5. It is easy to check that
X, = 1/2 is a feasible solution to the linear program. Thus, conv(K35) < 5 X 1/2 = 2.5 while
the size of every vertex cover is at least 4. Consequently, the integrality gap of the relaxation
is at least 4/2.5 = 1.6. More generally, the gap between the two quantities approaches 2 on
complete graphs with larger and larger size.

Rounding The value conv(G) is only an estimate for the value of the minimum vertex
cover (opt(G)). However, recall that our initial goal was to find a vertex cover of as small
a size as possible. Furthermore, as yet there is no guarantee on the quality of the estimate
conv(G).

15

On optimizing the linear program, we obtain an assignment of values in the range [0, 1]
to the variables {X,},cy. The value of the variable X, was intended to indicate whether
vertex v belonged to the vertex cover or not. Thus, assigning X, to some real value (say
0.9) seems to have no apparent meaning in the context of the graph G.

In this light, we will “round” the real valued solution X, into an integral assignment X
taking {0, 1} values, while losing a small factor on the size of the vertex cover. Specifically,
for each vertex v, if X,, > 1/2 then set X to 1, else assign X to 0. Notice that for any
edge (u,v), the constraint X, + X, > 1 ensures that at least one X, and X, is > 1/2.
Consequently, at least one of X' and X is set to 1 for every edge (u,v). Hence, X is
a valid solution to the integral program, and the above procedure is a correct rounding
scheme.

Now we will analyze the performance of the above rounding scheme. Observe that, for
each vertex v, X is always at most 2 x X, by definition. Therefore, the size of the vertex
cover is bounded by

Z X < Z 2X, =2 Conv(G)
veV veV

There are two important conclusions to be derived from the above inequality. First,
since Conv(G) < opt(G), the value of the integral solution X is at most twice the size
of the optimal vertex cover. Therefore, the linear programming relaxation along with the
above rounding scheme yields a 2-approximation to the MINIMUM VERTEX COVER problem.
Furthermore, by definition of opt(G), any vertex cover of G has value at least opt(G). In
particular, this implies that

opt(G) < Z X, <2-Conv(Q).

veV

Thus the rounding scheme serves as a proof that the worst case ratio between opt(G) and
Conv(QG) (the integrality gap) is at most 2.

In general, given an instance < of a combinatorial optimization problem, it is reformu-
lated as an integer program, and then a convex relaxation Conv($) of the integer program
is constructed. The value of the optimum opt(Conv(S)) for the relaxation is an “estimate”
for the actual optimum value opt(SJ) (which is NP-hard to compute). The integrality gap of
the relaxation is a measure of how good an estimate opt(Conv(S)) is for the actual optimum
opt ().

The optimal solution to the relaxation will probably consist of an assignment of real or
possibly vector values to the variables. In the next step, a procedure (rounding scheme) is
devised to “round” the real or vector valued assignment to the variables, into an integer
assignment, with a small loss in the objective value. The relaxation and rounding scheme
together yield an approximation algorithm.

2.1.2 The MAX CuUT Ezample

Problem 8 (Max Cut). Given a graph G = (V. E) with vertices V' = {v1,---, v, } and
edges I, find a partition S U S = V of the set of vertices that maximizes the number of
edges cut by the partition. An edge e = (v;,v;) is cut, if v; € S and v; € S or vice versa.

16

In their seminal work, Goemans and Williamson [65] used a semidefinite programming
relaxation to obtain a 0.878-factor approximation for the problem.

Relaxation First, we will formulate the MAaXx CUT problem as a quadratic program. For
each vertex v; € V, introduce a variable z; that takes one of two values +1 or —1. The
value of x; indicates which set in the partition S U S, the vertex v; lies in. Formally, let

o +1 ifv; €8
-1 ify;eS

In this encoding, an edge e = (v;,v;) is cut if and only if ; # x;. In fact, the following
holds

(zi —xj)? |1 if the edge(v;, v;) is cut
4 0 otherwise

Therefore, the Max CuT problem on the graph G can be expressed as the following
quadratic program in the variables {z;}7"_,,

2

Maximize (Number of edges cut)

(zi — z5)

o=

(vi,vj)EE

Subject to z?=1 Vi,1<i<n (x; is either +1 or —1)

)

Being an exact reformulation of the MAX CuT problem, the above quadratic program
is NP-hard to optimize exactly. Consequently, we will consider a convex or more precisely
semidefinite relaxation of the above program.

Recall that the variables x; are equal to £1, or equivalently each z; is a one-dimensional
vector of length 1. Relaxing this constraint, we will require the variables x; to be unit vectors
in a high dimensional space. More precisely, we will now associate a n-dimensional unit
vector v; to each vertex v;. This yields the following semidefinite programming relaxation.

GW(G) Relaxation (GW)
1
Maximize 1 Z v — v;l|3 (Total Squared Length of Edges)
(’l)z',’l)j)EE
Subject to lvil3=1 Vi,1<i<n (all vectors v; are unit vectors)

Every feasible solution {z;}}" ; to the original quadratic program is also a feasible solution
to the GW SDP relaxation, since the variables x; can be thought of as a n-dimensional vectors
with n — 1 coordinates equal to 0. Hence, the GW SDP relaxation is indeed a relaxation of
the quadratic program.

17

It is well known that the above convex relaxation can be optimized efficiently [65], i.e.,
for any ¢ > 0, the optimum can be approximated to within ¢ in time polynomial in log1/e
and the size of the graph G.

Being a relaxation, it is immediate that
GW(G) = opt(G) (2.1)

where opt(G) denotes the value of the maximum cut of G. The integrality gap of the
relaxation GW is the maximum ratio between the two quantities over all graphs G, i.e.,

Ga = min opt(G)

Pew = graph G GW(G)

Often, the term “integrality gap” is used to refer to the graph G for which the above ratio
is minimized.

Rounding On solving the GW SDP relaxation, we obtain a set of unit vectors {v;} ,
on the n-dimensional space R"™. Recall that the vector v; corresponds to the vertex v; in
the graph GG. Hence, the optimum solution yields an embedding of the graph G on to the
n-dimensional unit sphere.

The following rounding scheme is a randomized procedure that takes as input a feasible
solution to the GW SDP and obtains a cut in the original graph G.

Halfspace Rounding Scheme (Roundy)
Input: A feasible solution {v;}}"_; for the GW SDP for a graph G = (V, E).

— Sample a random hyperplane H passing through the origin.
The hyperplane H induces a partition of the n-dimensional unit sphere S, into two

parts of equal hemispheres (say S} and S;)).

— Output the cut induced by the hyperplane H on the graph GG. Formally, output the
cut AU A where A=S7NVand A=S; NV.

Now we will estimate the expected value of the cut output by the above procedure.
Consider an edge e = (v;,v;) in the graph G. Let 6 be the angle between the vectors
v; and v; given by 6 = arccos((v;,v;)). Note that a random hyperplane H projects to a
random line passing through the origin in the plane containing v; and v;. Therefore, we see

that,

arccos(v; - v;
Prle = (vi,v5) is cut] = arccos(v; - v;)
H ™

Let us suppose we execute the halfspace rounding scheme on the optimum solution

{v;}_; to the SDP. Let Roundy(G) denote the expected value of the cut output by the

18

above rounding procedure. Hence,

Roundy(G) = E[Number of edges cut by H] = 3 arccos(v; - ;)

(vivj)eE

™

To bound the approximation ratio, the above quantity is to be compared with the
optimum cut of the graph G. Instead, by Equation 2.1, we can compare the above quantity
with the SDP value of the solution {v;}!" ,,

n 1
val({viting) = 4 > v — i3

We will use a “local analysis” (one edge at a time) to compare the two quantities. Specifi-
cally, an edge (v;, v;) contributes 1 |v;—wv;||3 = (1-vi-v;)/2 to GW(G), while it adds arceos(v; v;)
to Roundy(G). Now we will appeal to the following easy fact:

Fact 2.1.1. For z € [-1,1], %ﬂs(m) > agw X (1593) where agw s an absolute constant
greater than 0.878.

Consequently, for each edge (v;,v;) we have

.. . y — 2
arccos(v;-vy) o= vl
2m 4

Summing the above inequality over all edges we get Roundy(G) > agw X GW(G). As GW(G)
is at least the value of the maximum cut of G (opt(G)), we have Roundy (G) > agw X opt(G),
i.e., Roundy; along with the GW SDP relaxation gives a agw-factor approximation algorithm
for Max Cur.

Moreover, the rounding scheme Roundy serves as a constructive proof that the integrality
gap of the GW SDP is at most agw. Specifically, by definition, the value of the cut returned
by Roundy, is at most the optimum cut of G, i.e., opt(G) = Roundy (G). As an immediate
conclusion, for all graphs G we have,

opt(G) = Roundy(G) > agw x GW(G).

2.2 Definitions and Terminology

To begin with, we present the formal definition of an approximation algorithm.

Definition 2.2.1. A randomized algorithm A is said to be an a-approximation algorithm
for the maximization problem A, if for every instance < of the problem:

Cx
o = inf AS)
e opt ()

Here A(SJ) denotes the expected value of the solution output by the algorithm A, while

opt() denotes the optimum solution to instance §. The infimum is taken over all in-

19

stances & of the maximization problem A. For minimization problems, an a-approximation

algorithm should satisfy a = supgep O’;(—E‘g).
Thus, the approximation ratio achieved by an algorithm A for a maximization problem
A, is given by infgep (;;(—(‘g).

In many cases, the approximation factor is a function of the size of the input instance
. Then, the approximation factor a(n) as a function of the input size n can be defined as

The approximation ratio is a somewhat crude measure of the performance of an approx-
imation algorithm. For several combinatorial optimization problems such as MAX CuT, the
difficulty of approximating an instance <, varies considerably with the value of the optimum
opt(3). For instance, a MAX CUT instance & that is completely satisfiable (all edges can
be cut by a partition) can be solved optimally in polynomial time. On the other hand, the
Max CuT problem is seemingly hardest to approximate on instances where the optimal cut
separates roughly 75% of the edges.

To take advantage of varying difficulty of approximation with the value of the optimum,
it will be useful to consider a refined measure of quality of approximation. Specifically, we
define the approzimation curve of an algorithm is defined as follows:

Definition 2.2.2. Let A be a randomized algorithm for a maximization problem A. The
approzimation curve a(c) of an algorithm A, parametrized by the value of the optimum ¢,
is the smallest value of the solution returned by A on instances with optimum value ¢, i.e.,

ale) = inf A(Q)
e
opt(F)=c

For minimization problems, the infimum in the above definition is replaced by a supremum.

Remark 2.2.1. The approximation ratio can be inferred from the approximation curve as
a = inf, a(9)/e.

Remark 2.2.2. In the definition of the approximation curve, the range of values for the
parameter c is unspecified. Yet in most cases, after a suitable normalization, the optimum
can be assumed to lie in the range [—1,1].

Relaxations, Integrality Gaps and Rounding Schemes Let Conv denote a convex
relaxation either a linear or a semidefinite program for a maximization problem A. For an
instance 3, let Conv(<) denote the value of the optimum solution to the relaxation Conv on
the instance .

The integrality gap is a coarse measure of the quality of the estimate obtained by the
convex relaxation Conv for the optimization problem A. Formally, the integrality gap of
Conv is defined as

opt ()

GapRatio = inf ——*
P A,Conv ™ 5o Conv(S)

20

Again, it is useful to measure the integrality gap as a function of the optimum value of
the instance. In this light, we define the integrality gap curve or simply gap curve.

Definition 2.2.3. For a convex relaxation Conv of a maximization problem A, the inte-
grality gap curve Gapcony(c) is defined as

GapALonv(c) = inf opt(Y)
JeA
Conv(¥)=c

Let (V,) be a feasible solution to the convex relaxation Conv of the instance &. The
solution (V', u) could consist of real or possibly vector valued assignment to variables in the
convex relaxation Conv. Let val(V', i) denote the objective value of the solution (V',).

To obtain an integral solution, the assignment (V', u) is to be rounded into an integral
assignment. Formally, the Round procedure takes as input a feasible solution to the relax-
ation Conv, and outputs a solution to the original instance &. Let Round(V', i) denote the
expected value of solution returned by the randomized procedure Round.

Definition 2.2.4. For a maximization problem A, the rounding ratio of a randomized
procedure Round is the following worst case ratio

. . Round(V)

f

RoundRatiox conv = CéIéA (V. p2)

A rounding scheme is said to achiecve the integrality gap, if the rounding ratio is equal
to the integrality gap ratio for the relaxation.

Here again, we define the rounding curve Roundcon (¢) along the lines of approximation
and integrality gap curves.

Rou ndA,Conv(C) = Val(‘i/pfz)—c Round(V, p)

For the sake of brevity, we will drop either A or conv from the subscripts, when it is
clear from the context.

Remark 2.2.3. Set (V,) to be the optimal solution to the relaxation Conv, i.e., val(V, u) =
conv (). By definition of opt(S), we have Round(V', u) < opt(J). Therefore, the rounding

curve Roundcony(¢) is always at most the integrality gap curve Gapg,,(c) of the relaxation,

for a maximization problem.

2.3 Problem Classes

The major problem classes considered in this thesis are constraint satisfaction, graph la-
belling and ordering constraint satisfaction problems. Definitions of specific problems con-
sidered in the thesis have been collected in Appendix A.

21

Constraint Satisfaction Problems A large number of fundamental combinatorial op-
timization problems like MAX CuT and MAX 3-SAT fall under the category of constraint
satisfaction problems (CSP). The input to a CSP consists of a set of variables that can be
assigned values from a finite domain (say {0,1}), and a set of constraints among them. The
objective is to find an assignment that satisfies the maximum number of constraints. By
restricting the type of constraints to different sets of predicates, one obtains different CSPs.
For instance, MAX 3-SAT is a CSP over boolean variables where all the constraints are of
the form ¢; v ¢; V £, = TRUE, where each /;,{;, ¢}, are either variables or their negations.

Constraint satisfaction problems arise naturally in a vast variety of applications in ar-
tificial intelligence, planning and other areas. The study of approximability of constraint
satisfaction problems is a rich and influential area, with problems such as MAx CuT, MAX
3-SAT that have been testing grounds for new algorithmic and hardness ideas, a large num-
ber of algorithms for specific CSPs based on semidefinite programming, and finally the
development of techniques such as long-code testing [86].

Graph Labelling Problems The simplest and probably most familiar problem in this
class is the minimum (s, ¢) cut problem. Given two terminals s and ¢ in a graph G, the goal
is to split the graph into two parts separating s and ¢, while cutting the minimum number
of edges. This problem can be solved precisely in polynomial time following the classic work
of Ford and Fulkerson.

The 3-wAY CUT problem is a natural generalization of the minimum (s, ¢) cut problem
where there are three terminals that need to be separated from each other. This close
variant of minimum (s,t) cut problem already turns turns out to be NP-hard. The best
known algorithm for the problem achieves an approximation ratio of % [46]. Separating
not three, but an arbitrary number of terminals is the objective in the MULTIWAY CUT
problem. Generalizing this problem further, one obtains the class of 0-EXTENSION and
METRIC LABELING problems. Many problems in this class arise naturally in applications
to computer vision [107], metric embeddings [108] and analysis [113].

Ordering Constraint Satisfaction Problems Given the results of games between sev-
eral football teams, let us suppose we wish to rank the teams. Specifically, we would like to
find a ranking that agrees with the results of maximum number of games. Here the result
of a game agrees with the ranking if the higher ranked among the two teams wins. For-
mally, the problem can be restated as follows: Given a directed graph find an ordering of its
vertices that maximizes the number of edges in the forward direction. This problem called
the MAXIMUM ACYCLIC SUBGRAPH problem is perhaps the most well-known problem in
this class. In particular, the MAXIMUM ACYCLIC SUBGRAPH figured in Karp’s early list of
NP-hard problems [94].

More generally, in an ordering constraint satisfaction problem, there are n objects that
are to be ordered. There are constraints such as “A is before B”, “B is between A and C” on
the ordering. The goal is to find an ordering that satisfies the maximum number of clusters.
By restricting the type of constraints between objects, one obtains various ordering CSPs.

22

2.4 Generalized Constraint Satisfaction Problems

In this thesis, we define a class of combinatorial optimization problems referred to as the
Generalized Constraint Satisfaction Problems (GCSP). This class is a generalization of
the traditional constraint satisfaction problem, which encompasses both maximization and
minimization problems.

In a Constraint Satisfaction Problem (CSP), the goal is to satisfy the maximum number
of a set of constraints. Formally, a CSP A is specified by a family of predicates over a finite
domain [q] = {1,2,...,q}. Every instance of the CSP A consists of a set of variables V,
along with a set of constraints P on them. Each constraint in P consists of a predicate from
the family A applied to a subset of variables. The objective is to find an assignment to the
variables that satisfies the maximum number of constraints. The arity k of the CSP A is
the maximum number of inputs to a predicate in the family A.

A constraint can be thought of as a payoff that returns either 0 or 1 depending on whether
it is satisfied. Roughly speaking, a GCSP is the natural generalization where the constraints
are replaced by bounded real-valued payoff functions, and the goal is to maximize the total
payoff. Formally,

Definition 2.4.1. A Generalized Constraint Satisfaction Problem (GCSP) A is specified
by a family of payoff functions A = {P|P : [q]* — [~1,1]}. The integer k is referred to as
the arity of the GCSP A, while ¢ denotes the domain size.

A payoff function is said to be of type A if it belongs to the family A.

Definition 2.4.2 (A-GENERLIZEDCONSTRAINTSATISFACTIONPROBLEM (GCSP)). An in-
stance S of Generalized Constraint Satisfaction Problem A is given by & = (V, P) where

— V=A{uy1,...,Ym} is the set of variables that are to be assigned values in [q].

— A function P’ : [¢]Y — [~1,1] is said to be of type A, if P'(y) = P(yi,- - ,yi,) for
some P € A and some ¥;,,¥i,,---,¥;, € V. P is a probability distribution over a
payoffs of type A.

The objective is to find an assignment y € [q]¥ to the variables that maximizes the
expected payoff denoted by val(y), i.e.,

val(y) = E [P(y)] :

We define the value opt(J) as

opt () ' max val(y) .
y€lqlY

For a payoff P’ of type A, let V/(P") C V denote the set of variables on which P’ depends
on. Further, the arity of the GCSP A will be denoted by k. Now let us see how the classic
CSP MAX CuT can be posed as a GCSP.

23

Example 2.4.1. The Max CuT problem is a GCSP over the domain [2] = {0, 1}, with a
single payoff function P given by:

P(0,0) = P(1,1) = 0 P(0,1) = P(1,0) =1

The 4-cycle graph is an instance of MAX CuUT problem. It would be specified as

S = {V = {y1,Y2,Y3, Y4}, P = uniform distribution over {P(y1,v2), P(y2,y3), P(yg,y4),P(y4,y1)}}

Notice that the definition of GCSP does not restrict the Pay-Off functions to be positive
or negative. By permitting negative payoffs, the framework encompasses certain minimiza-
tion problems too. The idea is that, if we wish to minimize a positive function say f, then
it is equivalent to maximizing the negative function — f.

Example 2.4.2 (3-WAy Curt). 3-WAy CuUT problem is a minimization problem in the
class of graph labelling problems mentioned earlier. In 3-Way CuUT, the input consists of a
graph with three designated terminals. The goal is to partition the graph, so as to separate
the three terminals, while minimizing the number of edges cut. We can
The 3-WAY CUT can be formulated as GCSP over the domain [3] = {0, 1,2}, with four
payoff functions {P,, Py, P», P3} given by
Pe<x,y>={ Loy Pmc):{ botes
0 ifx=y 0 otherwise

Given a graph G = (V, E) and three terminals ¢, to,t3, we can write: V = {y,jv € V —
{t1,t2,t3}}, and for each edge e,

— If e = (u,v) where neither u or v is a terminal, then introduce the payoff P.(yu, vy)
— For an edge e = (u, t;), introduce the payoff P;(u).

It is easy to check that the total payoff is exactly the negative of the number of edges cut,
by the partition induced by the assignment to variables y,,.

More generally, all constraint satisfaction problems and graph labelling problems over
a constant number of labels, can be formulated as GCSP. Thus, the framework includes
maximization problems such as MAX CuUT, MAX 2-SAT, UNIQUE GAMES and Minimization
problems such as MULTIWAY CUT , METRIC LABELING and MIN-SAT.

Remark 2.4.1. The GCSP definition requires a normalization, so as to ensure that the
P is a probability distribution over payoffs. This ensures that the value of any solution to
a GCSP instance is in the range [—1,1]. In particular, the integrality gap curve and the
approximation curve are defined in the range [—1,1].

Remark 2.4.2. Unless otherwise mentioned, the domain size g of a GCSP is assumed to
be an absolute constant. At times, it will be useful to consider GCSP with a domain size
growing with the input (say n). Specifically, in constructing relaxations for ordering CSPs,
it is convenient to think of them as a GCSP over a growing domain.

24

2.5 Label Cover and Unique Games

The LABEL COVER problem which serves as a starting point for numerous reductions in
hardness of approximation is defined as follows:

Definition 2.5.1. An instance of LABEL COVER (¢, s) is given by ® = W U Vs, E, [R],1I)
consists of a bipartite graph over node sets Vg,Ws with the edges E between them, such
that all nodes in Vg are of the same degree. Also part of the instance is a set of labels [R],
and a set of mappings IT = {m,_,, : [R] — [R]} for each edge ¢ = (w,v) € E. An assignment
A of labels to vertices is said to satisfy an edge e = (w,v), if mTy—w(A(w)) = A(v). The
problem is to distinguish between the following two cases:

— There exists an assignment A that satisfies at least a fraction ¢ of the edge constraints
IT.

— Every assignment satisfies less than a fraction s of the constraints in II.

The following strong hardness result for LABEL COVER has been the starting point for
numerous reductions in hardness of approximation.

Theorem 2.1. [140, 15] There exists an absolute constant v > 0 such that for all large
enough integer constants n, the gap problem LABEL COVER (1, %) 18 NP-hard, even when
the input is restricted to label cover instances with the size of the alphabet n.

From the PCP theorem [15], it is easy to show that there exists an absolute constant
e such that LABEL COVER (1,1 — ¢) is NP-hard on instances where the size of alphabet is
restricted to a small absolute constant (say 7). With this as the starting point, one applies
the Parallel Repetition theorem [140] to obtain hardness of label cover instances over larger
alphabet. On applying k-wise parallel repetition, the 1 vs 1 — ¢ gap is amplified to 1 vs c*
for some absolute constant ¢, while the alphabet size also grows exponentially in k. This
yields the above inapproximability result with the required polynomial dependence between
the alphabet size n and the soundness %.

2.5.1 Unique Games Conjecture

Definition 2.5.2. An instance of UNIQUE GAMES represented as ® = (Wqg U Vg, E, 11, [R]),
consists of a bipartite graph over node sets Wg, Ve with the edges E between them. Also part
of the instance is a set of labels [R] = {1,..., R}, and a set of permutations 7y, : [R] — [R]
for each edge e = (w,v) € E. An assignment A of labels to vertices is said to satisfy an
edge e = (w,v), if Ty (A(w)) = A(v). The objective is to find an assignment A of labels
that satisfies the maximum number of edges.

For sake of convenience, we shall use a version of the Unique Games Conjecture which
was shown to be equivalent to the original conjecture [103]. To this end, we define the
notion of strong satisfiability below.

25

Definition 2.5.3. An assignment A to a UG instance ® is said to strongly satisfy a vertex
w € We if it satisfies all the edges (v, w) incident at w. The instance ® is said to be (1 —~)-
strongly satisfiable if there exists an assignment A that strongly satisfies (1 — v)-fraction of
the vertices w € Wep.

First, we define the following decision version of the UNIQUE GAMES problem.

Problem 9 (UNIQUE GAMES (R,1 — ~,d)). Given a bipartite UNIQUE GAMES instance
® = Wo UVy, EIl = {my—y : [R] = [R] | e = (w,v) € E},[R]) with number of labels R,
distinguish between the following two cases:

— (1 — v)-strongly satisfiable instances: There exists an assignment A of labels such that
for 1 — § fraction of vertices w € Wy are strongly satisfied, i.e., all the edges (w,v)
are satisfied.

— Instances that are not d-satisfiable: No assignment satisfies more than a J-fraction of
the edges F.

The Unique Games Conjecture asserts that the above decision problem is NP-hard when
the number of labels is large enough. Formally,

Conjecture 2.5.1 (Unique Games Conjecture [103]). For all constants v,0 > 0, there
exists large enough constant R such that UNIQUE GAMES (R, 1 —,0) is NP-hard.

For conceptual clarity, we will state our results in terms of the notion of UG-hardness.

Definition 2.5.4 (UG-hardness). A decision problem A is UG-hard, if for all v,§ > 0,
there exists a polynomial-time reduction from UNIQUE GAMES (R,1 —,d) to A.

Assuming the UGC, a decision problem A which is UG-hard, is in fact NP-hard.

2.6 Results and Organization of thesis

In Chapter 2, we present some basic definitions, set up notation and recall some mathe-
matical preliminaries. The rest of the thesis is divided into three parts, the algorithmic
techniques, the UNIQUE GAMES barrier and unconditional lower bounds.

2.6.1 Algorithmic Techniques

Chapter 4: Linear and Semidefinite Relaxations In this chapter, we present generic
linear and semidefinite programming relaxations that are applicable to the class of general-
ized constraint satisfaction problems (GCSP). The generic SDP relaxation LC unifies many
well known semidefinite programs for constraint satisfaction problems in literature. In fact,
we will demonstrate that the SDP relaxation LC is stronger than any relaxation used in
literature for constraint satisfaction problems. Yet the SDP relaxation LC is surprisingly
simple both conceptually, and in terms of complexity. Specifically, for CSPs, the LC re-
laxation can be solved in near-linear time by the techniques of [13]. At the end of the
chapter, we show that the generic SDP relaxation LC satisfies a certain robustness property

26

by which near-feasible solutions to LC can be “corrected” to make them completely feasible.
This robustness property is surprisingly useful, both in solving the program efficiently, and
rounding it.

Chapter 5: Generic Rounding Scheme We exhibit a generic rounding scheme that
unconditionally achieves the integrality gap of the LC relaxation for every CSP. More gen-
erally, the rounding curve of the generic scheme for every GCSP A, is within an additive
error 1 of the integrality gap curve of the relaxation LC. The error 7 is a parameter of the
algorithm which can be chosen to be any small constant.

As the LC SDP is the stronger than any relaxation used in literature for a CSP, the
generic rounding scheme yields a single algorithm for all CSPs, which is at least as good as
all the known algorithms [65, 32, 114, 93, 79, 35, 41, 36, 62, 78, 122, 162, 66, 54, 156, 161, 164]
for various CSPs. Furthermore, we will see in Chapter 7 that it is UG-hard to obtain an
approximation better than that obtained by the generic rounding scheme.

The generic rounding scheme can be succinctly summarized as follows: Reduce the
dimension of the SDP solution by randomly projecting it into a constant dimensional space,
identify all variables whose projected vectors are close to each other, and solve the resulting
instance by brute force!

2.6.2 The UNIQUE GAMES Barrier

In this part, we demonstrate that UG-hardness is a common barrier that approximation
algorithms have reached, on a surprising variety of combinatorial optimization problems.

Chapter 6: Dictatorship Tests, Integrality Gaps and UG-hardness results The
generality of the UG-hardness results shown in the thesis, stems from the formal connection
it establishes between integrality gaps and UG-hardness results. In fact, the direct reduction
between integrality gaps and UG-hardness results is one of the main contributions of the
thesis.

The direct conversion from integrality gaps to UG-hardness results is to be seen in the
context of other interesting connections that have emerged in recent years. In particular,
the notions of SDP integrality gaps, UG-hardness results and “Dictatorship tests” - which
are constructs useful in hardness reductions, have been intimately tied to each other in
many recent works [99, 104] including the thesis. While a conversion from dictatorship
tests to UG-hardness results was more or less demonstrated in [99], the work of Khot et al.
[104] exhibited a reduction from UG-hardness results to SDP integrality gaps. This work
completes the cycle of reductions by exhibiting a generic conversion from SDP integrality
gaps to dictatorship tests.

In Chapter 6, we survey all these emerging connections with MAX CUT as a running
example. In subsequent chapters, we will harness these connections to obtain UG-hardness
results, rounding schemes and SDP integrality gaps for several classes of problems.

There is another interesting facet to the direct reduction between SDP integrality gaps
to Dictatorship tests exhibited by the thesis. The analysis of the reduction yields an efficient
rounding scheme for certain semidefinite programs! This exposes the intriguing connection

27

between rounding schemes for semidefinite programs - an algorithmic construct, and dicta-
torship tests - a notion useful in hardness reductions. Analogous connection was discovered
earlier in the context of a certain dichotomy conjecture for constraint satisfaction problems.
In the final section of Chapter 6, we survey this intriguing connection and the implications
of the thesis on the dichotomy conjecture in detail.

Chapter 7: Generalized Constraint Satisfaction Problems In this chapter, we ex-
hibit the generality of the connections surveyed in Chapter 6, by exhibiting the connections
for every generalized constraint satisfaction problem. For instance, we show that for every
GCSP A, it is UG-hard to approximate A to an approximation better than the integrality
gap of the LC relaxation. Not only does this unify several well known UG-hardness results,
it settles the approximability of every CSP, if the UGC is true.

Harnessing the connection between dictatorship tests and rounding schemes, we also
obtain a generic rounding scheme for the LC relaxation of every GCSP, that is guaranteed
to achieve the integrality gap.

Surprisingly, the hardness reduction also yields a generic rounding scheme that achieves
the integrality gap of the LC relaxation. In particular, the hardness reduction exposes an
intriguing connection between rounding schemes for semidefinite programs - an algorithmic
construct, with dictatorship tests - a notion useful for showing hardness results. Further-
more, we exhibit an algorithm to compute the integrality gap curve of the LC relaxation to
any desired accuracy.

Chapter 8: Graph Labeling Problems For every problem in this class, the best known
approximation ratios [46, 30, 53, 107, 71, 39, 6] are achieved using linear programming. More
precisely, all known algorithms use a linear program that is either equivalent or strictly
weaker than the so called “earth-mover relaxation”. However, the hardness results [92,
47] known for the problems in this class, did not match the best known approximation
algorithms.

In Chapter 8, we show that for every graph labeling problem A, it is UG-hard to approx-
imate the problem to a factor better than the integrality gap of the earth mover relaxation
(EM-LP). Recall that the UG-hardness results in Chapter 6 and Chapter 7, matched the
integrality gap of a semidefinite program. For the class of graph labelling problems, the
UG-hardness we obtain matches the integrality gap of the linear program. Note that this
is a stronger conclusion since linear programs are in general weaker than their semidefinite
counterparts. To obtain this stronger UG-hardness result, we present a different reduction
from integrality gaps to UG-hardness, than the one in Chapters 6 and 7.

Chapter 9: Ordering Constraint Satisfaction Problems The approximability of
MAXIMUM ACYCLIC SUBGRAPH is one of the long-standing open questions in the area of
approximation algorithms. While the best known algorithm is the naive algorithm that
yields a 1/2-approximation, obtaining a 0.99-approximation to the problem has not been
ruled out.
In Chapter 9, we show that it is UG-hard to approximate the MAXIMUM ACYCLIC
1

SUBGRAPH problem to a factor greater than 5. This UG-hardness result is the first tight

28

inapproximability result for an ordering problem. While the central theme is still converting
SDP integrality gaps to UG-hardness results, implementing the program for ordering CSPs
poses considerable difficulties. In overcoming these technical hurdles, we develop technical
machinery such as the notion of influences for orderings.

The techniques developed in the case of MAXIMUM ACYCLIC SUBGRAPH readily gener-
alize to all ordering CSPs. Specifically, we show that for every Ordering CSP, it is UG-hard
to obtain an approximation ratio better than the integrality gap of the explicit semidefinite
program similar to the LC relaxation.

Chapter 10: Grothendieck Problem Formally, the input to the Grothendieck problem
is a matrix A = (a;5);,; and the goal is to solve the following optimization over {—1, 1} values:

Maximize Zaijxiyj for z;,y; € {—1,1}.
.J

A natural SDP relaxation yields a constant factor approximation for the Grothendieck
problem. In fact, the well known Grothendieck inequality from functional analysis, is equiv-
alent to the fact that the integrality gap of the SDP relaxation is a constant. The value of the
integrality gap known as the Grothendieck constant (K¢) is a fundamental mathematical
constant determining whose value remains a long standing open problem.

In Chapter 10, we utilize the connections outlined in Chapter 6 to obtain hardness results
and algorithms for the Grothendieck problem. Naively translating the techniques from
Chapter 6 runs into certain technical difficulties, since the additive error incurred in the
reductions presented in Chapter 6, could completely alter the approximation factor. Using
a bootstrapping argument, similar to the one used in the proof of Grothendieck inequality,
we translate the connections of Chapter 6 into this setting.

Specifically, using black box reductions from integrality gaps to UG-hardness results,
we show that it is UG-hard to approximate the Grothendieck problem to a factor better
than the Grothendieck constant K. By virtue of the connection between dictatorship
tests and rounding schemes, this also yields a rounding scheme for the SDP relaxation for
Grothendieck problem, that achieves the integrality gap (an approximation factor equal to
Kg).

More importantly, as the Grothendieck constant K is the integrality gap of a SDP, we
obtain an algorithm to compute it to any desired accuracy, thereby taking a step towards
determining this fundamental mathematical constant.

Chapter 11: Hardest CSP A natural question regarding the approximability of CSPs
is,

Among all CSPs over a domain {0,1,2,...,q — 1}, with each constraint on at
most k variables, which CSP is the hardest to approximate?

Using techniques from additive combinatorics, Samorodnitsky and Trevisan [144] exhib-
ited a boolean CSP that is UG-hard to approximate by a factor better than 0(2%) Indeed,

an algorithm of Charikar et al. [32] achieves an approximation of 0(2%) for every boolean

29

CSP of arity k, thus making this CSP, the hardest to approximate among boolean CSPs.
In Chapter 11, we extend this result to CSPs over larger domains [¢] = {1,2,..., ¢}, again
by appealing to techniques from additive combinatorics. Specifically, for every prime ¢, we
exhibit a CSP A over the domain {0,1,...,¢q — 1} such that it is UG-hard to approximate

A to a factor better than ‘f—kk.

2.6.3 Unconditional Lower Bounds

In the final part of the thesis, we obtain hardness of approximation results that hold in-
dependent of UGC. While some of these lower bounds are INP-hardness results, others
are against the special class of semidefinite programming based algorithms. On one hand,
the lower bounds against semidefinite programs support the validity of the UNIQUE GAMES
barrier, while the NP-hardness results find ways to bypass the need for the notion of UG-
hardness in specific circumstances.

Chapter 12: Limits of Semidefinite Programming In view of the UG-hardness re-
sults, a natural question arises as to whether stronger semidefinite programming relaxations
are sufficient to breach this barrier and disprove the UGC. Or does disproving UGC warrant
the use of a new technique different from semidefinite programming?

Unfortunately, progress towards answering this compelling question has been slow and
difficult. The following possibility is entirely consistent with the existing literature: Even
for MAX CuUT, which is a fairly well-studied problem, including additional valid inequalities
on every set of five variables in the standard SDP relaxation yields a better approximation
than agw ~ 0.878, thus disproving UGC. In Chapter 12, we show that the Unique Games
Conjecture cannot be disproved by a strong SDP relaxation consisting of the vectors along
with all valid inequalities on the inner products of O(2(lglog N)1/4) vectors. Specifically, for
all problems for which a tight UNIQUE GAMES hardness is known, a stronger SDP that
includes all valid constraints on 0(2(1"g log N)1/4) vectors does not yield a better approxi-
mation than the UG-hardness. We also obtain optimal integrality gaps for the basic SDP
relaxation strengthened by O((loglog N)'/*) rounds of Sherali-Adams lift-and-project.

We wish to point out that for certain problems like MAXIMUM ACYCLIC SUBGRAPH and
MurTiwAy CUT , integrality gaps for even the simple SDP were unknown.

Furthermore, we show strong SDP integrality gaps for BALANCED SEPARATOR, and
exhibit an N-point negative-type metric such that every subset of size 0(2(10g log NV)6) embeds
isometrically into L1, while the whole metric requires distortion ((loglog N)%) to embedd
into Ly for some absolute constants «, d > 0.

Chapter 13: Sparse Linear Systems By the work of Khot et al. [99], the Unique
Games Conjecture is equivalent to the following hardness for solving sparse linear systems:
for every €,0 > 0, given a system of sparse linear equations of the form z;—x; = ¢;;(mod p),
modulo a number p such that 1 — ¢ of the equations can be simultaneously satisfied, it is
NP-hard to find an assignment satisfying more than d-fraction of the equations.

It is natural to ask whether the UGC is equivalent to a similar hardness of solving
sparse linear systems of integers or real numbers. Unfortunately, this question remains

30

open. Building on the work of Hastad [86], we show that for every ,0 > 0, given a system
of sparse (3-variables per equation) linear equations over reals such that 1 —e fraction of the
equations can be simultaneously satisfied, it is NP-hard to find an assignment satisfying
more than d-fraction of the equations.

While the above result is the natural generalization of the celebrated work of Hastad
[86], the proof of the result is interesting from an alternate perspective. In proving the
result, we obtain an extreme derandomization of Hastad’s 3-query dictatorship test. An
extreme derandomization of this nature could lead to smaller gadgets (dictatorship tests)
for reductions, in turn yielding stronger hardness of approximation results.

31

Chapter 3
MATHEMATICAL TOOLS

The goal of this chapter is to develop notation and introduce some of the mathematical
tools used in this dissertation. Each chapter in the dissertation includes a list of dependen-
cies to sections in this chapter.

3.1 Notation

We list below the notations for various sets that appear in the dissertation.

Notation | Set
R set of real numbers
C set of complex numbers
[q] {1,2,...,q}
F, finite field with ¢ elements
Zq {0,1,2,...,q— 1}
AW set of standard basis vectors {ei,...,e;} in RY
A, convex hull of A, in RY
A(S) set of probability distributions over the set S.

For two sets A, B, let AP denote the set of functions from A to B. For notational
convenience, if B = [n] then we will write A™ instead of A", An element x € A™ consists of
xr = (3:(1), e ,a:(")) where each z(Y) € A. Unless otherwise specified we will use superscripts
to index the entries of an element x in a product space A™.

For the sake of clarity, we will use different typefaces to indicate the type of objects. As
a rule, we will use boldface to denote multidimensional objects.

Typeface | Object
g,L,X ensembles of random variables
¢,9,4, z,x | multidimensional random variables
F.H one-dimensional real/complex valued functions
F,’H multidimensional real/complex valued functions
F H one-dimensional multivariate polynomials
F . H multidimensional multivariate polynomials
F.H one-dimensional functions with range [q]
bv SDP vectors

3.2 Probability Spaces and Random Variables

A probability space 2 = (€,) consists of a set of atoms £ and a probability distribution
w over them. The words “event” and “atom” will be used interchangeably. The notation
E € Q will denote that atom/event E sampled from the distribution .

32

A real-valued random variable £ on the probability space € is a function £ : £ — R from
events to real numbers. Let L?()) denote the set of square-integrable functions over €, i.e.
fg F2d) < co. For the most part, we will be interested in finite probability spaces. For a
finite probability space 2, L?(€2) is just the set of all functions from £ to R. Alternatively,
the vector space L?(€2) consists of all real-valued random variables over the probability space
Q. The following natural inner product is defined over the space L?(12).

(01, 62) = E [6(E) - &(E)]
Definition 3.2.1. For a random variable x, define ||z|| = (E[wz])% Similarly, for a function
F € Ly(Q), define
— 21y3 _
7] = (E [7(=)°)} |Flle = ma |7(2)

Fact 3.2.1. For every random variable z, we have ||z|| < ||zl

3.3 Harmonic Analysis of Boolean Functions

In numerous applications, the central object of study is a boolean function F : {0,1}7 —
{0,1}. For reasons that will be clear later, it is convenient to represent the domain of
a boolean function as {£1}f instead of {0,1}®. Specifically, encode {0,1} into {£1} as
follows:

0—1 1——1.

Using this encoding for the input and the output, we can rewrite F : {0,1}? — {0,1} as a
function F : {£1}7* — {£1}.

Let us associate the uniform measure over the set {41}. The space L?({#1}*) consists
of functions over {+1}*, with the natural inner product defined by

(F.F7)= E [Flz)F(z)].

mEZ?

For a subset S C [R], define the character function yg : {1} — {£1} as

xs(@) = [[=.

€S
The following fact is an immediate consequence of the fact that (z(?)2 = 1 for all i € [R].
Proposition 3.0.1. For S,T C [R], xs(x)xr(x) = xsar(x).
Proposition 3.0.2. The characters {xs|S C [R]} form an orthonormal basis for L*({£1}%).

Proof. For any S,T C [R],

x5, x1) = Elxs(@)xr(®)] = Elxsar(z)] = E [H 2] .

T

33

Using independence of the coordinates z(*), we can rewrite the above expression as,

el I »1= II Igw]:{é 1At =

i€SAT IESAT otherwise.

By virtue of Proposition 3.0.2, any function F : {jzl}R — R can be expressed as a linear
combination of the character functions. In particular, one can write F as,

=) Fsxs(z

SC[R]

where Fs = (F,xs) = Ex[F(x)xs(x)]. The quantities {ﬁS}SQ[R} are referred to as the
Fourier coefficients or the Fourier spectrum of F.

Proposition 3.0.3 (Plancherel’s identity). For any two functions F,F': {£1}¥% — R,

(F.F)y= > FsF's.
SC[R]

On setting F = F' we get the Parseval’s identity.

(Parseval’s Identity) E[F* ()] = Z F3
‘ SCIR)
Proof.
(F,F') = Z Fsxs), Z F'rxr))

SC[R] TC[R]

Z FsF'r(xs,xr)
S,TC[R)

Z FsF'g (".- orthonormality of characters.)
SC[R

We will use Var|[F] to denote the variance of the random variable F(x) over a uniformly
random input x.

Proposition 3.0.4.

Var Z fs

SC[R],
S#0D

34

Proof.

Var[F] = IE [.7-"2(:1:)] - (IE[]—"(:E)])2

= Z Fil - A@2 (using Parseval’s identity and definition of)
SC[R]

= Y 73

SCIR],
S#0

3.3.1 Influences

The influence of a coordinate on a boolean function is a measure of how often a change
in that coordinate affects the value of the function. To define influences formally, let us
denote by xf € {£1}7 the vector obtained by flipping the ¢** coordinate of x € {£1}%.
The influence of the ¢** coordinate on a boolean function F : {1} — {£1} is defined as,

Info(F) = Pr[F(z) # F(zh)].

Proposition 3.0.5. For a function F : {£1}" — {1}, Inf,(F) = Y4, F2.

Proof. Since the function F takes only {£1} values,

Infy(F) = Pr[F(z) # F(z')]

2

ZEIE Z Foxs(z Z

SC[R] SC[R

Since |xs(x) — xs(xf)| =2 if £ € S and is 0 otherwise.

2
Infy(F <Z Fs xs(@)) = Z F? (" Parseval’s identity)

NEY2 S>¢

The notion of influences can be generalized to real valued functions F : {+1} — {£1}.
To this end, denote let (~9 denote the vector consisting of all but the ¢! coordinate of .

Definition 3.3.1 (Influences). The influence of the ¢ coordinate on a function F :
{+£1} — R is given by Inf,(F) = E_o [Varx(z) [.7-"(:13)]] = 550 fg.

The following is an immediate consequence of the definition.

35

Proposition 3.0.6. For a function F : {1} — R and ¢ € [R], Inf,(F) < Var[F(z)].

Proposition 3.0.7 (Convexity of Influences). Let F be a distribution over functions from
{£1}7 to R and let H = E[F] denote the average function. Then,

E[Inf,(F)] > Inf,(E[F]) = Inf,(H).

Proof. By definition and linearity of expectation, we have Hg = E[Fg| for all S € [R].
Writing out the expression for Inf,(H) we get,

f(H) = 3 H3 = 3 (B1F5)) < SOEF = Infy(7)

S3¢ 53¢ S3¢

by concavity of the function h(z) = 2. [|

3.3.2 Noise Stability

The notion of noise stability of boolean functions has numerous applications in computer
science ranging from hardness amplification, to computational learning, property testing to
hardness of approximation.

Fix a point * € {£1}%. The notation y ~, x indicates that the random vector y

is generated by flipping each bit independently with probability (1 — p). Formally y =
(y(l), . ,y(R)) where,

o _ z® with probability p
v random bit with probability 1 — p

Definition 3.3.2. For p € [-1,1], the noise stability S,(F) of a boolean function F :
{+£1}F — {£1} is given by
Sp(F)=2 Pr [F(z)=F(y)] —1.

T, Y~px

Definition 3.3.3. For p € [—1,1], define the operator T, on the space of functions
L2({£1}7) as,
T,F(®) = E_[F(y)].

Y~px

Proposition 3.0.8. For a function F € L*({£1}%),

T,F(@)= Y pl¥lxs(x).
S€[R]

36

Proof. First, observe that E) . [y O] =p- 2O + (1 —p)-0=pz¥. Therefore,

T,F(x) = E [F(y)]

Y~px

= > fsyE [xs(y)]

~, T
S€[R]

= szWN ol = [= > p¥xs(a

S€[R] lesS Se[R] LeS S€(R]

Fact 3.3.1. For a boolean function F : {1} — {£1}, Sp(F) = (F,T,F) = ZSG[R] p|5‘]}§,

Proof.
1+ F(x)F
p) =) = B [FEORW)
T, Y~ T, Y~ 2
1 1
= —+—E[}"(m) E [F(y) }
2 2 x Y~px
11 1 (FT f>
The conclusion follows by using Plancherel’s identity (Fact 3.0.3). |

3.8.8 Attenuated Influences

Definition 3.3.4 (Attenuated Influences). For a function F : {£1} — R, the e-attenuated
influence of a coordinate £ is given by Inf,(T;_.F).

We defer the proof of the following fact to Section 3.4.3 where we prove it in a more
general setting.

Lemma 3.0.1 (Sum of Influences Lemma). For ¢ > 0 and a function F : {£1}® — R,
> veir) Ife(T1-oF) < Var[F]/e.

3.4 Functions on Product Spaces

Notions of influences and noise stability can be generalized to functions on arbitrary product
spaces. In this section, we will see how a function over a product space can be written as
a multilinear polynomial via the Fourier expansion, and how this leads to more general
notions of influences and noise stability.

Fix a probability space Q = (€,). The product probability space Q% is the probability
space consisting of R-tuples of events from &, with each coordinate chosen independently
from €. The notions of influences and noise operators can be extended to the general setting
of functions on QF.

37

3.4.1 Multi-linear polynomials

First, we will see how a real valued function on an arbitrary product space QF can be
expressed as a multilinear polynomial.

Definition 3.4.1. A collection of finitely many real random variables £ = {fo,...,¢;—1}
will be referred to an ensemble. An ensemble £ = {{y,...,¢,_1} under inner product
(f,g) = E[f - g], is said to be an Orthonormal ensemble if the random variables in £ are
orthonormal, and £y is the constant random variable 1.

For an ensemble £ = {{y,...,¢,—1} of random variables, we shall use L to denote the

ensemble obtained by taking R independent copies of £. Further £() = {E((]i), e ,Egizl} will

denote the i*" independent copy in L%,

Consider an ensemble £ = {{y,...,¢,_1} that forms a basis for the vector space L?(f2).
Thus every function F : 2 — R can be expressed as a linear combination of the ensemble
L. Given such a basis £ for L%(Q), it induces a basis for the space L?(2%). Specifically, the

basis for L2(Q%) is given by the following set of random variables:

R
{TT#o € [0}

=1

Hence every function F : Qf — R can be expressed as a multilinear polynomial in £
where L is an arbitrary basis for Lo(€2). To illustrate this further, we will present a con-
crete example of a probability space below. However we first define a concise notation for
multilinear products borrowed from [124]

Definition 3.4.2. A multi-index o is a vector (o1,...,0r) € N the degree of o denoted
by |o|, is |{i € {1,...,R}|o; # 0}|. Given a doubly-indexed set of indeterminates (formal

variables) X% = {xgj)]i € N,1 < j < R} and a multi-index o, define the monomial z, as

R
T
i=1

The degree of the monomial z, is given by |o|. A multilinear polynomial over such a set of
indeterminates is given by

F(z) =) Fya,

where F), are Areal constants, all but finitely many of which are non-zero. The degree of F'(x)
is max{|o| : F,, # 0}.

Example 3.4.1. Let Q be a probability space with two atoms {0, 1} occurring with prob-
ability £ each. An example of an orthonormal ensemble in Ly () is given by {¢; = 1,1},
where

0o(0) =1 (1) =1
0(0) =1 @) =—1.

38

Consider the product probability space Q. An orthonormal basis for Lo(Q%) is given by
the ensemble {/, : Qff — R|o € {0,1}7} where

R
le =[] 4.
=1

Thus any random variable F' € L?(2)® can be written as a multilinear polynomial > E,l,
in the ensemble £®. In terms of functions, this means that any function F : 9 — R has a
multilinear expansion

F(z) = Fols(2)

where £,(z) = [, £,.(2). We point out that the above expansion is exactly the Fourier
expansion of F and the functions ¢, are the character functions.

A different ensemble in Lo (2) is given by the indicator random variables £ = {{o,¢1}
defined as follows:

06(0) = 1 (1) =0
01(0) = 0 01y =1.

In this case, the multilinear expansion for a function F : Qf — R is just

Flz)= > Flo)o(z).

oef{0,1} 1%

We will always use the symbols F,H to denote real-valued functions on a product
probability space Q. Thus F,H take an atom in QF as input and output a real number.
L = {ly,?1,...,0;} will denote an ensemble forming a basis for L?($2). Further F(x), H(x)
will denote the formal multilinear polynomials corresponding to F,H. Hence F (ER) is
a random variable obtained by substituting the random variables £® in place of . For
instance, the following equation holds in this notation:

R
E F@I = _E [F@)] = EF(EY).

For the most part, the probability spaces Q will have [¢] = {0,...,q—1} as the atoms. A
natural basis for L(§2) consists of the ensemble of indicator variables £ = {{,...,¢;—1}. We
shall refer to this basis as the Standard Ensemble/Basis. Specifically, the random variable
¢; is defined as £;(i) = 1,4;(j) = 0¥j # 4. Any function F : Qf — R can be expressed as a
multilinear polynomial as

Flz)= Y Flo)s(z).

o€lq]?

Thus the corresponding formal multilinear polynomial is given by F(x) =) L Fox,
where F, = F(o).

39

The following identity is an easy generalization of the Plancherel’s identity in harmonic
analysis.

Proposition 3.0.9. For a function F : QFf = R, if F(z) =", Foly(2) with respect to an
orthonormal ensemble L then B cqr|F(2)] = Fo and Var[F] = Y020 F2.

Proposition 3.0.10. Let F,F' : QF - R beAfunctions on a produc§ space QE. Let £ be an
orthonormal basis for Lo(Q). If F(z) =Y., Fols(2), F'(2) =, F'ols(z) are multilinear
expansions obtained using the basis L, then

(F.Fy=> FoF's.

On setting F = F' we get the analogue of Parseval’s identity.

(Analogue of Parseval’s Identity) E [F%(z)] = Zﬁg .

zeQl

3.4.2 Noise Operator

To begin with, we shall define the noise operator T;_. on set of functions over a product
probability space QF.

Definition 3.4.3. For 0 < ¢ < 1, define the operator T;_. on Lo(QF) as,
T1-F(z) =E[F(2) | 2]

where each coordinate () of % is equal to z(? with probability 1 — ¢ and a random element
from €2 with probability .

Let us suppose that F(x) =) E,x, is the multilinear expansion of the function F with
respect to an orthonormal basis £. The multilinear polynomial corresponding to T{_.F is
given by

Ti_.F(x) = Z (1—e)lFyu, .
oelk] R
We stress here that the above expression holds only for an orthonormal basis £. For a basis
that is not necessarily orthonormal, the following fact yields the required expansion.

Proposition 3.0.11. For a function F : Qf — R, the multilinear expansion corresponding
to T1_.F is given by,

T_.F(zx) = F((l —g)-xte- E[ER]) ;

where F(x) is the multilinear expansion of F with respect to L. In other words, the formal
multilinear polynomial T1_.F(x) is just obtained by replacing each variable :175-2) in F(x)
with (1 - €) -2\ +E[].

40

Proof. Recall that by the multilinear expansion of F, we have

R
Flz) =Y F,][lo.(z7).
o i=1
By definition of T1_.F,

T_.F(z) =E[F(2)|z] = Y F,E [Hem. (z@'))yz] .
Conditioned on the value of z, the coordinates z(9 are independent of each other. Thus,
A R .
T_.F(z) =Y F, [[E [e(,i (5@))\4 .
o =1

By definition of T} _. we have, E [&,i (E(i))\z} = (1—¢) Ly, (2®) + eE[{y,]. Substituting the

value we get

R

T F(z) = Y E [[(1 =) by (29) +<Ells))
o 1

=

By inspecting the above expression, the result follows. [|

3.4.8 Influences

Definition 3.4.4. For a function F : Qf — R, the influence of the ¢** coordinate is given

by
Inf = E V. .
wt(H)= B | var)
Here z(9 consists of all but the ¢ coordinate of z.

As in the case of boolean functions, influences of coordinates on a function F € L?(Qf)
can be expressed in terms of its multilinear expansion. We omit the fairly straightforward
proof of the following proposition, which is along the lines of that of Proposition 3.0.5.

Proposition 3.0.12. For a function F : QF — R, if F(z) = 3., Foly(2) is its multilinear
expansion with respect to an orthonormal ensemble L then,

Inf,(F) = > F7.
00 #0

Lemma 3.0.2 (Sum of Influences Lemma). Given a function F : Qff — R, if H = T1_.F

Var[F Var[F
then Z@E[R} Ian(H) < 2¢ In 1/[(11—6) < 6[}

41

Proof. Let F(x) =", F(0)ly(z) denote the multilinear expansion of F using an orthonor-
mal basis £. The function H is given by H(z) = 3. (1 — ¢)l°| F(0)ly(z). Hence we get,

3 Infy(H) Z > (=)o) = Z<1— e)*lo|72(0)

(e[R] 1=1 0,0;7#0
< max < 1-— 2'”' > .7-" 2lol\ 5| . Var[F].
mag (1= 2P7llo]) - S F(o)? < max(1 — £)2l|o] - V|7
o#0
The function h(z) = z(1 — €)** achieves a maximum at z = —% In(1 — €). Substituting in
the above equation, we get the desired conclusion. [|

It is easy to see that the convexity of influences holds in the general setting of functions
over arbitrary product spaces.

Proposition 3.0.13 (Convexity of Influences). Let F be a random function from QF to R
and let H = E[F] denote the average function. Then,

E[Infg(f)] = Infg(E[f]) = Infg(H) .

3.4.4 Formal Polynomials

Multilinear polynomials arise out of expressing a real-valued function F over a probability
space Q. Properties such as influence and noise stability of F are expressible in terms of
the coefficients of the corresponding multilinear polynomial.

Now, we shall extend the notion of influences and noise stability to formal multilin-
ear polynomials themselves. These notions are necessary in order to state the invariance
principle.

Definition 3.4.5 (Influences for Polynomials). For a multilinear polynomial F(x) =) Fya,,

define the variance of F and the influence of the ¢ coordinate as, i*" coordinate as follows:
Var[F| =) F? Inf,(F) = > F}.
o#0 o¢#0

It is easy to see that if F € L?(QF) is expressed as a multilinear polynomial F in an
orthonormal ensemble £ then

Var[F] = Var[F]| Infy(F) = Inf,(F).

Thus, the above definition of influences and variance are the natural definitions to consider.

3.4.5 Vector Valued Functions and Polynomials

In many applications, it is natural to work with notions of influences, and noise operators
for vector-valued functions, or tuples of multilinear polynomials. The notion of variance,
influences and noise operators are generalized in the most natural way.

42

For F = (Fi,...,Fy) define

Ti_F = (Ti-F,...,T1_Fa),
Var|F|] = Z Var[F;],
i€[d]

Inf,(F) = > Infy(F).
i€[d]

Along similar lines, one defines these notions for vector-valued polynomials F' = (Fy, ..., Fy).
More often than not, vector valued functions F considered in this dissertation have a
range equal to the g-dimensional simplex for a positive integer ¢ (denoted by A,).

Proposition 3.0.14. Let F : QFf — A, be a vector-valued function over a probability space
Q and let H = T1_.F. Then, Var[F] < 2 and Y, Inf,(H) < 2.

Proof. Observe that for any two points x,y € A, ||[z—y||3 < 2. This implies that Var[F] <
2 and along with Lemma 3.0.2 implies that Y-, Inf,(H) < 2. [

3.5 Gaussian Random Variables

A one-dimensional Gaussian random variable g has a distribution given by

1 _(g=v)?
p(g) = e 2
2o

where v = E[g] is the mean and ¢ = E[(g — p)?] is the variance of g.

A normal random variable is a Gaussian random variable with mean 0 and variance 1.
Unless otherwise specified, a Gaussian random variable refers to a normal random variable
(mean 0 and variance 1). Further, by Gaussian space we will refer to the probability space
G = (R, u) consisting of the following probability distribution over the set of real numbers

R:
1 o2

p(r) = ﬁe 2

Definition 3.5.1. For each integer d > 0, the d'" Hermite polynomial Hy(z) is a uni-variate
degree d polynomial such that

1 ifd=d

0 otherwise

E [Hy(z)Hqy(z)] = {

zeg

where G is the Gaussian space. In other words, the set of Hermite polynomials form an
orthonormal basis for the space of functions L?(G).

The distribution of an n-dimensional Gaussian random variable g = (g(l), ey g(")) e R”

is specified by its means v = (v(1), ..., v() and the covariance matrix ¥ = (0i5)ijeln]s 1-€-s

v =E[g"] 0y =Elg"gV] Vi.jenl.

43

The probability distribution of g is given by

1(g) = %Q(Q—V)TZ”(Q—V)
(2m)z (3|2
where || denotes the determinant of the matrix |X|.

Unless otherwise specified, a Gaussian vector refers to a vector all of whose coordinates
are i.i.d normal random variables. The probability space G" refers to the n-ary product
of the Gaussian space G. We have the following standard property of Gaussian random
variables.

Property 3.1. For two vectors u,v € R, and a n-dimensional Gaussian random vector ¢
whose coordinates are i.i.d normal random variables,

IEJKH, O, Q)] = (u,v)

3.6 Invariance Principle

In its simplest form, the central limit theorem asserts the following:

“As n increases, the sum of n independent Bernoulli random variables (£1 ran-
dom wvariables) has approximately the same distribution as the sum of n inde-
pendent normal (Gaussian with mean 0 and variance 1) random variables”

Alternatively, as n increases, the value of the polynomial F'(x) = % (W 42@) 4 z™)

has approximately the same distribution whether the random variables 2 are i.i.d Bernoulli
random variables or i.i.d normal random variables. More generally, the distribution of F'(x)
is approximately the same as long as the random variables 2 are independent with mean
0, variance 1 and satisfy certain mild regularity assumptions.

A phenomenon of this nature where the distribution of a function of random variables,
depends solely on a small number of their moments is referred to an invariance. A natural
approach to generalize of the above stated central limit theorem, is to replace the “sum”
(ﬁ(x(l) + 2 4 ... z(™)) by other multivariate polynomials.

It is easy to see that invariance does not hold for arbitrary multivariate polynomials. For
instance, consider the dictator function F(z) = z(!) that outputs the first coordinate. It is
clear that the polynomial F' does not exhibit invariance. For instance, the distribution of F'
is different when substituting Bernoulli and Gaussian random variables for the coordinates
of x. It is easy to see that all polynomials that depend on a small number of coordinates
(a junta) do not exhibit invariance.

The invariance principle for low degree polynomials was first shown by Rotar in 1979
[159]. More recently, invariance principles for low degree polynomials were shown in different
settings in the work of Mossel, O’Donnell, and Olekschewicz [125] and Chatterjee [37]. The
former of the two works also showed the Majority is Stablest conjecture, and has been
influential in introducing the powerful tool of invariance to hardness of approximation.

44

Define functions fig) : R — R and § : R? — R as follows:

0 ifx<O
f[O,l}(ﬂ?) =<¢x H0<x«l1 E(x) = Z(:EZ _ f[O,l]($i))2
1 ifx>1 i€[q]

The following invariance principle is an immediate consequence of the work of Mossel
[124].

Theorem 3.2. (Invariance Principle [124]) Fix 0 < a,e < /2. Let Q be a finite probability
space such that every atom with non-zero probability has probability at least « < 1/2. Let
L={l,0l,....,0n} be an ensemble of random variables over Q. Let G = {g1,...,9m} be
an ensemble of Gaussian random variables satisfying the following conditions:

E[t;] = E[g] E[£}] = E[g]] E[(i¢;] = Elgig;) Vi, j € [m].

Let F = (F1,...,Fy) denote a vector valued multilinear polynomial. Let H; = Th_.F;, and
H = (Hy,...,Hy). If Infy(H) < 7 and Var[H;| < 1 for all ¢, then the following holds

1. For every function ¥ : R — R that is thrice differentiable with all its partial deriva-
tives up to order 3 bounded uniformly by Cy,

| B [w(ER)] - & [w(EG")]| < 700

where K = K (d,Cy) > 0 is a constant depending on Cy, d.

[BlE(E(C™) - BlE(EGD)]| < e/ st

where K = K(d,Cy) > 0 is a constant depending on Cy, d.

Proof. The theorem is implicit in the work of Mossel[124]. Here we describe some minor
changes to deduce the result from Theorems 4.1 and 4.2 in [124].

Without loss of generality, the ensembles £ and G can be assumed to be orthonormal.
Otherwise, since the ensembles £, G have matching inner products, there exists a linear
transformation 71" that transforms both £ and G into an orthonormal basis. Replace the
polynomial F(x) by F(T~!(z)) and the ensembles £,G by orthonormal ensembles T'(L)
and T'(G). Here we use the fact that the notions Inf and Var are independent of the basis,
and would remain the same after the transformation 7T'.

Truncate the polynomial H at degree D = log;_. 7 to obtain a vector valued polynomial
Q. Note that for each i, Inf;(Q) < Inf;(H) < 7. Apply Theorem 4.1 in [124] for) and the
smooth functional W,

‘E [‘I’(Q(ER))} ~E [\II(Q(QR))} ‘ < 7K/ log(1/a)

45

Since W is a smooth functional we have,
E [w(Q(e™) - w(HELm)]| < collQ(e®) - BEM))).
However since H = T _.F,

lQ(e™) —HLM)IP= Y (1o

|o|>log_. T

A

2 < 72 Var|[F].

Thus we get,

N

B [w(Q(e") - w(H(L™)]| < Cor(Var[F))}

o=

E [w(Q(g") - w(H(GR)|| < Cor(Var[F])?.
Along with Equation 3.6, the above two inequalities imply the first part of the result. To
prove the second inequality, observe that if InffD(H) < Inf;(H) < 7 for all i, D. Apply
Theorem 4.2 in [124], on the one dimensional polynomial H; to show that

EIE(HL(L)] — EIE(H(GR))]| < 7e/1os1/).

Summing up the expression over all ¢ we get

E[E(H(LM)] — Bl¢(H(GR))]| < dre/os/e)
To finish the proof, observe that for a fixed d, we have drfe/log(t/a) — 7 K'e/log(1/a) -

3.7 Noise Stability Bounds

An important application of invariance principle has been in showing upper bounds on
the noise stability of functions over product spaces. In fact, all applications of invariance
principle in hardness of approximation apart from those in this dissertation, rely only on
the noise stability bounds, and do not directly need the invariance principle.

The work of Mossel et al. [125] utilized the invariance principle to show the Majority
is Stablest theorem, which is essentially an upper bound on the noise stability of boolean
functions, with no influential coordinates. We include the formal statement of the result
below.

Theorem 3.3 (Majority is Stablest [125]). Let 0 < p < 1 and € be given. Then there exists
7 > 0 such that if F : {£1} — [~1,1] satisfies E[F] = 0 and Inf,(F) < 7 for all £ € [R],
then 5

Sp(F) < - arcsinp + ¢

Here S,(F) = ZSG[R] P'S‘ﬁg is the noise stability of F.

To obtain noise stability bounds for functions over product spaces, the idea is to re-

46

late it to a certain Gaussian noise stability via the invariance principle. For the sake of
completeness, we define the Gaussian noise stability below.

Definition 3.7.1 (Ornstein-Uhlenbeck Operator). For p € [—1,1], the Ornstein- Uhlenbeck
operator U, operates on functions in L?(G") as follows,

UpF(2)= E [f(p'er\/l—pz-'n)] :
7] n

Definition 3.7.2 (Gaussian Noise Stability). For p € [—1, 1], the Gaussian noise stability

at correlation p (noise 1 — p) of a function F € L2(G") is (F, U,F).

For a multilinear polynomial F(z) = 3 gcp Fs [Tres 219, the noise stability is given
by (F,UpF) = > ser) pl¥IF2. Let F: {#£1}" — [~1,1] be a boolean function all of whose
influences are low. Let F' be the multilinear polynomial associated with F. The polynomial
F can be thought of as a function over the Gaussian space G. Notice that the noise stability
of F is identically equal to the Gaussian noise stability of F, i.e.,

Sp(}—) = Z Pls‘ﬁg = <F,UpF>-
SC[R]

Intuitively, the idea is to use the invariance principle to argue that like F, the function F
on G takes values in [0,1]. Then, one appeals to known bounds on Gaussian noise stability
to finish the argument.

By Borell’s isoperimetric result on the Gaussian space, among functions F : G® — [0, 1],
with a given value of E[F] the one that maximizes (¥, U,F) are linear threshold functions

of the form: "
1 if 20 > ¢
Flz) = { if z

0 otherwise.

Therefore, the noise stability bounds via the invariance principle are directly related
to the noise stability of linear threshold functions on the Gaussian space. In this light,
let us denote by I', the Gaussian noise stability of linear thresholds as a function of their
mean/expectation (u). Formally, define I', as follows.

Definition 3.7.3 (T',). Given p € [0,1], let t = ®~'(1) where ® denotes the distribution
function of the standard Gaussian. Then,

To(p) = PIX <1, <1,

where (X,Y) is a two-dimensional Gaussian vector with covariance matrix (p 'f)

In this notation, the formal statement of Borell’s isoperimetric theorem is as follows:

Theorem 3.4. ([27]) For F,F' € Lo(RF) with E[F] = E[F] = p and 0 < ¢ < 1,
(F,U1—F') < Tp(p)

47

The quantity I', being a double integral can be computed easily to arbitrary accuracy.
In many applications, the following asymptotic bound on the function I, is sufficient.

Theorem 3.5 (Theorem B.2 [125]). As u — 0,

3/2 .
~ 22/(+0) gy (LH P e
Lp(p) ~ P (A In(1/) =PF7 1) <Sp?.
Finally, through the invariance principle and the Borell’s isoperimetric theorem, Mossel
et al. [125] show the following bound on the noise stability of functions over a product
probability space.

Theorem 3.6 (Theorem 4.4, [125]). Let Q be a finite probability space with the least non-
zero probability of an atom at least «. For every u,e,~v,6 > 0 there exists T such that the
following holds: For every function F : QI — [0,1] with p = E[F] and Infy(T,_,F) < 7 for
all L € [R],

(FTeF) = B [F2)T1-F(2)] S Tie(p) +9.

48

Part I
ALGORITHMIC TECHNIQUES

Chapter 4
LINEAR AND SEMIDEFINITE PROGRAMMING RELAXATIONS

49

50

The focus of this chapter is linear and semidefinite programming relaxations for gen-
eralized constraint satisfaction problems, while the next chapter addresses the question
of rounding. Together, the two chapters yield approximation algorithms for the class of
GCSPs.

4.1 Introduction

Given a combinatorial optimization problem A, there are numerous relaxations that could
be considered to design approximation algorithms for A. In particular, there is no single
canonical way to write a relaxation given the combinatorial optimization problem A. Differ-
ent problems warrant different kinds of constraints in the relaxation. In some cases, multiple
relaxations have been used to obtain approximation algorithms for the same combinatorial
optimization problems.

Clearly, it would be extremely desirable to have a canonical relaxation for every com-
binatorial optimization problem. However, this is unrealistic to expect due to the sheer
diversity of combinatorial optimization problems. This thesis demonstrates that for the
class of Generalized Constraint Satisfaction Problems (GCSP), there is an SDP relaxation
referred to as the LC relaxation, that is canonical in numerous ways. This is surprising
since the class of GCSPs is a very large family of problems that includes maximization
problems such as MAX CuUT and MAX 3-SAT on one hand, and minimization problems such
as MULTIWAY CUT on the other.

In this chapter, we will motivate the LC relaxation and connect it to other linear and
semidefinite programs that have appeared in literature for specific GCSPs. In the upcoming
chapters, we will show that the LC-relaxation has the following properties that make it
canonical for the class of GCSPs.

— The LC relaxation can be shown to be equivalent to several well known SDPs on re-
stricting to specific GCSPs. For example, it is equivalent to the Goemans-Williamson
relaxation on restricting to the case of MAX CUT.

— Among GCSPs that admit a constant factor approximation, no stronger relaxation
than LC has been utilized in an approximation algorithm. Thus, the LC relaxation
yields the best known approximations for GCSPs in almost all regimes.

— Under the Unique Games Conjecture, the LC relaxation yields the optimal approxi-
mation for every GCSP, when the approximation factor is an absolute constant (See
Chapter 6 and Chapter 7).

— Under the Unique Games Conjecture, for every metric labelling problem over a finite
metric, the optimal approximation ratio is obtained by the earthmover linear program.
The LC is a simple generalization of the earthmover linear program (EM-LP) (See
Chapter 8).

— Under the Unique Games Conjecture, for every Ordering CSP, the optimal approxi-
mation is obtained by the LC relaxation (See Chapter 9).

ol

— There is evidence to suggest that introducing certain additional constraints to the
LC relaxation does not improve the approximation it yields for any GCSP. Formally,
the integrality gap of the LC relaxation does not improve on introducing any valid

1
constraints on at most 20((0810™)%) SPP vectors (See Chapter 12).

— In recent work, Steurer [151] showed that the LC relaxation can be solved in near-linear
time up to an additive error € for every GCSP . We refer the reader to Section 4.5 for
more details.

Organization In the next section, we formally define notions of equivalence between re-
laxations. In Section 4.3, we motivate a linear program (SIMPLE LP relaxation), whose
formal definition and its comparison with other well-known linear programs is presented
in Section 4.4. The SIMPLE LP relaxation is strengthened to obtain the LC SDP in
Section 4.5. In the same section, we also show a few simple properties of the LC relax-
ation. This is followed by a comparison of LC relaxation with other SDPs, particularly
those for boolean GCSPs in Section 4.6. We present two different hierarchies of stronger
relaxations that are natural strengthenings of the LC relaxation in Section 4.7. In the penul-
timate section Section 4.8, we show how approximately feasible solutions to LC relaxation
can be converted into a completely feasible solutions with a small loss in the objective value.
This property of a SDP relaxation that we refer to as robustness has numerous applications
in subsequent chapters. Finally, in Section 4.9 we show that the robustness property holds
for even the stronger SDP relaxations LH, and SA,., although with much weaker parameters.

4.2 Comparing Relaxations

With an infinitude of relaxations to choose from, it is necessary to compare relaxations,
and study relations among them. The notions of integrality gap, and the gap curve (See
Section 2.2) of a relaxation are measures useful to compare the quality of approximations.
In particular, a relaxation with a larger value of integrality gap clearly yields a better
approximation ratio.

In many scenarios, there is more that can be said about two relaxations than just the
comparison of the quality of the approximations they yield. For instance, two relaxations
could be exactly the same except for a renaming of the variables involved. In some cases,
the variables in one relaxation are obtained by a linear transformation of variables in the
other. To capture these notions of equivalence, we make the following definition:

Definition 4.2.1. Let convy; and conve be two relaxations of a maximization problem A.
For an instance & of the problem A, let conv; () and conva(S) denote the objective value
of the optimum solutions to relaxations convi, convy respectively.

— The relaxation convy is said to be stronger than convs, if for every instance < of the
maximization problem A,
convy () = conva(S)

The relaxation convy is said to be weaker than convy in this case. The inequality
reverses for the case of a minimization problem.

52

— The relaxations convy and convy are said to be equivalent if for every instance & of

the problem A.
convy () = convy(Y)

In the examples we consider, a much stronger equivalence holds between relaxations.
Specifically, there exists an efficiently computable bijection (possibly a linear transforma-
tion) from feasible solutions to convy to those of convy. However, we refrain from formally
defining these stronger notions of equivalence.

4.3 Local Distributions and Consistency

Let & = (V,P) be an instance of a GCSP A. Let ¢ denote the size of the alphabet, and let
k be the arity of the GCSP A. By definition, the goal is to find an assignment y € [¢]” that
maximizes Epep[P(y)].

GCSP Instance 3¢ max E [P(y)]
yElqlY PEP

This is an optimization problem over the discrete set of ¢!Vl assignments. To obtain a
convex relaxation, we need to modify the domain of optimization so as to make it convex.
The most natural technique to make a set convex would be to take its convex hull. Intu-
itively, this implies that the domain should not only include the assignments [¢]¥, but also
convex combinations of assignments.

In this light, let us change the domain of optimization to the set of all probability
distributions over assignments. Clearly, the set of probability distributions over assignments
is a conver set, since the average of two distributions is again a probability distribution.
Furthermore, any specific assignment y € [q]¥ is represented by the distribution that has
all its mass on the assignment y.

Formally, let 41 be a distribution over the set of all assignments [¢]Y. We can rewrite the
optimization problem in terms of the distribution p as follows:

Cx-
Integral Hull 3t max erEu PIEP[P(y)]

Unfortunately, the above convex problem cannot be solved efficiently in general. To see
this, observe that to represent a distribution over all assignments, one needs exponentially
many (q|v|) different variables. In fact, it is easy to see that solving the above convex
program would yield an optimal solution to .

Towards obtaining a tractable relaxation, observe that the payoff functions P are “local”—
in that they each payoff P € P depends solely on at most k variables. Let V(P) denote the
set of variables on which the payoff P depends. For a given payoff P € P, the corresponding
value Eyc,[P(y)] depends solely on the distribution of the coordinates in V(P).

Therefore, instead of requiring the entire probability distribution p over all assignments
[q]Y, we can restrict our attention to the marginal distributions of u. Before we proceed
further, let us define some notation for marginal distributions. Given a distribution p over
[q]° for some set S, and a subset T C S, let margin, u denote the marginal distribution on

93

the set T'. Formally, let

) def
marging u(2) 4 S (o).
yelg)S\T

Here, (z,y) denotes the [g]-assignment to S that agrees with z on 7" and with y on S\ 7.

For the sake of succinctness, let up = marginy, py 1t denote the marginal distribution
over the set V(P) for a payoff P € supp(P). Let u = {up|P € supp(P)} denote the set
of marginal distributions. In terms of the marginal distributions w, one can write a convex
program as follows:

Convex Relaxation 3: max E E P(z)
p PEPzEpp

Note that a marginal distribution pp can be represented by ¢/V(P) variables p,z for all

z € [q]V"). Hence, the set of marginal distributions g = {up|P € P} can be represented
using at most |supp(P)| x ¢* variables. The objective value can be represented as a linear
function in these variables.

E Ple)= Y. Plurs

TEpp
z€[q]V(P)

Notice that there is no guarantee that the marginal distributions p actually correspond
to a global distribution sz over the set of all assignments [¢]¥. However, we can enforce some
consistency constraints between the marginal distributions up.

A natural consistency check between the distributions is the following: given two distri-
butions pp and pps such that S = V(P)NV(P') is non-empty,

marging p = marging pp- .

Specifically, the marginals of the distributions pp and pps restricted on the same subset S
must be equal.

The above consistency check between distributions can be enforced for subsets S of
various sizes. Somewhat surprisingly, enforcing consistency only up to sets of size up to 2
is sufficient for many purposes.

4.4 A Simple LP Relaxation

In the previous section, we obtained the following natural linear programming relaxation
for an arbitrary GCSP A.

LP Relaxation for GCSPs

maximize E E P(z) (SIMPLE LP)
P~Px~pp
subject to marging up = marging upr (P, P’ € supp(P), S C V(P)NV(F'), |S|=2),
(4.1)

up € a(lg"®) (4.2)

o4

Recall that A(S) denotes the set of probability distributions over the set S. In the above
relaxation, the constraint pup € A([q]Y(")) implies that pp is a valid probability distribution
over [g]-ary assignments to variables V(P).

Notice that we are enforcing the consistency constraints between marginals only for sets
of size up to 2. The above linear program is a simple linear program for every GCSP, that
already yields good approximations in some cases.

In this section, we compare the SIMPLE LP relaxation with some other linear programs
that have appeared in the context of MULTIWAY CUT and METRIC LABELING problems.

4.4.1 MuULTIWAY CUT relazation

Definition 4.4.1 (MuLTIWAY CUT). An instance & = (V, &, L) of the MuLTiwAy CUT
problem consists of a weighted graph (V, &), along with a set of terminals L C V. The
objective is to delete a set of edges of minimum weight so as to separate every pair of
terminals. The weights over edges are assumed to sum up to 1, in that £ is a distribution
over V x V.

Formulating MuLTiway CuT as a GCSP, the variables are the vertices)V, and the
domain is the set of terminals L. Each edge e = (u,v) is associated with a payoff of the form

P(z,y) = —1[z # y]. Here we take the negative of the indicator, because we are posing
MuLTIwAY CUT - a minimization problem, as a GCSP where the goal is to maximize the
payoff.

The following linear programming relaxation for MULTIWAY CUT was introduced in
[46], and yields the best known approximation for the problem. Let us suppose the number
of terminals |L| = ¢. Intuitively, the LP asks for an embedding of the vertices V on the
g-dimensional simplex A,. For every vertex v, the corresponding point X, € A}, represents
the probability distribution of each terminal being assigned to v. For example, each corner
of the simplex represents a particular terminal. Every terminal ¢, is to be assigned to itself,
and this is enforced by fixing X, to the ¢t corner of A,. The objective to minimize is the
weighted sum of the L; distances between adjacent vertices.

Formally, the relaxation is given by the following where e, denotes the £** corner of the
simplex A,.

Simplex-based relaxation for MuLTIWAY CUT
- 1 .
maximize — E || X, — X, (Simplex)
e=(u,v)eE
subject to X, c A, YueV (4.3)
X, = e (4.4)

Lemma 4.0.1. For the case of MULTIWAY CUT , the SIMPLE LP relaxation is equivalent
to the simplex based linear program.

Proof. To show an equivalence, we will see how to convert an optimal solution to the
SIMPLE LP relaxation into one for the simplex based linear program with exactly the
same objective value (up to the sign) and vice versa.

95

Let g = (e)ece be an optimal solution to the SIMPLE LP relaxation. Define X, to be
the marginal distribution over the assignment to v, of a distribution . for an edge incident
at v. Specifically, define

Xy = marging,y pe for an edge e € £, with v € e

More precisely, define X, , = marging,y pe(a) for all @ € [g]. As marging,, pe is a distribution
over [g], the point X, lies on the simplex A,. Furthermore, the consistency constraints
among the local distributions in SIMPLE LP relaxation ensure that the X, is well defined.

For a vertex v, it is useful to think of X, as a distribution of mass 1 (of say sand) on the
points L = {1,2,...,¢}. For an edge e = (u,v), the local distribution p. can be thought of
as a flow that transforms the distribution of sand from X, to X,. The payoff amounts to
a cost of 1 for every unit of sand that is moved from one location to the other. Hence, the
optimal flow that minimizes the total cost incurs a cost exactly equal to %HXU — Xplli- In
other words, for an optimal solution g = (e)ece, the payoff on edge e is exactly,

1
(a,bI)Eeue[P(a’ b)] = 2”Xu Xolh
Therefore, an optimal solution to SIMPLE LP yields a solution to the simplex based relax-
ation of the same value.

Conversely, let {X,|v € V} be an optimal solution to the simplex based relaxation. For
each edge e, there exists a feasible set of flows for each (u, v) that convert distribution X, to
X,, while incurring a cost of exactly %HXU — X,|1. These flows define the local distributions
e that achieve the same value as the optimal solution {X,|v € V} for the simplex-based
relaxation. |

4.4.2 Earth-Mover Linear Program

Here we will compare the SIMPLE LP relaxation with the earthmover linear program in-
troduced in [39] for METRIC LABELING problems. The best known approximation ratios
for METRIC LABELING problems are achieved using the earthmover linear program.

For the sake of completeness, we include the definition of METRIC LABELING below.

Definition 4.4.2. A METRIC LABELING problem is specified as A = (L,d) where d is a
metric over the set of labels L.

We will use ¢ to denote the number of labels |L|

Definition 4.4.3 (A-METRIC LABELING). An instance & = (V,&,{L(v)}yep) of the A-
METRIC LABELING problem consists of a set of vertices V), a probability distribution £ over
pairs from V x V (equivalent to edges with weights) and a family of subsets {L(v)},ep of L.
A valid labeling is a mapping £ : V — L such that for each vertex, v € V, L(v) belongs to
L(v). The cost of a labeling £, valg (L), is

d(L(u), L(v)).

(u,v)=e€&

56

The optimum value of the instance, opt(<), is the minimum cost labeling for the instance.

4.4.8 Earthmover Linear Program for Metric Labeling

The Earthmover linear programming (EM-LP) relaxation for METRIC LABELING was in-
troduced by [39]. Let & = (V,&,{L(v)}yey) be an instance of metric labeling. Intuitively,
the EM-LP program finds an embedding of the vertices V on the g-dimensional simplex A,.
For every vertex v, there is a variable X, = (Xv’g)ge[q] which is a point on the g-ary simplex
A,. The point X, represents the probability distribution of labels being assigned to v.

The labeling constraint £(v) € L(v) is enforced by a linear constraint on the probability
distribution X,. Specifically, one can include the following constraints,

Xpe=0 for all £ ¢ L(v).

These labeling constraints force the point X, to lie in the face containing the allowed labels
L(v), denoted by A|(,. The objective is to minimize the weighted sum of the earthmover
distance between adjacent vertices which is defined below.

Definition 4.4.4 (Earthmover Distance). Given two points X,Y € A,, and a metric d(4, j)
on [g], the earthmover distance, dwq(X,Y) is given by the optimal value of the following LP:

Minimize > A)
i,j€lg]
s.t. Z,uij =Y; Zﬂij =X; Vi, j € [q]
i J
pij = 0

In other words, the earthmover distance is the minimum cost of moving the probability
mass from distribution X to Y, given the distance metric d on the labels. It is easy to see
that this defines a metric on the simplex A,. Thus, the earthmover distance generalizes a
metric on ¢ points to a metric on A, such that the distance between corner points is the
same as the original metric. In this notation, the linear program of [39] is simply:

Minimize E du(Xy, Xy) (EM-LP)
(u,v)eE

s.t. Xy € A (L(w) YueV (4.5)

Here again, A (L(u)) refers to the set of probability distributions over the subset of labels
L(w).

Lemma 4.0.2. For a metric labelling problem A, the earthmover linear program is equiva-
lent to the SIMPLE LP relazation.

Proof. Consider an optimal solution to the earthmover linear program. It consists of
{Xy}vey and the optimal flows {jici;}i jeL. Clearly, the flow variables p. ;; yield the local

o7

distributions ., which are not only a feasible solution but have the exact same objective
value.

Conversely, given a solution to the SIMPLE LP relaxation, the X, variables can be
obtained by setting X, = marging,) yi. for some e 5 v. Furthermore, the local distributions
te vield the flow variables for the earthmover relaxation. Trivially, the resulting solution
has the same objective value.

|

4.5 A Simple SDP Relaxation

In this section, we strengthen the SIMPLE LP relaxation to obtain a semidefinite program-
ming relaxation. The basic idea is to enforce the distributions p. to be realized as inner
products of vectors.

As earlier, let & = (V,P) be an instance of a GCSP A over a domain [g] and arity k.
The variables of the program consist of

— A collection of vectors {b; 4 }icy qclg- In the integral solution b;, is 1 if variable 4 is
assigned a, and 0 otherwise.

The intent for the vector solution {b; o} is that the vectors correspond to distributions
over integral assignments. Specifically, in the intended solution, all vectors have only
{0, 1}-coordinates and for every i and every coordinate r, exactly one of the vectors
bi1,...,b;4 has a 1in the r™ coordinate.

— A collection {j1p}pegupp(p) Of distributions over local assignments. For each payoff

P € P, pp is a distribution over [q]V(P) corresponding to assignments for the variables
V(P).

The details of the relaxation are as follows:

LC Relaxation

maximize E E P(z) (LC)
PP xevpp

subject to (b q,bjp) = Pr {:EZ =a,x; = b} ; P esupp(P), i,5 € V(P), a,belq].
x~pp

pup € A([g)V)

In the above definition of LC relaxation, the set A ([q]V(P)) refers to the set of probability
distributions over the [g]-ary assignments to V(P).

Notice that we have omitted the consistency condition between the marginal distribu-
tions that were part of the SIMPLE LP relaxation. Specifically, these were constraints of
the form marging p1p = marging p1pr for two local distributions pp and 5. These consistency
constraints are enforced here via the constraints on the inner products of vectors. For a set

o8

S ={i,j} CV(P)NV(P') that lies in the intersection of two payoffs P, P’ and a,b € [q],

marging pup(a,b) = Ig}fp {;pl =a,z; = b}

= (bja,bjp) = x&rp/ {a:, =a,rj = b} = marging pp/(a,b)

The total number of variables in the above semidefinite program is poly(q*, |supp(P)|).
Therefore, the above semidefinite program can be solved up to an additive error of ¢, in
time poly(q*, |supp(P)|,log 1/:) using interior point methods. More recently, building on
the work of Arora-Kale [13], Steurer [151] exhibited an algorithm running in near linear
time that computes the optimal SDP solution up to an additive error €. For the sake of
completeness, we restate the result of Steurer [151] below:

Theorem 4.1 (Theorem 1.3, [151]). There is an algorithm A that on input a GCSP instance
S on n variables and m > n payoffs, alphabet size q and arity k, finds a SDP solution to the
LC relaxzation whose objective value is at least LC(Y) —e. The running time of the algorithm
A is bounded by poly(q*/e) x (m +nlog®n).

Remark 4.5.1. Note that the LC relaxation can be solved in polynomial time even for
q = poly(n). Thus, the LC relaxation can be written for GCSPs whose domain size grows
with the input. Ordering constraint satisfaction problems (see Chapter 9 for definitions)
such as MAXIMUM ACYCLIC SUBGRAPH can be posed as a GCSP with a domain size n.
In Chapter 9, we will show that the resulting relaxation yields the optimal approximation
ratio for every OCSP.

4.5.1 Additional Properties

While the LC relaxation appears fairly minimal, feasible solutions to it satisfy several addi-
tional useful properties. We state some of these properties here.

Observation 4.5.1. For every variable i € V, the set of vectors {b; q|a € [q]} satisfy:

<bi,a7 bi,a’>

Z (bias bia)

a€lq]

0 Va,a €lql,a#d
1

Proof. Let P be a payoff such that ¢ € V(P), and let up denote the associated dis-
tribution. Both of the above equations follow trivially by observing that (b;q,b;.) =
Procup {2 = a,z; = d'}. [|

Observation 4.5.2. Given an arbitrary feasible solution (V,u), there exists a feasible

99

solution (V*, u*) with the same objective value and a vector by such that

Z b, = by VieV, (4.6)
€lq]

<b:<a7b0> = Hb;k,aH% Vi€ V,a € [Q]) (47)
bol3 = 1

Proof. From Observation 4.5.1, for every vertex Zae[q] b; o is a unit vector. Furthermore,
for two variables 4, j that participate together in a payoff P,

Z bzaa Z bja — Z (bi,aybj,a’> = Z xEE‘P {.Z'z =a,r; = a,} =1.

a€lq] a’€lq] a€lql,a’€[q] a€lql,a’€[q]

Note that the inner product between two unit vectors is 1 if and only if the two are equal.
Consequently, for two variables i,j € V(P) that belong to the same payoff P, we have
Zae[q} bi,a = Za’e[q] bj,a’

Consider the hypergraph H whose vertices are the variables V, and hyperedges are the
sets {V(P)|P € supp(P)}. Let C; UCy U...Cy = H be the decomposition of H into
connected components. For all variables ¢ within a connected component Cy, the vector

(£)

b; ., are equal. Let by’ denote the vector b; o corresponding to i € (Y.
a€lq] V1, 0 a€lq] 7%

For each component Cy for £ > 1, rotate all the corresponding vectors, so that b((f)
coincides with b(()l). The transformed SDP vectors {b;,} form the new SDP vectors. The

set of distributions pu* is the same as u. Set by = b(()l).

The transformations preserve all inner products within connected components Cy. In
particular, for any given payoff P, the inner products between SDP vectors {b;,|i €
V(P),a € [q]} remain unchanged. Therefore, the inner products of transformed vectors
still match the local distributions {up|P € 73}

By definition, the vectors satisfy > . = by for all © € V. Equations 4.6 and 4.7
follow easily from the definition of by and orthogonahty of vectors {b ,|a € [g]} for every
1 € V. The formal proofs are included below for convenience.

(074 b0) = (b0, Z biw) = [b5all3 + Y (basbia) = 167413

a#a’
a,a’€[q]
bOvbO szav Z b;'k,a’> = Z <b:<a7b:<a> Z<b:avb:<a>
a'€lq] a,a’€[q] aclq]

4.6 Comparison with Relaxations in Literature

To the best of our knowledge, the only instances where a semidefinite program stronger
than the LC relaxation has been used to approximate a GCSP is [41]. This work exhibits an
algorithm for UNIQUE GAMES that uses techniques from the breakthrough work of Arora-

60

Rao-Vazirani [16], and thereby relies on a semidefinite program with triangle inequalities.
Furthermore, even in this case, the stronger SDP only improves the approximation in a
sub-constant regime where the input is a UNIQUE (GAMES instance that is 1 — ¢ satisfiable
for e < @.

Therefore, for every GCSP when we are interested in approximation factors that are
constant, no SDP stronger than LC has proved useful.

We remark here that in some works like [35], the SDP relaxations used are stronger
than LC as they are stated. However, by Observation 4.5.2 the LC is equivalent to certain
stronger SDP relaxations with additional constraints. Moreover, a close examination of the
rounding schemes reveal that some of the constraints of the semidefinite program could be
omitted.

In the rest of the section, we will compare the LC relaxation with some well-known SDPs,
for GCSPs over the boolean alphabet.

{£1}-relaxations In the LC relaxation, assignments from the alphabet [¢] to a variable
x; were encoded using ¢ different variables {b;1,...,b;,}, exactly one of which can be
1. For combinatorial optimization problems over the boolean domain such as MAx CuT
or SPARSEST CUT, it is natural to use relaxations that arise out of a {£1}-encoding of
solutions.

Let us consider a GCSP A over the domain {0,1}. By convention, we will encode 0 — 1
and 1 — —1, i.e., a — (—1)% Let & be an instance of A over a set of variables V. For each
variable i € V, we introduce a vector v; in a {£1}-relaxation. In the integral solution, the
vector v; is intended to be either —1 or +1 when ¢ is assigned 0 or 1 respectively. More
generally, the vector v; is intended to be a vector with {£1} coordinates. The LC relaxation
can be equivalently formulated as a {£1}-relaxations in the following manner.

An SDP solution (V,pu) for the LC-BIN relaxation of an instance $ consists of the
following:

— A collection of vectors {v; }icy,. In the integral solution v; is 1 if variable i is assigned
0, and —1 otherwise.

— A collection {pp} pesupp(p) of distributions over local assignments {£1V(P),

— A unit vector by which is intended to be equal to 1.

LC-BIN Relaxation

maximize E E P(x) (LC-BIN)
P~Px~pp
subject to (v;,vj) = E xz; (P € supp(P), i,7 € V(P)).
a~pp
(vi,bp) = E a; (P € supp(P), i € V(P)).
~pp

pp € A{£1}V)

61

Lemma 4.1.1. The LC-BIN relaxation is equivalent to the LC relaxation for a GCSP A
over the boolean domain.

Proof. Let ({v;}icy U {bo},) form a feasible solution to the LC-BIN relaxation. Define
vectors b; , as follows,

b;o = (bo +vi) . 20— T
' 2 ’ ’ 2
For a vector y € {0,1}%, we will write (—1)¥ to denote the {#1}-vector ((—1)“"32')?:1. For
each payoff, define a probability distribution 1/, over {+1}V) as ph(y) = p p((=1)¥). We
claim that ({b; 0, b;1}icv, {ip} Pep) is a feasible solution to the LC relaxation. To see this,
observe that for every i,j € V, P € P and a,b € {0,1} we have,

1 a a
(bia,bjp) = Z<(b0+(_1) v;), (bo + (1)),

1 a a+b
S >E DR 5+ (D E ;)
1
- 1. I%P[%) (1+ (V')

g = (— a s = | — b = . = L

= B fo = 0hey = 1) = P {w— ey = b

Conversely, let ({b; o, b;1}icy,) be a feasible SDP solution for the LC relaxation. With-
out loss of generality, we may assume that there exists a unit vector by satisfying the prop-
erties outlined in Observation 4.5.2. Define the new SDP solution ({v;}ey U {bo},) as
follows,

v; = b0 — b;1 VieV,
1 _
,ulp(a:)zup< 2x> VP e P,xc {1}V (P).
Here 1 denotes the vector all of whose components are equal to 1. [|

Boolean 2-CSP

Lemma 4.1.2. For a GCSP of arity 2 over the boolean domain {0,1}, the LC is equivalent
to the BS relaxation described below.

62

Mazimize PIE [Z P(a,b) - <i<b0 + (—=1)%v;, by + (—1)b'vj>>] (BS)

Proof. By Lemma 4.1.1, it is sufficient to show equivalence to the LC-BIN relaxation.

Firstly, the above relaxation is weaker than the LC-BIN. Specifically, the constraints of
LC-BIN yield,

<(b0 + ’Ui), (bo + ’l)j)> = xEI}::LP(l + :EZ)(l + :L'j) >0

Conversely, to show that LC-BIN is weaker than the BS, fix a payoff P, and let V(P) =
{i,j}. Define a local distribution up as follows:

e b) = 3(bo & v1), (bo % v,)

The constraints of the SDP ensure that pp(a,b) > 0 for all a,b € {£1}. Furthermore, it

follows immediately from the definition that pp(0,0) + pp(0,1) + pp(1,0) + pp(1,1) = 1.
Finally, it is a straight forward calculation to show that E,¢,,, z;7; = (vi,v;) and Ege pp Ti =
(bo,v;). Thus, ({vi}icy, {p}prep) is a feasible solution to the LC-BIN relaxation. [

Remark 4.6.1. The constraints of the form ((by & v;), (bo £ v;)) > 0 are just the triangle
inequalities between the vectors by, v; and v;.

In [114], a variant of the BS SDP relaxation is used to obtain the best known approx-
imation for the MAX 2-SAT problem. The SDP relaxation in [114] imposes the triangle
inequalities on every bg,v;,v; for all 4,j € V. Instead, the BS relaxation imposes the tri-
angle inequalities only for pairs i,j € V that participate together in a payoff/constraint.
However, the rounding scheme presented in [114] still yields the same approximation ratio
when used with the seemingly weaker relaxation LC-BIN. Specifically, the analysis of the
rounding scheme in [114] is local in that it depends solely on the geometry of vectors within
individual constraints. The BS SDP relaxation

Max Cut Wrapping up the section, we finally compare the relaxation to the Goemans-
Williamson SDP relaxation for the classic problem of MAX CuT. We restate the GW SDP
relaxation for the sake of convenience.

63

GW(G) Relaxation (GW)
1
Maximize 1 |v; — v;]I3 (Total Squared Length of Edges)
(Uivvj)eE
Subject to |lvil2=1 VieV (all vectors v; are unit vectors)

Lemma 4.1.3. For MAX CuT the LC relazation is equivalent to the GW relazation.

Proof. By Lemma 4.1.1 and Lemma 4.1.2 | it is sufficient to show equivalence between GW
and the BS relaxation.

Clearly, BS is a stronger relaxation than GW. Given a solution {v;};cy to the GW
relaxation, set by to be a unit vector orthogonal to all v;. Then, the SDP solution {v; };cy U
{bp} forms a feasible solution to the BS, thereby finishing the proof. u

4.7 Stronger Relaxations

Towards obtaining better approximations, a natural avenue is to utilize stronger LP/SDP
relaxations that include greater number of constraints. There are numerous choices of
additional constraints that can be included to strengthen a given convex relaxation. In
fact, there are several hierarchies of increasingly stronger relaxations such as the Lovész-
Schriver [118], Lasserre [110] and Sherali-Adams hierarchies [150] that have been proposed
in literature.

Here, we describe two hierarchies of relaxations that are natural strengthenings of the
LC relaxation, and are closely related to the Sherali-Adams hierarchy [150].

LH, relaxation In the LC relaxation, the inner products of SDP vectors {b;,|i € V,a €
[q]} are constrained to agree with the local distributions {up|P € supp(P)}. However, the
relaxation contains local distributions pg only for sets S that are S = V(P) for some payoff
P € supp(P). A natural way to strengthen the relaxation is to include local distributions
for every set S of size say r. We refer to the resulting SDP as the LH, relaxation.

For a constant r, it is easy to see that the LH, SDP has poly(n", qk) constraints for a
GCSP instance & with n variables, over alphabet ¢ and arity k. Hence, the LH, relaxation
can be solved in polynomial time for constant r. For the sake of convenience, we include
the detailed definition of the LH, relaxation.

Let & be a GCSP instance over a set of variables V), alphabet size ¢ and arity k. A
feasible solution to the LH, relaxation consists of the following:

L. A collection of (local) distributions {is}scy, s|<r, Where jis: [q]° — R is a distribu-
tion over [g]-assignments to S, that is, g € A([¢g]”).

2. A (global) vector solution {b;a}icy ac[q, Where b; 4 € RY for every i € V and a € [q].

64

The intention for the local distributions {ug} is again that they arise as the marginal
distribution of a global distribution s: [q]¥ — R, over [g]-assignments to the variables V.
The intention for the vector solution {b;,} is that all vectors have only {0, 1}-coordinates
and that for every 7 and every coordinate ¢, exactly one of the vectors b;1,...,b;, has a1
in the ¢ coordinate.

LH,-Relaxation.
maximize PINEP xEP P(x) (LH;)
subject to (bj 4, bjp) = IE’};S {w, =a,r; = b} SCy, |S|<r, i,j€S, a,be]q],
(4.9)
ps € A ([q°) (4.10)

Here, A ([q]S) denotes probability distributions over [¢]°. As usual, we denote by LH,.(S)
the value of an optimal solution to this relaxation.

The above relaxation succinctly encodes all possible inequalities on up to r vectors. The
next remark makes this observation precise.

Remark 4.7.1. A linear inequality on the inner products of a subset of vectors {b; o }ics ac(q]
for S C V is walid if it inequality if it holds for all distributions over [g]-assignments to the
variables S. A feasible solution to the LH,-relaxation satisfies all valid inequalities on sets
of up to r vectors.

4.7.1 SA,-Relazation

Notice that the local distributions in the LH,-relaxation have redundancies. Specifically,
consider two sets A,B C V such that A C B and |A|,|B| < r. The local distribution
up induces a distribution margin 4 up over assignments to the set A, since A C B. (Here,
margin 4 up denotes the marginal of pup on the set A) It is but natural to enforce that
margin 4 up and @4 be the same distribution.

SA,-Relaxation:
maximize PIEP wNIEiP P(z) (SA,)
subject to (bj 4, bjp) = wﬁl;s {w, =a,z; = b} SCV, |S|<r, i,j€S, abelq],
(4.11)
||margin 45 14 — margin g pgll; =0 A,BCV, |A,|B|<r. (4.12)
ps € A ([g]°) (4.13)

Again, A([¢]®) denotes the set of probability distributions over [g]-ary assignments for the
variables in S. As usual, we denote by SA,(J) the value of an optimal solution to this
relaxation.

65

Remark 4.7.2. The SA, relaxation is closely related to the ™ level of the Sherali-Adams
hierarchy. In fact, SA, is obtained from the basic SDP relaxation by r-rounds Sherali—
Adams lift-and-project. In other words, we are optimizing over the intersection of the basic
SDP relaxation and the Sherali-Adams relaxation.

{#x1}-relaxations The LH, and SA, SDPs can also be written as {£1}-relaxations for
GCSPs over boolean alphabet. For the sake of completeness, we include the formulations
below.

LH,-Relaxation ({£1}-version)

maximize E E P(x)

P~Px~pp
subject to (v;,v;) = E xz; SCV, |S<r, 4,j€8,
z~ps
(vi,bg) = E ay P € supp(P), i € V(P) .
TP

ps € A ({£1}7)

SA,-Relaxation ({*1}-version)

maximize E E P(x) (SA;)
P~Pax~pp
subject to (v;,v;) = E x5 SCV, [S|<r, i,j€S,
TS

(vi,bo) = E w;,

a~pp
marginnp pa = margingnppup A,BCV, |Al,|B| <.
ps € A ({£1}°)

Here, by € R? is an arbitrary fixed unit vector.

4.8 Robustness and Smoothing of the LC relaxation

In this section, we will be interested in the robustness of the SDP relaxations LC,LH, and
SA, to “noise”. More precisely, suppose (V,) is a an approximately feasible solution in
that it satisfies all the constraints of one of these SDP relaxations within a tiny error of +e.
Then, the robustness of the SDP relaxation refers to how close the solution must be to a
completely feasible solution. Robustness of a SDP relaxation will prove useful in rounding
the SDP solutions (Chapter 5), constructing integrality gaps (Chapter 12), reductions from
integrality gaps to dictatorship tests (Chapter 7) and even in solving the SDPs efficiently
[151].
Formally, an e-infeasible solution to a SDP relaxation is defined as follows.

Definition 4.8.1. An SDP solution {v;a}iey,acr,, {#s}scy,|s|<r is said to be e-infeasible

for a SDP relaxation if it satisfies all the constraints of the program up to an additive error
of .

66

As defined earlier, the LC relaxation is reasonably robust. However, including certain ad-
ditional constraints into the relaxation make the robustness argument simpler. Specifically,
we rewrite LC in the following equivalent fashion.

LC Relaxation (Equivalent Version)

maximize E E P(x)
P~P x~pp

subject to (bjq,bjp) = Pr {a:, =a,r; = b} P € supp(P), i,7 € V(P), a,be [q].
T~Hp

(4.14)
(Bia, bo) = [1biall3 Vi€ V,a € g, (4.15)
[bol[3 = 1 (4.16)
pp € A([g"")

To the original definition of LC relaxation, we have included two additional constraints
(4.15) and (4.16). As was shown in Observation 4.5.1 and Observation 4.5.2, any solution
to the LC can be transformed to satisfy these additional constraints, without any loss in
objective value. Therefore, the above relaxation is equivalent to the LC relaxation.

Theorem 4.2 (Robustness of LC). Let P be a A-CSP instance on variable set V. Suppose
that {bi.a}icv,aclqs 1HP}Pesupp(p) 18 an e-infeasible SDP solution for P of value o. Here,
e-infeasible means that all consistency constraints (4.14)—(4.16) of the relazation LC are
satisfied up to an additive error of at most €. Then,

sdp(P) = a — /e - poly(kq) .

4.8.1 Surgery & Smoothing
Let {b; .}, {1p} be an e-infeasible SDP solution for a A-CSP instance P on the variable set

V = [n]. Recall that an e-infeasible SDP solution satisfies ,

I~Hp

(bia,bjp) — Pr {a:z =a, rj = b}‘ <e (4.17)

for all P € supp(P), i,j € V(P), and a,b € [¢] and for all i € V(P) and a € [¢],
| (biar bo) — [Ibiall3] < e (4.18)

We construct a feasible solution that is close to the given SDP solution in two steps.

In the first step, called “surgery”, we construct vectors {u;,} and by that satisfy the
equality constraints on SDP vectors, i.e., (w;q,u;p) = 0 for all a # b € [¢] and all i € V and
Zae[q] w;q = by for all i € V.

In the second step, called “smoothing”, we construct a feasible SDP solution {w;,},
{w/p}. In this step, the vectors and the local distributions are “smoothed” which allows us
to modify the local distributions so that they match the vectors perfectly.

67

Lemma 4.2.1. The vectors {b; o} U{bo} can be transformed to vectors {u; .} U {uo} such
that for alla #b € [q] and alli €V,

(Wi a0, uip) =0, (4.19)

and for alli €V,
> i =u. (4.20)

a€lq]

Furthermore, fori €V and a € [q],

[wia — biall < Ve - poly(q) . (4.21)

In particular, the SDP solution {u;q}, {pp} is n-infeasible for n = /e - poly(q).

Proof. First, the length of by is in the range, [1 —e,14¢]. Normalize the vector by to a unit
vector to obtain wg. From (4.17) and (4.18) it follows that ||b; o[> < 1+ and [(b; 4, b;)| < e
for all a # b € [g]. Therefore, if we apply the Gram—Schmidt orthogonalization process on
the vectors b;1,...,b;q, the resulting vectors v;,...,v; , satisfy ||bj, — b} [< O(e - q).
For every variable ¢ € V, we compute a rescaling factor a; such that b; g := Zae[q] aivg’a
is a unit vector. Note that a; = 1+ ¢ - poly(q). Furthermore, (b;o,bg) > 1 — ¢ - poly(q).
Therefore, the angle Z(b; o, byg) = \/e-poly(q). For every variable i € V, we define a rotation
U; which maps the vector b; o to by and acts as the identity on the space orthogonal to the
plane span{b; o, bo}. We claim that the vector u;, := a;U;v; , satisfy the conditions of the
lemma. By construction, the vectors satisfy the constraints (4.19) and (4.20). Since Uj is a
rotation by an angle of at most /¢ - poly(q), we have ||U; — I|| < /¢ -poly(q) and therefore
i, — iv] .|| < v/€-poly(q). Previous observations imply that [la;v] , —b; .|| < €-poly(q).
Thus, the vectors {u; q} satisfy also the third condition (4.21). [|

The existence of a local distribution pp imposes constraints on the vectors corresponding
to V(P). Specifically, the inner products of vectors corresponding to V(P) must lie in a
certain polytope Qp of constant dimension, to ensure the existence of a matching local
distribution pp. The SDP solution {u;,} has local distributions that match up to an error
of 1. In other words, for every payoff P, the vectors corresponding to V(P) are within 7
distance from the corresponding polytope Qp.

The idea of smoothing is to take a convex combination of the SDP solution {u;,},
with the SDP solution corresponding to the uniform distribution over all assignments. By a
suitable basis change, the local polytopes () p can be made full-dimensional, in that they are
defined by a set of inequalities (no equations involved). The SDP solution corresponding
to the uniform distribution over all assignments, lies at the center of each of these local
polytopes Qp. As {u;,} is only n away from each of these polytopes, it moves into the
polytope on taking convex combination with the center. The above intuition is formalized
in the following lemma.

68

4.8.2 Smoothing

Lemma 4.2.2 (Smoothing). The local distributions {up} can be transformed to distribu-
tions {pp} such that for all P € supp(P), i # j € V(P), and a,b € [¢],

Pr {:EZ =a, T; = b} =1 -0 (ujq,ujp) +0- = (4.22)

zopp q
where § = ¢*k*n. Furthermore, for every P € supp(P),
lp — wplls < 36

Proof. Let us fix a payoff function P € supp(P). Let S = V(P). We may assume that S =
{1,...,k}. We can think of up as a function F: [¢]* — R such that F(z) is the probability
of the assignment z under the distribution pp. For the case ¢ = 2, the constraint (4.22)
translates to a condition on the degree-2 Fourier coefficients of F. For larger ¢, we will
use a suitable generalization of the Fourier bases. We refer the reader to Section 3.4 for an
introduction to multilinear expansion of functions.

Let x1,...,xq be an orthonormal basis of the vector space {F: [¢] — R} such that
x1 = 1. (Here, orthonormal means E,c(g xi(a)x;(a) = d;; for all 4,5 € [g]). By tensoring
this basis, we obtain the orthonormal basis {x, | o € [¢]*} of the vector space {F: [¢]* — R}.
For o € [¢]*, we have x,(2) = X, (%1) - - * X0, (x). For a function F: [¢]* — R, we denote by
F(0) the xo-coefficient of F, i.e., f(o) := > zelgh F (#)Xo (2). Note that F' = Eg i F(0)Xo.
Therefore, if we let F again be the function corresponding to pp, then for all i # j € S and
a,b € [g] we have

Pr {xl =a, rj= b} = Z E kf-"(a)xa(m) (4.23)

Tpp veld® o€lq]
zi=a,x;=b
= K ﬁj(J)XU(avb) (424)

o€(q)?

where Fij(s,t) is defined as the coefficient F(o) for 0; = s, 0; = t and o, = 1 for all
r € [q) \ {7,7}. In the second equality we used that for every ¢ with o, # 1 for some
r € [q] \ {7,7}, the sum over the values of x, in (4.23) vanishes.

For every variable pair i # j € S, let G;;: [¢]* — R be the function G;;(a,b) = (w; q, w;jp).
Similarly, we let G;: [¢g] — R be the function G;(a) = (Wi, Uia) = (Wiq, bo). We define a
function F': [¢]¥ — R as follows

Gi(s) ifoyj=sand o,=1 for all r € [¢]\{i},
Fl(o) = Gii(s,t) if o;=s,0;=t and o, =1 for r€[q]\{i,5},
F(o) otherwise.

The conditions (4.19) and (4.20) imply that Gi(s) = Gij(s,1) for all i # j € S. We also have
F(1) = G;(1) = G;;(1) = 1. Therefore, the identity in (4.23)-(4.24) applied to F’ shows

69

that for all 4,5 € S and a,b € [q],

(WigrUjp) = Y E Floxa(@)= > Fla). (4.25)
z€[q)® a z€[q)®
zi=a,x;=b zi=a,x;=b

We could finish the proof at this point if the function F’ corresponded to a distribution
pth over assignments [g]¥. The function F’ satisfies D vegr F (@) = F(1) = 1 However, in
general, the function ' might take negative values. We will show that these values cannot
be too negative and that the function can be made into a proper distribution by smoothing.

Let K be an upper bound on the values of the functions x1, ..., x,. From the orthonor-
mality of the functions, it follows that K < ,/g. Let Fj(a,b) = Prywu, {z; = a, x; = b}.
Recall that we computed in (4.24) the coefficients of F;; in the basis {xs. | s,t € [¢]}. Since
the SDP solution {u; .}, {pp} is n-infeasible, we have

Gii(s,t) = > Gijla,b)xst(a,b) = Y Fijla,b)xs(a,b) £ K2q*n = Fij(s,t) £ K¢,
a,b€q] a,beq]

Therefore, | F(o) — F/(0)| < K2¢*n for all o € [q]F. Thus,

Fl@) = E Flo)x.(x) = E Flo)xe(z) = d/¢" = Flx) £ 5/q", (426)

o€lq] o€lq]®

where § := K*k%q*n. Hence, if we let H = (1 — &) - F' + d - U, where U: [¢]* — R is the
uniform distribution U = 1/¢*, then

H=(1-8F +6/¢">(1—-86F=>0.

It follows that H corresponds to a distribution u/, over assignments [¢]F. Furthermore, from
(4.25) it follows that for all i # j € S and a,b € [g],

Pr {x —a, ;= b} = (1= 0) (i usp) +6- 5.

Ty q
Finally, let us estimate the statistical distance between the distributions pp and p/p,
IF =R = 6(F = U) + (1 =)(F = F)x

<25+ || F—F|, (using triangle inequality)
<30 (using (4.26)).

In this way, we can construct a suitable distribution z/, for every P € supp(P), which proves
the lemma. [

70

4.8.8 Proof of Theorem 4.2 (Robustness of LC)

Let us consider an e-infeasible SDP solution {b; o}, {ip} for a A-CSP instance P. Suppose
that this SDP solution has value a. First, we construct vector {u;,} as in Lemma 4.2.1.
These vectors together with the original local distributions {up} form an n-infeasible SDP
solution for P, where n = /¢ - poly(g). Next, we construct local distributions {y/»} as in
Lemma 4.2.2. Define new vectors

def /
W, = 1—5-u,~7a@\/5'ui7a,

where & denotes the direct sum of vectors and {u;a} are vectors corresponding to the
uniform average over all feasible SDP solutions (which satisfy (u; ,,u},) = 1/¢* for all
i#j €V and all a,b € [g]). From Lemma 4.2.1 and Lemma 4.2.2 it follows that {w; .},
{ip} is a feasible SDP solution for P. It remains to estimate the value of this feasible SDP

solution:

E E Pla)=a— E Pz) — 1 (z
PP st () PN%q%wm (z) (u(x) — 1/ (2))

WV

— E s
a— E llu—wlh
> a—n - poly(kq).

For the first inequality, we used that |P(x)] < 1. The second inequality follows from
Lemma 4.2.2. (In the last calculation, we just verified that the value of SDP solutions is
Lipschitz in the statistical distance of the local distributions.) |

4.9 Robustness of LH, and SA, relaxations

In this section, we will show that the LH, and SA, have the following robustness property.
Notice that the closeness of the completely feasible solution is expressed in terms of the L
distance between the local distributions. Recall that the objective value in these relaxations
is expressed as an expectation over the local distributions. Therefore, a bound on the Lq
distance between local distributions also corresponds to a bound on the change in the SDP
value.

Theorem 4.3. Given an e-infeasible solution {b; . }icy acr,, {MS}SQV,\SKr to the LH, relax-

ation, there exists a feasible solution {b; .}, {{i's}scv,|s|< for LH, such that for all subsets
2

S C V7 |S| <y ||:u5 - M,ISHI < pOIY(Q) CTUE.
Theorem 4.4. Given an e-infeasible solution {b; q }icv ack,, {145} scv,|s|<r to the SA, relaz-
ation, there exists a feasible solution {b .}, {t's}scv,sj<r for SA. such that for all subsets
SCV,|S| <7, |lus — psll < poly(q) e-q"

The proof follows along the lines of the corresponding proof for LC relaxation presented
in the previous section.

Let {x1,...,Xq} be an orthonormal basis for the vector space {F: [¢] — R} such that
x1(a) = 1for all a € [g]. (Here, orthonormal means E,¢[q xi(a)x;(a) = d;; for all i, j € [q].)

71

For r € N, let {x, | o € [q]"} be the orthonormal basis of the vector space {F: [¢]" — R}
defined by

Xa(x) déf Xo1 (xl) o Xog (xr)) (4.27)

where 0 = (01,...,0,) € [q]" and z = (z1,...,2,) € [¢]9. Again, a function F: [¢]" — R
can be written as the multilinear polynomial,

Flo) = Y Fla)xo(z). (4.28)

z€lg]”

Using the fact Eqcigr Xo ()Xo (y) = sy for all z,y € [q]", we see that

F= E f“(a)xg.

o€lq]”

We define the following norm for functions F: [¢]" — R,

A def ~
17 S D 1F (o).

o€lq]”

We say F: [q]" — R is a distribution if F(z) > 0 for all z € [¢]" and 3_ (- F(z) = 1. We
define
K% max IXo(2)]-
oc[q]" zelql”

In the next lemma, we give a proof of the following intuitive fact: If a function G: [¢]9 —
R satisfies the normalization constraint er[q}q G(z) =1 and it is close to a distribution in

the sense that there exists a distribution F such that ||F — G| is small, then G can be made
to a distribution by “smoothing” it. Here, smoothing means to move slightly towards the
uniform distribution (where every assignment has probability ¢~").

Lemma 4.4.1. Let F,G: [q]" — R be two functions with F(1) = G(1) = 1. Suppose F is
a distribution. Then, the following function is also a distribution

(1—e)G+eq " wheree=|F—-G|, K.

Proof. Tt is clear that the function H = (1 — £)G + eq™" satisfies the constraint H(1) = 1.

72

For every = € [¢]", we have

(g > +eq " (using F(z) > 0)
=g B (60) - F(0)) xol@)
2o (1-¢) B G(o) —ﬁ(o’)‘ K
=eq" — (1=)K|IF ~Glli-q
>0 (by our choice of ¢)

Let V be a set. For a function F: [¢]" — R and a subset S C V, we define the function
marging F: [¢]° — R as

marging F(z Z F(z,y)
Note that if F is a distribution over [q]-assignments to V then marging F is its marginal
distribution over [g]-assignments to 7.

Lemma 4.4.2. For every F: [q]Y — R and S CV,

marging F = eI[E:zz}S Flo,1)xe

Here, 0,1 denotes the [q]-assignment to V that agrees with o on S and assigns 1 to all
variables in V'\ S.

Proof.

marging F(x) = Z F(z,y)

= E E Flod @ Y xoW

y€[g]V NS

= E Sﬁ(o’j]l)XO'(‘T) . (USIIlg Zye[q]v\sxo_, (y) — O fOI‘ O,/ #]l)

The margin operator has the following useful property (which is clear from its definition).

73

Lemma 4.4.3. For every function F: [q]V — R and any sets T C S CV,
marginp marging 7 = marginp F .

Lemma 4.4.4. Let V be a set and let {ps: [¢]° = R| S CV,[S| <r} be a collection of
distributions. Suppose that for all sets A, B CV with |A|,|B| <,

[margin gqp f1a — margin snp uplli < 7.

Then, there exists a collection of distributions {pls: [¢)° — R | S CV,|S| <r} such that
— for all A, B CV with |A|,|B| <,
margin s, 4 = margin yrys 1
— for all S CV with |S| < r,

s — pslly < O(ng"K?),

The previous lemma is not enough to establish the robustness of our SDP relaxations.
The issue is that we not only require that the distributions are consistent among themselves
but they should also also be consistent with the SDP vectors.

The following lemma allows us to deal with this issue.

Lemma 4.4.5 (SA, Smoothing). Let V be a set and let {pg: [q]° = R[S CV,[S| <r} be
a collection of distributions. Suppose that

— for all sets A,B CV with |A|,|B| < r,
Imargin onp 114 — marginunp il < 1.
— for all sets A, B C'V with |Al,|B| < 2,
margin s~p A = Margin 4ng 1B -

Then, fore > q"K*n, there exists a collection of distributions {p's: [q]° =R | S CV,|S| < r}
such that

— for all A, B CV with |A|,|B| <,
margin 4np H)y = margin g i - (4.29)
— for all S CV with |S| < r,

s — sl < O(K*ng"), (4.30)

74

— for all S CV with |S] < 2,

we=(1—e)us+e-q 1% (4.31)

Proof. For o € [q]V, let supp(o) denote the set of coordinates of o not equal to 1, and let
|o| denote the number of such coordinates,

supp(o) o {ieV]o;#1} and |o] o |supp(o)| -
For every o € [¢]" with |o| < 7, we define

F(o) = E xq(x) where S = supp(o) .

Tps

For every o with |o| > r, we set F(0) := 0. We define W in terms of F = E, F(0)Xo,

pls = marging (1 — &)F +eq~ V1.
By Lemma 4.4.3, this choice of i satisfies condition (4.29).

First, let us argue that the functions p/y are distributions. Let S C V' with |S| < r. For
o € [q]° with T := supp(c) C S, we have

[F(0,1) = E xo(@)| =] E xolx) = E xo()|
z~pis e~ a~pLs

< ||pr — marging pgl|, - max|xo|

<n- K. (4.32)
Let Fg denote the function marging 7. By Lemma 4.4.2, Fs(o) = F(o,1) for all o € [¢]°.
Hence, | F — fis|: < ¢" - Kn. It follows that for € > ¢"K?n, the function yly = (1 —¢)Fg +
eq 1%l is a distribution (using Lemma 4.4.1).

Next, let us verify that (4.30) holds. We have

|1 — pslli < O(e) + ||marging F — s
E <ﬁ(a,]1)) XU(@) Yo

Je[q}s RS

1

(4.32) .
< O (nK2 . qT) (using | F(o,1) — fis(0)] < nK and |x.(2)] < K).

Finally, we show that the new distributions satisfy (4.31). Let S C V be a set of
size at most 2. It follows from the consistency assumption that for all o € [¢]°, we have

F(o,1) = ig(o). Hence, Fs = pg, which implies (4.31).
|

Lemma 4.4.6 (LH, Smoothing). Let V' be a set and let {ps: [q]° — R[S CV,[S| <r} be
a collection of distributions. Suppose that

75

— for all sets A, B C'V with |Al|,|B| <,

Imargin s p pa — margingnp sl <.

— for all sets A, B CV with |A|,|B| < 2,

margin 4o fta = Margin 4np KB -

Then, fore > qR?K?n, there exists a collection of distributions {i/s: [¢]° =R | S C V,|S| < r}
such that

— for all A, B C'V with |A|,|B| < r with |AN B| < 2,
margin 4np f)y = margin g i - (4.33)

— for all S CV with |S| < r,

s — psll < O(K*ngr?), (4.34)

— for all S CV with |S] <2,

ps=(1—e)ps+e-q 15 (4.35)

Proof. The proof is along the lines of the proof of the previous lemma.
Define F: [q]" — R as before. We define new functions {ps: g = R|SCV,|S| <}
such that
fis(c) if supp(o) > 2,
f5(0) =< Fo,1) if 1 <supp(o) < 2,

1 otherwise.

Since |F(o,1) — fis(0)| < K7 (see proof of previous lemma), we can upper bound ||} —
fis|l: < qr? - Kn (there are not more than ¢R? different o € [¢] with F(o,1) # fig(c). By
Lemma 4.4.1, for € > qR?*K?n, the functions {us: [¢]° — R | S C V,|S| < r} defined by
e = (1 —e)ut + eq 15! are the desired distributions. We can check that the assertions of
the lemma are satisfied in the same way as for the proof of the previous lemma. [|

Proofs of Theorem 12.7 and Theorem 12.8 (Sketch). Without loss of generality, we may as-
sume that the original vector assignment {b; .} is perfectly consistent with the marginals
of up to order 2. This is because, given an arbitrary vector assignment we can apply
Lemma 4.2.1 to obtain SDP vectors such that for every pair of vectors there exists a local
distribution agreeing with inner products. Now, change the marginals on sets of size 2 to
those determined by these inner products. We apply Lemma 4.4.6 or Lemma 4.4.5 to the
local distributions {ug} of the e-infeasible LH,. or SA, solution, respectively. We get a new
set of local distributions {y/s} that have the desired consistency properties. It remains to

76

change the vectors so that their inner product match the corresponding probabilities in
the local distributions. Let {u;,} be the vector assignment that corresponds to the uni-
form distribution over all possible assignments to the variables (this vector assignment is
the geometric center of the set of all vector assignments). Then, we define the new vector

assignment {v; .} as
Via =V 1—6- bi,a 2] \/Sui,ay

where § is the smoothing parameter in Lemma 4.4.6 or Lemma 4.4.5. It is easy to verify
that {v; o} together with {x/s} form a feasible LH, or SA, solution. [

Chapter 5
A GENERIC ROUNDING SCHEME

7

78

5.1 Introduction

Despite all the successes in designing approximation algorithms using SDP relaxations,
rounding the solution to a semidefinite program remains a difficult task. Contrast this
to linear programming which has seen the development of primal-dual [158] and iterative
rounding techniques [88, 111], leading to simple combinatorial algorithms. Part of the
problem is that the approximation ratios involved in SDP based algorithms are irrational
numbers stemming from the geometry of vectors. Even for problems like MAX 3-SAT where
the optimal approximation ratio is a simple fraction like % [93], the analysis of the rounding
procedure is fairly involved.

In the previous chapter, we introduced the LC relaxation for the class of generalized
constraint satisfaction problems (GCSP). The class of GCSPs is the natural generaliza-
tion of CSPs obtained by replacing predicates with bounded real valued payoff functions
(Definition 2.4.1). Here, we present a generic rounding scheme that achieves the integrality
gap of the LC relaxation for every GCSP.

In Chapter 7, we will see that the LC relaxation yields the optimal approximation ratio
for every CSP, under the Unique Games Conjecture (UGC). Thus the rounding scheme
along with the LC relaxation yields a generic algorithm for CSPs that achieves the optimal
approximation ratio under UGC.

Furthermore, as seen in Chapter 4, the LC relaxation is stronger than or equivalent to
nearly every relaxation used in the literature to approximate CSPs. Hence, irrespective of
the truth of the UGC, the generic rounding scheme presented here, for every CSP, yields
an approximation at least as good as the best known algorithm [65, 32, 114, 93, 79, 35, 36,
62, 78, 122, 162, 66, 54, 156, 161, 164] in literature.

This thesis also demonstrates that the integrality gap of the LC relaxation cannot be
reduced by adding large classes of valid inequalities in the fashion of Sherali-Adams LP hi-
erarchies (See Chapter 12). As a consequence, the rounding scheme presented here achieves
the integrality gap of these stronger relaxations too, for every GCSP.

Even for seemingly simple CSPs like MAX-2SAT or MAX-3SAT, the analyses of the
best known algorithms are quite involved and require computer-aided calculations. Our
results do not obviate these calculations (indeed the calculations required to determine the
approximation ratio of our algorithm for concrete CSPs appear to be practically infeasible).
However, in contrast to all previous works on approximating CSPs, our analysis provides
a simple explanation why the approximation guarantee of the algorithm approaches the
integrality gap of the relaxation: If the rounding algorithm has an approximation ratio «
on an instance ¥, then the SDP has a gap of ~ « on a related instance &’ which is obtained
from & by identifying variables. In other words, an instance is hard to round only if it is a
“blow-up” of an integrality gap instance.

The rounding scheme presented in this chapter can be succinctly summarized as fol-
lows: Reduce the dimension of the SDP solution by randomly projecting it into a constant-
dimensional space, identify all variables whose projected vectors are close to each other,
and solve the resulting instance by brute force! The analysis is elementary in that it avoids
the use of typical machinery from UNIQUE GAMES reductions such as dictatorship tests,
Fourier analysis or the Invariance principle.

79

A common theme of this chapter and Chapter 12 is a robustness lemma for SDP relax-
ations which asserts that approximately feasible solutions can be made feasible by “smooth-
ing” without changing the objective value significantly.

5.2 Result

To state the result of this chapter precisely, we need to define the SDP integrality gap curve
Gapy (¢) for a CSP A. Let sdp(S) denote the objective value of an optimal solution for the
LC relaxation of an instance & Throughout this chapter, when we refer to “the” SDP or
“the SDP value” we will refer to the LC relaxation.

Let opt(SJ) denote the value of the optimal solution to . The integrality gap curve
Gapy (¢) is the minimum value of opt(SJ), given that sdp(J) = ¢ where the minimum is over
all instances & of the problem A. Formally,

Gapy (c) = inf opt (¥
pA() e, sdp(S)=c P ()
Theorem 5.1. For every GCSP A and for every n > 0, there exists a polynomial time
approximation algorithm for A that returns an assignment of value at least Gapy(c—n) —n
on an instance § with SDP value c. The algorithm runs in time exp(exp(poly(k4/5))).

The above result also holds in the more general setting where predicates are replaced by
bounded real-valued payoff functions. For a traditional CSP A consisting of predicates, the
above theorem implies the following corollary.

Corollary 5.1.1. Given a CSP A with positive valued payoff functions, for every n > 0,
there exists a polynomial time approximation algorithm for A with approximation ratio at
most the integrality gap ratio GapRatio, defined as,

) sdp($&
GapRatio, def sup p(:) .
gen opt(S)

The algorithm runs in time exp(exp(poly(k4/5))).

On the downside, the proof of optimality of the rounding scheme is non-explicit. To
show the optimality of the rounding scheme, we proceed as follows: given an instance & on
which the rounding scheme only achieves an a approximation, we exhibit an instance on
which the integrality gap of the SDP is at least a.. In particular, this yields no information
on the approximation ratio « achieved by the rounding scheme. To address this issue, we
also present an algorithm to compute the integrality gap of LC for any given CSP A.

Theorem 5.2. For every constant nn > 0 and every CSP A, the integrality gap curve Gapy (c)
can be computed to an additive approzimation of n in time exp(exp(poly(k4a/n))).

5.3 Proof Overview

In this section, we elucidate how these are employed to obtain rounding schemes for CSPs.
We begin by describing the generic SDP relaxation LC for a well known CSP - Max3SAT.

80

Fix a Max3SAT instance & consisting of variables V = {y1,...,y,} and clauses P =
{P1,...,Py}. The variables in LC are as follows:

— For each variable y;, introduce two vector variables {b;,b;1}. In the intended so-
lution, the assignment y; = 1 is represented by b; o = 0 and b;; = 1, while y; = 0
implies b; o = 1,b;1 = 0.

— For each clause we will introduce 8 variables to denote the 8 different states possi-
ble. For instance, with the clause P = (y1 V y2 V y3) we shall associate 8 variables

wp = {N(P,000)7,U(P,001)7 e 7N(P,111)}' In general, the variables up form a probability
distribution locally over integral solutions.

The relaxation LC has the minimal set of constraints necessary to ensure that for every
clause P € P, the following hold: Firstly, up is a valid probability distribution over local
assignments ({0, 1}?). Further, the inner products of the vectors corresponding to variables
in P match the distribution pup. The objective value to be maximized can be written in
terms of the local integral distributions up as follows:

Z Z P(gj)iup,m

PEP 2€{0,1}3

We wish to point out that the relaxation LC is an extremely minimal SDP relaxation. For
instance, if two variables y;,y; do not occur in a clause together, then LC does not im-
pose any constraints on the inner products of the corresponding vectors {b; o, b; 1,b;0,b;1}.
Specifically, the inner product of b; o and b; ¢ could take negative values in a feasible solution.

Given the SDP solution to the instance &, we construct a constant sized Max3SAT

instance &’ which serves as a model for §. More specifically, we construct a partition
S1USU. .. .S, = V of the set of variables V into m subsets for some constant m. The instance
Q' is over m variables {s1, s2, ..., S, } corresponding to subsets Sy, ..., Sy,. Essentially, the
instance 3’ is obtained by merging all the variables in each of the sets S; to a corresponding
variable s;. We will refer to S’ as a folding of the instance .

Observe that any assignment A’ to 3’ yields a corresponding assignment A to S by
simple unfolding, i.e., assign A(y;) = A’(s;) for every variable y; in the set S;. Clearly, the
fraction of clauses satisfied by assignment A on S is exactly the same as that satisfied by A’
on &’. Observe that any folding operation immediately yields a rounding scheme - “Find
the optimal assignment to &’ by brute force, and unfold it to an assignment for 3.”

To show the optimality of this scheme, the crucial property we require of the folding
operation is that it preserves the SDP value. Clearly, any folding operation can only decrease
the value of the optimum for the SDP relaxation, i.e, sdp(3’) < sdp(SJ). We will exhibit
a folded instance ¥’ such that sdp(Q’) & sdp(J). More precisely, we will exhibit a folded
instance 3’ with approximately the same clauses as 3, and roughly the same SDP value.
Such a folded instance I’ will serve as a certificate for the optimality of the rounding scheme.
Recall that the folded instance is an integrality gap instance with a SDP value sdp(S’) ~
sdp(S) and optimum value opt(S3’). By definition, the scheme returns an assignment of value
opt(3’) on the instance § with SDP value sdp(S). Thus the rounding scheme achieves an
approximation no worse than the integrality gap of the SDP.

81

At this juncture, we would like to draw a parallel between this approach and the work of
Frieze-Kannan [63] on approximating dense instances of NP-hard problems. Given a dense
instance of MAX CuT, they construct a finite model that approximates the instance using
the Szemeredi Regularity lemma. This finite model is nothing but a folding of the instance
that preserves the optimum value for MAX CUT. In contrast, we construct a finite model for
arbitrary instances that need not be dense, while preserving an arguably simpler property
- the SDP optimum.

Summarizing the discussion, the problem of rounding has been reduced to finding an
algorithm to merge variables in the instance into a few clusters, while preserving the SDP
value. Intuitively, the most natural way to preserve the SDP value would be to merge
variables whose SDP vectors are close to each other. In other words, we would like to
cluster the SDP vectors {b; ¢, b; 1} into constant number of clusters. A first attempt at such
a clustering would be as follows: partition the ambient space in to bins of diameter at most
71, and merge all the SDP vectors that fall into the same bin. The number of clusters created
is at most the number of bins in the partition.

In general, the optimum SDP vectors {b; o, b; 1} lie in a space of dimension equal to the
number of variables in the SDP (say n). A partition of the n-dimensional sphere into bins
of diameter at most 1, would require roughly (1/7)™ bins, while our goal is to use a constant
number of bins. Simply put, there is little chance that n vectors in a n-dimensional space are
clustered into a few clusters. To address this issue, we pursue the most natural approach:
first perform a dimension reduction on the SDP vectors by using random projections, and
then cluster them together.

Heuristically, for large enough constant d, when projected in to a random d-dimensional
space, at least a 1 — 7 fraction of the inner products will change by at most 7. Further,
merging variables within the same bin of diameter 7, could affect the inner products by at
most 7. Thus the SDP value of the folded instance should be within O(n) of the original
SDP value. The number of variables in the folded instance would be (1/1)? - a constant.

Making the above heuristic argument precise forms the technical core of this chapter.
While this is easy for some 2-CSPs like MAX CuUT, extending it to CSPs of larger arity
and alphabet size is non-trivial. The central issue to be addressed is how to respect all the
constraints of the SDP during dimension reduction. In fact, for stronger SDP relaxations
such as the one in [16], it is unclear whether a dimension reduction can be carried out at
all. For a subset of CSP variables involved in a constraint P, the LC relaxation requires
the inner products of the corresponding SDP vectors to be consistent with a local integral
distribution pp. This translates into the SDP vectors satisfying special constraints amongst
themselves. For instance, even for a CSP of arity 3 such as Max3SAT, this implies the
triangle inequalities on every 3-tuple of variables involved in a clause.

To make the argument precise, we use the smoothing operation defined in [136] which in
some sense introduces noise to the SDP vectors. Interestingly, the smoothing operation was
applied for an entirely different purpose in [136]. For every CSP instance, there is a canonical
SDP solution {w;,u; 1} corresponding to the uniform distribution over all possible integral
solutions. Given an arbitrary SDP solution {b;,b; 1}, the smoothed solution is defined by
v, = (1 = n)biq 0 \/2n — n?u; 4, where o denotes the concatenation operation. Clearly,

the SDP objective value changes by at most O(n) due to smoothing. We observe that

82

if the vectors {b;,} are close to satisfying a valid inequality (say the triangle inequality)
approximately, then by smoothing, the new solution {vf’a} satisfies the inequality exactly.
We present a separate argument to handle the equality constraints in the SDP.

In the original instance <, for every clause P, the inner products of the vectors involved
match a local integral distribution pup. After random projection and discretization, for at
least 1 — 7 fraction of the clauses in &, the corresponding inner products match a local
integral distribution up to an error 7. Let us refer to these 1 — 7 fraction of the clauses as
good. Apply the smoothing operation on the discretized SDP solution. For each good clause,
the smoothed SDP solution is consistent with a local integral distribution. To finish the
argument, we discard the n-fraction of the bad clauses from the folded instance 3’. By the
definition of LC, once a bad clause P is dropped from the instance, it is no longer necessary
to satisfy the SDP constraints corresponding to P. Hence, we conclude sdp(S’) & sdp(S).

Mathematical Tools: We use the method of expanding functions over product spaces as
multilinear polynomials from Section 3.4

5.4 Preliminaries

We refer the reader to Chapter 2 for the formal definition of GCSPs. The rounding scheme
presented in this chapter uses e-nets for the unit ball. In this light, we present formal
definition of e-net here.

Definition 5.4.1. Let B(0,1) denote the unit ball in the d-dimensional space R?. An e-net
for the unit ball B(0,1) is a finite set IV of points in B(0, 1) such that for every € B(0,1)
there exists a point y € N such that || — y|2 < e.

The following is a fairly trivial bound on the size of e-nets.

Fact 5.4.1. There exists an absolute constant ¢ such that for every positive integer d and
£ >0, there exists an e-net N for the unit ball B(0,1) in R® such that |N| < (¢/=)".

5.4.1 LC Relaxation

We restate the LC relaxation for the convenience of the reader. Given an instance § =
(V,P), the LC relaxation consists of vectors {b; 4 }icy ac[q and a collection {f1p} pesupp(p) Of
distributions over local assignments and a unit vector by. Each distribution up is over [¢]V(?)

(the set of assignments to the variable set V(P)).

83

LC Relaxation

maximize E [E P(x)
P~Px~pp

subject to (b q,bjp) = Pr {3:2 =a,x; = b} P € supp(P), i,j € V(P), a,b€[q].
r~pp

—

(5.1)
<bi,a7 b0> - ”bl,a”% VZ S Vu a < [Q] ’ (52)
1boll3 =1 (5.3)

pup € A([qVP)

To the original definition of LC relaxation, we have included two additional constraints
(5.2) and (5.3). As was shown in Observation 4.5.1 and Observation 4.5.2, any solution
to the LC can be transformed to satisfy these additional constraints, without any loss in
objective value. As seen in Section 4.8, these additional constraints make the LC relaxation
robust in that, a solution that approximately satisfies all these constraints can be modified
into an exact solution.

5.5 Rounding General CSPs

In the following, let P be a A-CSP instance on the variable set V = [n]. We will also assume
that we can associate in a unique way an optimal SDP solution with every A-CSP instance.

Variable folding For a mapping ¢: V — W, we define a new A-CSP instance P/¢ on
the variable set W by identifying variables of P that get mapped to the same variable in W.
Formally, the payoff functions in P/ are of the form P(z g1y, .., Tg(m)) for z € [¢]"V. Since
any assignment for P /¢ corresponds to an assignment for P, we can note the following fact.

Fact 5.5.1. opt(P) = opt(P/¢).

In general, the optimal value of the folded instance might be significantly lower than
the optimal value of the original instance. However, we will show that we can always find a
variable folding that approximately preserves the SDP value of an instance that is close to
original instance.

Theorem 5.3. Givene > 0 and a A-CSP instance P, we can efficiently compute another A-
CSP instance P’ and a variable folding ¢ such that

1. P’ is obtained by discarding an € fraction of payoffs from the instance P. Formally,
V(P') = V(P) and the total variational distance between distributions P, P’ is bounded
by g, Z.'ev HP - 7)/”TV < g,

2. sdp(P’/¢p) = sdp(P) — e,

3. the variable set of P'/¢ has cardinality exp(poly(ka/e)).

84

Given the above theorem, we can immediately show the main results of the chapter.

Proof of Theorem 5.1. Given a A-CSP instance P with variable set V = [n], we first com-
pute another instance P’ and a variable folding ¢ according to Lemma 5.3. Since P’/¢
has only exp(poly(k4/c)) variables, we can compute an optimal assignment for P’/¢ in
time exp(exp(poly(¥4/c))). This assignment can be unfolded to an assignment x € [¢]™ with
the same value for P’. Since |[P—P’||rv < €, the assignment x has value at least opt(P’/¢)—e
for the instance P. By definition of Gap,, we have opt(P’'/¢) = Gap,(sdp(P'/¢)) >
Gapy (sdp(P) — €). Hence the assignment z € [g|” has value at least Gap, (sdp(P) —¢) — ¢
as claimed. |

Proof of Theorem 5.2. By Theorem 5.3, to compute the SDP integrality gap within ¢, it
is sufficient to go over all instances of size exp(poly(k4/c)). Thus the algorithm would just
discretize the space of instances with exp(poly(k4/c)) many variables, and compute the SDP
and optimum value for each instance. |

The rest of this section is devoted to the proof of Theorem 5.3. The construction of P’/¢
is described below:

85

CONSTRUCTION OF P’ /¢

Dimension reduction Let {b;.}icy, aclgs 11P}Pesupp(p), o be an SDP solution for
a A-CSP instance P on the variable set V = [n]. Suppose that b; , € RP. We apply the
following procedure to reduce the dimension from D to d.

1. Sample a d x D Gaussian matrix ®, where each entry is independently distributed
according to the Gaussian distribution N(0,1/d).

2. For every vector b; o, compute its image u; , under the map ®,

def
Wjq = q)bi,a'

Furthermore, define ug := ®by.

Discarding bad constraints Let B. C supp(P) be the set of payoff functions P such
that the vectors w;, and the distributions pup violate one of the SDP constraints cor-
responding to P by more than . Define the instance P’ on the set of variables V by
removing all payoff functions in B, from P. Formally, P’ is obtained by conditioning the
distribution P on the event P ¢ B..

Folding by Discretization Let N be an e-net for the unit ball in R%. We have |N| <
(C/s)d for some absolute constant ¢ by Fact 5.4.1. For every vector u; 4, let w; , denote its
closest vector in N. We identify variables of P’ that have the same vectors w; ,. Formally,
we output the A-CSP instance P’/¢ where ¢: V — N7 is defined as

qb(z) déf ('wm, e ,wi,q) .

5.5.1 Property of Dimension Reduction

The key property of the dimension reduction is that it preserves inner products between
vectors approximately.

Lemma 5.3.1 (Inner products are preserved approximately). For any two vectors by, by €
RP in the unit ball,

IE;)r{‘(‘I’vl,‘I’w} — (v1,v9)| > ﬁ} <O(Ye) .

Proof. Note that we may assume that both vectors are unit vectors (otherwise, we can
normalize them). Suppose that (vi,v2) = «. By rotational invariance, we can assume
that v1 = (1,0) and vy = (o, 3), where 3 = /1 — o?. Hence, (® v1, ® v9) has the same

86

distribution as 4
: <Z agl + 6&&’-) :
i=1
where &,&],...,&q, &) are independent standard Gaussian variables (mean 0 and standard
deviation 1).
For each i, the expectation of a&? + 3¢;¢! is equal to a and the variance is bounded (at

most 2). Hence, the expectation of (® v, ® v9) is equal to a and the standard deviation is
O(1/vd). The lemma follows from Chebychev’s inequality. [|

It is clear that the dimension-reduced vectors w;, together with the distributions up
need not form a feasible SDP solution. However, we can deduce from Lemma 5.3.1 that
with good probability most of the constraints will be nearly satisfied. It follows that not
too many payoffs are discarded from P to construct P’.

Lemma 5.3.2. For every payoff P € supp(P),
k2 2
Pr{PeB.}<0(%5%).

Proof. Fix a payoff P € supp(P). There are k?q> SDP constraints associated with the payoff
P, all of the form (5.1) in the LC program. By Lemma 5.3.1, each inner product is preserved
up to an error € with probability at most 1 —de? (substitute t = £v/d in Lemma 5.3.1). By a
union bound over all the k*¢? constraints, we get that Prg{P € B.} is at most k*¢*/s24. W

5.5.2 Discretization

Consider two vectors u; , and w;; in the unit ball. It is clear that if we move the vectors
to their closest point in N, their inner product changes by at most 2. (Since N is an e-net
of the unit ball, each vector is moved by at most ¢.)

A minor technical issue is that some of the points u;, might be outside of the unit
ball. However, vectors of norm more than /1 + € can be ignored, because they violate the
constraint (u; 4, u;,) < 1 by more than e.

In particular, the following lemma holds.

Lemma 5.3.3. For small enough ¢ > 0, suppose the vectors u;, satisfy all constraints cor-
responding to some payoff function P € supp(P’) up to an error of e. Then, the vectors w;
satisfy all constraints corresponding to P up to an error of 4e.

The discretization into the e-net changes each inner product by at most 2¢. The vectors
u; o could be e away from the unit ball, which in turn introduces another 2e error in the
inner products.

Here we are using the fact that for each payoff P € supp(P’), the corresponding con-
straints in the relaxation sdp(P’) involve just a single inner product. We also use the fact
the vectors u; , for a variable ¢ € V(P) with P € supp(P’) have norms at most /1 + ¢.

87

5.5.3 Robustness of SDP Relaxation LC

To finish the proof of Theorem 5.3, we need to construct a completely feasible SDP solution
to P’ /¢ from the vectors w; , which nearly satisfy all the constraints.

We will use the following theorem concerning the robustness of LC relaxation from
Section 4.8.

Theorem 5.4 (Robustness of LC). Let P be a A-CSP instance on variable set V. Suppose
that {bi o }icv,aclq)s {1P}Pesupp(p) 8 an e-infeasible SDP solution for P of value av. Here, &-
infeasible means that all consistency constraints (5.1)—(5.3) of the relaxation LC are satisfied
up to an additive error of at most €. Then,

sdp(P) = a — /e - poly(kq) .

5.5.4 Proof of Theorem 5.3

Assuming Theorem 5.4 (Robustness of LC) we can now complete the proof of Theorem 5.3.
For simplicity, we assume that the SDP solution {b;.}, {#p} that was used in the
construction of P’/¢ has value sdp(P). (The proof also works if the value of this SDP
solution is close to the optimal value.)
Recall that B, C supp(P) is the set of payoff functions P whose constraints are violated
by more than ¢ by the dimension-reduced vectors u;,. For d > k%¢?/e®, Lemma 5.3.2
implies that with high probability, ||P — P’||rv < €. Note that the vectors {u;,} together
with the original local distributions {yp} form an e-infeasible SDP solution for P’. Hence, by
Lemma 5.3.3, the SDP solution {w; o}, {pp} is 4e-infeasible. The value of this SDP solution
for the instance P’ is at least sdp(P) — |P — P'||, = sdp(P) — . The key observation is now
that the SDP solution {w; o}, {pp} is also a solution for the folded instance P’/¢. To see
this, observe that all the vectors that are merged to a single variable under the folding ¢, have
the same SDP vector (due to discretization using the e-net). Therefore, we see that P’/¢ has
a 4e-infeasible SDP solution of value at least sdp(P) — e. Theorem 5.4 (Robustness of LC)
asserts that in this situation we can conclude sdp(P’/¢) > sdp(P)—+/e-poly(kq). Finally, we
observe that the cardinality of the variable set of P’ /¢ is at most |N|? < (¢/c)% = groly(ka/e),
|

88

Part II
THE UNIQUE GAMES BARRIER

89

Chapter 6

DICTATORSHIP TESTS, ROUNDING SCHEMES AND UNIQUE
GAMES CONJECTURE

One of the main contributions of this thesis is the direct connection it establishes between
SDP integrality gaps and UG hardness results. In this chapter, we present an exposition of
the connections that have emerged in this thesis and other works, between SDP integrality
gaps, UG-hardness results, and objects commonly referred to as “Dictatorship tests”. In
the subsequent chapters, we will demonstrate how these connections have implications on
the approximability of several large classes of problems.

Organization We begin the chapter by introducing the notion of dictatorship tests us-
ing MAX CuT as an example. In Section 6.2, we survey the surprising connections that
have emerged between the three objects of interest in this chapter, dictatorship tests, UG-
hardness results and SDP integrality gaps. In the next section, we present the reduction
from dictatorship test to UG-hardness result for MAX CuT from [99]. A reduction from
integrality gaps to dictatorship tests is presented in sections 6.4 and 6.5. While we present
the reduction and an intuitive idea of the proof in Section 6.4, a formal proof is presented
in Section 6.5. This reduction and its various applications is one of the major contributions
of this dissertation. In the subsequent section, we will show how the analysis of this reduc-
tion can be used to obtain a rounding scheme for the semidefinite program. In Section 6.7,
we present the reduction of Khot-Vishnoi [104] from UG hardness results to SDP integral-
ity gaps. Finally, we will study the surprisingly strong implications of these reductions in
Section 6.8

Mathematical Tools: This chapter uses harmonic analysis of boolean functions, and asso-
ciated notions of influences and noise stability (Section 3.3). Invariance principle (Section 3.6)
lies at the heart of the reduction from integrality gaps to dictatorship tests presented in
Section 6.7. However, we present a simple version of the invariance principle suited for the
application at hand in Section 6.5.

6.1 Dictatorship Tests

The motivation for the problem of dictatorship testing arises from hardness of approxi-
mation and PCP constructions. To show that an optimization problem A is NP-hard to
approximate, one constructs a reduction from a well-known problem that is NP-hard to
approximate such as LABEL COVER to A. Given an instance ® of the LABEL COVER prob-
lem, a hardness reduction produces an instance ® of the problem A. The instance ®' has
a large optimum value if and only if ® has a high optimum. Dictatorship tests serve as
“gadgets” that encode solutions to LABEL COVER, as solutions to the problem A. In fact,
constructing an appropriate dictatorship test almost always translates into a corresponding
hardness result based on the Unique Games Conjecture.

90

Dictatorship tests, or long-code tests as they are also referred to, were originally con-
ceived purely from the insight of error correcting codes. Let us suppose we are to encode a
message that could take one of R different values {my,...,mgr}. The long code encoding
of the message my is a bit string of length 2% consisting of the truth table of the function
F(x1,...,zr) = x¢. This encoding is mazimally redundant in that any binary encoding with
more than 27 bits would contain 2 bits that are identical for all R messages. Intuitively,
the greater the redundancy in the encoding, the easier it is to perform the reduction.

While long code tests/dictatorship tests were originally conceived from a coding-theoretic
perspective, somewhat surprisingly these objects are intimately connected to semidefinite
programs.

6.1.1 The case of Max Cut

The nature of dictatorship test needed for a hardness reduction varies with the specific
problem one is trying to show is hard. To keep things concrete and simple, we will restrict
our attention to the MaxX CuUT problem.

A dictatorship test DICT for the MAX CUT problem consists of a graph on the set of
vertices {#1}#. By convention, the graph DICT is a weighted graph where the edge weights
form a probability distribution (sum up to 1). We will write (z,2’) € DICT to denote an
edge sampled from the graph DICT (here z, 2" € {£1}%).

A cut of the DICT graph can be thought of as a boolean function F : {#1}# — {#1}.
For a boolean function F : {£1}f — {£1}, let DICT(F) denote the value of the cut. The
value of a cut F is given by

DICT(F) = 1 - F(2)F(2')

1
— E
2 (z,2/)eDICT

and is the probability that z,z" are on different sides of the cut. It is also useful to define
DICT(F) for non-boolean functions F : {+1}# — [~1,1] that take values in the interval
[—1,1]. To this end, we will interpret a value F(z) € [—1, 1] as a random variable that takes
{+£1} values. Specifically, we think of a number a € [—1, 1] as the following random variable

. {_1 with probability (6.1)

l-a
2
. - 1+
1 with probability =5*
With this interpretation, the natural definition of DICT(F) for such a function is as follows:

DICT(F) = E [1—f(z)f(z’) :

1
2 (2,2/)eDICT

Indeed, the above expression is equal to the expected value of the cut obtained by randomly
rounding the values of the function F : {£1}® — [~1,1] to {£1} as described in Equation
6.1.

The dictator cuts are given by the functions F(z) = z; for some ¢ € [R]|. The Completeness

91

Figure 6.1: Dictator and Non-Dictator cuts

of the test DICT is the minimum value of a dictator cut, i.e.,

Completeness(DICT) = l}n[i}% DICT (2¢)
€

The soundness of the dictatorship test is the value of cuts that are far from every dictator.
We will formalize the notion of being far from every dictator is formalized using influences
as follows:

Definition 6.1.1 ((7,¢)-quasirandom). A function F : {+1}® — [~1,1] is said to be
(7, e)-quasirandom if for all £ € [R], Inf,(T}_.F) < 7.

Definition 6.1.2 (Soundness;). For a dictatorship test DICT over {£1}¥ and e,7 > 0,
define the soundness of DICT as

Soundness, . (DICT) = max DICT(F).
FA{+1}F—[-1,1]
F is (1,6)—quasirandom

6.1.2 Property Testing Perspective

The goal of a property testing algorithm is to determine if an object satisfies a certain
property by making very few queries to it. For instance, given a function F : {1}% — {£1},
one would wish to determine if F is a constant function by making very few queries (say
constantly many) to the value of F. However this is an impossible to achieve and one relaxes
the goal to determining with good probability if the object satisfies the property or is far
from satisfying the property. A function F can be said to be e-far from being a constant,
if it differs from every constant function on e-fraction of the inputs. Hence, in this case
one would wish to distinguish whether the F is a constant function or is e-far from being
constant.

Dictatorship tests are specific examples of property testing algorithms, where the con-
cerned objects are boolean functions and the property being tested is whether the function
is a dictator. Given a boolean function F(x1,xs,...,zg) on R bits, the goal is to distinguish

92

whether F is a dictator (F(z) = z; for some i) or is far from being a dictator by making
constantly many queries to F.

Formally, a dictatorship test is a randomized procedure DICT that, given the truth table
of F, queries a few locations (say 2) in the truth table, tests a predicate P on the values
it queried and outputs ACCEPT or REJECT. The randomized procedure will often be
referred to as the Verifier.

The main parameters of interest in a dictatorship test are :

— Completeness(c) Every dictator function F(x) = z; is accepted with probability at
least c.

— Soundness(s) Any function F which is far from every dictator is accepted with
probability at most s.

— Number of queries made, and the predicate P used by the test.

This notion of dictatorship tests as a verifiers is equivalent to the earlier definition of
dictatorship tests as gadgets.

Let us restrict our attention to dictatorship tests for MaX CuT. Let DICT be a verifier
corresponding to a dictatorship test for functions on {#1}#. Let us suppose that DICT
makes two queries, and always tests a predicate P(z,y) = 1z, The distribution of
queries of the DICT yield a weighted graph on {41}, sum of whose weights sum to 1. Every
boolean function F : {£1} — {41} corresponds to a cut of this graph. The probability of
the verifier accepting F is exactly the fraction of edges cut by the corresponding cut.

Conversely, let DICT be a graph on {£1}# with edge weights summing to 1. Consider
a verifier that picks a random edge (x,y) in DICT, and tests if F(x) # F(y). It is easy to
see that the probability of acceptance of a function F is exactly the fraction of edges cut
by the corresponding cut.

Both formulations of dictatorship tests are convenient for use in different contexts, and
it is thus important to be mindful of the two.

6.2 Emerging Connections (history)

Dictatorship tests/long-code tests were introduced into hardness of approximation by the
work of Bellare,Goldreich, and Sudan [22]. Long-code tests have since been the main proof
strategy in numerous influential works such as the hardness of approximation results for
Max 3SAT [86] and MAXIMUM CLIQUE [82]. We refer the reader to [98] for a survey on
the various applications of dictatorship testing in hardness of approximation.

With the advent of the Unique Games Conjecture, dictatorship tests have started playing
an even greater role in hardness of approximation. In fact, the work of Khot [97] that
introduced the Unique Games Conjecture made use of long-code tests to obtain a hardness
for MAX 2-SAT. Like most previous works, the notion of being far from a dictator was
defined there in terms of non-existence of sparse Fourier coefficients of large weight.

The notion of dictatorship tests as defined earlier in this chapter made its appearance
in the work of Khot et al. [99]. Although influences of functions figured earlier in the work

93

Figure 6.2: Connections Between SDP Integrality Gaps, UG-hardness Results and Dicta-
torship Tests

of Dinur and Safra [50], it is [99] that used them to define the notion of being far from
a dictator. The authors used this notion of dictatorship testing to obtain a UG-hardness
result for MAX CuUT that matches the approximation obtained by Goemans-Williamson
algorithm. This work has since served as a general template to obtain UG-hardness results
starting with dictatorship tests [17, 18, 136]

In fact, it is true as a rule of thumb that an appropriate dictatorship test often leads
to a UG-hardness result. Specifically, given a dictatorship test with completeness ¢ and
soundness s such that the verifier only tests a predicate P, it often implies a c-vs-s UG-
hardness result for the constraint satisfaction problem where the constraints are of the
form - predicate P applied to subset of variables. However, we stress that in many cases
(such as Ordering CSPs Chapter 9), executing this conversion from dictatorship tests into
UG-hardness results poses considerable challenges.

The next connection emerged with the influential work of Khot-Vishnoi [104] who ex-
hibited a reduction from a UG-hardness result to a SDP integrality gap. First, the paper
constructed a UG-hardness reduction for SPARSEST CUT. Going a step further, the work
constructed a SDP integrality gap instance ® for Unique games and executed the hardness
reduction for SPARSEST CUT on ®. Surprisingly, the instance of SPARSEST CUT so produced
was a SDP integrality gap! This yielded a super-constant integrality gap for SPARSEST CUT
thus disproving an earlier conjecture of Goemans and Linial. Among the many reasons that
make this work remarkable, the reduction from a UG-hardness result to an SDP integrality
gap is clearly an important one. Since this work, the reduction from UG-hardness results
to SDP integrality gaps has been executed for various problems like MAXIMUM ACYCLIC
SUBGRAPH [73] and METRIC LABELING [121]. As a rule of thumb, it could be said that a
c-vs-s UG-hardness result for a problem A yields an instance of A with SDP value ¢ while
the integral optimum is only s.

94

This dissertation exhibits a reduction from SDP integrality gaps to dictatorship tests.
Roughly speaking, we show that starting with a c-vs-s SDP integrality gap for a problem A,
one can construct a dictatorship test DICT with completeness ¢ and soundness s. Moreover,
DICT is a test that could be used for showing a UG-hardness for A, in that it is a gadget
for the problem A.

This completes the cycle of reductions between dictatorship tests, SDP integrality gaps
and UG-hardness results. Not only does this prove a certain equivalence of the three no-
tions, it has led to optimal UG-hardness results and matching approximation algorithms for
various classes of problems such as constraint satisfaction problems. Furthermore, direct re-
ductions from integrality gaps to dictatorship tests have paved the way to obtaining optimal
hardness results for combinatorial optimization problems for which even integrality gaps are
unknown. Specifically, for problems such as k-WAy CuT for which the correct value of the
integrality gap is unknown, the techniques of this dissertation show that a certain linear
program yields the optimal approximation under UGC whatever the approximation factor
may be. Finally, the reduction establishes a formal connection between integrality gaps and
hardness results that was long suspected, but rarely formalized.

6.3 From Dictatorship Tests to UG-hardness Results

In this section, we will see how dictatorship tests can be translated into obtain Unique
Games based hardness result.Formally, we show

Theorem 6.1. For every e,7,m > 0, there exists positive integer ko such that, if DICT® is
a dictatorship test for Max CuT over {+1}* for some k > ko, then given a MAX CUT
instance V, it is UG-hard to distinguish between the following two cases:

— There exists a cut of ¥ of value at least Completeness(DICT?) — n,

— No cut of the graph ¥V has value greater than Soundness, .(DICT®) + 1.

Roughly speaking, if we construct a dictatorship test DICT® for every large dimension,
with completeness ¢ and soundness s, then we get a ¢ vs s-UG-hardness for Max CuT.

To prove the above theorem, we will exhibit a reduction from unique games problem to
Max Cur, via the dictatorship test. Specifically, we will show the following reduction.

Reduction Let ® = Ws U Vs, E,I1, [R]) be a bipartite UNIQUE GAMES instance. Let
DICT® denote a dictatorship test for MaX CUT over the R-dimensional hypercube ({£1}%).

Starting from the UNIQUE GAMES instance ®, we shall construct an instance ¥ =
(Vy, Eg) of the Max CuT problem. The graph ¥ contains 2f vertices indexed by {#+1}#
for every vertex of the UNIQUE GAMES instance ®. Formally, the set of vertices W is given
by Vg = Vo x {£1}£.

For a UNIQUE GAMES vertex v € Vg, the set of 2% vertices {(v,z)|z € {£1}7} is
the long code corresponding to the UNIQUE GAMES vertex v. The choice of a label for
the UNIQUE GAMES vertex v, is encoded as a cut of the corresponding set of 2% vertices.

95

Specifically, if the vertex v is assigned a label ¢ € [R], then the ¢-th dictator cut is chosen
for the corresponding set of vertices.

v is assigned ¢ € [R] = For all & € {+1}, (v, x) is assigned z;.

In terms of coding theory, we are encoding the label assigned to vertex v, using its long code
which is a code of length 2%.

To describe the edges Ey, we first set up some notation. For a vector & € {£1}* and a
permutation 7 : [R] — [R] define the vector mox € {£1} as follows:

TOo® = (Tr(1), Tr(2), " Tr(R))
As usual, the graphs DICT® and ¥ are weighted graphs, where the edge weights form

a probability distribution (sum of edge weights = 1). The edges Fg can be sampled using
the following procedure:

Edges of the graph ¥

— Sample a random vertex w € We. Pick two random neighbors v, v’ of the vertex w
independently at random.

— Sample an edge (2, z’) from the graph DICT®.

~ Output the edge between (v, Ty © 2) and (v, Ty 0 2')

By definition, a cut of the graph ¥ consists of a map F : Vg — {£1}. For each vertex
v € Vg, let the function F¥ : {£1}* — {£1} denote the cut restricted to the long code
corresponding to vertex v.

Now, let us calculate the value of an arbitrary cut given by functions {F¥ : {+1}% —
{£1}|Vv € Vg }. We can write the value of the cut as follows:

val{F*)= E E E [1[?)(%% 02) # FV (Tueu oz')]] .
wEWs v,v' €N (w) 2,2’

For two numbers a,b € {£1}, we can write 1[a # b] = 1/2(1 — ab). Substituting this

expression, we obtain

wl({F')=; E E E [1 PV (Mg 0 2) - F (Mg © z’)} .

1
2 wEWs v’ €N (w) z,2

Notice that the choices of neighbors v,v’ are independent of each other and of the choices
of z and 2’. Consequently, we can rewrite the above expression as,

val({}'”}):% E B[l E [Flr,on] B [F (o).

weWs 2,2/ veN (w) v'eN(w)

96

For a w € Wg, define the function F¥ : {£1}® — [~1,1] as follows:

F z)= E [F'(Tweyo2)] for all z € {+1}7.
veN (w)
The function F" is an average of the functions FV corresponding to its neighbors v € N (w),
composed with the appropriate permutations. In terms of the functions 7%, we get

val{F'})== E E [1—ﬂ(z).fwz')]: E [DICTE(}“‘“)}. (6.2)

1
2 weWs 2,2’ weWq

To complete the proof of Theorem 6.1, we analyze the value of the MAX CUT instance
¥ in the completeness and soundness cases. Specifically, we will show

Theorem 6.2. For all §,v > 0, given an instance ® of UNIQUE GAMES, the MAX CuUT
instance V satisfies the following properties:

— COMPLETENESS: If ® is a (1 —~)-strongly satisfiable instance of Unique Games, then
opt(¥) > (1 — v)Completeness(DICT)

— SOUNDNESS: opt(®) < 0 = opt(¥) < Soundness, .(DICT") + o,

e2r

Completeness Let A: Ve UWsg — [R] be an assignment to the UNIQUE GAMES instance
that strongly satisfies 1 — v-fraction of the vertices in Wg. Recall that, an assignment
strongly satisfies a vertex w € Wg if A(w) = myp—y(A(v)) for all neighbors v of the vertex
w.

Define a cut for the graph U as follows:
F(z) = zaw) for all vertices v € Vy .

In other words, for each UNIQUE GAMES vertex v € Vg, the cut of {v} x {£1}® corresponds
to the long code of the label A(v).

Consider a vertex w € Weg that is strongly satisfied by the assignment 4. By definition,
for each of its neighbors v € N(w), we have 7. (A(v)) = A(w). For such a vertex w, the
function F% is given by

Fiz) = o) :fv(ﬂ“’*” © z)})

= E — wW—v v) |
vEN (w) _(ﬂ. ° Z)A()}

- E — v 9
vEN (w) _ZWMRH(A())}

- E. :z A(w)] = ZAw) - (Vo € N(w), Tweo(A@)) = A(w)).

97

For a strongly satisfied vertex w, the fraction of edges cut is given by

DICTS(F¥) = % E [1- Fv(z)f“W(z’)} _lg [1 — ZAw) () (6.3)

z,z' 2 zz

= DICT(24(w)) = Completeness(DICT®) (6.4)

For a vertex w that is not strongly satisfied, trivially we have DICT®(F") > 0. Using
Equation 6.3, we can estimate the value of the cut

val({F"})

w

E |DICT®

E,, [pere)]

>]P’Vrv [w is strongly satisfied] - Completeness(DICT*)
weWe

+ Pr [wis NOT strongly satisfied] - 0
weWs

> (1 — y)Completeness(DICT?).

Soundness For the sake of brevity, let us denote 1 = /=273, Let us suppose there is a cut
of the graph W, with value greater than Soundness, .(DICT?) + 7. Then we have

E [DICT*(F")] > Soundness .(DICT®) + 1.
weWs
Since DICT®(F") is always bounded above by 1. Hence, for at least 7 fraction of the vertices
w € We, DICT®(F") > Soundness; .(DICT®) by Markov’s inequality. Henceforth we refer
to these vertices as good vertices.

By definition of Soundness, .(DICT?), for every good vertex w € Wsg, the function F* is
not (7,¢)-quasirandom. In particular, for a good vertex w € Wsg, there exists coordinates
¢ € [R] that are influential for the function Fv, i.e., Inf,(T1_.F™) > 7.

For each vertex w € Weg, define the set of labels L(w) as

L(w) = {€|Infg(T1_5.7:w) > T} .
Similarly, for each v € Vg define,
L(’U) = {K\Infg(Tl_afV‘U) > T/2} .

By the Sum of Influences Lemma (Lemma 3.0.2), we have |L(w)| < 1/er for a vertex w € We
and |L(v)| < 3/er for v € Vg.

For each of the good vertices w € Wy have a non-empty label set L(w). Fix a good vertex
w with a nonempty label set L(w). Fix a label ¢ € L(w). By definition of L(w), we have
Inf,(T1-¢F") = 7. The function Ty _.F* is given by T1_F"(2) = Eyen(w)[T1-eF " (Twev ©
z)]. By convexity of influences (see Proposition 3.0.13), if Inf,(7T7_cF") > 7 then

LBy (TP > (6.5)

Since the range of the function F" is {1}, we have Inf,(T1_.F") < 1 for all v, ¢. Hence for

98

at least a 7/2 fraction of neighbors v € N(w), Infy, _) (T1-F") > §. Summarizing the
above argument, for a good vertex w and a label ¢ € L(w), the coordinate 7, (¢) € L(v)
for at least a 7/2-fraction of the neighbors v € N(w).

Define a labeling A for the UNIQUE GAMES instance ¢ as follows: For each vertex
u € Wg U Vg, assign a random label from L(u) if it is nonempty, else assign a uniformly
random label. Specifically,

Au) = a random label in L(u) if L(u) is nonempty
| an arbitrary label if L(u) is empty .

For a good vertex w, at least 7/2 fraction of the edges (w,v) are satisfied with probability
m > 2¢272 by the assignment A. At least 7 fraction of the vertices w € Wy are good

vertices. Therefore, in expectation, the assignment A satisfies at least 1-7/3- 3272 fraction
of the edges, which is greater than d by design.

6.4 From Integrality Gaps to Dictatorship Tests

A black box reduction from integrality gaps to dictatorship tests is one of the primary
contributions of the thesis. In this section, we present an exposition of the technique for
the Max CuT problem.

Let G = (V, E) be an an arbitrary instance of the MAX CuUT problem. Specifically, G
is a weighted graph over a set of vertices V' = {vy,...,v,}, whose edge weights sum up
to 1 (by convention). Thus, the set of edges E will also be thought of as a probability
distribution over edges. We begin by recalling the Goemans-Williamson semidefinite pro-
gramming relaxation for MAX CUT. The variables of the GW SDP consist of a set of vectors
V ={wy,...,v,}, one vector for each vertex in the graph G.

Goemans Williamson SDP

GW(G) Relaxation

Maximize val(V) [1 — (v;, 'vj>] (Average Squared Length of Edges)

- 5 (vi,vj)eE

Subject to i3 =1 Vi, 1<i<n (all vectors v; are unit vectors)

The above relaxation is identical to the SDP relaxation GW presented in Chapter 2,
with the objective function ||v; — ;|3 rewritten as,

1 1 1
Zl1vs = o513 = 5 (101l + 1o 13 - 2(vi,v7)) = 51 = (o3, 9,)).

6.4.1 Intuition

We begin by presenting the intuition behind the black box reduction.

99

Dimension Reduction Without loss of generality, the SDP solution V' can be assumed
to lie in a large constant dimensional space. Specifically, given an arbitrary SDP solution
V in n-dimensional space, project it into a random subspace of dimension R — a large
constant. Random projections approximately preserve the lengths of vectors and distances
between them. Hence, roughly speaking, the vectors produced after random projection yield
a low-dimensional SDP solution to the same graph G.

Formally, sample R random Gaussian vectors {(1,...,{r} of the same dimension as the
SDP vectors V = {v1,...,v,}. Here R is to be thought of as a large constant independent
of the size of the graph G. Define a solution to the GW SDP relaxation as follows:

1
w; = (('vi, C1)y .oy (0, CR>) for all vertices v; in graph G

> jer) (i, €j)?

The vector w; is just the projection of the vector v; along directions {1, ..., r}, normalized
to unit length. Since they are of unit length, the vectors w; form a feasible SDP solution
to GW SDP.

For every n > 0, by choosing R to be a sufficiently large constant, if is fairly well
known that the following can be ensured: the distance between any two vectors v; and v;
is preserved up to (1 £ €)-multiplicative factor with probability at least 1 —e. A formal
proof of this statement can be seen in Lemma 5.3.1. Consequently, there exists some choice
of {¢1,...,CRr} such that the vectors w; form a low-dimensional SDP solution with roughly
the same value as {v;}, i.e., val({w1,...,w,}) = val(V) —n.

Henceforth, without loss of generality, we will assume that the SDP solution V' =
{v1,...,v,} consist of R-dimensional vectors for a large enough constant R.

Sphere Graph A graph on the unit sphere, will consist of a set of unit vectors, and
weighted edges between them. As usual, the weights of the graph form a probability distri-
bution, in that they sum up to 1.

The SDP solution V' for a graph G, yields a graph on the R-dimensional unit sphere,
that is isomorphic to GG. Recall that the objective value of the GW SDP is the average
squared length of the edges. Hence, the SDP value remains unchanged under the following
transformations:

— Rotation Any rotation of the SDP vectors V' about the origin preserves the lengths
of edges and the distances between them. Thus, rotating the SDP solution V' yields
another feasible solution with the same objective value.

— Union of Rotations Let {Tjvy,...,Tiv,} and {Thv,...,Thv,} be two solutions
obtained by applying rotations 713,75 to the SDP vectors V. Let G1,Gy be the
associated graphs on the unit sphere. Let G’ denote the union of the two graphs, i.e.,
G’ = G1UG,. The set of all distinct vectors in 71V UT,V are the vertices of G'. The
edge distribution of G’ is the average of the edge distributions of G; and Gj.

The average squared lengths of edges in both 71V and T2V are equal to val(V').
Hence, the average squared edge length in G’ is also equal to val(V'). Thus, taking

100

the union of two rotations of a graph preserves the SDP value.

Define the sphere graph Sy as follows:

Sphere Graph Sy: Union of all possible rotations of the graph G (on the set of

vectors {w;}) on the R-dimensional unit sphere.

=

Figure 6.3: Construction of Sphere Graph

Clearly the sphere graph Sy is an infinite graph. The sphere graph Sy is solely a con-
ceptual tool, and an explicit representation is never needed in the reduction. Nevertheless,
due to its symmetry, indeed the sphere graph Sy can be represented succinctly.

By construction, the SDP value of the sphere graph Sy is the same as that of the original
graph GG. However, we will argue that Sy is as hard an instance of MAX CUT as the original
graph GG. In fact, given a cut for the sphere graph Sy, it is possible to retrieve a cut for the

original graph G with the same objective value.

Let us suppose that F : Sy — {£1} is a cut of the sphere graph Sy that cuts a c-fraction
of the edges. Notice that Sy consists of a union of infinitely many copies (or rotations) of
the graph G. Therefore, on at least one of the copies of G, the cut F must cut a c-fraction of
the edges. Indeed, if we have oracle access to the cut function F, we can efficiently construct

a cut of the graph G with the same value as F using the following rounding procedure:

Round%
— Sample a rotation 1" of the unit sphere, uniformly at random.

— Output the cut induced by F : Sy — {£1} on the copy TV of the graph G.

101

The expected value of the cut output by the Round% procedure is equal to the value of
the cut F on the sphere graph Sy. An immediate consequence is that,

opt(Sv) < opt(G). (6.6)

The sphere graph Sy inherits the GW SDP value as G, while the optimum value opt(Sy)
is at most that of the graph G. In this light, the sphere graph Sy is a harder instance of
Max CuT than the original graph G.

It is easy to see that the following is an equivalent definition for the sphere graph Sy .

Definition 6.4.1 (Sphere Graph Sy). Given a feasible solution V' to the GW SDP, the set
of vertices of the sphere graph Sy is the set of all points on the R-dimensional unit sphere.
To sample an edge of Sy use the following procedure:

— Sample an edge (v;,v;) in the graph G,

~ Sample two points (g, g’) on the sphere at a squared distance ||v; — v;||3 uniformly at
random.

— Output the edge between (g,g’).
Hypercube Graph Finally, we describe the construction of the graph DICT{, on the

R-dimensional hypercube. Here we refer to the hypercube suitably normalized to make all
its points lie on the unit sphere.

DICTS,

The set of vertices of DICTY, are points in { - L

R
— } . An edge of DICTS, can be

Sl

sampled as follows:

— Sample an edge (vj,v;) in the graph G.

— Sample two points (z,z’) in {—ﬁ, ﬁ}R, at squared distance ||v; — v;||3 uniformly
at random.

— Output the edge between (z, 2’).

R
o 1s . . 1 1 .
It is likely that there are no pair of points on the hypercube { NI —\/R} at a distance

exactly equal to ||v; —v;[|3. For the sake of exposition, we will ignore this issue for now. To
remedy this issue in the final construction, for each edge (v;,v;), we introduce a probability
distribution over edges such that the expected length of an edge is indeed |v; — v;|3.

Completeness Consider the ¢** dictator cut F : DICTS, — {£1} given F(z) = VRz.
This corresponds to the axis-parallel cut of the DICTY, graph along the ¢t axis of the
hypercube. Let us estimate the value of the cut DICTS,(F). An edge (z,2’) is cut by the

102

(" dictator cut if and only if z, # z). Therefore, the value of the ¢*" dictator cut F is given
by:

DICT;,(F)= E E [1[7347522]]

(vi,vj)€G 2,2

Notice that two points z, 2" in {1} at a squared distance d = ||z — 2’||3 differ on exactly
d/4 coordinates. Hence, two random points at distance z,z’ at a squared distance d differ
on a given coordinate with probability d/4. Therefore, we can rewrite the expression for
DICTS,(F) as follows:

DICTS/(F) = (Ilo: = v; 3]

1
4 (vi0;)€G
1
2

o [1 - (v,-,'ujﬂ =val(V).

(vi,v;

Hence, the completeness Completeness(DICT?) test is at least val(V).

Soundness Consider a cut F : DICTS, — {£1} that is far from every dictator. Intuitively,
the cut is not parallel to any of the axis of the hypercube. Note the strong similarity in the
construction of the sphere graph Sy and the hypercube graph DICTS,. In both cases, we
sampled two random points at a distance equal to the edge length. In fact, the hypercube
graph DICTY, is a subgraph of the sphere graph Sy. The existence of special directions
(the axes of the hypercube) is what distinguishes the hypercube graph DICTS, from the
sphere graph Sy. Thus, roughly speaking, a cut F that is not parallel to any axis must be
unable to distinguish between the sphere graph Sy and the hypercube graph DICTS,. If we
visualize the cut F of DICTS, as a geometric surface not parallel to any axis (see Figure 6.4),
then the same geometric surface viewed as a cut of the sphere graph must separate roughly
the same fraction of edges.

Indeed, the above intuition can be made precise if the cut F is sufficiently smooth (low
degree). The cut F : DICTS, — {£1} can be expressed as a multilinear polynomial F' (by
Fourier expansion), thus extending the cut function F from {—1/v&,1/VE}® to RE. The
function F is smooth if the corresponding polynomial polynomial F' is low degree. If F is
smooth and far from every dictator, then one can show that,

Value of F on DICTy, ~ Value of F' on Sy

By inequality 6.6, the maximum value of a cut of the sphere graph Sy is at most opt(G).
Therefore, for any cut F : DICTS, — {£1} that is smooth and far from every dictator, we
get DICTS,(F) 3 opt(Q).

Ignoring the smoothness condition for now, the above argument shows that the sound-
ness of the dictatorship test DICTY, is at most opt(G). Summarizing the above discussion,
starting from a SDP solution {wv;} for a graph G, we constructed hypercube graph (dictator-
ship test) DICTS, such that Completeness(DICTS,) > val({v;}), and Soundness, .(DICTS,) 3
opt(G).

103

Figure 6.4: Extending the Cut from DICTS, to Sy

By suitably modifying the construction of DICTY,, the smoothness requirement for the
cut can be dropped. The basic idea is fairly simple yet powerful. In the definition of DICTS,,
while introducing an edge between (z, z’), perturb each coordinate of z and z’ with a tiny
probability & to obtain z and 2z’ respectively, then introduce the edge (2,2’) instead of
(z,2"). The introduction of noise to the vertices z and 2’ has an averaging effect on the cut
function, thus making it smooth.

6.5 Formal Proof of Reduction

Let G = (V, E) be an arbitrary instance of MAX CuT. Let V = {vy,...,v,} be a feasible
solution to the GW SDP relaxation.

Locally, for every edge e = (v;,v;) in G, there exists a distribution over {£1} assignments
that match the SDP inner products. In other words, there exists {£1} valued random
variables z;, z; such that

(vi, v) = Elz; - 2] .

For each edge e = (v;,v;), let jie denote the local integral distribution over {£1} assignments.

The details of the construction of dictatorship test DICTY, are as follows:

104

DICTS, (MaxCuT Example)
The set of vertices of DICT§, consists of the R-dimensional hypercube {+1}#. The distri-
bution of edges in DICTS, is the one induced by the following sampling procedure:

— Sample an edge e = (v;,v;) € E in the graph G.
— Sample R times independently from the distribution pu. to obtain zﬁ =

(zl-(l), e ,zi(R)) and zf = (z](-l), e z](-R)), both in {+1}%,

— Perturb each coordinate of 2z and zf independently with probability € to obtain

2B sz respectively. Formally, for each ¢ € [R],
S0 _ zi(e) with probability 1 — ¢
! uniformly random value in {#1} with probability e

— Output the edge (2 2?).

Theorem 6.3. There exist absolute constants C, K such that for all e,7 € [0,1], for any
graph G and an SDP solution V' = {v1,...,v,} for the GW-SDP relazation of G,

— Completeness(DICTYy,) > val(V') — 2¢

~ Soundness, . (DICTS,) < opt(G) + C7Ee.

Let F : {#1}® — {#£1} be a cut of the DICT® graph. The fraction of edges cut by F is
given by

DICTS,(F)=- E E E [1—?(2%%(2%] (6.7)

1
2(vl,vJ)6Ez zf f,%f

In the above expression, the expectation over z; z; refers to an expectation over the noise.
Thus, formally the inner expectation should be written as over z;|z; and Z;|z;.
Completeness : Consider the ¢ dictator cut given by F(z) = 2 With probability

1 — ¢)?, the perturbation does not affect the " coordinate of z; and z;. In other words,
J

O _ 0 g 50 — 50

with probability (1 — ¢)2, we have Ej = z; and z; . Hence,

DICTy(F) > (1—e)-E B _[1-29..0

R LR J
z;',z;

l\’)l»—\

Observe that if the edge e = (v;,v;) in G is sampled, then the distribution s, is used to
(0)

generate each coordinates of ZZR and zf. Specifically, this means that the coordinates z;

()

and z; satisfy,

105

Therefore, DICT,(F) > (1 —¢)? $E. [1 — (v;,v;)] = (1 —¢)? - val(V).

Soundness : For the sake of analysis, we will construct a graph Gy, roughly similar to the
sphere graph Sy described earlier.

Gaussian Graph Gy

The vertices of Gy are points in R®. The graph Gy is the union of all random projections
of the SDP solution V' in to R dimensions. Formally, an edge of Gy can be sampled as
follows:

— Sample R random Gaussian vectors ¢, ... ¢® of the same dimension as the SDP
solution V.

— Project the SDP vectors V' = {vy,...,v,} along directions ¢® . ¢H) to obtain
a copy of G in a Rf. Formally define

gf% = (<vi7 C(1)>7 s <’Ui, C(R)>) :

— Sample an edge e = (v;,v;) in G, and output the corresponding edge (glR,gf) in RF

As lengths of vectors are approximately preserved under random projections, most of
the vectors are {g*} are roughly unit vectors. Hence, the Gaussian graph Gy is a slightly
fudged version of the sphere graph Sy described earlier.

As the graph Gy consists of a union of several isomorphic copies of G, the following
claim is an immediate consequence.

Claim 6.3.1. opt(Gy) < opt(G).

Let us suppose that F : {£1}f — {41} is a (7, €)-quasirandom function. For the sake of
succinctness, let us denote H = T}_.F. Essentially, H(z%) is the expected value returned
by F on querying a perturbation of the input z. Thus the function H is a smooth version
of F, obtained by averaging the values of F.

Now we will extend the cut F from the hypercube graph DICTS, to the Gaussian graph
Gy . To this end, we write the functions H, F as a multilinear polynomials in the coordinates
of zft = (z(l), e z(R)). In particular, the Fourier expansion of F and H yields the intended
multilinear polynomials.

F(z) = Zﬁo HJE(i) and H(x) = Z(l —)l E, Haj(i) .

i€o o 1€o

The polynomials F' and H yield natural extensions of the cut functions F and ‘H from
{£1}7 to R”. However, unlike the original cut function F, the range of its extension need
not be restricted to {£1}. To ensure that the extension defines a cut of the graph Gy, we
will round the extension in the most natural fashion. Formally, define the rounding function

106

fi=1,1) as follows:

-1 fz< -1
frog) =9z if —1<z<1
1 ifx>1.

The extension H* of the cut F to Gy is given by

H*(g") = fi_1(H(g"™) where H(g") = 3 (1 -)%,] g

o jE€o

Let val(H*) denote the value of the cut H* of the graph Gy. Now we will show the
following claim.

Claim 6.3.2. There exists an absolute constant K > 0 such that for a (7,¢)-quasirandom
function F : {£1}F — {£1},

val(H*) = DICTS,(F) = 75¢.

By definition of opt(Gy), we have val(H*) < opt(Gy). Along with Claim 6.3.1, this
implies that Soundness, . (DICTS,) < opt(G) + 75, completing the proof of Theorem 6.3.

Proof of Claim 6.5.2. Returning to the definition of DICTS,, notice that the random variable
22 depends only on zf. Thus, the value of a cut F : {1} — {41} can be rewritten as,

DICTy(F) = ;E E [1—E[f(23)|z3].E[]:(gf”z;ﬂ

(2 (2

By the definition of the noise operator Ty_.,Ti_.F(z) = E:z[F(2%)|2%]. Hence DICTS,
can be rewritten as

DICT%(f)zé E E [1—H(ZR)-H(ZR)] =

e=(vi,v5) zf, 20

By definition of the Gaussian graph Gy, we have
1
(H)=5 E B [1-H'(gf) 1" (g}
val(H") = 3 =iy gty (gi") - H"(g5")
Firstly, let us denote by P : [~1,1]?> — [~1, 1] the function given by P(z,y) = 1 — xy. Let
us restrict our attention to a particular edge e = (vy,v3). For this edge, we will show that
E [PHENHED)] = E [P (H (gl B (g5)] 75 (6.9
Z1,%y 91,95

By averaging the above equality over all edges e in the graph G, the claim follows. We will

use the invariance principle to show the above claim.
Here is a statement of the invariance principle (see Section 3.6) tailored to the application

at hand.

107

Theorem 6.4 (Invariance Principle [125]). Let z = {z1,22} and G = {g1,92} be two sets
of random wvariables such that:

E[z] = Eg:] = 0 E[z}] = E[gf] = 1 for all i € [2]

7

and B[z122) = E[g1g2]. Let 2%, GE denote R independent copies of the random variables z
and G.

There is an absolute constant K > 0, such that for all T, > 0 the following holds:

If F be a multilinear polynomial given by F(x) = E, [Lico @, and if H(x) =
Ty F(x) =3 _(1-¢e)lE, [Lic, @ be such that Infy(H) < 7 for all £ € [R] then,

1. For every function U : R? — R that is thrice differentiable with all its partial deriva-
tives up to order 3 bounded uniformly by Cy,

(B [w((=R, 1 E=D)] - B [@, Hgh)| < -~

2. Define the function £ : R? — R as &{(x) = e (@i — f[_171}(x2-))2 Then, we have
E[¢(H(21), H(25))] — E[¢(H(g7). H(g3))]| < TF°

By design, for each edge e = (v;,v;) the pairs of random variables {z;, z;} and {g;, g;}
satisfy,

Elgi] = E[z] =0 Elg;] =E[:f] =1

¢ He 4 He
_E[z] = 2 = B2 =

Blyl=Elsl=0 Bl =ER3-1

Elgig;] = Elzizj] = (vi, v;) -
e He

The predicate/payoff is currently defined as P(x,y) = 1 — zy in the domain [—1,1]2.
Notice that the function P(z,y) = 1— zy by itself does not have uniformly bounded deriva-
tives in R?. Extend the payoff P to a smooth function over the entire space R?, with all its
partial derivatives up to order 3 bounded uniformly throughout R?. Further, it is easy to
ensure that the extension satisfies the following Lipschitz condition for some large enough
constant C' > 0,

|P(x,y) — P(',y)| < C(lx = 2'[+ |y —y'|) V(z,y), («',y) € R. (6.9)

We will prove Equation 6.8 in two steps.

Step I: Apply the Invariance Principle with the ensembles z = {z1, 20} and G = {¢1, 92},
for the vector of multilinear polynomials H and the smooth function ¥ = P. This yields,

B [P D) = E, P (gl), Hgf))] + 77 (6.10)

108

Step II : In this step, we bound the effect of the rounding operation used in extending
the cut F from DICTS, to Gy.

As Fis a cut of DICTY,, its range is {#1}. Hence, the corresponding polynomial F' takes
{#£1} values on inputs from {£1}. As H = T}__F is an average of the values of F, the
values H(z1) and H(z¥) are always in the range [—1,1].

By the invariance principle, the random variable (H(zf), H(z4)) has approximately
the same behaviour as (H(g¥), H(g¥)). Roughly speaking, this implies that the values
H(g¥), H(gk) are also nearly always in the range [—1,1]. Hence intuitively, the rounding
operation must have little effect on the value of the cut.

This intuition is formalized by the second claim in the invariance principle. The function
¢ measures the squared deviation from the range [—1,1]. For random variables (2%, z£),
clearly we have E[¢(H (%), H(z%))] = 0. By the invariance principle applied to polynomial
H we get,

E[¢(H (V) H(gh))] < E[E(H(21), H(25))] + 71 = 0 4 7%¢ = 712 (6.11)

Using the Lipschitz condition satisfied by the payoff, we can write:

E [P (gf) H"(gf)] - E [P(H(gF), H(gf))|

gt g% gt g%
<C E, |1 (af) — H(g)| + | H*(95) — H(g})|
192
<C(2 E [‘H*(gR) - H(gR)|2 + |H*(gR) - H(gR)‘Z])l/2 by Cauchy-Schwartz ineq
S gl gn 1 1 2 2
R 1) 7 -
SC(Q gREgR [g(H(gl), H(g>))D (by Definition of &)
192
<207Ke < 7Ke (by Equation 6.11)

Along with Equation 6.10, the above inequality implies Equation 6.8. This finishes the
proof of Claim 6.3.2.
|

6.6 Dictatorship Tests and Rounding Schemes

The proof of soundness in Section 6.4 can be translated into an efficient rounding scheme.
Specifically, given a cut F of the graph DICTS,, let H* denote its extension to the Gaussian
graph Gy. The idea of the rounding scheme Round% is to sample a random copy of the
graph G inside the Gaussian graph Gy and output the cut induced by H* on the copy. The
details of the rounding scheme are described in Figure 6.6.

Let Round% (V') denote the expected value of the cut returned by the above rounding
scheme on an SDP solution V. Then we can write,
Round% (V') =

E E 1—H*(gR).H*(gf)]= E [E [P(H*(gf),H*(gf))].

109

Round%
Input: SDP solution V' = {vy,...,v,} for the GW SDP relaxation of the graph G.

— Sample R random Gaussian vectors ¢, ..., ¢ of the same dimension as the SDP
solution V.

— Project the SDP vectors V = {vy,...,v,} along directions ¢(V), ... ¢, Let
gf% = ((vi7 C(1)>7 vy <Ui7 C(R)>) .
— Compute H*(gF) for all i € [n] as follows:

H*(g%) = fi_1)(H(gF)) where H(gl) = T1_.F(gl") =Y (1 - o)V £, [T o7

o jeo

— Assign vertex v; the value 1 with probability (1 + H*(gF))/2 and —1 with the re-
maining probability.

Figure 6.5: Rounding Scheme Round%

Here P denotes the smooth extension of the payoff function from [—1,1]? to R?. The
following is an immediate consequence of Claim 6.3.2,

Theorem 6.5. There is a constant K > 0 such that for a (7,¢)-quasirandom function
Fo{£1}8 - [-1,1],
Round% (V') = DICT;,(F) + 7€

On one hand, the above theorem exposes an interesting duality between rounding
schemes and dictatorship tests.

It is clearly desirable to execute the scheme Round% for a (7,¢)-quasirandom function F
that maximizes the acceptance probability against DICT§,. However, it could be difficult to
explcitly find a (7, e)-quasirandom function F that maximizes this acceptance probability
for an SDP solution V.

The crucial insight is that the size of the domain 2% is an absolute constant independent
of the SDP solution V. Furthermore, the performance of the rounding scheme Round (V)
is a continuous function of F. Formally, we have the following lemma:

Lemma 6.5.1. There exists an absolute constant Cy such that if F,F' : {£1} — [—1,1]
are two functions and let V' be a GW SDP relaxation for a graph G. Then,

[Round5(V') — Round: (V)| < 2Co|| 7 — 7|l

110

Proof. Starting with the expression for Round%, we can rewrite
E B[P g, H (g]) - PH" (), H"(g})]|
e=(vi,vj) gt g}

<a_E B [Heh -1 6h 4 1) - 1)

e=(vi,v;) gf,g

|Round% — Round%/| =

j
(by the Lipschitz condition for payoff P
* * E * * 1
<Co B [(BIH () —H"(IP)" + (E 11 (a]) — H"(g)P) "]
e=(v;,v; i i

(by Cauchy Schwartz inequality)
< 26| H* — H™||2

To finish the proof of the claim, observe that
2" — H"|l2 < |H — H'|l2 < [|IF = F|J2,

where the two inequalities use the fact that the operators f|_; 1; and T} are contractive. M

Using the continuity of Round%, the space of functions can be discretized, and searched
by bruteforce. Every function F : {£1}* — [~1,1] can be thought of as a point in R2”.
The natural metric between two functions given by || F — F'||s = Eg[(F(z) — F'(x))*]V2 is
a scaled version of the natural /o metric on R2’. Thus to discretize the space of functions,
it is sufficient to pick a k-net for the unit ball in R2". The formal definition of a x-net is as
follows:

Definition 6.6.1. Let B(0,1) denote the unit ball in the d-dimensional space R?. A s-net
for the unit ball B(0,1) is a finite set NV of points in B(0, 1) such that for every € B(0,1)
there exists a point y € N such that ||z — y|]2 <e.

Round:, scheme

Input : A feasible solution to the GW SDP relaxation.

Let S, = {F1,---,Fu} be a set of functions such that for every F : {£1}¥ — [~1,1]
there exists F; € S, satisfying ||F; — F||2 < &.

— For each function F; € Sy, run the subroutine Round%, on the SDP solution

— Output the assignment obtained with the largest objective value.

As an immediate consequence of Theorem 6.5 and Lemma 6.5.1 we get the following
theorem.

Theorem 6.6. For every n,e > 0, there exists choices of k, T such that

Round;, (V') > Soundness, .(DICTy,) —

111

Proof. Recall that Soundness; .(DICTS,) was defined as

Soundness, . (DICTS,) = max DICTS (F).
Fr{£1}R—[-1,1]
F* is (1,6)—quasirandom

Let F* : {£1}# — [~1,1] be the function for which the maximum is achieved in the above
definition. Let F; € S, denote the closest point to F* in the xk-net S, i.e., | F* —Fj[l2 < k.
Since F* is (7, e)-quasirandom, by Theorem 6.5 we have

Round%. (V') = DICTS,(F*) + 75¢ = Soundness, . (DICT,) 4+ 7/

By the continuity of Round% (Lemma 6.5.1), we have [Round%.(V) — Round% (V)| <
20| F* — Fjll2 = 2Cpk. Consequently we obtain the conclusion of the theorem.

Roundy. (V') = Roundz (V) = Soundness, . (DICTS,) —7%¢—2Cyx > Soundness, .(DICTS,)—7

Comparison with Half space Rounding The Goemans-Williamson algorithm [65] for
Max CuT uses a halfspace rounding wherein a single random projection {g;|g; = (v;,¢),7 €
[n]} of the SDP solution V' = {wv,...,v,} is sampled, and for each ¢ € [n], the vertex v; is
assigned sgn(g;).

Equivalently, since the sum of several Gaussian random variables is also Gaussian, the
halfspace rounding can be rephrased in the following manner: follows:

— Project the SDP solution V' = {vy,...,v,} along R random Gaussian directions
{¢W ... ¢} to obtain

g = (0, ¢D), .., (i, ¢ M) for each i € [n]

— For each i € [n], assign sgn(ggl) + gZ@) +... ,gl.(R)

) to vertex v;

For every 7, > 0, with a large enough choice of R, the function F*(x) = sgn(z1 +...+
xR) is (7,e)-quasirandom. During the bruteforce search, the Round;, scheme will iterate
over a function F that is close to F*. Therefore, the rounding scheme Round;, achieves an
approximation that is at least as good as that of the Goemans-Williamson algorithm.

The design of a rounding scheme such as the Goemans-Williamson halfspace rounding
often requires ingenuity, and knowledge about the nature of the CSP involved. By yielding a
constant sized search space of rounding schemes Theorem 6.5 removes the need for ingenuity,
thus making it more amenable to generalization for arbitrary CSPs. On the flip-side, specific
rounding schemes such as the halfspace rounding are vastly more efficient than the generic
rounding scheme outlined here, although both are polynomial time algorithms.

Comparison with the generic rounding scheme in Chapter 5 The Round{ scheme
is arguably the same as the generic rounding scheme for CSPs presented in Chapter 5.

112

To see this, let us pick an n-net for the R-dimensional sphere for sufficiently small 7, and
subdivide the sphere into Voronoi cells for the n-net. Being a smooth extension of the cut
F, the value of H* is roughly constant on each of the cells. A brute force search over the
space of all functions F amounts to a search over all possible assignments to the cells. The
Round?, algorithm randomly projects the SDP vectors along R directions, and each vertex
v; is assigned the value H *(gf). In particular, all vertices whose projections fall into the
same Voronoi cell, will get assigned the same value.

Therefore, the execution of the Round{. scheme can be rephrased as follows: Project the
SDP vectors along R random directions and merge vertices whose projections fall in to the
same Voronoi cell. Finally, perform a brute force search over the constant sized graph that
is obtained after merging the vertices. Indeed, this is exactly how the rounding scheme
presented in Chapter 5 proceeds towards rounding the SDP solution.

6.7 From UG-hardness to Integrality Gaps

A UG-hardness result for a problem A almost always yields an SDP integrality gap instance
for A. Clearly, a UG-hardness result for A, involves a polynomial time reduction Red from
UNIQUE GAMES to the problem A. Specifically, given a UG instance ®, the reduction Red
produces an instance Red(®) such that,

opt(®) > 1 — v = opt(Red(®)) > ¢ and opt(P) < 6 = opt(Red(P)) < s.

To obtain an SDP integrality gap using the reduction, one starts with a SDP integrality
gap instance ® for Unique Games. Formally, let ® be an instance of Unique Games with
sdp(®) > 1 — « while opt(®) < §. Consider the instance & of problem A produced by
executing the UG-hardness reduction Red on the instance ®. As opt(®) < § clearly we
have opt(SJ) < s. Surprisingly, the SDP solution for ® can be composed with the reduction
in order to demonstrate that sdp(¥) > ¢. Thus a ¢ vs s-UG hardness result yields an
integrality gap instance where the SDP value is ¢, while the integral optimum is at most s.

In this section, we will demonstrate the above proof technique for our running example
of the MAX CuT problem. We will show the following theorem.

Theorem 6.7. For all 7,6, 7, > 0, given a dictatorship test DICT over {£1}f for R >

(%)¥, there exists a MAX CUT instance VU such that sdp(¥) > (1 — ~)Completeness(DICT)
and opt(V) < Soundness, . (DICT) + 52%'

We begin by recalling the properties of a SDP integrality gap instance for Unique Games.

Definition 6.7.1. A weak gap instance ® for UNIQUE GAMES consists of & = (Wp U
Vo, E, 11, [R]), and a set of SDP vectors B = {B, }yey, where B, = {b,;|i € [R]}. The SDP
vectors B form a feasible solution for the following SDP relaxation.

113

Maximi I(B)= E b [UG
aximize val(B) olp Z(e (£)5 Ow,t) (UG)
Le[R]
Subject to <bv,€7 bv/7él> > 0, <bv,€7 bv7£l> =0 \V/U7'L)/ € qu,é, E/ € [R]
Z |bv7g|2 =1 Vv € Vo
LE[R]
‘ va,f_ va’,é2:0 V’U,U/Ech
LE[R] L€[R]

The SDP vectors B can be assumed to satisfy the following additional properties:

— There exists a unit vector by such that for each v € Vg, ZZG[R] b,y = by and
(bo, by ¢) = |by¢|? for all £ € [R]. Observe that > 0.0{bues by o) = (bo, bo) = 1.

— The collection B of orthonormal sets is a good SDP solution for @, in that val(B) >
1 — 7. Furthermore, it can be assumed that

W v (2 <"vmww>’bm/w(m) z1-7 (6.12)

weEWs v, EN
ey ¢€[R]

~ (Strong Matching Property) For every pair of vertices u,u’ € Vo U Ws, the sets
B, and B, satisfy the following strong matching property: There exist R disjoint
matchings between B,, B, given by bijections 7!, ..., #): B, — B, such that for
all i € [R],b,b € B, we have (b, 7() (b)) = (b, 7 (¥')).

— For every edge e = (w,v) € E, the vector sets B,, and B, have significant correlation
under the permutation m = m,,. Specifically,

Vil e [R] <bw7g, bv’ﬂ(5)>2 > 0.99.

Let ® denote a weak gap instance for UNIQUE GAMES with sdp(®) > 1—+ and opt(®) <
0. By the work of Khot and Vishnoi [104], there exists a weak gap instance for UNIQUE

GAMES over an alphabet size R > (%)%0 Execute the reduction to MAX CUT outlined in
Section 6.3 starting with the instance ®. We claim that the resulting MAx CuUT instance
¥ is an SDP integrality gap for Max CuUT.

Since opt(®) < 0, it immediately follows from Theorem 6.2 that
opt(¥) < Soundness, . (DICT®) + 6/c273. All that is left to finish the proof of Theorem 6.7,
is to show that sdp(¥) > (1 — v)Completeness(DICT®). Towards this goal, we will use the
SDP vectors for ¢ to exhibit an SDP solution for the GW relaxation of MAX CuT for the
graph W.

The idea behind the construction of SDP vectors is pretty simple. Let us pretend for the
moment that the SDP solution B for the unique games instance ® is integral. Specifically,

114

let us suppose that the SDP solution B consists of one-dimensional vectors that are either 0
or 1. Thus for a vertex u € We U Vs, exactly one of the vectors {by ¢ }c(r) is equal to 1 while
the remaining are identically zero vectors. Furthermore if b, o = 1 then it is interpreted as
assigning the label £ to the vertex v.

The vertices of the MAX CUT instance W consists of a long code for every vertex v € Vg,
i.e., Vg = Vo x {1}, Consider a vertex (v,z) in the graph ¥. The reduction encodes
the choice of a label ¢ to a UNIQUE GAMES vertex v, as the ¢ dictator cut for the set
of vertices {v} x {1}, Therefore, if the vertex v is assigned label ¢, then (v,) is to be
assigned z(¥). Consequently, the value assigned to vertex (v, @) is given by

4
‘/(v,a:) = Z 517()bv,Z .
LE[R]

Clearly, if the SDP vectors b, are integral, then the solution V/, , is the intended solution
for the MAX CuT instance W. More generally, the SDP vectors {b, ¢} are to be thought of
as random variables {b, ¢} that take integral values. In other words, each b, ¢ is a random
variable that takes values 0 or 1, and satisfies

E[bv,ﬁbv’,f’] = <bv,€7 bv’,€’>

Equivalently, the SDP vectors B correspond to a probability distribution over labellings to
the UNIQUE GAMES instance P.

Consider a vertex w and two of its neighbors v,v’. Since B is an SDP solution with high
objective value (6.12), the probability distribution over labellings almost always assigns
labels that satisfy the edges (w,v) and (w,v’). With high probability, the distribution
over labellings assigns w — ¢, v — Ty w(¢) and v/ — 7y, (¢) for some label ¢ € [R].
Equivalently, with high probability we have by = by r,) = bz, () =1 for some
label £. In turn, the long codes corresponding to v and v’ are assigned m,_,(£)" and
Ty —w(0) dictator cuts respectively. On assigning such matching dictator cuts, at least
Completeness(DICT?) fraction of edges between the long codes of v and v’ are cut. As this
happens with high probability, the fraction of edges cut is roughly Completeness(DICT?).

While the above argument outlines the intuition behind the SDP value, the formal proof
is a fairly easy calculation. To check the feasibility of the SDP solution {‘/(v7m)|v € Vo, x €
{£1}7}, all that is required is that the vectors V,, , are unit vectors. Indeed the vectors
V.« are unit vectors as shown below:

<‘/(v,w)7 ‘/(v,w)> = Z x(é)x(él)a)v,fy bv,£’>
0 €[R]
= Z ($(Z))2<bv’g,) (textsince(by ¢, by p) =0 for all £ # ()
Le(R]

=) |byP=1
]

le[R

115

Now we shall turn to the analysis of the value of SDP solution.

1
— E E E 1 - V [e)-4) V xy
2 wEWs v’ €N (w) 2,2’ [(Vw0 T Ty

val({Viz}) = joxr)] -

Let us denote & = m,, 0z and y = T, o 2’. Rewrite the inner expectation as,

E [1 - <.V1.),7Tw<—v027 .Vz.)l77rw<—vlozl>j| - E [1 - <.V1.)’w7 V;)’,w’>]

z,z' Yy

Using Vow =D 4 :E(e)bM and ZM’E[R} (bye, by) = (bo, by) = 1, we can rewrite

E, [1 - <‘/v,7rwRuoz7 ‘/v’,wvazoz’ﬂ = wE [Z <bv,€7 bv’,€’> - Z x(é)y(él) <bv,Z7 bv’,é’>]
== LLELR] LLER]
= Z <bv7g, bvl7el> E [1 — x(z)yw)} .
¢,0€[R) i

Observe that (by ¢, by) > 0 and Eg o1 — x(é)yw)] > 0 for all ¢,¢. Dropping all terms
other than terms of the form m,,(€), my—qy(¢) for £ € [R], we get:

E [1 - <‘/;),7rwkvoz’ .V;.)/,’TI'U}HU/OZI>:| =

z,z'
> Bury @) b, @) mIEy [1— (mw Oy w®)]
(€[R] ’

By definition of x and y, we have z(T—w»®) = 2(O) and y(™—w®) = 2O Consequently,

E [1_<V;)77rw%uoza %’,anU,oz’ﬂ = Z <bv77rva(g),bvf77r , (g)> E [1 - Z(Z)Z/(g)]

z,z' v/ —w 2,2/
LE[R]
> < Z <bv77"v<—w(£)’bv,J"U’Hw(Z)>) . (2 . Completeness(DICT€)> .
LE[R]

Substituting this back in the expression for val(V,, ;), we obtain the desired conclusion.
1 E E E [1 - <‘/v e 0z ‘/v’ m oz’>]
2 wEWs v/ €N (w) 2,2/ e Mweo!

> E E b, » N -C leteness(DICT*®
wWEWs 0,0/ €N (w) (Zez[}:ﬂ< Moe—w (£) Ty %w(é)>> ompleteness()

> (1 —~)Completeness(DICT*) by 6.12

val{Voz}) =

6.8 Implications

In this section, we study some of the implications of the connections exposed in this chapter.
Let Gapyax curs UGhardyiax cur denote the SDP integrality gap and UG-hardness curves
for the MAX CuT problem.

116

Parameters We will choose parameters R, T, ¢, k,7, d such that all the reductions outlined
in this chapter incur an additive error of at most n for some 1 > 0. With this in mind, first
set € = 1—’70 and fix 7 such that the error C75¢ in Theorem 6.3 is at most %. A value of

_O(logn)

T=2 suffices for this purpose. Choose a value of kK = O(n) such that the error in

Theorem 6.6 is at most 75.
_ logn
Set v = 75 and § = # = 2795 to ensure that the reduction in Theorem 6.2 incurs

an error of at most % in both the completeness and soundness cases. Finally, fix the value
of the alphabet size of UNIQUE GAMES R as 200/7%) " This value is large enough to ensure
that there exists a weak gap instance of UNIQUE GAMES with SDP value 1—+ and optimum
value §.

Optimal UG-hardness Let us compose the conversion from SDP integrality gaps to
dictatorship tests (Theorem 6.3) with the reduction from dictatorship tests to UG-hardness
result (Theorem 6.1). As an immediate consequence, we obtain a UG-hardness result for
Max Cut that matches the SDP integrality gap. Formally,

Theorem 6.8. For all 7 > 0 and % < ¢ < 1, it is UG-hard to distinguish between MAX
Curt instances with value at least ¢ —n from those with value Gapyiax cur(€), i-e.,

UGhardyiax cur(c — 1) < Gapyiax curl€) +1

Proof. Let G be a graph such that sdp(G) = ¢ while opt(G) < Gapyax cur(c) + 4. The
existence of such a graph is guaranteed by the definition of the SDP integrality gap curve
Gapyiax cur- Apply Theorem 6.3 for the graph G with its optimal SDP solution and the
above defined values of 7,¢. The claim follows by using the resulting dictatorship test in
UG-hardness reduction (Theorem 6.2). [|

Optimal Rounding Scheme The following theorem shows that the rounding scheme
Round:, achieves the integrality gap of the semidefinite program. Let RoundingCurve(c)
denote the rounding curve associated with the Round; scheme.

Theorem 6.9. For all n > 0, there exists choices of €,k such that
RoundingCurve(c) > Gapyax cor(c — 1) — 7

Proof. The choices of k,e as a function of 1 are as outlined earlier in this section.

By definition of RoundingCurve, there exists an instance G and an SDP solution V'
for G such that val(V') > ¢ while Round; (V') < RoundingCurve(c) + #. Consider the
dictatorship test DICTS, associated with SDP solution V. By Theorem 6.3, we have
Completeness(DICTY,) > val(V))—2¢ > c—4. Further by Theorem 6.6 Soundness, . (DICTS,) <
Round;, (V') + < RoundingCurve(c) + %T".

Now we can use the dictatorship test DICTS, in Theorem 6.7 to obtain a SDP integrality
gap. Therefore by Theorem 6.7 we obtain a SDP integrality gap ¥ for MAX CuUT such that

sdp(¥) > (1 — v)Completeness(DICTS,) > ¢ — 7,

117

while,
opt(¥) < Soundness, . (DICTS,) + /227 < RoundingCurve(c) + 7.

Thus ¥ is an instance of MAX CuT with SDP value ¢ — 1 and optimum value at most
RoundingCurve(c) + 7. By definition of the Gapy,x cyr curve, the optimum value of ¥ is
at least Gapyax cur(c —). As an immediate consequence one gets RoundingCurve(c) >

Gapyiax curl(c—1n) =1 u
The following corollary follows immediately from the above two Theorems.

Corollary 6.9.1. The GW relaxation along with the rounding scheme Rounds, form an
approximation algorithm for MAX CUT whose approzimation curve «(c) satisfies for all
n > 0:

a(e) = Gapyiax curl(e — 1) —n = UGhardyiax cur(e — 217) — 21

Roughly speaking, the GW relaxation along with the Round, yield an algorithm that
achieves the optimal approximation under UGC. The important subtlety involved is the
continuity of the curves Gapy,x cyr and UGhardyiax cor-

The continuity of these curves is not an issue if one is solely interested in the worst case
approximation ratio over all c¢. In particular, if we define GapRatioy,x cor
and UGhardThresholdyax cur as

UGhardyax CUT(C)

GapRatioy,y oy = inf GaPyax cur(€) UGhardThresholdyiax cur = inf

C C

then, we have the following corollary.

Corollary 6.9.2. GapRatioy;,x cyr = UGhardThresholdyiax cur and further the algorithm
consisting of GW relaxation along with the Roundf, rounding scheme achieves an approzi-
mation GapRatioy,y cyr — 0 for all n.

The Gapyrax cur and UGhardyiax cur were shown to be continuous by O’Donnell and Wu
(Corollary 5.4, [132]). Therefore, the above theorems yield matching UG-hardness results
and approximation algorithms for MAX Cut. While all the above stated theorems and
corollaries generalize to arbitrary CSPs, the continuity of the curves involved does not hold
for arbitrary CSPs.

Computing Integrality Gaps In this section, we have obtained a UG-hardness result
and a matching approximation algorithm for MAX CuT. However, the results are implicit in
that they do not shed light on the value of the approximation ratio, or the SDP integrality
gap. Now we will see how the connection between dictatorship tests and SDP integrality
gaps can be harnessed towards computing the curves Gapy,x cor and UGhardyiax cor-

In Theorem 6.3 and Theorem 6.7, we have effectively established an equivalence between
SDP integrality gaps and dictatorship tests over a large constant dimensional hypercube.
The integrality gap curve Gapy.x cur(c) is the worst case value of the optimum over all
instances with SDP value ¢. As there are infinitely many instances of all sizes with SDP
value ¢, it is unclear how Gapy;,x cur(€) can be computed in finite time.

118

The crucial observation is that the set of all dictatorship tests over a constant dimensional
hypercube is a compact set, that can be easily discretized. Recall that a dictatorship test
over {£1} is nothing but a weighted graph over {£1}%, whose edge weights sum up to
1. Hence, the space of all dictatorship tests can be identified with probability distributions
over {1} x {1} - a compact set.

Define Soundness, .(c) as follows:

Soundness; . (c) = inf Soundness, . (DICT)
DICT— a dictatorship test over {£1}%7
Completeness(DICT)=c

By Theorem 6.7, there exists a MAX CUT instance ¥ with sdp(¥) > (1 —y)c = ¢ — n and
opt(¥) < Soundness; . (c) + 7. Therefore we have

Soundness: . (c) > Gapyax cur(c—n) — 7.
Furthermore by Theorem 6.3, we have
Soundness; - (¢) < Gapyrax cor(c+ 1) +1

Observe that for any n > 0, by iterating over a sufficiently fine x-net over the space of
dictatorship tests, the value Soundness; .(c) can be computed within an accuracy of 7.

Corollary 6.9.3. There exists an algorithm that for any n > 0 and % < ¢ <1, runs in
time exp(exp(exp(O(1/1?)))) and computes a real number § such that

Gapyax curl(c —n) — 21 < 0 < Gapyax curlc+n) +21.

In particular, the algorithm can be used to estimate GapRatioy;,x cyr to any desired
accuracy 7. Moreover, the continuity of the curve Gapy,x cur ensures that 6 is indeed a
good approximation for Gapy.x cur(€) too.

119

Chapter 7
GENERAL CONSTRAINT SATISFACTION PROBLEMS

120

The connections between SDP integrality gaps, Dictatorship tests and UNIQUE GAMES
hardness results were explored in Chapter 6. In this chapter, we will generalize these con-
nections and their implications to the class of generalized constraint satisfaction problems.

7.1 Results

In the next few sections, we generalize the reductions between SDP integrality gaps, dicta-
torship tests and UG-hardness results outlined in Chapter 6 to arbitrary GCSPs. As in the
case of MAX Cut (Chapter 6), several interesting results emerge as implications of these
connections.

To state these implications let us recall some definitions. Recall that a generalized
constraint satisfaction problem (GCSP) is a the natural generalization of CSPs where we
allow both positive and negative payoff functions (See Definition 2.4.1. For a GCSP A,
Gap, and UGhardy denote the associated SDP integrality gap curve and the UG-hardness
curve. Since, the value of any assignment to a GCSP instance lies in the range [—1, 1], the
curves Gap, and UGhardy are defined in the range [—1,1]. GapRatio, and UGhard Thresholda
are much coarser measures of approximation that are defined as,

G UGhard
GapRatio, = inf Gapy () UGhardThresholdy = inf UGharda(c) .
c C & &
First, using the conversion from SDP integrality gaps and UG hardness results via
dictatorship tests, we will show that the best approximation to every GCSP problem A is
given by LC relaxation. The formal statement of the result is as follows:

Theorem 7.1. For a GCSP A, for alln >0 and —1 < ¢ < 1, it is UG-hard to distinguish
between instances of A with value at least ¢ —n from those with value Gapy(c), i.e.,

UGhardy (¢ —n) < Gapp(c) + 7

The above theorem immediately implies a relation between the coarser measures GapRatio,
and UGhardThresholdy.

Corollary 7.1.1. Let A be a GCSP such that GapRatio, and UGhardThresholdy are both
finite. Then,
GapRatio, = UGhardThreshold

Qualitatively, the result shows that if UGC is true, then LC is the strongest SDP for ev-
ery GCSP. Thus if UGC is true, then stronger SDPs obtained through the Lovasz-Schriver,
Lasserre and Sherali-Adams hierarchies do not yield better approximation ratios for any

GCSP. The proof of the reduction from integrality gaps to dictatorship tests yields a round-
ing scheme for the GCSP A.

Theorem 7.2. For all n > 0, there ewists a rounding scheme Round, running in time
exp(exp(exp(O(1/n3)))) - poly(n) such that, if RoundingCurve(c) denotes the rounding curve
associated with the Round,, scheme then,

RoundingCurve(c) > Gapy(c —n) — n Ve e (—1,1]

121

The following corollary is a restatement of the above result as an approximation algo-
rithm for A.

Corollary 7.2.1. For all n > 0, the LC relazation along with the rounding scheme Round,,
form an approzimation algorithm for A whose approximation curve a(c) satisfies:

a(c) = Gapy (¢ —n) —n = UGhardy (¢ — 2n) — 27

Roughly speaking, for every GCSP, the Round,, scheme achieves the integrality gap of
the LC relaxation, and is optimal under UGC, at every value of ¢. The caveat is that the
curves Gap, and UGhardy need not be continuous, and therefore Gap, (¢c—n) could be vastly
different from Gap, (c).

In many special cases of interest, the continuity of the curves Gap, and UGhard, is not
an issue. For instance, let us suppose A is a constraint satisfaction problem (CSP). Recall
that CSPs are a special case of GCSPs where the payoff functions take {0,1} values. For
GCSPs with positive payoffs, the optimum of every instance is a number strictly bounded
away from 0. In other words, the curves Gap, and UGhard, are defined in a range [6, 1]
for some 6 > 0. Let us further restrict our attention to approximation ratios, instead of
approximation curves that are more refined measures.

An immediate consequence of Theorem 7.2, the Round,, algorithm achieves an approx-
imation ratio that is within 7 of the integrality gap and the optimal possible under UGC
for every constraint satisfaction problem.

Corollary 7.2.2. Let A be a constraint satisfaction problem or more generally a GCSP
with positive payoffs. For every n > 0, the algorithm consisting of LC relaxation along with
the Round,, rounding scheme runs in exp(exp(exp(O(1/n3)))) - poly(n) time and achieves
an approzrimation GapRatioy — 7 = UGhardThresholdy — 7.

The above results generalize a large number of algorithmic and UG-hardness results in
literature. However, the results are implicit in that they do not shed light on the value of
the approximation ratio or the UG-hardness threshold. The actual values of approximation
ration or the SDP integrality gap are a function of the predicates involved in the GCSP A.
It would be rather surprising if general black box reductions such as those presented here
can explicitly determine these quantities. On a positive note, the black box reductions do
yield an algorithm to compute these quantities for a GCSP.

Theorem 7.3. There exists an algorithm that for any n >0 and —1 < ¢ < 1, runs in time
exp(exp(exp(O(1/93)))) and computes a real number 6 such that

Gapp(c—n) — 27 < 6 < Gapy(c+1) +2n.
Again, the continuity of the curves involved can be ignored in the following special case.

Corollary 7.3.1. Let A be a constraint satisfaction problem or more generally a GCSP with
positive payoffs. For everyn > 0, there exists an algorithm that runs in exp(exp(exp(O(1/1%))))
time and computes GapRatio, within an additive error of 1.

122

Organization: The chapter begins by recalling the formal definition of GCSPs, the LC
relaxation and the invariance principle in Section 7.2. The reduction from integrality gap
to dictatorship tests is presented in Section 7.3. This reduction is among the major contri-
butions of this thesis, and its proof is presented in Section 7.4. In the subsequent section,
we present the reduction from dictatorship tests to UG-hardness results which essentially
follows from the work of Khot et al. [99]. We demonstrate that the soundness analysis of
the reduction from integrality gaps to dictatorship tests (Section 7.3) can be converted into
an efficient rounding scheme in Section 7.6. The last leg of the reduction from UG hardness
results to SDP integrality gaps is sketched in Section 7.7, a fairly straightforward gener-
alization from [104]. Finally, in Section 7.8 we use the reductions to derive Theorem 7.1,
Theorem 7.2 and Theorem 7.3 as immediate implications.

Mathematical Tools: The chapter uses multilinear expansion of functions over product
spaces, and the associated notions of influences and noise operators (Section 3.4), Gaussian
random variables (Section 3.5) and the invariance principle (Section 3.6).

7.2 Preliminaries

For the sake of convenience, we recall the definition of GCSP s here.

Definition 7.2.1. A Generalized Constraint Satisfaction Problem (GCSP) A is specified
by a family of payoff functions A = {P|P : [q]* — [~1,1]}. The integer k is referred to as
the arity of the GCSP A, while ¢ denotes the domain size.

A payoff function is said to be of type A if it belongs to the family A.

Definition 7.2.2 (A-GENERLIZEDCONSTRAINTSATISFACTIONPROBLEM). (GCSP) of Gen-
eralized Constraint Satisfaction Problem A is given by & = (V, P) where

— V is the set of variables that are to be assigned values in [g]. For notational conve-
nience, we will associate V with the set [N] = {1,..., N} for N = |V].

— A function P’ : [q]Y — [~1,1] is said to be of type A, if P'(y) = P(yi,,...,yi,) for
some P € A and some i1,1s,...,7 € V. P is a probability distribution over a payoffs
of type A.

The objective is to find an assignment y € [¢] to the variables that maximizes the expected
payoff denoted by val(y), i.e.,

val(y) = E_|Py)].

We define the value opt(3) as

opt(S) © max val(y) .
yela]”

For a payoff P’ of type A, let V(P’) C V denote the set of variables on which P’ depends
on. Further, the arity of the GCSP A will be denoted by k.

123

7.2.1 SDP Relaxation

We will now recall the LC relaxation for a A-GCSP here for the convenience of the reader.
Given an instance & = (V,P), the LC relaxation consists of vectors {b;a}icy aclq and a
collection {up} Pesupp(p) Of distributions over local assignments and a unit vector by. Each

V(P) (

distribution pp is over [g] the set of assignments to the variable set V(P)).

LC Relaxation (Equivalent Version)

maximize E E P(x)
PP x~pp

subject to (bj 4, b;p) = Pr {xl =a,r; = b} P € supp(P), i,7 € V(P), a,be|[q].
x~pp

(7.1)
(bia,b0) = ||biall3 VieV,a€lq), (7.2)
[bol|3 =1 (7.3)

pup € A([g]")

7.2.2 Averaged Functions

A function F : [¢]® — [q] is said to be the ith dictator function if F(x) = z;. In its simplest
form, the goal of a dictatorship test is to distinguish dictator functions from functions which
do not correlate with any dictators. Formally, given oracle access to a function F : [¢] — [q],
a dictatorship test queries the value of F on few random locations and concludes whether F
is a dictator or is far from being a dictator.

For the purposes of showing UG-hardness results, it is often necessary to construct a
dictatorship test for an average of several functions of the form F : [¢]® — [¢]. In this light,
we will construct a dictatorship test for the class of functions from the domain [¢]® to the
range Ag.

Definition 7.2.3. For every function F : [¢] — [g], the corresponding A,-representation
is a function F : [¢|® — A, given by

F(x) = er(z)

where e; is the jth basis vector in RY.

Given a function F : [¢]®® — A, consider the distribution over functions F' : [¢] — A,

given by the following sampling procedure: For each x € [¢]®, set the value of F'(z)
independently as

Fl(z) = e, with probability F(z), for all a € [q] .

It is easy to check that for each = € [¢]", we have F(x) = E[F'(z)].
With the above definitions, a function F : [¢]f — A, is a dictator if F(z) = e,, for
some i € [R]. On the other hand, a function F : [¢]* — A, is far from every dictator if the

124

influences of each of the variables is small. The formal definition of this notion is presented
in Definition 7.3.3.

We will use the typeface F,G to denote functions from [¢]® to [¢], while denoting their
corresponding extensions to A, by F,G.

The domain of the payoff functions P in a GCSP A can also be extended from [q]*
to A';. First, for a payoff P : [¢]¥ — [~1,1] define the corresponding A,-representation
P A’; — [—1,1] as,

Pl(eqy,...,eq) = Plai,...,ax) for all (aq,...,ax) € [q]k

The function P’ can be extended to the domain A'; using the multilinear extension. Recall

that each of the vectors x; € A, is given by x; = (x;1,...,%;4). Define the extension of P’
as,
k
P'(xy,...,x3) = Z P'(0) wal for all &1,...x; € Ay
o€lqlk i=1

For the sake of intuition, let us suppose X; is a independent random variable taking value
e, with probability z; , for all a € [¢]. Then, by the multilinearity of the extension above,

E[P/(Xl, v ,Xk)] = P'(ml,. .o ,wk),

as expected for an average. Abusing notation, we will use P to denote the original payoff
of the GCSP and the corresponding payoff on A’;.

7.2.8 Invariance Principle

Define functions fjg ;) : R — R and § : R? — R as follows:

0 ifxz<O
foy@)=<qz fo<zr<1 £(z) = Z(ﬂfi — fon(xi))?
1 ifz>1 i€lq]

We recall the invariance principle (Theorem 3.2) here for the reader’s convenience.

Theorem 7.4. (Invariance Principle [124]) Fix 0 < a,e < /2. Let Q be a finite probability
space such that every atom with non-zero probability has probability at least « < 1/2. Let
L={l,0l,....,0n} be an ensemble of random variables over Q. Let G = {g1,...,g9m} be
an ensemble of Gaussian random variables satisfying the following conditions:

E[6;] = E[g] E[£] = E[g]] E[(i¢;] = Elgig;) Vi, j € [m].

Let F = (F1,...,Fy) denote a vector valued multilinear polynomial. Let H; = Th_.F;, and
H = (Hy,...,Hy). If Infy(H) < 7 and Var[H;| < 1 for all ¢, then the following holds

1. For every function ¥ : R — R that is thrice differentiable with all its partial deriva-

125

tives up to order 3 bounded uniformly by Cy,
\E [‘P(H (ER))] ~E [\II(H(QR))} (< 7/ 10g(1/a)

where K = K (d,Cy) > 0 is a constant depending on Cy,d.

| EIE(H(£R)] — BIE(H(GR)]| < 7/ rostte)

where K = K(d,Cy) > 0 is a constant depending on Cy,d.

7.2.4 Smoothing

The reduction from SDP integrality gaps to dictatorship tests, requires the SDP solution
to satisfy a certain smoothness property defined below. Intuitively, a smooth SDP solution
satisfies all the inequalities of the relaxation with an extra slack. Roughly speaking, the
feasible solution lies in the interior of the polytope. Formally, the smoothness property is
defined as follows.

Definition 7.2.4. For a > 0, a feasible SDP solution (V,) to the LC relaxation of a
A-GCSP instance S = (V,P) is said to be a-smooth if for every P € P and z € [¢]¥"), we
have pup(z) > a.

An arbitrary feasible solution to the LC relaxation can be transformed into a smooth
solution with a slight loss in the objective value.

Lemma 7.4.1 (Smoothing). For all qik >« > 0, given a feasible solution (V,) for the
LC relaxation, there exists an a-smooth SDP solution (V*, u*) such that

val(V*, p*) = val(V,) — 20¢"
where k,q are the arity and domain size of GCSP A.

Proof. Let (V' u') denote the SDP solution that corresponds to the uniform distribution
over all assignments from [g]Y. Recall here that the intended solutions for the LC relaxation
correspond to distributions over all assignments [g]¥.

By definition of (V’,u'), for each payoff P the local distribution /5 is the uniform
distribution over [¢]¥("). As the arity of GCSP A is k, for each distribution ;/p and z €

[q]YF) we have y/p(z) > 2. Consequently, the SDP solution (V', /) is a qik—smooth
solution.

q

To make an SDP solution (V,u) smooth, the idea is to take a convex combination
with the solution (V', ') corresponding to the uniform distribution over all assignments.
Formally, define the new SDP solution (V*, u*) as follows:

1. For each i € V,a € [q], define b;, = V(1 —agh)b . ® \/aqkbgva, where @ denotes the
direct-sum between the two vectors.

126

2. For each payoff P € P, let uj, = (1 — ag®)up + quk,u’P.

It is straightforward to check that inner products of the SDP vectors b}, agree with the
local distributions . Furthermore, for every x € V(P) of a payoff P, we have pj(z) >
agk - Wp(z) > . Finally, the objective value of the SDP solution (V*, u*) can be bounded
as follows:

val(V*, 1*) = (1 — ad®)val(V, u) + agival(V' 1) = val(V, p) — 2aq®

The final inequality above follows from the fact that for every GCSP all payoffs are within
[—1,1], and hence val(V, u),val(V', p/) € [-1,1].
|

7.3 From Integrality Gaps to Dictatorship Tests

In this section, we will exhibit a generic conversion from an arbitrary SDP integrality gap
instance & = (V, P) for the A-GCSP, to a dictatorship test for functions on [q] .

7.3.1 Construction of Dictatorship Test

Let & be an instance of a GCSP A of arity k& and domain [¢]. Let (V,) denote an a-
smooth solution for LC relaxation of &. By Lemma 7.4.1, there exists such an a-smooth
SDP solution (V,), with objective value val(V, u) > LC(S) — 2aq”

Let ¥V = {1,..., N} denote the variables in the GCSP instance . For each ¢ € [N],
Q; = ([g], p;) will refer to a probability space with atoms [¢] = {1,2,...,¢}. In €, the
probability of occurrence of an atom c € [g] is given by w;(c) = [|b; ||

Define the dictatorship test DICTY, ,, for functions F : [q]® — A, as follows:

DICTY, ,, Test
— Sample a payoff P ~ P. Let V(P) = {s1,..., 8k}

— Sample zp = {zg,,..., 25, } from the product distribution %, i.e., for each 1 < j <

n, zg) = {zg), . ,zgi)} is sampled using the distribution up.

— Perturb zp by random noise to obtain Zp. More precisely, for each s; € V(P) and

each j € [R], sample ng) as follows,
S0) zgf) with probability 1 — ¢,
. new sample from €);;, with probability €.

— Query the function values F(Zs,),...,F(2s,).

— Return a payoff given by P(]-'(%sl), . ,]:(Esk)).

127

Definition 7.3.1. DICTY, ,(F) is the expected payoff returned by the verifier of dictator-
ship test DICTS, ,, on the function F as input.

7.3.2 Completeness of DICTY, ,

Lemma 7.4.2.
Completeness(DICTY, ,,) > val(V, u) — 2¢k

Proof. Consider a dictator function F(z) = e,;). The expected payoff returned by the
verifier DICTS, ,(F) is given by

E EE|[P(F(2,)...F(2,)] = E EE[P(2),....20)]

= S Y S
PePzp zp 1 k

With probability (1 — e)¥, zg) = zg 7) for each s; € V(P). Further the payoff P takes values
n [—1, 1], when all their inputs belong to A,. Hence a lower bound for the expected payoff
is given by

E EE|[P(F(5),. - F())| 20— B E[P(D,. .20)]+0-01-ef(-1)

PePzpzp PeP zp

EE[P(,... 2] - 2ek

WV

The j* coordinates z(= {zs1 yen ,zgi)} are generated from the local probability distribu-
tion up. Therefore we get,

Completeness(DICTS, ,,) > PIE E [P(z(j) ,zgi))} —2ek =val(V,u) — 2¢k,

thus finishing the proof. [|

7.3.3 Quasi-random functions

To complete the construction of the dictatorship test DICTFV’“, we need to bound the
expected payoff for functions that are quasi-random, i.e., far from being a dictator. In this
work, we will use a special notion of quasi-randomness that depends on the SDP solution
(V, p) to the instance &

The natural definition of quasi-randomness used in numerous works is to bound the
influence of each coordinate. Formally, a function F : [¢]f — A, is quasi-random if the
influence Inf,(F) is small for all coordinates ¢ € [R]. However, an underlying probability
measure on the domain [g] is necessary in order to define influences.

For the construction DICTY, ,, there is no single natural choice of probability measure. In
fact, for each variable ¢ in the orlglnal GCSP instance S there is a corresponding probability
distribution over [q] given by Pr[i = a] = ||b;4||>. Therefore, we will define the relative
notion of “quasi-random with respect to (V', u)”. Roughly speaking, we shall call a function
“quasi-random” if all its influences are low under nearly all of the probability distributions
corresponding to variables i € V.

128

Formally, for each i € [N], let ; = ([q], ;) denote the probability space with atoms [¢]
and the probability of the atom a € [q] given by p;(a) = ||b;4||?. Recall that the instance
has N variables V = {1,...,N}.

Let us fix a function F : [¢]® — A,. For each i, let F; denote the function F interpreted
as a function over the product probability space sz.

First, we define the notion of being quasi-random with respect to a payoff.

Definition 7.3.2. A function F : [¢]f — A, is said to (7, ¢)-quasirandom with respect to
a payoff P € P if for each s € V(P) the following holds:

max Inf, (T} _.F¢) < 7
LE[R]

Extending the notion further, we make the following definition.

Definition 7.3.3. A function F : [¢]® — A, is said to be (3, T, ¢)-quasirandom with respect
to a SDP solution (V, u) for a GCSP instance & = (V,P) if the following holds: For a
choice of payoff P ~ P, with probability at least 1 — 3, F is (7, €)-quasirandom with respect
to P.

Definition 7.3.4. For 3,7 > 0, define

Soundnessg . (DICTY,) = sup DICTY, ,(F)
T:[Q}R_’Aq
F is (B,7,6)—quasirandom w.r.t.(V)

7.4 Soundness of Dictatorship Test DICTY, ,

7.4.1 Rounding Scheme

In this section, we will present the soundness proof of the dictatorship test DICT‘§/7 ue 1o
this end, given a function F : [q]R — Ay, we will exhibit a randomized rounding scheme
Round% for the SDP relaxation LC. The details of the rounding scheme are presented in
Figure 7.1.

Definition 7.4.1. Round%(V, pu) is the expected value of the assignment output by the
rounding scheme Round% on the SDP solution (V,). Here the expectation is over the
random choices of the algorithm Round%.

The following lemma forms the core of the soundness analysis of the dictatorship test
DICTY, .-

Lemma 7.4.3. There exists constants C = C(q, k), K = K(q, k) such that for all e, 7, v, 3,
if a function F : [q]F — A, is (B, 7,€) quasirandom with respect to a a-smooth SDP solution
(V,p) to a GCSP instance & then

Roundi(V, j1) = DICTy, ,(F) + C(B + 7/ 1080/))

In the rest of this section, we will present the proof of the above lemma. To this end,
we first develop some machinery concerning payoff functions, and certain random variables
associated with the dictatorship test.

129

Round% Scheme

Input: An SDP solution (V, u) for a GCSP instance & = (V,P).

Setup: For each s € V, the probability space Qs = ([q], us) consists of atoms [g] with
the distribution ps(c) = |bs|?. Let Fs denote the function obtained by interpreting the
function F : [q]R — Ag4 as a function over Qf. Further, let us denote Hy, = T1_.Fs.
Let Fy(x), Hs(x) denote the multilinear polynomials corresponding to functions F, Hs
respectively.

Scheme: Sample R vectors ¢V, ..., ¢®) with same dimension as vectors in V, such that
each coordinate of ¢(for all i is an i.i.d normal random variable.

For each s € V do

)

— For all j € [R] and ¢ € [g], compute the projection hg: of the vector b, . as follows:

99} = [Bocl® + [((Boc — [Bocl?b0), ¢

()

Let g9 = (49, ..) M (%)

= (9gs1>---»9sq) and gt =(gs’,...,95s").
— Evaluate the multilinear polynomial H with g as inputs to obtain p,. Formally,
let ps = H¢(gF). By Fact 3.0.11, with access to the function F, the computation

of ps = H,(g%) can be implemented as follows:

1. For each j € [R] and ¢ € [q], let

W) = |lbscl* + (1 —¢) [((bs,c — |[bs.c||?Bo), C(j)>]
2. Compute ps = (Ps,1,---,Dsk) as follows: py = Zae[q]ﬁ, F(o) Hle hgj(),J
— Round p; to p; € A, using the following procedure.

0 ifz<O

1 ooy @g1)if > . m; #£0
foylr)=qz if0<e <1 Scale(zg, z1,...,24-1) = {Zixi (xo a:‘q 1)1 2iti 7
Life>1 (1,0,0,...,0)if > . 2; =0

p; = Scale(f[o,l] (ps,1)7 s 7f[0,1] (p&q))

— Assign the GCSP variable s € V the value j € [g] with probability p} ;.

Figure 7.1: Rounding Scheme Round% for a function F

130

Payoff Functions For the sake of the proof, we will extend the payoff functions P in the
family A to smooth real valued functions on R .Given a payoff P : A'; — [—1,1], we extend
the function P smoothly from A'; to R?*. Specifically, the smooth extension of P satisfies
the following properties for a constant Cy(q, k) depending on ¢ and k.

— (Property I) All the partial derivatives of P up to order 3 are uniformly bounded by
CO(q7 k)

— (Property II:) For all {zy,...,x}, {y1,...,yr} € R,

k
|P($1,,mk) _P(y17ayk)| < CO((L k)z ||m2 _y2||2
i=1

Local and Global Ensembles Now, we shall describe two ensembles of random variables,
namely the local integral ensembles Lp for each payoff P, and a global Gaussian ensemble
g.

Recall that, for each payoff P, up is a distribution over assignments to the GCSP
variables in set V(P).

Definition 7.4.2. Let P be a payoff with V(P) = {s1,...,sx}. The corresponding Local
Integral Ensemble Lp is a set of random variables Lp = {£s,,..., £, } each taking values
in A, generated as follows,

— Sample an assignment to V(P) = {s1,..., s;} from the distribution pp.

— Set £, = e, for all i € [k]. Here e; is the jth basis vector in R? for all j € [q].

Definition 7.4.3. The Global Ensemble G = {gs|s € V,j € [q]} are generated by setting
gs = {98717 s 798,(1} where

95,5 = IIbsjlI* + ((Bsj — [bs3*b0),C) Vi € ld],
and ¢ is a normal Gaussian random vector of appropriate dimension.

It is easy to see that the local and global integral ensembles have matching moments up
to degree two.

Observation 7.4.1. For any set P € P, the global ensemble G maitches the following
moments of the local integral ensemble Lp

E[gs,j] = E[gs,j] E[gs,j : gs’,j’] = E[es,j ' es’,j’] vjaj/ S [Q]7373/ € V(P)
Proof. By definition of the local ensemble Lp, property of the LC relaxation

E[(s] = E»IE[S =j] = ||bs,jH2 Ells; - Ly 1] = fg[s =jAs =j]=(bsj by (7.4)

131

For the global ensemble, we can write,

Elgs ;] = [[bs +E [((bs,j = l1bs,j1*bo) . €)] = [[s 517 (7.5)
Further, we can write
Elge; - 95,5] = B [(o’ +{(beg — 1be;1°00) .C)) (0w + (b — [bwrl?B0) .)|

Using E[{(bs,j — [1bs,j[1?b0) , €)] = E[{(bs;» — ||bs,57[*b0) , ¢)] = 0, we can rewrite the above
equation as

Elgn - 05,51 = oo 7B + B [{(Bes = [1b2511°B0) .) (b — [bw%B0) .}
Recall that E¢[(u, {)(v,)] = (u,v) (Property 3.1) for all vectors u,v. Therefore we get,

Elgs; - 9sr.51] = |bs j1*l1bsr jolI* + (s — [bs,5]I*Bo) , (bsrjr — [1bsr j[|B0))
= [1bs 5117 1B 371> + (bs 5, b i) — [Bsj I 1bgr oI = 1B 5117 1B 37 1% + b5 5117 [[Bsr e[|
(using bg - b; 4 = Hbi,aH2f0r all i,a)
= (bs.j, by j7) (7.6)

The claim follows from Equations 7.4, 7.5 and 7.6. [|
Finally, we have developed the appropriate definitions and machinery to prove Lemma 7.4.3.

Proof of Lemma 7.4.3. For each i, the probability space €; has the set of atoms [¢]. Thus
the function F can be interpreted as a function over the domain QZR, instead of [¢]. We
shall use F; to denote the function obtained by interpreting the function F as a function
over QZR. Further, let us denote H; = T1_.F;. Let F;(x), H;(x) denote the multilinear
polynomials corresponding to functions F;, H; respectively. Here again, we shall use the
standard basis over §2; to obtain the multilinear expansion.

The expected payoff returned by the verifier in the dictatorship test DICT‘%/# is given

by:

DICT,(F) = E E E [P(J-‘S1 (281),...,7:8k(25k)>}
Each vector zg, is independently perturbed to obtain z;,. The payoff functions P are
multilinear when restricted to the domain A,. Consequently, we can write

DICTS, ,(F)= E E [P(;E [Fao (20)]20), - E [Fsk(23k|zsk])>]

PePzp Zsq s1

= BB [P(Ha () Mo (2))

PeP zp

The last equality is due to the fact Ez_ [Fs,(2s,)|2s,] = T1-F s, (25;) = Hs;(25,). For each
s € V(P), the coordinates of z, are generated by the distribution pp. Therefore the above

132

expectation can be written in terms of the polynomials H ¢ applied integral ensemble Lp.
Specifically, we can write

DICTY u(F) = B E [P(Ha(20): - Ho(2))| = EE P(H (€2),... H (62))]
(7.7)

Now we shall arithmetize the total payoff of the assignment returned by the rounding
scheme Round%. Note that the random variables g are nothing but samples from the
Global Ensemble G. Let us denote by H*(gf) the rounding of H,(gf). In other words,
H*(gk) = pz. Clearly, we have

Roundie(V. 1) = E_E [P(H},(gf)..... H}, (oF))]

Call a payoff P ~ P good, if F is (T, €)-quasirandom with respect to P. Fix a good payoff
P and let V(P) = {s1,...,8k}. From Lemma 7.4.5, for a good payoff P,

E [P(H;1 (gﬁ),...,H;k(gi)ﬂ -k [P(Hsl (g8),... H,, (gi))” < OrKe/10g(1/)

Using Lemma 7.4.4,

B [P () 1, ()] = B [P (). ()] < 71000

Adding the two inequalities, for every good payoff P the following holds:

(P, (), H ()] - [P(E (oR), B (o)]] < (copyriee/ostre

(E
CR Gr

Recall that all the payoff functions P are bounded in the range [—1,1]. Thus for every
payoff P € P,

P(H (). Hy ()] - E [P(H, (g%). ... H:, (a5))]|

N

‘E 2
7

In particular, the above inequality holds for all payoffs P which are not good. Using the
previous two inequalities, the lemma follows.

|Round%=(V', u)—DICTY, ,,(F)|
< Pr [P is good] - (C + 1)7Ke/10e(/2) (1 — Pr [P is good]) - 2
Lo [P is good] - (C +)7 +(1— Pr[Pis good]) - 2,
<(1-p)-(C+ 1)TKE/1og(1/a) +5-2
< (C + 1)7He/108(e) 95

133

Lemma 7.4.4. If the function F is (T,¢)-quasirandom with respect to a payoff P with
V(P) = {s1,...,s,} then

‘f}; (B (€5 Ho (5))] -k [P(H(98). . Ho(gh))]| < rerostr

where K = K(q,k) is a constant depending on q, k.

Proof. Without loss of generality we may assume V(P) = {1,2,...,k}. Let us denote
Gp ={g1,...,9r} The idea of the proof is to apply the invariance principle on the vector
of multilinear polynomials (H71,..., Hj) and ensembles Lp and Gp, with the payoff P as a
smooth functional.

To begin with, recall that H; is a multilinear polynomial representing the function
H; =T,_.F;. Let F; be the multilinear polynomial representing function the F;.

Consider the joint probability space Qp = (21,Q9,...,Q%). Note that the different
probability spaces €; are not independent of each other. In the terminology of [124], the
probability spaces €); are coarsenings of 2p.

The probability space Qp consists of atoms [¢]Y(") = [¢]* and the distribution pp. As
(V,p) is an a-smooth SDP solution, the smallest probability of an atom in Qp is at least
a.

By definition, the ensemble Lp = {£;,...,€;} is an ensemble of random variables over
the probability space 2p. By Observation 7.4.1, the ensemble Gp is a Gaussian ensemble
whose moments up to degree two match with those of Lp.

Apply the invariance principle with the finite probability space Q2p, the ensembles Lp,
Gp , smooth function P and vector of multilinear polynomials: (F'1, Fa,...,Fy). As a
consequence, we get

‘ k [P(Hl(gf), . ,Hk(g?))} -E [P(Hl(ef), o ,Hk(eg))} (< Ke/log(1/a)

where the constant K depends on ¢ and k. The result follows by observing that expectation
over Gp is equivalent to an expectation over G. []

7.4.2 Bounding the Rounding Error

Here we will prove the following lemma that bounds the loss of payoff incurred while round-
ing ps to p} in the rounding scheme Round%. With this lemma, we finish the proof of
soundness of DICTS, , (Lemma 7.4.3). Formally, we will show:

Lemma 7.4.5. If a function F is (T, €)-quasirandom with respect to a payoff P with V(P) =
{s1,...,8k}, then

it P(Hz (gh), . 2, (9))] -k [P(Ho(98).. . Ho(gh))]| < orieelost,

where C, K are constants depending on q,k,« and .

Before we present the proof of the above lemma, we show two claims that will be useful
for the proof.

134

Claim 7.4.1. For all F : [q|® — Ay, s €V and all choices of ¢ ... ¢W), Zae[tﬂ Ds,a = 1.

Proof. Let us suppose that the function F : [¢]* — A, consists of ¢ functions denoted by
F= (f17 ceey fq) By deﬁnitiOH,

R
Do psa=2 > L)] 0D,
a€lq] a€lq] o€[q) R j=1
R
=3 (X n@) 119,
o€lg]? a€lq] j=1
R
= Z th(),J (Z fa(o) =1, since F(o) € Aq)
o€lg)f =1 aclq]
R
- (Z hg)%) (7.8)
J=1 oj;€lq]

Observe that,

2ty = Bl + 1) (Z bei = (3 Ibssl)b0) - €)
Jj€ld]
Since 37y bs.j = bo and 35 ;¢ llbs 1> = 1, we get 3=y hs j = 1+(1—e){(bo—bp), ¢) = 1.

Substituting in Equation 7.8, the claim follows. [|

Claim 7.4.2. Let a,b € R? be such that) ,a; =Y ,b; = 1. Define a* and b* as follows:

0 ifx<O

1 .
S 1 A0

o) =qz if0<x<1 Scale(zo,r1,...,74-1) = {Zlilgz gﬂfo . :Ef’ 1)Zf Z_z 7
1 Zf,:L'>1 (7) P)ZfZZ':UZ_
a* = Scale(fj,1j(a1),- -, flo,1(aq)) b* = Scale(fjo,1)(b1); - - - fj0,1(bg))

Then,
> (ai —a})* < (2¢ + 2)¢(a) D F—ai)? < (2q+2)) (b —a;)
i€(q] i€[q] i

Proof. Let a = (f[o,l](al),...,f[o,l](aq)) and b = (fio,17(b1); - - -5 flo,1(bg)). First, observe
that >, a; > 0 and > ,b; > 0. Further, by definition of the function ¢, we have {(a) =

> i@ — a;)?
Z(di —a;)? = Z <C~li - Za:di)z (by definition)
a’?
= (: a; — 1)2; (22%2)2
<(DS 1)2
= <Z(di—ai))2 ('.'Zai: 1)
< q Z(di —a;)° (Cauchy-Schwartz inequality)

Now to finish the proof of the first assertion.

D (ai—ap)® <2(D (@i — @) + Z(&i —a})?)

< (2¢+2) Z(ai — a;)? (using Equation7.9)

= (2¢ + 2)¢(a)

2l =2 (s zbb)

- (lel;Z)Z ZZ: (aZ(Zlgl_gLZZZ %) _ (bi — dz’)>2
<o o [(=)]
S (Z;z)Q |:(ZZ;Z%2 (zi: bi— > @)+ zi:(?),- _ di)z]

i

Since the numbers G; are non-negative, we have Y, a? < (3_,a;)?. Using this, we get

Dotar =) < g (b = o)+ Y (b

7 7

By Cauchy Schwartz inequality, we know (37, b; — 3. ;)2 < ¢ 32, (bi — a;)?. Hence,

> tar - 1) < (;:?2 > -)

135

136

Observe that by definition of the function fjo 4y, if > ;0; = 1 then >, b; > 1. Using this
result in the above inequality, the result follows. [|

Proof of Lemma 7.4.5. Without loss of generality, we may assume that V(P) = {1,... k}.
The function H; = T1_.F; is over the domain [q]R and has the range A,. The polynomials
H; = (Hyp),---,H(gqg—1)) are a representation of H; in a standard basis.

Intuitively, the invariance principle asserts that the distribution of the random variable
H (g is roughly the same as that of H(£%). Observe that on inputs from the local
distribution ££, the value H 4(£) is always contained in A,. This suggests that the random
variables H 4(g%) is nearly always close to A, For a point p € Ay, its rounded value
p* = p. Thus, the rounding of H,(g) only slightly changes its value, i.e., Hy(g%) ~
H?*(g"). Recall that the payoff functions P is smooth in that they satisfy Property II
(7.4.1). Therefore if H,(gf) ~ H?(gk) for all s, the two quantities in the above claim are
approximately equal.

From Property II (7.4.1) that the payoff functions satisfy,

E (P(H2, (g2, . 1, (92))] —QI%[P(Hsl(gfl),...,Hsk(gfk)ﬂ‘

S|

<Gy (E|IH (¢ - Hi(gMI3])" (7.10)
i=1

D=

By Claim 7.4.1, we have 3~ (1 Ps,a = 1 for all variables s € V(P). Therefore, by Claim 7.4.2,
for all s € V(P),

E|IH:(g) ~ Ho(gP)F] < 2a+2)E |[¢(H.(g5))]

s

Since H;(£X) € Ao, we have E [C(Hs(ﬁR))} = 0. Rewrite the above inequality as

E[IH:(95) — Ho(9%)13] < 2q+2)|E[¢(HL(g5)] - E [¢(H(5))]].

Now we shall apply the invariance principle to bound the quantity on the right hand side.
Applying the invariance principle on the vector valued function F'y, and ensembles ﬁf, gf
,we get:

‘E [C(Hs(ﬁf))} ~E [C(Hs(gf))} ‘ < K&/ 05(1/a)

for a constant K depending on «, e and q. Consequently,
E|IH:(9f) - Ho(g®)I3] < Cat+2)| B [¢(HL ()] B [¢(HL(e0)] | < (2q+2)77/100/)

Substituting in 7.10 we get the required result.

E [P(H:(gf). . 3, (o]))] - B [P(H., (95), .. Hy (9%))]| < cr€e/ et

137

7.4.8 Putting It Together

Now we are ready to show the following conversion from integrality gaps to dictatorship
tests.

Theorem 7.5. There exists constants C = C(q,k) and K = K(q,k) such that for all
a, e, B, 7 the following holds: Given a A-GCSP instance S, along with a «-smooth SDP
solution (V',), the dictatorship test D/CTEV’“ satisfies the following properties:

— Completeness(DICTy,) = val(V, p) — 2¢k.

— Soundnessg - (DICTY, ,,) < opt(3) + C(B + 7Ke/log(1/a))
R

i.e., For every function F : [q]"" — A4 that is (8, T,¢)-quasi-random with respect to

(V7 M))
DICTy, ,,(F) < opt(S) + C(B + TKE/log(l/a))

Proof. Let C = C(q,k) and K = K(q, k) be the constants obtained in Lemma 7.4.3.

The claim about the completeness of the dictatorship test follows directly from Lemma 7.4.2
and the choice of e. For a function F which is (8, 7,¢)-quasi-random with respect to S,
by Lemma 7.4.3, the expected value of the assignment returned by the rounding scheme

Round’% satisfies,
DICTY, ,(F) < Round%(V, u) + C(8 + e/ log(/w))

By definition of opt(S), we have Round%(V', u) < opt(J). Therefore the claim follows. M

7.5 From Dictatorship Tests to UG-hardness Results

In this section, we will make use of the dictatorship test shown in Section 7.3 to obtain
UNIQUE GAMES based hardness result.

Let & = (Ws U Vg, E,1II, [R]) be a bipartite UNIQUE GAMES instance. Further let
& = (V,P) be an instance of a GCSP problem A. Let DICT be a dictatorship test obtained
starting from a SDP solution for .

Starting from the UNIQUE GAMES instance @, we shall construct an instance (®) of the
GCSP problem A. For each vertex v € Vg, we shall introduce a long code over [¢]. More
precisely, the instance 3(®) is given by (@) = (Vg x [¢]F,P"). All the payoff functions in
P’ are of type A ensuring that J(®) is also an instance of the GCSP problem A. Since the
set of variables of J(®) is given by Vs x [¢]F, an assignment to 3(®) consists of a set of
functions,

FU:[q)f —[q] foreach we Vs
For each v € Vg, define FV : [¢]® — A, as follows:

P(Z) = e,:v(z)

138

For a permutation 7 : [R] — [R] and z € [¢], define 7(z) € [¢]® as (W(Z))(j) = z("0)) for
all j € [R]. For each w € Ws, define a function F* : [¢]* — A,

FU z)= E |F'(mpew(z

@)= E, [F @)

The basic idea behind converting a dictatorship test to UNIQUE GAMES hardness is similar
to Khot et.al.[99]. Roughly speaking, the verifier performs the dictatorship test DICT on
the functions F¥ for w € Wg. Note that the functions F% are not explicitly available to

the verifier. However, this access can be simulated by accessing F* for a random neighbor
v e N(w).

Oracle(F")
— On a query F¥(z), Pick a random neighbor v € N(w), and return F(my—(2)).
Verifier(3(®))

— Pick w € Ws at random.

— Perform the test DICT on F", by transferring each of the queries to the Oracle(F™).

The queries of the Verifier(3(®)) through the oracle, translate into tests/payoffs over
the functions F". In turn, this is equivalent to tests/payoffs on the values of functions
{F’|v € Vg }. Summarizing, the set of all tests of the above verifier yield a GCSP instance
over the variables Vg x [q].

Theorem 7.6 (Dictatorship Tests = UG-hardness). Let DICT be a dictatorship test ob-
tained from a SDP solution to a instance S of a GCSP A. For all values of T,6,¢,6,v > 0,
given a UNIQUE GAMES instance ®, I(®) is an instance of GCSP A such that,

— COMPLETENESS: @ is a (1 — v)-strong satisfiable instance then

opt(3(®)) > Completeness(DICT) — 2.

~ SOUNDNESS: opt(®) < § = opt(J(®)) < Soundnessg, . (DICT) + 2%

k232273 -

Let z = {2z1,...,2k|2; € [¢J} be random variables denoting the query locations of
Verifier(3(®)). Further, let P denote the payoff/test that the Verifier(3(®)) decides to
perform on these locations. Arithmetizing the expected payoff returned by the verifier we
get,

EE E)[P(J-'”l(wvww(zl)),...,J-'”k(mww(zk)))}

wEWs 2 v1,...,u N (w

The payoff functions P are multilinear in the region A,. The choices of the oracle v1,...,v; €
N (w) are independent of each other, and the verifier’s query locations. In this light, we can

139

write the expected payoff as,

BB s B o)

Hence the expected payoff is just equal to E,ep, [DICT(F)]
Completeness: If ¢ is a (1 — v)-perfect satisfiable instance (see Definition 2.5.3), then
there exists an assignment .4 such that for (1 — 7)-fraction of the vertices w € Weg, all the
edges (v,w) incident at w are satisfied by A.

Let us refer to such vertices w € Wg as good vertices. The assignment to the GCSP
instance (@) is given by the following set of functions: FY(z) = z(A®)) or equivalently
F’(z) = e aw) for all v € V. For every good vertex w € Wg, we have:

Fhz) = vel@(w) [F(mow(2))] = vel@(w) [ez(ﬁiw(A(v)))] = €x(Aw) >

where the final step in the above calculation used the fact that 7,1, (A(v)) = A(w) for all
v € N(w). Therefore the functions F* are dictator functions for every good vertex w € Wg.
With at least (1 —) fraction of the vertices in Wg being good, the expected payoff is at

least
(1 —~) - (Completeness(DICT)) + ~ - (—1) > Completeness(DICT) — 2

Soundness: Suppose there is an assignment to the variables Vg X [q]R whose payoff is
greater than Soundnessg ; .(DICT) +n. Then we have,

E [DICT(F")] > Soundnessg . .(DICT) +n
weEWs

As all the payoff functions are bounded by 1, for at least n fraction of the vertices w € Ws,
DICT(F™) > Soundnessg ;. (DICT). Henceforth we refer to these vertices as good vertices.
By definition of Soundnessg . .(DICT), for every good vertex w € Wy, the function F* is
not (f3, 7, e)-quasirandom with respect to 3.

Consider a good vertex w € Wg. For a random choice of payoff P from the distribution
P, with probability at least (3, the function F™ is not (7, ¢)-quasirandom with respect to S.
By an averaging argument, there exists a payoff P such that for at least g-fraction of the
good vertices w € Wy, the function F* is not (7, e)-quasirandom with respect to P. Fix
such a payoff and let V(P) = {s1, ..., s;}. For convenience, let us denote Hy = T1_.F4 for
each u € Wg U Vs and s € V.

For each vertex w € Wy, define the set of labels L(w) as

L(w) = {¢|3s € V(P),Inf,(HY) > 7}.
Similarly, for each v € Vg define,
L(v) = {¢|3s € V(P),Inf,(H.) > 7/3}.

Consider the following Labeling for the UNIQUE GAMES instance ®: For each vertex

140

u € Wg U Vg, assign a random label from L(u) if it is nonempty, else assign a uniformly
random label.

At least n fraction of the vertices w € Wsg are good vertices. By the choice of payoff
P, at least (3 fraction of the good vertices w € Ws have a non-empty label set L(w).
Fix a good vertex w with a nonempty label set L(w). Consider a label ¢ € L(w). By
definition of L(w) , we have Infy(HY) > 7 for some s € V(P). The function H} is given
by H{ (2) = Eyen(w) [HS (Tu—w(2))]. By convexity of influences (see Proposition 3.0.13), if
Infy(HY) > 7 then

-]@(w)[Infwww M) =7

Since the range of the function H{ is Ay, we have Inf,(H}) < 2 for all v,¢. Hence for at
least 7/3 fraction of neighbors v € N(w), Infr,_ (¢)(H7) = 5. Thus for at least 7/3 fraction
of the neighbors v € N(w), there exists ¢ € [R] such that ¢ € L(w) and 7y, (¢) € L(v).
For every such neighbor v, the edge constraint 7,. ,, is satisfied with probability at least
FoIEes

From Lemma 3.0.2, each function HY can have at most !/re influential coordinates.
Thus the maximum size of the label set L(w) is #/re. In conclusion, the expected fraction of
UNIQUE GAMES constraints satisfied is at least n x 3 x § x k2722 = 73¢2n8k% /3. This
implies that opt(®) > 732nBk? /100, and the conclusion follows by setting 73213k = 4.

7.6 Optimal Algorithm

Theorem 7.7. Let Round,(V',) denote the expected value of assignment returned by the
rounding scheme Round,, on a SDP solution (V,pu) for a GCSP instance . For every
n > 0, given an instance S’ of the GCSP A, it is UG hard to distinguish whether,

opt(') = val(V, u) — 3n OR opt(3’) < Round,(V, p) + 31

Proof. By Lemma 7.4.1, the a-smooth SDP solution (V*, u*) satisfies val(V*, u*) > val(V, u)—
n. Let DICTg = DICTYy. .« be the dictatorship test obtained from the a-smooth SDP so-
lution (V*, u*).

The completeness of DICTg is at least val(V*, u*) —n > val(V, u) —2n by Lemma 7.4.2.

Among (3, 7, e)-quasirandom functions, let F* be the function that achieves the optimal
expected payoff under DICTg;, i.e., DICTg(F™) = Soundnessg ; . (DICTg). By Corollary 7.4.3,
and the choices of 3,7, we have Round%(V*, u*) > Soundnessg ; -(DICTg) — 1.

By definition of S, there exists some F; € Sy such that supgegr [|[F*(x) — Fi(z)|| < k.
By Lemma 7.7.1, we have Round% (V*, u*) > Round z+ (V*, u*)—n > Soundnessg ;. .(DICTg)—
27n. Consequently, we get

Round,, (V',) > Soundnessg ;. (DICTg) — 27.

Summarizing the above argument, the completeness of DICTg is at least val(V', u) — 21,
while the soundness is given by Soundnessg - .(DICTg) < Round, (V,) 4+ 2n. By applying
the UG-hardness reduction (Theorem 7.6) starting from DICTg, the proof is complete. B

141

Round,, Algorithm
Input: An SDP solution (V, u) for the GCSP instance & and a parameter n > 0 .

Parameters: Set a = n/q*, e = n/4k. Fix the value of 7 = exp(—O(@))aﬂ = n/100C

such that the error C(3 4 7%=/198("/*)) in Corollary 7.4.3 is less than 7/10. Fix R =
eXp(O(n%)) to ensure that the quantitative version of UGC can have completeness 1 —

75 and soundness nfe?r?k?/100. Let r = m where Cy(q, k) is the smoothness
parameter of the payoffs P (Property II 7.4.1).

Smoothing: Using the transformation in Lemma 7.4.1, construct an a-smooth SDP solu-
tion (V*, u*).

Rounding (V*,u*): Let S, = {F1,...,Fu} be a set of functions such that for every
F : [q)* — A, there exists F; € S, satisfying SUPgefq® || Fi(z) — F(z)|2 < W%)qk'

— For each function F; € Sy, run the subroutine Round%, on the SDP solution (V*, u*)

— Output the assignment obtained with the largest objective value.

Figure 7.2: Round,, Algorithm

Lemma 7.7.1. Let Cy(q, k) denote the smoothness of the payoffs P in Property II (7.4.1).
For two functions F,F' : [q]f — A, and an SDP solution (V,u) to a GCSP instance 3,
we have

IRound%=(V', p) — Round%, (V,)| < 8Co(q, k)gk sup [|F(x) — F'(z)|

xe(q]

where the constant in O depends on the GCSP problem A.

Proof. For each variable s € V, let Fg, F. denote the functions F, F’ thought of as
functions over the probability space Qs. Let Hg and H', denote the multilinear polynomials
representing Ty_.F, and Ty _.F’ respectively. For a vector g/t € RE, let H*(g®) and
H'*(g") denote the rounding of H(g*), H’(g"®) to A;. Then we have,

Round (V. 1) = E_E [P(HL (gf).... H., (af)))]

PEPGR

Round#(V, u) = pIeEng@a [P<H:1 (gfl)a o H, (gi))}

Fix a payoff P € P. For the sake of convenience, we can rename the indices so that
V(P)={1,...,k}. From the smoothness (Property II 7.4.1) of the payoff P we see that,

142

‘gﬂ% [P(Hi(gh)..... Hi(aD))] -k P(HY (gF), ... Hi: (o))]|

k
<Co Y E[IH (o)~ H ()]l
1=1
1

k =
< Cp Z (E [HH;*(QZR) - HZ*(gfz)H%]) ’ (Cauchy-Schwartz inequality) (7.11)
i=1

From Claim 7.4.1, for each 7 that 3 .1 H;(gl) = > jeld] H;(gﬁ) = 1. By the second part
of Claim 7.4.2, for all random choices of g'*,

IH (gi") — H (97)I* < (2¢ + 2)| Hi(g]) — Hi(g]")|?

Substituting in inequality 7.11 we get,

| [P(Hiloh). .. Hilol)) - P(HT (aF).....H} (o))

=
N

Co2a+2)% 3 (E [IHi(gl) - HilaD)I]) (7.12)

=1
As the ensembles gZR and Eﬁ have matching moments up to order 2, it is easy to see that

E [[l1H:(gi") — Hi(gi)]*] = B [l (67) = H(6)])%] (7.13)

@ @

Recall that H; is a representation of the function T _.F; : Q° — A, over the ensemble ZZR.
Therefore, we see that,

EH (N -H(DIE) = E (1T Fi() ~ToFi@)

i zell;
< [[|Fi(z) — Fi(x)]|3] (T _¢ is contractive for all ;)
xe Q
< sup [|F(z) - Fi()]3 (7.14)
z€[q]

From Equations 7.12,7.13 and 7.14, we see that for the payoff P € P with V(P) = {1,...,k},

B%, P(Hi(gF)..... Hi(g)) - P(HT (af)..... H (af))]|

< Co(29+2)7k sup || F(x) — F'()|2

x€[g]F

Averaging the above inequality over all P € P, the result follows.

143

7.7 From UG-hardness to SDP integrality gaps

The reduction from UG-hardness results to SDP integrality gaps can be implemented for
the class of generalized constraint satisfaction problems. Specifically, the following holds:

100

Theorem 7.8. For all v, > 0, given a dictatorship test DICT over {£1}% for R > (%),
there exists a A instance W such that sdp(¥) > (1—v)Completeness(DICT)—2y and opt(¥) <
Soundnessg ;. -(DICT) + %602%_

The idea of the proof is to execute the UG-hardness reductions starting from an integral-
ity gap instance ® = Wg U Vg, E, 11, [R]) for the LH, relaxation (LH,) of UNIQUE GAMES
for r = k+ 1. The existence of such strong integrality gaps for UNIQUE GAMES is shown in
Chapter 12.

Let ¥ denote the instance generated by executing the UG-hardness reduction on .
By the soundness analysis of the UG-hardness reduction (Theorem 7.6), we have opt(¥) <
Soundnessg ;. (DICT).

It remains to argue that the sdp(V) is at least Completeness(DICT) — 2v. Let (V, pu)
denote a feasible solution to the LH, relaxation of the unique games instance .

The vertices of ¥ consist of (v, x) for some x € [g]f. Define the SDP vectors associated
with vertex (v,) are given as,

VT = Z by.¢ Vv e Ve, x € [q)",i € [q].

;p(e) BN

Fix a payoff P in the instance W. Let V(P) = {(v1,21)(v2, 22),..., (vk, 2k)}. Let S =
{v1,...,vt}, and let pg denote the corresponding local distribution from LC relaxation.
Thus pg is a probability distribution over [R]°. Define the local distributions {up|P € P}
on [¢]Y(F) as,

up(z) = Pr Z§Z1) =21 A- A z,(fk) =z}

Leps

It is fairly straightforward and by now standard, but notationally intense to argue that the
SDP solution as constructed above is a feasible SDP solution for ¥, with value at least
Completeness(DICT). Most of the ideas of the proof have been discussed in the proof of
Theorem 6.7. Hence, we omit the formal proof of the above claim from the thesis.

7.8 Implications

In this section, we will use the reductions between dictatorship tests, UG-hardness results
and SDP integrality gaps to derive the results stated in Section 7.1. First, we describe the
setting of parameters used in the reductions to derive the implications.

Parameters Set a = 1/¢*, ¢ = n/4k. Fix the value of 7 = exp(—O(%)),ﬂ =

7/100C such that the error C(8 + 75¢/1°8("/2)) in Corollary 7.4.3 is less than n/10. Fix
R = exp(O(n%)) to ensure that the quantitative version of UGC can have completeness

144

1 -+ =1- {5 and soundness 0 = nPe2r3k%/1000. Let k =
smoothness parameter of the payoffs P (Property II, 7.4.1).

sCotemar Where Co(q, k) is the

Optimal UG-hardness (Proof of Theorem 7.1) To show the result we compose the
conversion from SDP integrality gaps to dictatorship tests (Theorem 7.5) and dictatorship
tests to UG-hardness results (Theorem 7.6). First, we state and prove the composed reduc-
tion from integrality gaps to UG-hardness result.

Theorem 7.9 (Integrality Gaps = UG-hardness). Let S be any instance of GCSP A. For
every n > 0, given an instance ' of the GCSP A, it is UG hard to distinguish whether,

opt(Y) = LAS) —n OR opt(Y) < opt(S) + 7

Proof. Set a = 1/qk, ¢ = n/2k. Let C, K be the constants in Theorem 7.5. Define 5 = n/10C
and 7 = eXp(—O(logQ#)) such that Crie/1oe(/e) < p/10.

Let (V, u) denote an optimal SDP solution to the LC relaxation of ¥. Hence we have
val(V, n) = LC(Y). By Lemma 7.4.1, there exists an a-smooth SDP solution (V*, u*) with
val(V*, pu*) = val(V, u) — n = LC(T) — 7.

Let us denote DICTg = DICTY. .. By Theorem 7.5, the dictatorship test DICTg
satisfies the following properties,

Completeness(DICTg) > LC(S) — 27 Soundnessg ;- (DICTg) < opt(S) + 7.

Using the dictatorship test DICTg into the UG hardness reduction (Theorem 7.6), we obtain
a UG-hardness for GCSP A of distinguishing between LC(S) — 4n vs opt(S) + 2. Since 7
can be made arbitrarily small, the result follows.

Proof of Theorem 7.1. Let & be an instance of A-GCSP such that sdp(SJ) = ¢ while opt () <
Gapy(c) + 7. Applying Theorem 7.9 on the instance 3 yields the required result. [|

Optimal Rounding Scheme (Proof of Theorem 7.2)

Proof. Consider the Round,, rounding scheme presented in Section 7.6. Let RoundingCurve(c)
denote the curve associated with the rounding scheme Round,,. By Theorem 7.7, clearly we
have,

RoundingCurve(c) > UGhardp(c —n) — 7.

By the conversion from UG-hardness results to SDP integrality gaps (Theorem 7.8), we
have
Gapy (¢ — 1) < UGhardy (¢) + 7,

for all n > 0. The result follows from the above two inequalities.
A k-net of functions over [¢]® has about (%)qR = exp(exp(exp(O(1/n?)))) different

functions. Hence, the running time of the algorithm is as stated.
|

145

Computing Integrality Gaps (Proof of Theorem 7.3) In Theorem 7.5 and Theorem 7.8,
we have effectively established an equivalence between SDP integrality gaps and dictator-
ship tests for arbitrary GCSPs. The integrality gap curve Gap,(c) is the worst case value
of the optimum over all instances with SDP value ¢. As there are infinitely many instances
of all sizes with SDP value ¢, it is unclear how Gap,(c) can be computed in finite time.

The crucial observation is that the set of all dictatorship tests over [¢]® is a compact
set, that can be easily discretized. Recall that a dictatorship test over [q]R is nothing but
an instance of A-GCSP over [¢].

Define Soundnessg - (c) as follows:

Soundnessg ;. -(c) = inf Soundnessg ;- (DICT)
DICT— a dictatorship test over [q]7
Completeness(DICT)=c

By Theorem 7.8, there exists a A-GCSP instance &’ with sdp(S') > (1 —7)c—2y > c—n
and opt(Q’) < Soundnessg ;- .(c) + 7. Therefore we have

Soundnessg ;. -(¢) = Gapp(c—1n) — 7.
Furthermore by Theorem 7.5, we have
Soundnessg ;- (¢) < Gapy(c+n) + 1

Observe that for any n > 0, by iterating over a sufficiently fine k-net over the space
of dictatorship tests, the value Soundnesss ; .(¢) can be computed within an accuracy of .
This completes the proof of Theorem 7.3.

146

Chapter 8
METRIC LABELING PROBLEMS

147

8.1 Introduction

The metric labeling problem falls under the class of edge deletion problems along with many
other classic optimization problems. In an edge deletion problem, given an undirected graph
G = (V, E) and a non-negative weight function w on E, the goal is to find a minimum weight
set of edges E’ such that G’ = (V, E— E') satisfies certain properties. A special case is when
the set of deleted edges forms a cut. The simplest and probably most familiar problem in
this class is the minimum (s,t) cut problem. Given two terminals s and ¢, the goal is to
find a minimum weight cut that separates s and ¢t. This problem can be solved precisely in
polynomial time following the classic work of Ford and Fulkerson.

The MuLTIwAY CUT problem is a natural generalization of the minimum (s,¢) cut
problem when more than two terminals are involved. The input is a set of ¢ terminals
L C V and the goal is to find a minimum weight set of edges that separates every pair of
terminals. The problem is NP-hard and the best known approximation algorithm uses a
geometric relaxation by Calinescu et.al [46].

The ZERO-EXTENSION problem [95, 96] is a generalization of the MurTiway CuT
problem in which a metric d is defined on the terminal set L. The goal is to assign
to each vertex v € V a terminal #(v) in L, while minimizing the total cost given by
> uwer WU, v)d(t(u),t(v)). Notice that in case the metric on the terminals L is the uniform
metric (all distances equal to 1), the problem reduces to the MuLTIWAY CUT problem.

Generalizing the ZERO-EXTENSION problem further, one defines the METRIC LABELING
problem as follows: The input consists of a metric space (L,d) of labels and a non-negative
cost function ¢ on vertex-label pairs. The objective is to find an assignment of labels to the
vertices minimizing) oy, c(v,t(v)) + Eqpyep w(u, v) d(t(u),t(v)). The ZERO-EXTENSION
problem is the special case where the assignment costs are all zero.

Inspired by the geometric relaxation for the MULTIWAY CuUT problem, Chekuri et
al. [39] proposed an earthmover metric linear relaxation for the METRIC LABELING and
ZERO-EXTENSION problems. The best known approximation ratios [46, 30, 53, 107, 71,
39, 6] for all the above labelling problems, are achieved using linear programs that are
either equivalent or strictly weaker than the earth-mover linear program. Nevertheless, the
hardness results [45, 92, 47] known for the above described problems do not match the
best known approximation algorithms. For instance, while MULTIWAY CUT is known to
be approximable within a factor roughly 1.3438, nothing better than AP X-hardness [47] is
known for the problem.

In the above discussion, an intriguing possibility that remains open is the use of semidef-
inite programming (SDP) to obtain better approximation factors for METRIC LABELING .
Even for the case of MULTIWAY CUT , obtaining a better approximation using semidefinite
programming has not been ruled out.

8.1.1 Results

In this chapter, we further develop the integrality gap to UG-hardness paradigm that has
been the subject of the previous two chapters by extending it to the class of METRIC LA-
BELING problems. The main result of this chapter is a black-box reduction from integrality
gaps to UG-hardness result for MULTIWAY CUT , ZERO-EXTENSION and the class of MET-

148

RIC LABELING problems. More precisely, starting from an integrality gap instance & with
ratio « for the so called earthmouver linear program, the reduction shows that it is UG-hard
to approximate the problem to a factor better than a. Roughly speaking, this implies that
the earthmover linear program (EM-LP) yields the best approximation computable in poly-
nomial time for each of the problems MuLTIWAY CUT ,ZERO-EXTENSION and METRIC
LABELING , assuming the Unique Games Conjecture.

The precise statement of the reduction from integrality gaps to UG hardness result is as
follows:

Theorem 8.1. For the MULTIWAY CUT , the ZERO-EXTENSION , and the METRIC LA-
BELING problems, the following holds: Given an instance & with integrality gap o for the
earthmover linear program (EM-LP), it is UG-hard to approzimate the problem to a factor
better than «. Further, the instances produced by the UG-hardness reduction have the same
set of labels as .

The UG-hardness reduction stated above produces instances whose size is at least doubly
exponential in the size of the integrality gap instance &. Therefore, the above theorem is
to be applied with an integrality gap instance & of fixed constant size, with a constant
integrality gap a.

As the reduction always produces an instance with the same set of labels, the following
stronger result holds:

Theorem 8.2. It is UG-hard to approximate the METRIC LABELING and ZERO-EXTENSION
problems with any finite metric (L,d) to a factor better than the integrality gap of the earth-
mover linear program on (L,d).

Note that determining the exact value of the earthmover linear program integrality gap
for these problems is not always easy. The following table shows the earthmover linear
program gaps and the best known approximation factors.

Problem Integrality Gap | App. Factor
3-WAY CUT 12/11 [91] 12/11 [91]
ZERO-EXTENSION Q((log [L])2) [92] O(log’ﬁ)‘gﬁ‘u) [53]
METRIC LABELING Q(log [L|) [92] O(log|L|) [107]
UNIFORM METRIC LABELING - ‘—E‘ [107] 2 [107]

Interestingly, the reductions in this paper would apply even if the distance function
between the labels does not satisfy triangle inequality. In particular, it is enough that
d(z,x) =0 and d(z,y) # 0 for x # y.

Using the connection from the UG-hardness results to SDP integrality gaps (Section 6.7),
the above results imply that even certain strong semidefinite programming relaxations does
not yield better approximation factors than the earthmover linear program. Specifically,
the following theorem holds:

Theorem 8.3. For the MULTIWAY CUT , the ZERO-EXTENSION , and the METRIC LA-
BELING problems, the integrality gap of the following strong SDP relaxations is equal to the
integrality gap of the earthmowver linear program.

149

1
loglogn)4)

~ LH, hierarchy up to r = 20 number of rounds.

— SA, hierarchy up to r = O((loglog n)%) number of rounds.

We refer the reader to Section 4.7 for formal definitions of the LH, and SA, hierarchies.

8.1.2 Labelling Problems : Prior Work

While the minimum (s, ¢)-cut problem is solvable in polynomial time, the MuLTIWAY CUT
- a close generalization turns out to be N P-hard. Using the (s, t)-cut algorithm as a subrou-
tine, a (2 — %)—approximation algorithm was proposed in [47]. Based on a novel geometric
relaxation, Calinescu et al. [46] obtained a % — % approximation for the problem. Roughly
speaking, the algorithm of Calinescu et al. [46] finds an embedding of the graph on the sim-
plex with the terminals on its corners. A MULTIWAY CUT solution can be extracted out of
the embedding by randomly partitioning the simplex. Continuing this line of work, Karger
et al. [91] obtained tight integrality gaps for the case k = 3, and improved approximation
factors for general g (about 1.3438).

For the ZERO-EXTENSION problem, Calinescu et al. [30] obtained an O(log |L|) approx-
imation algorithm, where L is the set of terminals. The approximation factor was improved
to O(log |L|/log log [L|) in [53] using a better analysis. The ideas from the ZERO-EXTENSION
problem [30, 53] have found further applications in metric embeddings [108] and in analysis
[113].

Motivated by applications in computer vision Kleinberg et al. [107] introduced the MET-
RIC LABELING problem. Using an approximate representation of metrics as a combination
of dominating tree metrics [21], Kleinberg et al. [107] also gave an approximation algorithm
for METRIC LABELING . Its approximation factor can be shown to be O(log |L|) using the
later improvement of [53] in embedding metrics into dominating tree metrics. A special case
of METRIC LABELING that is of particular interest is the UNIFORM METRIC LABELING
(UML) problem. Here the distance metric d on the labels L is just the uniform metric, i.e.,
d(l1,02) = 1 for all labels ¢; # ¢5. For UNIFORM METRIC LABELING a factor 2 approxi-
mation algorithm is known [107]. Constant factor approximation algorithms [107, 71, 39, 6]
are known for several other special cases of metrics.

Inspired by the geometric relaxation for the MULTIWAY CuUT problem, Chekuri et
al. [39] proposed an earthmover metric linear relaxation for the METRIC LABELING and
ZERO-EXTENSION problems. They also showed that the integrality gap of the earthmover
relaxation is at least as good as the approximation factor of the Kleinberg-Tardos algorithm
[107] for general metrics. Archer et al. [6] gave an earthmover relaxation based METRIC
LABELING algorithm whose performance depends on the decomposability of the metric d.
However, even the earthmover linear relaxation proved unsuccessful in obtaining approxi-
mation factors better than O(log|L|) for METRIC LABELING . In fact, for the problems of
METRIC LABELING and ZERO-EXTENSION , integrality gaps of (log|L|) and ©((log |L|)%),
respectively, were shown for the earthmover relaxation [92].

On the hardness side, the MULTIWAY CUT problem was shown to be APX-hard in [47].
A strong inapproximability result for the METRIC LABELING problem was first proven

150

by Chuzhoy and Naor [45]. Specifically, they showed that for any £ > 0, there is no
polynomial time algorithm that approximates the METRIC LABELING problem within a
factor of O((log|L|)2~¢), unless NP C DTIM E(nP°¥(1°87)) Building on this work, Karloff
et al.[92] showed that there is no polynomial time algorithm that approximates ZERO-
EXTENSION within a factor of O((log |L|)%_E), unless NP C DTIM E(nptv(ogn)),

We wish to point out that the general conversion from SDP gaps to UG-hardness in
[136] applies to the problems METRIC LABELING , ZERO-EXTENSION and MULTIWAY CUT
. However, the reduction in [136] makes crucial use of the SDP vectors, and thus would not
apply to linear programming integrality gaps. Although both [136] and our work proceed
by converting integrality gaps to hardness results, the soundness proofs are very different.
For all the problems in this work, the objective is to minimize the number of edges cut.
Hence, along the lines of many other UG-hardness results for cut problems [104, 102], the
proof uses noise stability of functions.

8.2 Proof Overview

To illustrate the main ideas, we outline the reduction for the 3-way cut problem. Let G =
(V, E) be a 3-way cut instance with terminals {¢1,t2,t3}. Here we recall the simplex based
linear program (Simplex), which is equivalent to the earthmover linear program EM-LP for
MurLTIwAY CUT problems.

1
Minimize 5 e:(qu:EE Xy — Xoll1 (8.1)
subject to: XM+ x@ 4 xB) =1 vuev (8.2)
X9 >0 (8.3)
Xy, =(1,0,0), Xy, = (0,1,0), Xy, = (0,0,1) (8.4)

As seen in previous sections, a crucial ingredient in all UG-hardness reductions is a
dictatorship test. Recall that a function F : {1,2,3}® — {1,2,3} is said to be a dictator
if the function is given by F(x) = x; for some fixed i. The input to a dictatorship test
consists of a function F : {1,2,3}% — {1,2,3}. The objective is to query the function F at a
few locations, and distinguish whether the function is a dictator or far from every dictator.
Given a dictatorship test, the UG-hardness reduction usually follows by standard techniques.
Roughly speaking, one introduces a vertex for every point in {1, 2,3}R and translates the
queries made by the dictatorship test in to constraints between these vertices. Therefore,
we shall now describe the long code gadget used as part of our reduction. Actually, we
convert an integrality gap instance for the Earthmover LP in to a long code gadget.

Let us suppose G = (V, E) is an integrality gap instance for the above linear program.
Let EM-LP(G) and opt(G) denote the optimal LP and integral values, respectively. The LP
solution associates each vertex v in V with a point X, on the 3-dimensional simplex. The
coordinates of X, can be thought of as probabilities of assigning the corresponding labels.

From G, we shall construct a 3-way cut instance G’ such that :

151

— There exist special 3-way cuts in G’ whose cost equals the linear programming opti-
mum EM-LP(G). These cuts will be referred to as dictator cuts.

— A 3-way cut solution in G’ which is far from every dictator cut pays at least the
integral optimum opt(G).

The vertices of G’ are as follows : For each vertex v of G introduce a group QF of 3%
vertices. The vertices in Q are indexed by vectors {1,2,3}f. It is useful to think of QF as
having a product probability distribution X/ on it.

For example, consider the terminal £; of the 3-way cut instance G. The corresponding LP
assignment Xy, is a corner of the simplex e; = (1,0,0). Hence the probability distribution

Xt}f is non-zero on a single vertex (1,1,1,...,1). Similarly for each ¢;, the probability
distribution Xf on ij is nonzero only at (4,1, ...,7). These special vertices are the terminals
of G'. More precisely, the terminals of G’ are the vertices (i,1,...,i) € Qg.

A 3-way cut solution assigns to each vertex a label from the set {1,2,3}. Thus a 3-way
cut solution to G’ consists of a set of functions F, : Qf — {1,2,3}, one for each vertex
v € G. There are two special 3-way cut solutions that will be of interest:

— The set of functions F,(z) = x; for some i. These functions form a feasible 3-cut
solution, since they assign different labels to all the terminals. We shall refer to these
solutions as dictator cuts.

— Each function F, is a constant function. These solutions will be referred to as integral
cuts, since they assign a single label to all the 3% vertices corresponding to a vertex v.

For an edge e = (v,w) in the graph G, we will introduce edges between groups Q% and Q.
The edges introduced are such that the dictator cuts have a cost close to EM-LP(G). We
illustrate the basic idea with an example. Let e = (v, w) be an edge in G, with X, = (%, %, %)
Xy = (%, %, %) The edges between groups Q7 and QF are given by a joint distribution
over pairs © € QF y € QF. Generate each coordinate of x according to the probability
distribution X,. To generate y, we shall mimic the flow of probability mass required to
convert distribution X, into X,. Specifically, the i*" coordinate y; is generated from w;

using the following distribution:

If z; = 1, then y; = 1 with probability % and y; = 3 with the remaining
probability. If z; = 2 or 3, then y; = x;.

It is easy to check that if z; is generated according to distribution X, = (%, %, %), then
the distribution of y; is same as X, = (%, %, %)

Consider a dictator cut given by functions F,(z) = z; and F,(y) = y1. The cost of the
cut is equal to the probability that z1 # y; when z,y are generated as above. But this is
exactly equal to the total probability mass that flows so as to change distribution X, to X,,.
In this case, the probability of x1 # yq, is % = %HXU — Xyll1. Consequently, the dictator

cuts pay exactly the LP value EM-LP(G).

152

In an integral cut, the group of [3]f vertices corresponding to a vertex v all have the
same label. Intuitively, an integral 3-way cut is assigning a label to the vertex v in the
original graph G. In fact, an integral 3-way cut of G’ corresponds to a 3-way cut of G.
Thus, if all the functions F, were constant functions, then the cost of the cut is at least the
minimum cost opt(G) of a 3-way cut of G.

We need to ensure that the functions which are far from a dictator function have a cost
at least the integral optimum opt(G). Towards this end, we shall introduce noise sensitivity
edges. Inside each group 2 we will introduce edges between pairs (z,y) where is from the
distribution X/, and y is generated by perturbing the coordinates of 2. By an appropriate
choice of parameters, the total cost of noise sensitivity edges overwhelms the remaining
edges. Using results on noise stability, if a function F, : QF — {1,2,3} cuts a small fraction
of the noise sensitivity edges, then either:

— The function F, is close to a dictator function (more precisely, it has an influential
variable).

— Function F, is close to a constant function.

Hence, either we obtain a function F, with an influential variable, or the cost of the cut is
opt(G). Using standard techniques, such a gadget can be used to obtain a UG-hardness
result.

Organization The formal definitions of METRIC LABELING , ZERO-EXTENSION and MUL-
TIWAY CUT are presented in Section 8.3, followed by the definition of the earthmover linear
program. The UG-hardness reduction is described in its full entirety in Section 8.4
Mathematical Tools This chapter uses multilinear expansion of functions over product
spaces and associated notions of influences and noise operators (Section 3.4). It also crucially
uses noise stability bounds for low influence functions on product spaces (Section 3.7).

8.3 Preliminaries

For a positive integer ¢, A, denotes the ¢ dimensional simplex. The notation [g] refers to
the set {1,...,q}.

All graphs considered in this chapter are weighted graphs, whose edge-weights sum up
to 1. Thus a weighted graph is given by H = (V,) where V denotes the set of vertices,
while £ is a probability distribution over pairs in ¥V x V. In particular, the notation E.cg
denotes expectation over a random edge chosen from the distribution £.

8.3.1 Problem Definitions

In general, an instance of the METRIC LABELING problem is a weighted graph, & = (V, &),
a set of labels L and two cost functions,

— (Assignment Cost) For each vertex v € V and a label ¢ there is a non-negative cost

C(v,0) of assigning ¢ to vertex v, i.e., the assignment costs are specified by a map
C:VxL—-RT.

153

— (Separation Cost) The labels L have a metric d defined on them and the separation
cost of assigning labels ¢1, 5 to a pair of vertices uy, us is simply the distance d(¢1, ¢3)
between the labels.

The total cost of a labeling £ : V — L, valg(L), is given by

valg(£) =) C(v,L(v)) + E d(L(u),L(v)).

ey (u,v)=e€&

The objective is to minimize the total cost of the labelling.

In [39], the authors exhibit an approximation-preserving reduction from METRIC LA-
BELING to the restricted METRIC LABELING where all assignment costs are either zero or
infinity. Therefore, for the sake of constructing approximation algorithms and hardness re-
sults for METRIC LABELING , it is enough to consider the special case of restricted METRIC
LABELING . For the sake of simplicity, we will always use METRIC LABELING to refer to
the restricted version of the problem.

Formally, define the METRIC LABELING problem over a finite metric as follows.

Definition 8.3.1. A METRIC LABELING problem is specified as A = (L,d) where d is a
metric over the set of labels L.

We will use ¢ to denote the number of labels |L|

Definition 8.3.2 (A-METRIC LABELING). An instance & = (V,&,{L(v)}yep) of the A-
METRIC LABELING problem consists of a set of vertices V), a probability distribution £ over
pairs from V x V (equivalent to edges with weights) and a family of subsets {L(v)},ep of L.
A valid labeling is a mapping £ : V — L such that for each vertex, v € V, £L(v) belongs to
L(v). The cost of a labeling £, valg (L), is

d(L(u), L(v)).

(u,v)=e€&
The optimum value of the instance, opt(<), is the minimum cost labeling for the instance.

An important special case of the A-METRIC LABELING problem is the A-ZERO-EXTENSION
problem defined below.

Definition 8.3.3 (A-ZERO-EXTENSION). An instance & = (V, €, L) of A-ZERO-EXTENSION
problem consists of a weighted graph (V, &), along with a set of terminals L C V with a
metric d on them. The objective is to assign each vertex v a terminal £(v) € L such that
the following cost is minimized:

d(L(u), L(v)).

(u,v)=e€&
The value of the instance, opt(S) is the minimum cost labeling for the instance.

Observe that a valid solution to the above problem consists of a labeling £ : V — L such
that for each terminal t € L, £(t) = t. This corresponds to A-METRIC LABELING over the

154

graph (V, £) with the family of sets {L(v)},ep defined as,

L(v) = {{v} ifvel

L otherwise

Definition 8.3.4 (MurTiwAYy CUT). An instance S = (V, &, L) of MuLTiIwAY CUT prob-
lem consists of a weighted graph (V, £), along with a set of terminals L C V. The objective
is to delete a set of edges of minimum weight so as to separate every pair of terminals.

The MuLTIWAY CUT problem can be formulated as a labeling problem (with a uniform
metric) as follows: A valid multiway cut corresponds to a labeling £ : V — L such that
for each terminal t € L, £(t) = t. The cost of such a labeling £, valg(L) is given by
Euwes [1[L(u) # L(v)]]. The optimum value of the instance opt(S) is the minimum cost
labeling for the instance.

A special case of MULTIWAY CUT problem is the ¢-WAYCUT for a positive integer q.

Definition 8.3.5 (¢-WAYCuT). An instance & = (V, &, L) of ¢-WAYCUT problem consists
of a weighted graph (V, &), along with a set of ¢ terminals L C V. The objective is to delete
a set of edges of minimum weight so as to separate every pair of terminals.

8.3.2 Farthmover Linear Program for Metric Labeling

The Earthmover linear programming (EM-LP) relaxation for METRIC LABELING was in-
troduced by [39]. Let & = (V, &, {L(v)}vey) be an instance of metric labeling. Intuitively,
the EM-LP program finds an embedding of the vertices V on the ¢ dimensional simplex A,.
For every vertex v, there is a variable X, = (Xv’g)ge[q] which is a point on the g-ary simplex
A,. The point X, represents the probability distribution of each label being assigned to v.
For example, each corner of the simplex represents a particular label.

The labeling constraint £(v) € L(v) is enforced by a linear constraint on the probability
distribution X,. Specifically, one can include the following constraints,

Xpe=0 for all £ ¢ L(v).

These labeling constraints force the point X, to lie in the face containing the allowed labels
L(v), denoted by A(L(v)). The objective is to minimize the weighted sum of the earthmover
distance between adjacent vertices.

Definition 8.3.6 (Earthmover Distance). Given two points X,Y € A4, and a metric d(i, j)
on [q], the earthmover distance, dw(X,Y") is given by the optimal value of the following LP:

Minimize Z d(i, j)pij
i,j€[q]
s.t. Z,uij =Y Zuij = X; Vi, j € [q]
i J

wij = 0

155

In other words, the earthmover distance is the minimum cost of moving the probability
mass from distribution X to Y, given the distance metric d on the labels. It is easy to see
that this defines a metric on the simplex A,. Thus, the earthmover distance generalizes a
metric on ¢ points to a metric on A, such that the distance between corner points is the
same as the original metric. In this notation, the linear program of [39] is simply:

Minimize E dw(Xu, Xy) (EM-LP)
(u,v)e€

s.t. Xy € A(L(u)) Yu eV

Definition 8.3.7. A feasible solution (X, p) to the EM-LP relaxation is said to be a-
smooth if o = minyey x, ;20 Xo,i

8.3.3 Analytic Notions

In this chapter, we will require notions of influence and noise stability for functions over
product spaces. We refer the reader to Section 3.4 for an introduction to these notions.
Furthermore, we will be using the following noise stability bound which is a consequence of
the invariance principle (Section 3.7).

We recall the noise stability bound (Theorem 3.6) for the convenience of the reader here.
The Gaussian noise stability I', is defined as follows:

Definition 8.3.8. Given u € [0, 1], let t = ®~1(11) where ® denotes the distribution function
of the standard Gaussian. Then,

FP(M) = PY[X < t7Y < t]7

where (X,Y) is a two-dimensional Gaussian vector with covariance matrix <; /1)>
Theorem 8.4. Let € be a finite probability space with the least non-zero probability of an
atom at least a. For every p,e,v,n > 0 there exists T such that the following holds: For
every function F : QF — [0,1] with p = E[F| and Inf(T1_,F) < 7 for all £ € [R],

(F.Ti—eF)= E [F(z2)T1-F(z)] < T1—c(u) + 1.

zeQR
8.4 The Reduction

In this section, we shall describe the reduction from UNIQUE GAMES to METRIC LABELING
The same reduction applies with minor changes for the MuLTIwAy CUT and ZERO-
EXTENSION problems.
Let & = (V,&,{L(v)}yey) be an instance of a A-METRIC LABELING problem for a
finite metric A = (L,d). Without loss of generality, we may assume that the set of labels

156

L = [¢]. Let (X, p) denote an a-smooth feasible solution to EM-LP relaxation of . For
each vertex v € V, let , denote the probability space over the set of atoms are [g] given
bY7 Praeﬂa [CL = Z] = Xa,i

Let ® = We U Vs, E,I1, [R]) be a UG instance. We construct a A-METRIC LABELING
instance ¥(®) as in Figure 8.1.

Proof. (of Theorem 8.1) For METRIC LABELING the proof directly follows from Theorems
8.5 and 8.6. As stated, the instance produced by the reduction also has the same set of
labels L.

For ZERO-EXTENSION and MULTIWAY CUT , the instances produced by the reduction
have too many terminals. Specifically, for every vertex v € Vg, terminal ¢ € L and x € [¢]?
there are ¢* vertices of the form (v,t,x) € V(I(®)). For every vertex (v,t,x), the set
of allowed labels in (@) is just {¢t}. Using standard techniques the graph (®) can be
modified into (@) with the correct set of terminals.

Introduce a new vertex in V(J(®)') for each label in ¢ € L. These new vertices are
the terminals for (®)". For every vertex (w,t,x) with ¢ € L, introduce an edge of infi-
nite(sufficiently high) cost between ¢ and (w, t,x). A solution to the instance S(®)" will not
cut any of the edges of infinite cost. This simulates the constraint that (w,t,x) is assigned
label t. |

8.4.1 Completeness

Theorem 8.5. For every e,d > 0, given a UG instance ® that is 1 — § strongly satisfiable
and an integrality gap instance WV, the value of the metric labeling instance (3(P),L,d)
obtained from the reduction is at most (1 — 6)(e"/*EM-LP(J) 4 €) + 0.

Proof. Let A: Wg — [R] denote an assignment to the UG instance ®. Consider the labeling
L to (@) that sets L(u,a,X) = T 4(,. It is easy to check that L is a valid labeling for the
instance I(®). Then, the cost of the labeling £ is:

E

w,v1,v2

g8 (a’geg E [d(ﬁ(vl, a,m1(x)), L(va, b, 772(}’)))}

a€V X~1—cy

+(1-¢”) E E [d(ﬁ(vl,a,m(x)),ﬁ(vg,a,wg(y)))}]

= E

w,vy,v2

7
- (agee & [d(wm(A(m)),y@(A(vz)))}

7
+ (1-€7%)- EE [d(gjﬂl(A(vl))vyﬂg(A(vz)))}] :
With probability 1 — § over the choice of vertex w, the UNIQUE GAMES assignment A
satisfies all the edges incident at w. Let us refer to these vertices w as good vertices. For a
good w, for all choices of v1,ve, m1(A(v1)) = m2(A(v2)) = A(w). Thus the expected cost for

157

The vertices of J(®) are V(I(®)) = Vo x V x [¢]F.
The set of allowed labels for a vertex (v,a,x) € V((®)) is L(a).
The weight of an edge is the probability it is output by the following test:

— Pick w € Ws at random, and two of its neighbors v, v9 independently at random.
Let us denote by 71, 7o, the permutations my, ., Ty, on edges (w,vy) and (w, ve)
respectively.

— With probability /% perform the edge test, otherwise (with probability 1 — e’/ %)
perform the vertex test.

Edge test: (with probability £7/*)

— Sample an edge e = (a,b) € V x V from the probability distribution &.

— Sample x,y € [¢]®f, by generating each coordinate (z(,3®) € [g]? from the distri-
bution p.. Clearly, we have x € Qf y ¢ Q{f.

— Output the edge (v1,a,m1(x)) < (va, b, m2(y))-
Vertex test: (with probability 1 — /%)

— Pick a uniformly random vertex a € V.

— Sample x € Qf. Sample y € [¢]F as follows:

x; with probability 1 — ¢,
Yi = { (8.5)

a new sample from 2, with probability €.

- OUtput the edge (Ulv a, (X)) A (U27 a, T2 (Y))

Figure 8.1: The reduction.

158

a good vertex is given by

5- E E|d 1-8-E E |d
(a,b)egw[(@A) Yaw)| + (1 =08) B E d@aw)Yaw)

<6 EM-LP(Q) + (1 —0) - ¢

For an arbitrary vertex w € Wy, the expected cost is always bounded by 1 since all the
distances are bounded by 1. Thus, the total cost of the labeling £ is at most (1 — J) -

<s7/8EM-LP(%) + s) + 6. m

Corollary 8.5.1. For every n > 0, there exists €,6 > 0 such that, the value of the metric
labeling instance I(®) obtained as in Theorem 8.5 is at most e7/* EM-LP(S)(1 4 n).

Proof. Setting ¢ < (nEM-LP(3)/2)® and § < ”/8EM-LP(3)n/4 in Theorem 8.5 gives the
required result. [

8.4.2 Soundness

Let £ be a labeling of the instance \s(CI>). Let € be as defined in the reduction. For each
v € Vg, a € V, define ¢ functions F} , : [¢] — [0,1] as follows,

; ():{1 if L(v,a,x) =1,

o 0 otherwise.
For each w € Wg, a € V, define ¢ functions G}, , : [¢] — [0,1] as follows

gziu,a(x) = E [f;ia(ﬂ-i“—w (X))] .

veN (w)

Observe that for any x € [¢]f and w € W,

q
D Gual¥) =
=1

i=1 7

v, 7Tv<—w(-

Z o (Ty—w(x)] =1.

q
= 1=1

vEN(w vEN(w
Define 0}, , = Ex[G}, ,(x)] where x is distributed according to the probability distribution
of QE. Further, define 0, , = (6}

w,as

q q q
S 6, = S EIGh (0] = B [zgzu,a<x>] -
=1 =1 =1

Thus, 0., € Ay, i.e., it defines an embedding in the simplex. We will drop w and a when
they are clear from the context.

For a vertex w € Wa, let valE%e(L£) and valYe™* (L) denote the expected cost incurred
by the edge and vertex tests respectively when the verifier chooses vertex w. We can write
the cost of the labeling £ as E,, [67/8 valEdee(£) + (1 — 57/8)Valzertex(£)].

0% o). Hence, for all w,a we have

159

We will show that for most choices w € Wg, a € V, either the functions g;’w have an
influential variable or they are close to constant functions. More precisely, we show that if
the functions are neither constant nor have influential variables, then the cost of the vertex
test on w, a is overwhelmingly large.

Lemma 8.5.1. Fiz w € Ws, a €V and let {g’}le denote the family of functions associ-
ated with (w,a). For every ¢ > 0 we have

[Zdu x)G7 (y }>ﬁZ(E[G'Ty (")),

where 3 = min,-; d(i, j). Further, for alle,(> 0, there exists vy, T such that if Infj(Tl_Vgi) <
T for alli € [q],j € [R], then

Xley[ZdZ]gl)Gy }>BZ(— T)_C'

i,j€L

xN(l)Y

Proof. Since 3, ; GI(x) =1—G'(x), we get
2, [Suaswro] >z [Sown-oo)
—5Z< ng E(g)]>

To derive the second part of the lemma, apply Theorem 8.4 on each of the functions G* with
the error term (/q instead of (:

E[g] ~ BG'T1 +(G)] > (9"~ T1-(6")) = ¢/

Summing up over all i, we obtain the desired result. [|

The following lemma lower bounds the cost of the vertex test, when none of the functions
G' are neither constant nor have an influential variable.

Lemma 8.5.2. There exists an g such that for all € < gg, for all (61,02,...,04) € Ag such
that max; 0; < 1 — e/4,

D l6i —Tic(6:)] = Q).
Proof. Let 6 = max; 6;, then we have 1 — &1/4

6 > £!/6. Observe that I satisfies, I';_.(x) < z for all x € [0,1]. Thus we can write,

D 0 —T1c(6)] > 60 —T1-.(0).

7

> 0. By choosing ¢ < q%, one can ensure that

160

Using known estimates, (see Corollary 10.4 in [99]), we have:
T .(6) <6 [1 — /(e log(1/0))] +o(6).

Thus, setting 6 > £'/4, we have the required result:

D 10— T Q(0+/clog(1/0)) = Q3.

i

Lemma 8.5.3. For any verter w € Ws,

Bdee(r)y > E du(Bua,Ous).
Valw () e=(a,b)eE IX](’ 7b)

Proof. Fix an edge e = (a,b) € £. Define a probability distribution p, € [¢]? as follows,
He(ij) = E [Gua()G, ()]
Then, >, pu.(i,7) = 0{;} DYV AIES 93}7%). From Definition 8.3.6 we have

> dli 5 (i 5) = dua(Ou,as b p)-

Recall that valE%¢ (L) is given by

valfdee () = Eg Zdz J) E %a()G2, 5(¥)]

= E d J) 2 E du(Owa,Ouws)-
e:(a7b)€gizj (ZJJ)ME(Z]) 6:(a,b)€6 l><](s 7b)

Lemma 8.5.4. There exists e1 > 0, such that for every € < €1, there exist T,7, such that
for all w € Weg, if Infj(Tl_VQfU,a) < 1 for all i,j,a, then one of the following inequalities
holds:

valEdee (£) > opt(S)(1 — 4e/8)

or

valy et (L) > (B34 — ¢) /m.
Proof. Let v, T be as obtained from Lemma 8.5.1 by setting (= ¢. Since w is fixed we shall
denote waa by G¢. Then, there are two possibilities:

Case 1: For all a, the functions G! are near constant, i.e there is a labeling function
L :V — [q] such that Gﬁ(a) >1— e/ for all a.

161

Set @ = /8. A simple averaging argument shows that for every a, gf (@) (x) >1-46
for a 1 — @ fraction of x. By a union bound, if x,y are generated from x ~. y, both

GE@ (x), Qbﬁ ®) (y) are greater than 1 — 6 with probability 1 — 26. Thus the cost of the edge
test is:

i) = B B[S di.§)G.(9G),()]
’ ~TigeL
>(1-20)(1-6)* E [d(L(a),L(D))].

(a,b)e€

It is easy to check that the labeling £ is a valid metric labeling solution for &. Hence we
have,

B [d(L(a), L(b))] = opt(S).
(a,b)e€
Substituting we get valE9ee(L£) > opt(3)(1 — 46).

Case 2: There exists b € V such that for all 4, Hjm < 1— &4, Then, the vertex cost is:

vall (L) = B E " [d(i,1)Gh0(x)0(5)]

> B S [d0,1)GL(x)0])]

7y
i,j€L

(5 Z(%,b - Pl—a(%,b)) - 5)

]
Theorem 8.6. For every n > 0, for sufficiently small €,6 > 0, if the UG instance ® is at
most §-satisfiable, then the optimum assignment to S(®) has value at least €/3opt(I)(1—1n),
i.e.,

opt(®) <5 = opt(S(®)) = Popt(I)(1—1).

Proof. Set e < min{(n/12)8, (3/4mopt(3))%,e1}. Let 7, 7 be as obtained from Lemma 8.5.4.
For every vertex w € Ws, one of the following is true:

— There exists a € V, i € [q], j € [R] such that Infj(Tl_ngv’a) > T
- Valgdge(ﬁ) > opt(J)(1 — 461/8) > opt(3) (1 —n/3).

— valYetex(£) > (B34 — g) /m > £Popt().

162

Thus, if none of the functions {G/, ,}aey . ic[q associated with a particular w € Weg have any
influential coordinate,

e Pvalg® (L) + (1 — e/)valy (L) > e opt(3)(1 —1/3).

Call a vertex w € Wg good if at least one of the functions associated with it has an
influential variable. More precisely, if there exists a,%,j such that Infj(Tl_,yng’a) > If
valz (3(®)) < e7%0pt(I)(1 — 1), then at least 17/2 fraction of the vertices are good.

We will define a labelling A for vertices of the UG instance as follows:

L(w) ={j € [R] | 3i,a; Inf;(T1_1 Gy,)
L(v) ={j € [R] | 3i,a; Infj(Th_,F,,)

T} (for every w € Wa),

>
>71/2} (for every v € Vg).
For each v € W U Vg, assign a label uniformly at random from L(u).

We will analyze the fraction of edges in the UG instance satisfied in expectation by
the UG assignment A. Fix a good vertex w € Wg with the corresponding a, i, j satisfying
Inf;(T1-+Gy, 4) = 7. By convexity of influences (Fact 3.0.13), we have

o) [Infﬂz?iw(j)(Tl—wﬂ,a) > Infj(T1-Gly o) > 7

For a good vertex w and a label ¢ € L(w), for at least 7/2 fraction of the neighbors v € N(w),
we will have 7,1 (¢) € L(v). Thus, for a good vertex w, for at least 7/2 fraction of its
neighbors v € N(w), A satisfies the edge (v, w) with probability at least W Using
Lemma 3.0.2, the sizes of the label sets L(u) are at most 2¢gm /7. Thus, such an edge (v, w)
is satisfied with probability at least 7272 /4¢>m?. The expected weight of edges in ® satisfied
by the assignment A is at least (n/2)(1/2)(7%72/4¢*m?) > 1?527;;2‘ Choosing § < %
gives the required result.

163

Chapter 9
ORDERING CONSTRAINT SATISFACTION PROBLEMS

164

9.1 Introduction

Given a directed acyclic graph G, one can efficiently order (“topological sort”) its vertices
so that all edges go forward from a lower ranked vertex to a higher ranked vertex. But what
if a few, say fraction e, of edges of G are reversed? Can we detect these “errors” and find
an ordering with few back edges? Formally, given a directed graph whose vertices admit an
ordering with many, i.e., 1 — ¢ fraction, forward edges, can we find a good ordering with
fraction « of forward edges (for some o — 1)7 This is equivalent to finding a subgraph
of G that is acyclic and has many edges, and hence this problem is called the MAXIMUM
AcycCLIC SUBGRAPH (MAXIMUM ACYCLIC SUBGRAPH) problem.

It is trivial to find an ordering with fraction 1/2 of forward edges: take the better of
an arbitrary ordering and its reverse. This gives a factor 1/2 approximation algorithm for
MaxiMuM AcCYCLIC SUBGRAPH. (This is also achieved by picking a random ordering of the
vertices.) Despite much effort, no efficient p-approximation algorithm for a constant p > 1/2
has been found for MAXIMUM ACYCLIC SUBGRAPH. The existence of such an algorithm has
been a long-standing and central open problem in the theory of approximation algorithms.
In this chapter, we prove a strong hardness result that rules out the existence of such an
approximation algorithm assuming the Unique Games Conjecture. Formally, we show the
following:

Theorem 9.1. For every constant v > 0, given a directed graph G with m edges, it is
UG-hard to distinguish between the following two cases:

1. There is an ordering of the vertices of G with at least (1 — v)m forward edges (or
equivalently, G has an acyclic subgraph with at least (1 —~v)m edges).

2. For every ordering of the vertices of G, there are at most (1/24~)m forward edges (or
equivalently, every subgraph of G with more than (1/2+~)m edges contains a directed
cycle).

To the best of our knowledge, the above is the first tight hardness of approximation
result for an ordering/permutation problem. As an immediate consequence, we obtain the
following hardness result for the complementary problem of MIN FEEDBACK ARC SET,
where the objective is to minimize the number of back edges.

Corollary 9.1.1. For every C > 0, it is UG-hard to find a C-approrimation to the MIN
FEEDBACK ARC SET problem.

Combining the unique game integrality gap instance of Khot-Vishnoi [104] along with
the UG reduction, we obtain SDP integrality gaps for MAXIMUM ACYCLIC SUBGRAPH
problem. Our integrality gap instances also apply to a related SDP relaxation studied by
Newman [130]. This SDP relaxation was shown to obtain an approximation better than
half on random graphs which were previously used to obtain integrality gaps for a natural
linear program [129].

Building on these techniques and the ideas from Chapter 7, we obtain UGC based hard-
ness results for the class of Ordering Constraint Satisfaction Problems (OCSP). An OCSP

165

A with arity k is specified by a family of predicates over the set of permutations on k ele-
ments. An instance of the A-OCSP consists of a set of variables V and a set of ordering
constraints on them. Each ordering constraint consists of a predicate from the family A
applied to an ordered tuple of variables from V. The objective is to find an ordering of the
variables V that satisfies the maximum number of constraints. Our results hold in a more
general setting where the predicates are replaced by bounded payoff functions which could
take both positive and negative values.
In order to state the result for general OCSPs, we present the following definition.

Definition 9.1.1. For an Ordering Constraint Satisfaction problem A, define Gap, (¢), UGhard, (¢)
as follows:

Gapy (¢)- The minimum value of the integral optimum over all instances & with SDP value

c.
UGharda (¢)- The minimum value it is UG-hard to distinguish between instances with ob-
jective value ¢ from an instance with objective value UGhard, (c).

With these definitions in place, we can state our UG hardness result for OCSPs as
follows,

Theorem 9.2. (UGC Hardness) For every constant n > 0, and every Ordering CSP A:

UGhardp(c) < Gappy(c+1n) +1n Vee (—1,1)

9.1.1 Related work

MAXIMUM ACYCLIC SUBGRAPH is a classic optimization problem, figuring in Karp’s early
list of NP-hard problems [94]; the problem remains NP-hard on graphs with maximum
degree 3, when the in-degree plus out-degree of any vertex is at most 3. MAXIMUM
ACYCLIC SUBCRAPH is also complete for the class of permutation optimization problems,
MAX SNP[r], defined in [134], that can be approximated within a constant factor. It is
shown in [129] that MAXIMUM ACYCLIC SUBGRAPH is NP-hard to approximate within a
factor greater than %.

Turning to algorithmic results, the problem is known to be efficiently solvable on planar
graphs [119, 89] and reducible flow graphs [138]. Berger and Shor [24] gave a polynomial
time algorithm with approximation ratio 1/2 + Q(1/v/dmax) where dpax is the maximum
vertex degree in the graph. When dy.x = 3, Newman [129] gave a factor 8/9 approximation
algorithm.

The complementary objective of minimizing the number of back edges, or equivalently
deleting the minimum number of edges in order to make the graph a DAG, leads to the
MiN FEEDBACK ARC SET (FAS) problem. This problem admits a factor O(logn loglogn)
approximation algorithm [148] based on bounding the integrality gap of the natural covering
linear program for FAS; see also [52]. Using this algorithm, one can get an approximation
ratio of 3 + Q(1/(log nloglogn)) for MAXIMUM ACYCLIC SUBGRAPH.

Recently, Charikar, Makarychev, and Makarychev [33] gave a factor (1/2+ Q(1/logn))-
approximation algorithm for MAXIMUM ACYCLIC SUBGRAPH, where n is the number of
vertices. In fact, their algorithm is stronger: given a digraph with an acyclic subgraph

166

consisting of a fraction (1/2 + §) of edges, it finds a subgraph with at least a fraction
(1/24-Q(6/logn)) of edges. This algorithm, and in particular an instance showing tightness
of its analysis from [33], plays a crucial role in our work.

Apart from MAXIMUM ACYCLIC SUBGRAPH, the other OCSP that has received some
attention is the BETWEENNESS problem. BETWEENNESS is an OCSP where all the con-
straints are of the form “X appears between Y and Z” for variables X, Y and Z. In [44], a
%—approximation algorithm is presented for BETWEENNESS on instances that are promised
to be perfectly satisfiable. Building on the techniques in this chapter, Charikar .et.al. [31]
show that for every OCSP of arity 3, it is UGC-hard to obtain an approximation better
than one attained by a random ordering.

9.1.2 Organization

We begin with an outline of the key ideas of the proof in Section 9.2. In Section 9.3, we
review the definitions of influences, noise operators and restate the unique games conjec-
ture. The groundwork for the reduction is laid in Section 9.4 and Section 9.5, where we
define influences for orderings, and multiscale gap instances respectively. We present the
dictatorship test in Section 9.6, and convert it to a UG hardness result in Section 9.7.
Towards generalizing these hardness results, we begin with formal definition of OCSP s
and the natural semidefinite program for OCSP s in Section Section 9.8. The construction
of dictatorship tests from SDP integrality gaps for an OCSP is presented in Section 9.9.
Finally, in Section 9.10, we sketch the component of the soundness analysis for MAXIMUM
Acycric SUBGRAPH and OCSP hardness results, that is mostly borrowed from [136].

9.2 Proof Overview

At the heart of all UG-hardness results lies a dictatorship testing result for an appropriate
class of functions. For sake of brevity, let us denote [m] = {1,...,m}. A function F :
[m]® — [m] is said to be a dictator if F(z) = z; for some fixed i. A dictatorship test
(DICT) is a randomized algorithm such that, given a function F : [m]® — [m], it makes
a few queries to the values of F and distinguishes between whether F is a dictator or far
from every dictator. While Completeness of the test refers to the probability of acceptance
of a dictator function, Soundness is the maximum probability of acceptance of a function far
from a dictator. The approximation problem one is showing UG hardness for determines
the nature of the dictatorship test needed for the purpose.

Unlike the case of functions, it is unclear as to what is the right notion of Dictators for
orderings. For every ordering O of [m]®, define m?® functions FI4 : [m]® — {0,1} as
follows:

0 otherwise

i < <
Flodl(z) = {1 if s<O(z) <t

The it" coordinate is said to be influential if it has a large influence (> 7) on any of the
functions F154. Here influence refers to the natural notion of influence for real valued
functions on [m]f (see Section 9.3). An ordering O is said to be 7-pseudorandom (far from
a dictator) if it has no influential coordinates (> 7). For this notion to be useful, it is

167

necessary that a given ordering O does not have too many influential coordinates. Towards
this, in Lemma 9.4.3 we show that the number of influential coordinates is bounded (after
certain smoothening). Further this notion of influence is well suited to deal with orderings
of multiple long codes instead of one - a crucial requirement in translating dictatorship tests
to UG hardness.

Maximum Acyclic Subgraph Now we shall describe the proof strategy for the UG
hardness of MAXIMUM ACYCLIC SUBGRAPH. Given an ordering O of the vertices of a
directed graph G = (V, E), let Val(O) refer to the fraction of the edges E that are oriented
correctly in O.

Designing the appropriate dictatorship test for MAXIMUM ACYCLIC SUBGRAPH amounts
to the following: Construct a directed graph over the set of vertices V = [m]f such that:

— For a Dictator ordering O of V, Val(O) ~ 1
— For any ordering O which is far from a dictator, Val(O) ~ %

Recall that our definition of influential coordinates for orderings can be used to formalize
the notion - “far from dictator”. Under this definition, we obtain a directed graph on [m]?
(a dictatorship test) for which the following holds:

Theorem 9.3. (Soundness) If O is any T-pseudorandom ordering of [m]®, then Val(O) <
1

5+ o.(1).

2

This dictatorship test yields tight UG hardness for the MAXIMUM ACYCLIC SUBGRAPH
problem. Using the Khot-Vishnoi [104] SDP gap instance for unique games, we obtain an
SDP integrality gap for the same.

Now we describe the design of the dictatorship test in greater detail. At the outset,
the approach is similar to recent work on Constraint Satisfaction Problems(CSPs) [136].
Fix a constraint satisfaction problem A. Starting with an integrality gap instance < for
the natural semi-definite program for A, [136] constructs a dictatorship test DICTg. The
Completeness of DICTg is equal to the SDP value SDP(S), while the Soundness is close to
the integral value INT(S).

Since the result of [136] applies to arbitrary CSPs, a natural direction would be to pose
the MAXIMUM ACYCLIC SUBGRAPH as a CSP. MAXIMUM ACYCLIC SUBGRAPH is fairly
similar to a CSP, with each vertex being a variable taking values in domain [n] and each
directed edge a constraint between 2 variables. However, the domain, [n], of the CSP is not
fixed, but grows with input size. We stress here that this is not a superficial distinction but
an essential characteristic of the problem. For instance, if MAXIMUM ACYCLIC SUBGRAPH
was reducible to a 2-CSP over a domain of fixed size, then we could obtain a approximation
ratio better than a random assignment [81].

Towards using techniques from the CSP result, we define the following variant of MAX-
IMUM ACYCLIC SUBGRAPH:

168

Definition 9.2.1. A g-ordering of a directed graph G = (V, E)) consists of a map O : V —
[¢]. The value of a g-ordering O is given by

1
vly(0) = Pt (O(u) < O(v)) 3B, ((’)(u) - O(U))
In the ¢-Order problem, the objective is to find an g-ordering of the input graph G with
maximum value.

On the one hand, the ¢-Order problem is a CSP over a fixed domain that is similar to
MAXIMUM ACYCLIC SUBGRAPH. However, to the best of our knowledge, for the ¢-Order
problem, there are no known SDP gaps, which constitute the starting point for results
in [136]. For any fixed constant g, Charikar, Makarychev and Makarychev [33] construct
directed acyclic graphs (i.e., with value of the best ordering equal to 1), while the value of
any g-ordering of G is close to % For the rest of the discussion, let us fix one such graph G
on m vertices. Notice that the graph G does not serve as SDP gap example for either the
MAXIMUM ACYCLIC SUBGRAPH or the ¢-Order problem.

As the graph G has only m vertices, and an ordering of value ~ 1, it has a good g¢-
ordering for ¢ = m. Viewing G as an instance of the m-Order CSP (corresponding to
predicate <), we obtain a directed graph, G, on [m]f. As a m-order CSP, the dictator
m-~orderings yield value ~ 1 on G. In turn, this implies that the Dictator orderings have
value ~ 1 on G. Turning to the soundness proof, consider a T-pseudorandom ordering O.
Obtain a g-ordering O* by the following coarsening process: Divide the ordering O into
q equal blocks, and map the vertices in the i*" block to value i. The crucial observation
relating O and O* is as follows:

Coarsening Observation: “For a 7-pseudorandom ordering O, val,(O0*) ~

val(0).”

Clearly, val(O) — val,(O*) is bounded by the fraction of edges whose both endpoints fall in
the same block, during the coarsening. We use the Gaussian noise stability bounds of [124],
to bound the fraction of such edges. From the above observation, in order to prove that
val(O) = 1, it is enough to bound valy(O*). Notice that O* is a solution to g-order problem
- a CSP over finite domain. Consequently, the soundness analysis of [136] can be used to
show that val,(O*) is at most the value of the best g-ordering for G, which is close to %
Summarizing the key ideas, we define the notion of influential coordinates for orderings,
and then use it to construct a dictatorship test for orderings. Using Gaussian noise stability
bounds, we relate the value of a pseudorandom ordering to a related CSP, and then apply

techniques from [136].

Ordering Constraint Satisfaction Problem The techniques developed in the case of
MAXIMUM ACYCLIC SUBGRAPH, along with ideas from Chapter 7, immediately yield UG
hardness results for general ordering CSPs.

First, as in the case of MAXIMUM ACYCLIC SUBGRAPH, for every OCSP A, it is possible
to define a related CSP A, over the domain [g] for every positive integer ¢. Roughly speaking,
the CSP A, consists of the problem of finding the ¢g-Order that satisfies the maximum number

169

of constraints. For a ¢-Order O of an instance & of a A-OCSP we will use val,(O) to denote
the number of objective value. Further, let val,(J) denote the optimum value of a g-Order
for the instance .

The statement of Theorem 9.2 relates the UNIQUE GAMES hardness threshold of a
OCSP A to the integrality gap of the natural SDP for the problem. However, constructing
integrality gap instances for OCSPs is in itself a challenging task. In this light, we will show
a stronger result than Theorem 9.2. Specifically, we will exhibit a black-box reduction to
UG hardness result starting from what we will refer to as a coarsening gap instance.

Definition 9.2.2. An instance & of a A-OCSP is a (g, ¢, s)-coarsening gap instance if
sdp(Q) > ¢ and valy(J) < s.

We will show that an integrality gap instance & with sdp(S) = ¢ and opt(SJ) = s, is
a (g, c, s)-coarsening gap instance for all ¢ (see Claim 9.8.1). Hence, clearly a coarsening
gap instance is a weaker notion than a integrality gap instance. Furthermore, constructing
coarsening gap instances has proved to be an easier task in the case of Maximum Acyclic
Subgraph and ordering 3-CSPs [31].

Theorem 9.4. Given a (q,c, s)-coarsening gap instance S of a OCSP A, for every constant
n > 0 we have

UGhardp(c) < Gapp(c+n)+n+O0(¢™")

Fix an OCSP A. Let & be an instance of A with SDP value ¢ + n and optimum value
Sa(e + 7). To show Theorem 9.2, we obtain a black box reduction that converts the in-
tegrality gap instance § with SDP solution (V/,) into a dictatorship test DICTY, , with
completeness ¢ and soundness at most Sy (¢ +n) + 7. Further all the predicates checked by
the dictatorship test DICTY, , belong to the family of predicates corresponding to A.

Let m denote the number of variables in the instance . The dictatorship test DICTS, ,
is constructed by viewing the instance & as a CSP over a domain of size m. Specifically
DICTY, ,, is an instance of A-OCSP over the set of variables indexed by [m] for any integer
R. By virtue of the construction in [136], the m-Orders of [m]® given by the dictator
functions, have an objective value equal to the SDP value (¢ + 7 in this case). To perform
the soundness analysis, we appeal to the coarsening observation above. By using this
observation, we can relate the value of an ordering O of 3, to the value of the ¢g-Order O,
obtained by coarsening O. Finally, using a proof strategy along the lines of Section 7.4 we
relate the value val,(O,) of the g-Order O, of [m], to val,(S) - the optimum ¢-Order value
of the instance !

While it is not trivial to obtain a UGC based hardness result for OCSP A starting from
the dictatorship test DICTS, ,, it follows entirely along the lines of MAXIMUM ACYCLIC
SUBGRAPH. Therefore, we omit the proof of the UG hardness result from this presentation.

9.3 Preliminaries

For a positive integer ¢, A, denotes the set of corners of the ¢ dimensional simplex, i.e.,
A, = {e;|i € [q]}. Let A, denote the convex hull of the set A,, in other words A, is the

170

g¢-dimensional simplex. We will use boldface letters z to denote vectors z = (21, ..., 2(7),
Let 0-(1) denote a quantity that tends to zero as 7 — 0, while keeping all other parameters
fixed. A g-ordering O of the graph G consists of a map O : V — [q]. Note that the map
O need not be injective or surjective. If the map O is a injection, then it corresponds to
an ordering of the vertices V. In a g-ordering O, an edge e = (u,v) is a forward edge if

O(u) < O(v).

Observation 9.3.1. For all directed graphs G, and integers q < ¢, valy(G) < valy(G) <
val(G)

While the first part of the inequality is trivial, we will elaborate on the latter half. Given
a ¢'-ordering, construct a full ordering O* by using a random permutation of the elements
within each of the ¢’ blocks, while retaining the natural order between the blocks. The
expected value of the random ordering O* is exactly equal to the value of val(Q), thus
proving the latter half of the inequality.

9.3.1 Noise Operators and Influences

Let 2 denote the finite probability space corresponding to the uniform distribution over
[m]. Let {xo = 1,x1,X2,---,Xm—1} be an orthonormal basis for the space Ly({2). For
o € [m]%, define x,(z) = [rerr Xo; (). Every function F : O — R can be expressed

as a multilinear polynomial as F(z) = 3._ F(0)x,(z). The Ly norm of F in terms of the
coefficients of the multilinear polynomial is || F|[3 = 3, F2(0)

Definition 9.3.1. For a function F : QF — R, define Infy(F) = E,[Var,w[F]] =
Zo’kgﬁo f2(0)'
Here Var_) [F] denotes the variance of F(z) over the choice of the k" coordinate 2(k),

Definition 9.3.2. For a function F : Qf — R, define the function 7, pF as follows:

T,7(z) =E[F(z) 2] =) p"IF(0)xs(2)

o€[m]R

where each coordinate %) of z = (2(1), ces ,E(R)) is equal to z(*) with probability p and
with the remaining probability, (%) is a random element from the distribution .

Lemma 9.4.1. Consider two functions F,G : [m]® — [0,1] with E[F] = E[G] = u, and
Infy(T1_oF), Inf(T1_.G) < 7 for all k. Let x,y be random vectors in [m|® whose marginal
distributions are uniform over [m|® but are arbitrarily correlated. For every e > 0, there
exists a po > 0 such that if p < po then

E (112 FoTi2:G(3)] < w07 + 0,(1)

Proof. The lemma essentially follows from the Majority is Stablest theorem (see Theorem

171

4.4 in [125]). We bound each factor individually as follows:

ITi-2-Fll3 = > (1=20)1F(0) < D (1)l F(0)(1 - £)* I F(o)

o€lk]R o€lk]i
< E[(T1-F)(X)T1— (T1—F)(x)] -

Since the influences of T1_.F are low, we can apply Theorem 3.6 to bound the last expres-
sion by noise stability in Gaussian space I'1_.(p).

E[(Tl—ef)Tl—e(Tl—af)] < Fl—a(ﬂ) + 07(1)

Using Theorem 3.5, I';_.(u) is bounded by p'te/2 for p small enough compared to e. Ap-
plying a similar bound for &’ and applying Cauchy-Schwartz gives the result:

E[T)-0:F (@) T12:F ()] < /| T1-a:FIBIIT1-2: 7|13 < w4/ 4+

xT

(for p small enough)

Here we recall the following lemma bounding the sum of influences, for the sake of
convenience.

Lemma 9.4.2 (Sum of Influences Lemma). Given a function F : [m]® — [0,1], if H =
Tl_ef then 25:1 Ika(H) < W}(l—s) < %

9.58.2 Semidefinite Program

For the sake of convenience, we recall the LC relaxation here. A solution the SDP consists
of a set of vectors V' = {b, ;|u € V,i € [n]}, n-orthogonal vectors for each vertex, and a set
of distributions g = {pele € E} over [n]? one for each edge. The formal statement of the
SDP relaxation is as follows.

LC Relaxation
1
imi E P W< Tyt 3 P u — Loy

maximize s [(xu’xvr)eue {3: x } (xu’xvr)eue {3: x }}

(LO)
subject to (by, by ;) = Pr {aju =i,Xy = j} (e =(u,v) € E, i,j € [n]).

(T, Tv)Efte
te € A([n]?) Ve e E

9.4 Orderings

In this section, we develop the notions of influences for orderings and prove some basic
results about them.

172

Definition 9.4.1. Given an ordering O of vertices V, its g-coarsening is a g-ordering O*
obtained by dividing @ into q-contiguous blocks, and assigning label i to vertices in the "
block. Formally, if M = |V|/q then

0" (u) = [OA(;L)J +1

For an ordering O of points in [m]f, Define functions fg’t} : [m]® — {0,1} for integers
s, t as follows:

0 otherwise

fg’t}(x) _ {1 if O(x) € [s,]

We will omit the subscript and write F15 instead of fg’t}, when it is clear.

Definition 9.4.2. For an ordering O of [m]?, define the set of influential coordinates L, (O)
as follows:
L (O) = {k | Inf(T1_.F*) > 7 for some s,t € Z}

An ordering O is said to be 7-pseudorandom if L. (O) is empty.

Lemma 9.4.3. (Few Influential Coordinates) For any ordering O of [m]¥, we have |L,(O)| <
400

Proof. For integers s, t, 81, 2 such that |6;| < Zm®f, let f = Ti_Flst and g = Ty _ Flstont+da],
Now,

Inf(f — g) < ||f — gl3 < [|FI — Fleronttol) |2 = prFlefl(z) £ Fletouitel(z)) < 7 /4

Hence, using a® < 2(b% + (a — b)?), we get:

wi(f) = 3 o) <2 | Y i)+ X (7o)~ o)) | < 2mty(g) +7/2

o, #0 o, #0 o, #0

Thus, if Infx(f) > 7, then Infx(g) > 7/4. It is easy to see that there is a set N =
{FI5t} of size at most 100/72 such that for every FI®t there is a FI'* € N such that

max |s — §|, |t = t'| < T"gR. Further, by Lemma 9.4.2, the functions 77 _.F1*"*] have at most

é coordinates with influence more than 7/4. Hence, |L;(O)| < %. [|

Claim 9.4.1. For any T-pseudorandom ordering O of [m]%, its q-coarsening O* is also
T-pseudorandom.

Proof. Since the functions {.7-"[";}} are a subset of the functions {.7-"([9'"}}, SH(O*) C S-(0). m

9.5 DMultiscale Gap Instances

In this section, we will construct acyclic directed graphs with no good g-ordering. These
graphs will be crucial in designing the dictatorship test (Section 9.6).

173

Definition 9.5.1. For > 0 and a positive integer ¢, a (1, q)-Multiscale Gap instance is a
weighted directed graph G = (V, E) with the following properties:

~ val(G) =1 and valy(G) < L + 1

— There exists a solution {b,; |u € V,i € [|[V|]} to LC relaxation with objective value at

least 1 — 7 such that for all u € V and 1 < i < |V, we have ||b,;||3 = ﬁ

Clearly, if val(G) = 1, then the SDP value of G is at least 1. Hence, by definition we
have,

Observation 9.5.1. An (n,q)-multiscale gap instance is a (q,1, % + n)-coarsening gap in-
stance for MAXIMUM ACYCLIC SUBGRAPH.

The cut norm of a directed graph, G, represented by a skew-symmetric matrix W is:

||G||C = mMaXy, v.e{0,1} Zij TiYjWij
We will need the following theorem from [33] relating the cut norm of a directed graph

G to val(G).

Theorem 9.5 (Theorem 3.1, [33]). If a directed graph G on n vertices has a maximum
acyclic subgraph with at least a % + 9 fraction of the edges, then, ||G||c = Q2 (i >

logn

The following lemma and its corollary construct Multiscale Gap instances starting from
graphs that are the “tight cases” of the above theorem.

Lemma 9.5.1. Given n > 0 and a positive integer q, for every sufficiently large n, there
exists a directed graph G = (V, E) on n vertices such that val(G) = 1, valy(G) < 3 +1 .

Proof. Charikar et al (Section 4, [33]) construct a directed graph, G = (V, E), on n vertices
whose cut norm is bounded by O (1/logn). The graph is represented by the skew-symmetric

matrix W, where w;; = Y ,_;sin ”(Z;?k. It is easy to verify that for every 0 < ¢ < n,
> pq sin (;%kl) > 0. Thus, w;; > 0 whenever ¢ < j, implying that the graph is acyclic (in

other words, val(G) = 1).

We bound val,(G) as follows. Let val,(G) = 3 + 6 and let O : V — [q] be the optimal
g-ordering. Construct a graph H on ¢ vertices with a directed edge from O(u) to O(v) for
every edge (u,v) € F with O(u) # O(v). Now, using Theorem 9.5, the cut norm of H is

bounded from below by (2 <L) Moreover, since O is a partition of V', the cut norm of

logq
G is at least the cut norm of H. Thus, Q <%) < [|Hlle < ||Glle < O(1/logn)Thus,
§<O Ggﬁ) implying that valy(G) < 3 + O <1lg§fl> Choosing n to be a sufficiently gives
the required result. [

Corollary 9.5.1. For every n > 0 and positive integer q, there exists a (n,q)-Multiscale
Gap instance with a corresponding SDP solution {b, ;|u € V,i € [|V|]} and p = {pcle € E}
satisfying ||byi|3 = 1/|V| for allu € V,i € [|V]].

174

Proof. Let G = (V, E) be the graph obtained by taking [1/n] disjoint copies of the graph
guaranteed by Lemma 9.5.1 and let m = |V|. Note that the graph still satisfies the required
properties: val(G) = 1, valy(G) < 3 + 7. Let O be the ordering of [m] that satisfies every
edge of G. Let D denote the distribution over labellings obtained by shifting O by a random
offset cyclically. For every u € Vi € [m], Pr[D(u) = i] = 1/m. Further, every directed edge
is satisfied with probability at least 1 — n. Being a distribution over integral labellings, D
gives raise to a set of vectors satisfying the constraints in Definition 9.5.1. G along with
these vectors form the required (7, ¢)-multiscale gap instance. [

9.6 Dictatorship Test

Let G = (V, E) be a (n, g)-multiscale gap instance on m vertices, where m is divisible by gq.
Let (V,) denote the corresponding SDP solution. Using the multiscale gap instance G,
construct a dictatorship test DICTZ on orderings O of [m]® as follows:

DICTZ, Test:

— Pick an edge e = (u,v) € E at random from the Multiscale gap instance G.

— Sample z, = {z,,2,} from the product distribution p%, i.e. For each 1 < k < R,

- {zq(f), sz“)} is sampled using the distribution ..

— Obtain z,, z, by perturbing each coordinate of z,, and z, independently. Specifically,

sample the k" coordinates Zq(ﬁ), Zi(,k) as follows: With probability (1—2¢), Zz(f) = z&k)

(k)

and with the remaining probability 2z’ is a new sample from €.

9

— Introduce a directed edge z, — Z,. (alternatively test if O(z,) < O(z,))

Theorem 9.6. (Soundness Analysis) For every ¢ > 0, there exists sufficiently large m,q
such that: For any T-pseudorandom ordering O of [m]%,

val(0) < valy(G) + O(¢"%) + 0,(1)
where 0,(1) — 0 as 7 — 0 keeping all other parameters fized.

Let FI54 : [m]® — {0,1} denote the functions associated with the g-ordering O*. For
the sake of brevity, we shall write F? for Fl»l. The result follows from Lemma 9.6.2 and
Lemma 9.6.1 shown below.

Lemma 9.6.1. For every ¢ > 0, there exists sufficiently large m,q such that: For any
T-pseudorandom ordering O of [m]f

val(O) < val,(O*) + O(q~2) + o, (1)

where O is the q-coarsening of O.

175

Proof. As O* is a coarsening of O, clearly val(O) > val,(O*). Note that the loss due to
coarsening, is because for some edges e = (z,z’) which are oriented correctly in O, fall into
same block during coarsening, i.e. O*(z) = O*(2’). Thus we can write

val(0) < val,(0*) + %]P’r <(9*(iu) = O*(iu)>

Pr(0"(@)=0"@) =Y. E E E |Fi(z) Fi(z)

W) Zus2Zy Zoy,Z
ielq) T l) T B

=3 E LB [TiaFie) TiaF(m)]
ie[q]e_ u,v) Zu,Zv

As O is a g-coarsening of O, for each value i € [g], there are exactly % fraction of z for

which O*(z) = i. Hence for each i € [q], E,[F!(z) = %] Further, since the ordering

O* is 7-pseudorandom, for every k € [R] and i € [q], Infy(T}_.F.) < 7. Hence using

Lemma 9.4.1, for sufficiently large ¢, the above probability is bounded by gq 2 +q-0-(1) =
O(qg2)+o-(1) . []

Lemma 9.6.2. For every choice of m, q, e, and any T-pseudorandom g-ordering O* of [m]%,
valg(0*) < valy(G) + o-(1).

Proof. The g-ordering problem is a CSP over a finite domain, and is thus amenable to
techniques of [136]. Specifically, consider the payoff function P : [¢]?> — [0, 1] defined by:
P(i,j) = 1 for i < j, P(i,j) = 0 for i > j and P(i,j) = 1 otherwise. The g-ordering
problem is a Generalized CSP(see Definition 2.4.1) with the payoff function P.

For the sake of exposition, let us pretend that ¢ = m. In this case, the vectors {u;|u €
V,i € [m]} form a feasible SDP solution for the g-ordering instance G. Let DICTg denote
the dictatorship test obtained by running the reduction presented in Chapter 7 on this SDP
solution for ¢g-ordering instance G. DICT{ is an instance of the g-ordering problem, over the
set of vertices [¢]®. A g-ordering solution O* for DICT, corresponds naturally to a function

F: [g)® — A,. Now we make the following observations:

— The g-ordering instance DICTg is identical to the dictatorship test described in this
section when ¢ = m.

— For a 7-pseudorandom g¢-ordering O*, for every k € [R] and i € [q], the corre-
sponding function F satisfies Infy(T3_.F°) < 7. In the terminology of Chapter 7
(Definition 7.3.3), this is equivalent to the function F = (F*!,..., F9) being “(3,7)-
pseudorandom” with 5 = 0.

— By the soundness analysis of the dictatorship test from Chapter 7 (Theorem 7.5), for
a (v, 7)-pseudorandom function F, its probability of acceptance on the dictatorship
test is at most valy(G) + og ~(1).

Hence the above lemma is just a restatement of Theorem 7.5 for the specific generalized
CSP: ¢-Ordering, albeit in the language of T-pseudorandom orderings.

176

Recall that the actual case of interest here satisfies ¢ < m. Unfortunately, in this case, a
black box application of the result from Theorem 7.5 does not suffice. However, the proof
of Theorem 7.5 can be easily adopted without any new technical ideas. In fact, many of the
technical difficulties encountered in proving Theorem 7.5 can be avoided here. For instance,
the SDP solution associates with each vertex w, the uniform probability distribution over
{1...m}, unlike in Chapter 7 where there are several arbitrary probability distributions to
deal with. For the sake of completeness, we include a sketch of the above soundness analysis
in the more general setting of ordering constraint satisfaction problem in Section 9.10. N

Let Flo1 . [m]® — {0,1} denote the functions associated with the g-ordering O*. For the
sake of brevity, we shall write F* for FI»/, and F = (F',..., F9). Arithmetizing val,(O*)
in terms of functions F! we get:

val,(0*) =E [% Zfi(zu) (0 + > F(z) - fj(iv)]

i<j

where the expectation is over the edge e = (u,v), Zy, Zy, Zy, and Z,. Lemma 9.6.2 asserts
that the above expectation is bounded by val,(G) + o, (1) for all functions F = (F!,..., F)
that correspond to a g-ordering. Specifically, for each z € [m]f, F(z) is a corner of the
simplex (F(z) € Ay).

For the UNIQUE GAMES hardness reduction, we need the above lemma to hold for the
more general class of functions that take values in A, - the g-dimensional simplex. The
following stronger claim also immediately follows from the proof of Lemma 9.6.2.

Claim 9.6.1. For a function F : [m]f* — A, satisfying Infy(T1_.F) < 7 for all k € [R],
E [5 Zf (Z0) F (24) + ; FH(2u)F (zu)] < valy(G) + o-(1)
1=] i<j

where the expectation is over the edge e = (u,), Zy, Zy, Zy, and Z,.

We will sketch the proof of the above claim in the more general setting (see Lemma 9.9.3)
of OCSP’s in Section 9.10.

9.7 Hardness Reduction

Let G = (V, E) be a (1, ¢)-Multiscale gap instance, and let m = |V/|. Further let V' = {b,;}
and p = {ucle € E} denote the corresponding SDP solution. Let ® = (W U Vg, E, 11 =
{7me : [R] — [R]|e € E},[R]) be a bipartite UNIQUE GAMES instance. Towards constructing
a MAXIMUM ACYCLIC SUBGRAPH instance ¥ = (V, &) from ®, we shall introduce a long
code for each vertex in Vg. Specifically, the set of vertices V of the directed graph WV is
indexed by Vg x [m]®.

177

Hardness Reduction:

Input: UNIQUE GAMES instance ® = (Wg U Vg, E, Il = {7 : [R] — [R]|e € E},[R]) and a
(n,q) Multiscale gap instance G = (V, E).

Output : Directed graph ¥ = (V,&) with set of vertices : V = Vg x [m]f and edges £
given by the following verifier:

— Pick a random vertex a € Wg. Choose two neighbours b, € Ve independently at
random. Let 7,7’ denote the permutations on the edges (a,b) and (a,b’).

— Pick an edge e = (u,v) € E at random from the Multiscale gap instance G.

— Sample z, = {z,,2,} from the product distribution pf*, i.e. For each 1 < k < R,
zgk) = {z&k), zz(,k)} is sampled using the distribution p. (4, j) = u; - v;.

— Obtain z,, z, by perturbing each coordinate of z, and z, independently. Specifically,

sample the k™ coordinates Zq(ﬁ), Zi(,k) as follows: With probability (1 — 2¢), Zz(f) = z&k),

(k)

and with the remaining probability Z;’ is a new sample from €.

— Introduce a directed edge (b, 7(zy,)) — (V/,7'(2Zy)).

Theorem 9.7. For every n > 0, there exists choice of parameters €,q,d such that:

— COMPLETENESS: If ® is a (1—0)-strongly satisfiable instance of UNIQUE GAMES, then
there is an ordering O for the graph ¥ with value at least (1—5n). i.e. val(¥) > 1—5n.

— SOUNDNESS: If ® is not 0-satisfiable, then mo ordering to ¥ has value more than
% +4n, i.e. val(¥) < % + 4n.

In the rest of the section, we will present the proof of the above theorem. To begin with,
we fix the parameters of the reduction.
Parameters : Fix ¢ = 1/100. Let 7,¢ be the constants obtained from Theorem 9.8.
Finally, let us choose § = min{n/4,nz27%/10}.

9.7.1 Completeness

In order to show that val(V) > 1 — 57, we will instead show that val,,(¥) > 1 — 5n. From
Observation 9.3.1, this will imply the required result.

By assumption, there exists labellings to the Unique Game instance ® such that for 1 —¢
fraction of the vertices a € W all the edges (a,b) are satisfied. Let A : Vo UWs — [R)]
denote one such labelling. Define an m-ordering of ¥ as follows:

O(a,z) = zA@) Va € Wy, z € [m]?

Clearly the mapping O : V — [m] defines an m-ordering of the vertices V = Vg x [m]f. To
determine val,,(O), let us compute the probability of acceptance of a verifier that follows

178

the above procedure to generate an edge in £ and then checks if the edge is satisfied.
Arithmetizing this probability, we can write

vl (0) = %Pr (00 7(2)) = O, 7'(2))) +Pr (0. 7(@)) < O, 7' (2.)))

With probability at least (1—4), the verifier picks a vertex a € Wg such that the assignment
A satisfies all the edges (a,b). In this case, for all choices of b,b’ € N(a), 7(A(a)) = A(b)
and 7'(A(a)) = A(V). Let us denote A(a) = I. By definition of the m-ordering O, we get
O(b,7(2)) = ((z))AO) = 27 (AD) = 2O for all z € [m]E. Similarly for b/, OV, 7' (z)) =
2 for all z € [m]®. Thus we get

Valn(0) > (1 -) - (5 Pr (20 = 20) + Br (500 < 50))

v
With probability at least (1 — 2¢)2, for both Z, and z, we have ZQ(LI) = sz’ and 21(,1) = zi(,l).
Further, note that each coordinate zg), zy) is generated according to the local distribution
e for the edge e = (u,v). Substituting in the expression for val,,(O) we get,

1
val,(0) > (1-6)(1—-2¢)?% E [Pr :Eu<l‘v}—|—— Pr Ty = Ty]
() ()() e=(u,v) (vaxv)EMe{ 2 (vaxv)EMe{ }
Recall that the SDP solution (V, i) have an objective value at least (1 —n). Thus for small
enough choice of 0 and € , we have val,,,(O) > 1 — 5.

9.7.2 Soundness

Let O be an ordering of ¥ with val(Q) > % + 4n. Using the ordering, we will obtain a
labelling A for the UNIQUE GAMES instance ®. Towards this, we shall build machinery to
deal with multiple long codes. For b € Vg, define O, as the restriction of the map O to
vertices corresponding to the long code of b. Formally, Oy is a map Oy : [m|® — Z given by
Op(z) = O(b,z). Similarly, for a vertex a € Wy, let O, denote the restriction of the map O
to the vertices N(a) x [m]%, i.e. Ou(b,z) = O(b, z).

Multiple Long Codes

Throughout this section, we shall fix a vertex a € Wg and analyze the long codes cor-
responding to all neighbours of a. For a neighbour b € N(a), we shall use 7, to denote

the permutation along the edge (a,b). Let flgs’t} denote the functions associated with the

ordering Oy. Define functions Fit [m]f* — R as follows:

) = B (0ulbma(a) € [51) = B (FEm(e)

Definition 9.7.1. Define the set of influential coordinates L,(O,) as follows:

L, (O4) = {k[Infy(T1_.F#1) > 7 for some s,t € Z}

179

An ordering O, is said to be 7-pseudorandom if L, (O,) is empty.

Lemma 9.7.1. For any influential coordinate k € L:(O,), for at least 5 fraction of b €
N(a), mp(k) is influential on Op. More precisely, my(k) € Ly /2(Op).

Proof. As the coordinate k is influential on O, there exists s,¢ such that Infk(f,gs’t]) >
7. Recall that f,gs’t](z) = Epen() [flgs’t](wb(z))]. Using convexity of Inf this implies,
Epen (o) [Inf 7, (1) (EES’”)] > 7. All the influences Inf,rb(k)(}"lgs’ﬂ) are bounded by 1, since each
of the functions flgs’t] take values in the range [0, 1]. Therefore for at least 7/2 fraction of

vertices b € N(a), we have Infﬂb(k)(flgs’ﬂ) > 7/2. This concludes the proof. [|

Lemma 9.7.2. For any vertez a € Wa, |L(O4)| < 800/7%.

Proof. From Lemma 9.7.1, for each coordinate k € L,(O,) there is a corresponding co-
ordinate (k) in L;/5(Op) for at least 7/2 fraction of the neighbours b. Further from
Lemma 9.4.3, the size of each set L, /5(Op) is at most 400/ em3. By double counting, we get
that |L,(O,)] is at most 800/e74. [|

Theorem 9.8. For all e,n > 0, there exists constants q, 7 > 0 such that for any vertex
a € We, if Oq is T-pseudorandom then val(O,) < valy(G) +n/4.

Proof. The proof outline is similar to that of Theorem 9.6. Let O} denote the g-coarsening
of O,. Then we can write,

val(0,) < val, (OF) + %Pr <OZ(b, (7)) = OX (Y, wb/(iv))>

The g-coarsening O} is obtained by dividing the order O, into g-blocks. Let [p1+1, pa], [p2+
1,ps],...,[pq + 1,pg+1] denote the g blocks. For the sake of brevity, let us denote F =

Flritlrial gnq Fi= flgpﬁl’p”ﬂ. In this notation, we can write:
Pr (046, () = 40w @) =3 E BB |Fmt) - Fm)
ie[q —_) 9 UsBvyLUuEv
= E E E [ﬂ(iu) : ﬂ(iv)]
i€[q]

e=(u,v) Zu,2Zv Zy,Zvy
= E E [T1—2€~7:2(Zu) : T1—2€~7:2(Zv)]

‘ e=(u,v) Zu,%v
i€lq]

As the ordering O, is 7-pseudorandom, for every k € [R] and i € [q], Inf,(T1_.F!) < 7.
Hence by Lemma 9.4.1, the above value is less than O(g~2) + o, (1).

Now we shall bound the value of val,(OF). In terms of the functions F;, the expression

180

for valy(O}) is as follows:

Val [ZP 7Tb Zu br(ﬂ'b’ Zv +Z.7:JL 7Tb Zu))-fg,(ﬂ'b/(iv))
1<j
= [ZF Zu . Zv —I—ZfZ Zu . Zv):|
1<jJ

Again, since the ordering O, is T-pseudorandom, for every k € [R] and i € [q], Inf,(T1_.F!) <
7. Hence by Claim 9.6.1, the above value is bounded by val,(G) + o-(1). From the above
inequalities, we get val(Q,) < valy(G) + O(q™ %) 4 0(1), which finishes the proof. [|

Defining a Labelling

Define the labelling A for the UNIQUE GAMES instance ® as follows: For each a € Ws,
A(a) is a uniformly random element from L, (O,) if it is non-empty, and a random label
otherwise. Similarly for each b € Vg, assign .A(b) to be a random element of L. 5(Op) if it
is nonempty, else an arbitrary label.

If val(O) = Eqep, [val(O,)] = 4 44, then for at least 21 fraction of vertices a € Wa, we
have val(Q,) > % + 2n. Let us refer to these vertices a as good vertices. From Theorem 9.8,
for every good vertex the order O, is not 7-pseudorandom. In other words, for every good
vertex a, the set L;(O,) is non-empty. Further by Lemma 9.7.1 for every label [€ L (O,),
for at least 7/2 fraction of the neighbours b € N(a), (1) belongs to L, /5(Op). For every
such b, the edge (a,b) is satisfied with probability at least 1/|L-(O4)| x 1/|L;/2(Op)|. By
Lemma 9.4.3 and Lemma 9.7.2, this probability is at least e7?/800 x e73/3200. Summa-
rizing the argument, the expected fraction of edges satisfied by the labelling A is at least
ne?7®/10240000. By a small enough choice of d, this yields the required result.

9.8 Ordering CSP

In this section, we will state a general UG hardness result for Ordering Constraint Satisfac-
tion Problems (OCSP) and outline the central ideas of the proof. To this end, we begin by
defining ordering constraint satisfaction problems.

Definition 9.8.1. An Ordering Constraint Satisfaction Problem (OCSP) A is specified by
a family of payoff functions P : Il — [—1,1] on the set IIj of permutations on k elements.
The integer k is referred to as the arity of the OCSP A.

Notice that every payoff P € A is assumed to be on the set of permutations of exactly
k elements. However, there is no loss of generality since for every ¢ < k, a payoff on set
I1, of permutations on ¢ elements can be expressed as a payoff on II; by including dummy
variables.

For m > k, let II;_ denote the set of one to one maps from [k] — N. The domain of a
payoff function P can be extended naturally from the set of permutations I to II;_y. In
particular, an injective map f € Il .y, along with the ordering on the range N induces a
permutation 77 on [k]. To extend the payoff, just define P(f) = P(ny) for all f € II;_x.

181

Definition 9.8.2 (A-ORDERINGCONSTRAINTSATISFACTIONPROBLEM (OCSP)). An instance
& of Ordering Constraint Satisfaction Problem A is given by & = (V,P) where

~ V=A{y1,...,ym} is the set of variables that need to be ordered. Thus an ordering O
is a one to one map from V to natural numbers N.

— P is a probability distribution over constraints/payoffs applied to subsets of at most
k variables from V. More precisely, a sample P ~ P would be a payoff function from
A, applied on a sequence of variables ys = (ys,,...,ys,). If O|s denotes the injective
map from yg — N obtained by restricting O to yg, then the payoff returned is P(O‘S).

For a payoff P € P, we define V(P) € V to denote the set of variables on which P is applied.
The objective is to find an ordering O of the variables that maximizes the total weighted
payoff/expected payoff, i.e.,

JE, [POr)]

Here O|p denotes the ordering O restricted to the variables in V(P). We define the value
opt(P) as
def
opt(¥) = ma E P(Op).
P (\S) O:HV)iN P~P (‘P)

Observe that if the payoff functions P are predicates, then maximizing the payoff
amounts to maximizing the number of constraints satisfied.

We will use A to denote both the OCSP and the family of payoffs associated with it.
The notions “payoff function” and “constraint” will be used interchangeably.

9.8.1 Relation to CSPs

An ordering O can be thought of as an assignment of values from {1, ..., m} to each variable
y; such that y; # y; for all ¢ # j. By suitably extending the payoff functions P € A, it is
possible to eliminate the “one to one” condition (y; # y; whenever ¢ # j). More precisely,
we shall extend the domain of payoff functions P € A from II;_) to N~ the set of all
maps from [k] to N.

Given an arbitrary function f : [k] — N, define a probability distribution P; on the set
of permutations IT;, by the following random procedure: 1) For each j € N with f~1(j) # ¢,
pick a uniform random permutation 7; of elements in f~!(j). 2) Concatenate the permu-
tations 7; in the natural ordering on j € N to obtain the permutation m € II;. For a payoff
P € A, define

P(f)= E [P(r)]
m~Py

With this extension of payoff functions, the following lemma shows that optimizing over
all orderings is equivalent to optimizing over all assignments of values in [m] to variables

{y17 o 7ym}
Lemma 9.8.1. For an instance S = (V,P) of a A-OCSP with |V| = m, we have

E PO = E P
olpx B, POp) = max B _P(fip)

182

Here [m]Y denotes the set of all functions from V to [m).

Proof. For every injective map O : V — N, there is an injective map O’ : V — [m]
corresponding to the permutation induced by O. Clearly, the objective value of O is the
same as O'. Since O’ € [m]Y, we have

E P < E P
olipx B, POp) < max B P(fip)

Given an arbitrary function f : V — [m], define a probability distribution Dy on the
orderings O € Ily_,, by the following random procedure: 1) For each j € [m] with
f7(j) # ¢, pick a uniform random permutation ; of elements in f~1(j). 2) Concatenate
the permutations 7; in the natural ordering on j € N to obtain the ordering O € Ily,_ .
By our definition of extended payoffs P, it easily follows that,

PR = oF, | 2, PO

In turn, this implies that

E P(Op) > E P ,
olpx pE, POp) > max, B _P(fip)

thus finishing the proof. [|

By virtue of Lemma 9.8.1, the A-OCSP instance & = (V,P) is transformed into a
constraint satisfaction problem over variables V, albeit over a domain [m] whose size is not
fixed. Specifically, the problem of finding an optimal ordering O for the A-OCSP instance
can be reformulated as computing

wl($) = mas E_|Ply))] (9.)

Here we are slightly abusing notation to denote the payoff P to be a function over the
assignment yy(p) itself. For the sake of convenience, we will use yp to denote yy(p).
Taking the analogy with CSPs a step further, one can define a CSP A, for every positive
integer ¢ > 0. Given an instance & = (V,P) of A-OCSP, the corresponding A, problem is
to find a g-ordering that maximizes the expected payoff. Formally, the goal of the A,-CSP
instance J is to compute an assignment y € [¢]™ that is the maximizes the following:

valy(3) = mac B [P(yp)] (9.2)

The following claim is an easy consequence of the above definitions:

Claim 9.8.1. For every A-OCSP instance S = (V,P), and integers ¢ < ¢
valy(3) < valy (3) < val(Q),

Further, if |V| = m then val,,(J) = val(3).

183

9.8.2 SDP Relaxation

LC Relaxation (Equivalent Version)

maximize E E P(x)

P~Px~pp
subject to (bsq, by p) = wiP’ﬁp {a:s =a,ry = b} (P € supp(P), s,8 € V(P), a,be [m]).
(9:3)
(bs.a:b0) = (16503 VseV,a€[m], (9-4)
oz =1 (95)
pp € A(jg)"") VP € supp(P)

A coarsening gap instance has much weaker properties than a integrality gap instance,
thus making it easier to construct.

Definition 9.8.3. An instance & of a A-OCSP is a (g, ¢, s)-coarsening gap instance if
sdp(SJ) = ¢ and valy () < s.

Smoothing Coarsening Gaps

Definition 9.8.4. For a > 0, a (g, ¢, s)-coarsening gap instance & = (V, P) over m variables
is said to be a-smooth if for every P € P and z € [m]*, up, > a.

Here we will outline a transformation on coarsening gap instance &*, to another coars-
ening gap instance & with certain special properties including a-smoothness. Note that the
smoothness parameter of the resulting solutions is o =

n
10mFk -

Lemma 9.8.2. For all n > 0 the following holds, given a (q,c,s)-coarsening gap instance
S* = (V*,P*) of a A-OCSP, for large enough m, there exists a (q,c—n/5, s+n/5)-coarsening
gap instance S = (V,P) on m variables, an SDP solution {v; 4 }icy ac|m)s {1P} Pesupp(p) and
a vector by satisfying

1
(bi,m bi,a> = E Vi e V, a € [m] s (96)
n k
> — .
upx =z 10mk VP eP,x e [m] ’ (9 7)
and
E E P(z)>c— 2 valy(3) < s + 2
P~P z~pp 5 a 5

Proof. Intuitively, the SDP solution corresponding to instance & assigns each of the variables
y; € V each of the locations in [m] with equal probability. & is constructed by taking many
copies of &* and joining them side by side such that cyclic shifts of orderings obtain around
the same payoff.

184

More formally, let L = [%] and set V = V* x [L]. The distribution P is obtained by sim-
ply the product distribution of P* and the uniform distribution over [L]|. That is, for every
p = (y1,92, ... yx) in the support of P* and for every [€ [L], Prp((y1,1), (y2,0),. .., (yx, 1)) =
Prp-(p)/L.

Let O be an optimal ordering for §. Let m = |[V| = L|V*|. For every i € [m], define
ordering Of, : V — [m] to be O*(v, k) = i+ k|V|+ O(v) (addition modulo m). Since except

for at most one copy of P*, every other constraint is ordered as in O, the payoff of OE*Z.) is

at least ¢ — 1/20.

Further, since the g-ordering value of P is simply the average of the g-ordering values of
the individual pieces, valy(P) < s.

To construct the vectors, we consider the distribution over assignments obtained by
taking, with probability 1—7/10, one of OE*Z.) with equal probability and taking a completely
random assignment with probability 1/10. It is easy to see that the probability y € V is
assigned a € [m] is exactly 1/m. Further, since we take a completely random assignment
with probability 7/10, for any constraints p € P and x € [m]*, the distribution assigns
to p with probability at least 10:]nk' The payoff obtained by this distribution is at least
(1 —n/10)(c —n/20) = ¢ —n/5. The distribution over assignments naturally gives vectors
satisfying the required constraints. [|

Abusing notation, henceforth we shall use & to denote the smoothed coarsening gap
instance $*.

9.9 Dictatorship Test for OCSP

In this section, we will construct a dictatorship test for an OCSP A starting with a coarsen-
ing gap instance $ for the problem. Formally, let S* = (V*,P*) be a (q, ¢, s) coarsening gap
instance with [V| = m. Let & = (V,P) denote the (¢q,c — #,5 + #)-coarsening gap instance,
which is @ = 7/10m”-smooth, obtained from Lemma 9.8.2. Let (V,u) denote the SDP
solution associated with the instance . Define a dictatorship test DICTS, p on orderings O
of [m]® as follows:

185

DICTY,,
3* = (V*,P*) be a (¢,¢, s) coarsening gap instance with [V| = m. Let & = (V,P)
denote the (g, c

Let

Test

— 4,5+ {)-coarsening gap instance, which is o = 5/ 10mPF-smooth, obtained

from Lemma 9.8.2. Let (V, u) denote the SDP solution associated with the instance &

— Sample a payoff P from the distribution P. Let V(P)

- Sample zs = {zs,,..
= {ZS1 , .

— For each s; € S and each 1 <
50) (4)

.

— Query the ordering values O(zg,), ...,

— Return the Pay-Off : P((’)(isl), e

., Zg, } from the product distribution uh 5, ie. Foreach 1 < j <

and with the remaining probability Zs

252{81,82,...,3k}.

R,

zgk } is sampled using the local distribution pup on [m]Y(),

< R, sample zs as follows: With probability (1 — ¢),
(J)

is a uniform random element from

O(zs,).

0(z,,))

Completeness [t is fairly simple to check that the completeness of the dictatorship test
DICTY, u 1s close to the SDP value of 3. Specifically, we will now show,
Lemma 9.8.3.
Completeness(DICTY, ,,) > val(V, p) — 2ek = ¢ — g — 2k
Proof. A dictator “m-ordering” O is given by O(z) = 2. The expected payoff returned
by the verifier DICTS, , on O is given by
E EE [P(O 7e)..... 0z)] — E EE [P (<>,...,~<ﬂ>>}
PePzs zg (Z 1) (Z k) PePzsig s “si

;) _

With probability (1 — zs) = zgj) for

take values in [—1,

)k,

each s; € S. Further the payoff functions P € P

1]. Hence a lower bound for the expected payoff is given by

Zoq)y - - 3 > (1—¢)F @ L) —(1—e)). (=
EEE[P(0().- - 0(,))] > 1 - B E[P(....20) | + (-1~ (-1)
The j* coordinates z(Sj) = {zg), e zgg)} are generated from the local probability distribu-

tion pp. Thus we get,

() G| = =
EE [P(29,20)] EE [P(x)} val(V,) (9.8)
The expected payoff is at least (1 —e)F -val(V,pu) — (1 — (1 —&)F) > val(V,u) — 2ck. W

186

Soundness The following soundness claim is an immediate consequence of Lemma 9.9.2
and Lemma 9.9.1.

Theorem 9.9. (Soundness Analysis) For every e > 0, for any T-pseudorandom ordering
O of [m]",
val(0) < valy(¥) + O(q™2) 4+ o-(1)

where 0-(1) — 0 as 7 — 0 keeping all other parameters fized.

Lemma 9.9.1. For every ¢ > 0, for any T-pseudorandom ordering O of [m]f

val(0) < val,(O*) + <k> ¢ 2 +0.(1)

2
where OF is the g-coarsening of O and k denotes the arity of the OCSP A.

Proof. Let FlU : [m]® — {0,1} denote the functions associated with the g-ordering O*.
For the sake of brevity, we shall write F? for Fli-l.

Note that the loss due to coarsening, is because for some payoffs P the k£ variables in
V(P) do not fall into distinct bins during coarsening. Let us upper bound the probability
that some two of the variables queried zs,,zs; fall into same block during coarsening, i.e.
O*(zs,) = O*(Zs;). Observe that,

B (06)-06) - T 8 B [Fe)re,)
iclq) B
B N e

i€lq]

As O is a g-coarsening of O, for each value i € [q], there are exactly % fraction of z for
which O*(z) = i. Hence for each i € [q], E,[F'(z) = %] Further, since the ordering O* is

T-pseudorandom, for every j € [R] and ¢ € [q], Inf;(T}_.F") < 7. Hence using Lemma 9.4.1,
for sufficiently large ¢, the above probability is bounded by q-¢~ "% +¢- or(1). By a simple
union bound, the probability that two of the queried values fall in the same bin is at most
(’;) (q . q_l_% +q- OT(1)> As all the payoffs are bounded by 1 in absolute value, we can write

val(0) < val,(O*) + Pr (Elz', j € [k] such that O*(z,,) = 0*(zsj))
< valy (0O*) + (g) q 2 +or(1)

Lemma 9.9.2. For every choice of m,q, ¢, and any T-pseudorandom q-ordering O* of [m|%,
valy(O*) < valy(J) + o-(1).

Proof. Let FlU : [m]® — {0,1} denote the functions associated with the g-ordering O*.
For the sake of brevity, we shall write F* for F4, and F = (F1), ..., F@). The expected

187

payoff returned by the verifier in the dictatorship test DICTV u 1s given by,

valy(0) = E EE|P(F(z,),....F (7))

PePzs zg

Further, since the ordering O* is 7-pseudorandom, for every j € [R] we have Inf;(T1_.F") <
7. The proof follows from Lemma 9.9.3. [|

9.10 Soundness Analysis for q-Orderings

In this section, we will sketch the proof of Lemma 9.9.2 and Lemma 9.6.2. As Lemma 9.6.2
is a special case of Lemma 9.9.2, we will restrict ourselves to the proof of Lemma 9.9.2.
The proof of Lemma 9.9.2 closely resembles the soundness analysis of dictatorship tests for
the case of GCSPs (Theorem 7.5) . However, the lemma is not an direct consequence of
Theorem 7.5. This is because, in the soundness analysis of Theorem 7.4 assumes that the
domain of the function is [¢]® while the output is also in A, for some g. For the sake of
completeness we include a sketch of the proof here.

9.10.1 Payoff Functions

For the sake of the proof, we will extend the payoff functions P corresponding to the CSP
A, to smooth real valued functions on R*. The details of the extension are identical to the
case of GCSPs (Subsection 7.4.1).

9.10.2 Local and Global Distributions

Now, we shall describe two ensembles of random variables, namely the local integral ensem-
bles Lp for each payoff P, and a global Gaussian ensemble G.

Definition 9.10.1. For every payoff P € P of size at most k, the Local Distribution pup
is a distribution over [m]Y(Y). In other words, the distribution pp is a distribution over
assignments to the CSP variables in set V(P). The corresponding Local Integral Ensemble
is a set of random variables Lp = {/s,,..., (s, } each taking values in A,,.

Definition 9.10.2. The Global Ensemble G = {gs|s € V,j € [m]} are generated by setting
gs = {gs,la ce ags,m} where

9s,; = (bo, bs ;) + ((bs,; — ((bo, bs,5))bo), ¢)

and ¢ is a normal Gaussian random vector of appropriate dimension.

It is easy to see that the local and global integral ensembles have matching moments up
to degree two.

Observation 9.10.1. For any set P € P, the global ensemble G matches the following

188

moments of the local integral ensemble Lp

Elgs,;] = E[ls ;] = (bo, bs ;) Elg2 ;] = E[62 ;] = (bo, bs ;)
E[gs,jgs,j’] - E[gs,jes,j’] =0 Vj 7é jla ERS V(P)

9.10.3 Putting It All Together

Finally, we will now show the following lemma which forms the core of the soundness
argument in Lemma 9.9.2 and is a generalization of the Claim 9.6.1.

Lemma 9.9.3. For a function F : (m]f — A, satisfying Inf;(Ti_.F) < 7 for all j € [R],

JEEE [P(J-‘(zsl), . ,f(isk))] < valy(S) + 0.(1)

Here 0-(1) — 0 as 7 — 0 while all other parameters are fized.

Proof. Let us denote H = Th_.F. Let F(x), H(x) denote the multilinear polynomials
corresponding to functions JF,H respectively. Let us denote,

DICTY, ,(F) = E EE P(F (7). F(25))]
Each vector z,, is independently perturbed to obtain zs,. The payoff functions P are
multilinear when restricted to the domain A,. Consequently, we can write

DICTY ,(F)= E E [P(E [F(2s,)|2s), -5 E [f(isqIZSk]))]

PePzgs isl Zsl

= PIEPEE [P(’H(zsl), e ,’H(zsk)ﬂ
The last equality is due to the fact Eg, [Fs,(2s,)|2s,] = T1—cFs,(2s;) = Hs,(25,). For each
s € 8, the coordinates of zs are generated by the distribution pup. Therefore the above
expectation can be written in terms of the polynomial H applied integral ensemble Lp.
Specifically, we can write

DICTY, W(F) = E_E[P(H(z,), ... H(z,))] - EE (P(H(L), .. H(R))]

(9.9)

The following procedure Roundz returns an ordering for the original A-OCSP instance S.

189

Round~z Scheme
Input : A A,;~OCSP instance & = (V,P) with a SDP solution {b,;}, {1p}.

Sample R vectors ¢V, ..., ¢ with each coordinate being i.i.d normal random variable.
For each s € V do
— For all 1 < j < R and ¢ € [m], compute the projection g§32 of the vector by . as
follows:

99} = (b0, byc) + | (bsc = (b0, bsc))b0), ¢)]

)

— Evaluate the function H = T_.F with ggc as inputs. In other words, compute

Ps = (Ps,1,---,Ds,q) as follows:
Ps = H(gs)

— Round p; to p; € A, using the following procedure.

0 ifz<0 . .
e > . 2;#0
foyl)=qz if0<z<1 Scale(ml,wg,...,xq):{Zimi(wl x_q)l 2T 7
L e (1,0,0,...,0)if > . 2; =0

ps = Scale(f[o,l] (ps,1), . >f[0,1] (ps,q))

— Assign the A-OCSP variable y; € V the value j € [g] with probability p i

Let Roundz(V', 1) denote the expected payoff of the ordering returned by the rounding
scheme Roundz on the SDP solution (V', u). By definition, we have:

Round#(V, p) < valy () (9.10)
In the remainder of the proof, we will show the following inequality:
Round#=(V', u) < DICTY, ,,(F) + o-(1)

Along with Equation 9.10, this would imply that DICTY, ,(F) is less than valy(S) + o-(1),
thus showing the required claim. To this end, we will arithmetize the value of Round =(V', u).
Notice that the g; are nothing but samples of the Global Ensemble G associated with $.
Further, let us denote by H*(gs), the rounded value p} of ps = H(gs). By definition, the
expected payoff is given by

Round=(V,) = E_E P(E(F),... . H"(eF))] (9.11)

190

We will show that the quantities in Equation 9.9, 9.11 are roughly equal. Fix a payoff P € P.
Apply the assertion 1 of the invariance principle (Theorem 3.2) with the ensembles Lp, Gp,
smooth function Pg and the vector of kt multilinear polynomials given by (H,H, ..., H)

where H = (Hy,...,H;). As a consequence, we get
E (P(H(E),.. H(R))] & (P(H(gE).... H(gh))] +or(1) 9.12)

To show that the quantities in Equation 9.11 and 9.12 are roughly equal, we will appeal
again to the invariance principle (Theorem 3.2). |

9.10.4 Bounding the Rounding Error

The following claim bounds the loss incurred in the payoff due to rounding the assignment
from ps to p;.

Claim 9.9.1. Let F : [m]® — A, be a function satisfying Inf;(Ti_.F) < 7 for all j € [R],
and let H = Ty_.F. Let H denote the multilinear extension (a polynomial representing
H), and let H* denote the function H rounded to Aq.

‘é% [P(H*(gﬁ),...,ﬂ*(gg))} —é% [P(Hsl(gﬁ),...,ﬂsq(gg))]‘ < o-(1)

Proof. Intuitively, the invariance principle (Theorem 3.2) asserts that the distribution of
the random variable H (g% is roughly the same as that of H(¢£). Observe that on inputs
from the local distribution ¢£, the value H(¢) is always contained in A,. This suggests
that the random variables H (g%) is nearly always close to A,. For a point p € A, its
rounded value p* = p. Thus, the rounding of H(g) only slightly changes its value, i.e.,
H(g®) ~ H*(gf). Recall that the payoff functions P are smooth in that they satisfy
Property II (Subsection 7.4.1). Therefore if H(g%) ~ H*(g%) for all s, the two quantities
in the above claim are approximately equal.

Without loss of generality, we may assume that S on which the payoff P applies is
{1,...,k} . From Property II that the payoff functions satisfy,

B [P(re (el (el)] - B [P(H). o H (&))]
<oy (2 [l - HEhE))

i=1 7P
Using the same argument as Claim 7.4.1, it is easy to observe that

> High=1.

J€ld]

191

Now apply Fact 7.4.2 to conclude,

E |IH" () - HgI3] < 20+2) E |¢(H(gH)|.

Gh Gh

Since H (¢1*) € A, we have Egr [g(H(ER))} = 0. Rewriting the above inequality,

2

E |IH) - HeMB| < 20+2)| E [e(H M) - E [

Gk Gk LR

Using Assertion 2 of the invariance principle (Theorem 3.2) with the ensembles Lp, Gp and
the vector of gk multilinear polynomials given by (H, H,..., H) where H = (Hy,..., H,).

B[] - 5 [eae] | < o.0)

Consequently,

E ||H ()~ Hgl)3] < (20+2)

9p

E [¢(H(gh)| - E [sH(ER)]| < or)

gR

vl
o
o]

Substituting in 9.13 we get the required result. [|

192

Chapter 10
GROTHENDIECK INEQUALITY

193

10.1 Introduction

The Grothendieck inequality states that for every n xm matrix A = (a;;) and every choice of

unit vectors uy, ..., u, and v, ..., vy, there exists a choice of signs x1, ..., Zn, Y1, .-, Ym €
{#1} such that
n m n m
SN alunv) <KoY Y agmiy;
i=1 j=1 i=1 j=1

where K¢ is a universal constant. The smallest value of K¢ for which the inequality holds,
is referred to as the Grothendieck constant. Since the inequality was first discovered [69],
the inequality has not only undergone various restatements under different frameworks of
analysis (see [115]), it has also found numerous applications in functional analysis.

In recent years, the Grothendieck’s inequality has found algorithmic applications in effi-
cient construction of Szemeredi partitions of graphs and estimation of cut norms of matri-
ces [4], in turn leading to efficient approximation algorithms for dense graph problems [63].
The inequality has also proved useful in certain lower bound techniques for communication
complexity [116]. Among its various applications, here we shall elaborate on the Ky n-
QUADRATICPROGRAMMING problem. In this problem, the objective is to maximize the
following quadratic program given as input the matrix A = (a;;).

Maximize Zaijajiyj Subject to: z;,y; € {£1}
Z"j

Alternatively, the problem amounts to computing the norm ||A||s—1 of the matrix A. The
Ky n-QUADRATICPROGRAMMING problem is a special case of the correlation clustering
problem with two clusters, where the underlying graph is bipartite. The following natural
SDP relaxation to the problem is obtained by relaxing the variables x;,y; to unit vectors.

Maximize Zaij (ui,vj) Subject to: |[u;|| = ||vj|| =1
Z"j

The Grothendieck constant K¢ is precisely the integrality gap of this SDP relaxation for
the Ky n-QUADRATICPROGRAMMING problem.

Despite several proofs and reformulations, the value of the Grothendieck constant Kg
still remains unknown. In his original work, Grothendieck showed that § < K¢ < 2.3. The
upper bound has been later improved to 7/21og(1+v2) ~ 1.78 by Krivine [109], while the best
known lower bound is roughly 1.67 [142]. More importantly, very little seems to be known
about the matrices A for which the inequality is tight.

10.1.1 Results

In this chapter, we will apply the connections between SDP integrality gaps, dictatorship
tests and UG-hardness results to the Ky ny-QUADRATICPROGRAMMING problem. First, we
obtain the following UGC-based hardness result for Ky ny-QUADRATICPROGRAMMING.

194

Theorem 10.1. [t is UNIQUE GAMES-hard to approximate Ky ny-QUADRATICPROGRAMMING
by any constant factor smaller than the Grothendieck constant K¢ .

Note that Ky n-QUADRATICPROGRAMMING is a Generalized Constraint Satisfaction
Problem. However, the above result does not immediately follow from Theorem 7.1, since
the reduction does not preserve bipartiteness. The main technical hurdle in obtaining a
bipartiteness-preserving reduction, is to give a stronger analysis of the dictatorship test so
as to guarantee a common influential variable. This is achieved using a standard truncation
argument as outlined in [124].

On the other hand, neither the generic rounding scheme outlined in Chapter 5 nor the
rounding scheme in Chapter 7 directly translate in to an algorithm for
Kn n-QUADRATICPROGRAMMING. The main issue is the constant additive error term in-
curred by both algorithms. For a CSP, the objective function is guaranteed to be at least a
fixed constant fraction (say 0.5), and hence the additive constant error is negligible. In case
of Kn n-QUADRATICPROGRAMMING, the value of the optimum solution could be 1/iogn, in
which case an additive constant error destroys the approximation ratio.

To obtain better bound on the error, we use a bootstrapping argument similar to the
Gaussian Hilbert space approach to Grothendieck inequality [29] (this approach is used for
algorithmic purposes in [4, 3, 105]). Using ideas from the proof of Grothendieck inequality,
we perform a tighter analysis of the reduction from integrality gaps to dictatorship tests
(outlined in Chapter 6) for the special case of Ky ny-QUADRATICPROGRAMMING. This
tighter analysis yields the following new results:

Theorem 10.2. For every € > 0, there is an efficient algorithm that achieves an approxi-
mation ratio Kg — e for Ky n-QUADRATICPROGRAMMING running in time F(e) - poly(n)
where F(g) = exp(exp(O(1/e?))).

Theorem 10.3. For every € > 0, the Grothendieck constant Kg can be computed within
an error € in time proportional to exp(exp(O(1/€%))).

A tighter running time analysis could improve the O(1/?), but reducing the number of
exponentiations seems to require new ideas.

10.1.2 Prior Work

The general Grothendieck problem on a graph G amounts to maximizing a quadratic poly-
nomial), a;jz;x; over {£1} values, where a;; is non zero only for edges (i,j) in G. Kn,n
QUADRATIC PROGRAMMING is the special case where the graph G is the complete bipartite
graph.

The Grothendieck problem on a complete graph admits a O(log n) approximation [126,
123, 36] and has applications in correlation clustering [36]. For the Grothendieck problem
on general graphs, [3] obtain an approximation that depends on the Lovasz 6 number of the
graph.

In an alternate direction, the Grothendieck problem has been generalized to the L,-
Grothendieck problem where the L, norm of the assignment is bounded by 1. The traditional
Grothendieck corresponds to the case when p = oo. In a recent work, [105] obtain UGC
hardness results and approximation algorithms for the L,-Grothendieck problem.

195

On the hardness side, [9] show a O(log®n)-NP hardness for the Grothendieck problem
on the complete graph for some fixed constant ¢ < 1. Integrality gaps for the Grothendieck
problem on complete graphs were exhibited in [101, 3]. For the Ky n-QUADRATIC PRO-
GRAMMING problem, a UGC-based hardness of roughly 1.67 was shown in [101]. The re-
duction uses the explicit operator constructed in the proof of 1.67 lower bound [142] for the
Grothendieck constant.

Organization The next section is devoted to formal definitions of the

Ky, n-QUADRATICPROGRAMMING problem, and certain analytic notions like common in-
fluences. This is followed by three sections that outline the three reductions between dicta-
torship tests, UG-hardness results and SDP integrality gaps. Among these, the reduction
in Section 10.3 is the central contribution of the chapter, while the other two reductions
follow easily from existing work. Finally, in Section 10.6 we use the reductions to obtain
the optimal algorithm for Ky ny-QUADRATICPROGRAMMING, and the algorithm to compute
the Grothendieck constant.

Mathematical Tools This chapter relies on the harmonic analysis of boolean functions
(Section 3.3), associated notions of influence and noise stability, Gaussian random variables
(Section 3.5) and the associated noise operator. The chapter also makes use of a simple
version of the invariance principle (Section 3.6), which is stated here for the sake of com-
pleteness.

10.2 Preliminaries

Problem 10 (K, ny-QUADRATICPROGRAMMING). Given an m x n matrix A = (a;;), com-
pute the optimal value of the following optimization problem,

opt(A) o maxz aijTiy;
ij
where the maximum is over all x1,...,x,, € [-1,1] and y1,...,y, € [-1,1]. Note that the
optimum value opt(A) is always attained for numbers with |z;| = |y;| = 1.

The following is the natural semidefinite relaxation of Ky n-QUADRATICPROGRAMMING.

Problem 11 (Ky y-SEMIDEFINITEPROGRAMMING). Given an m x n matrix A = (a;j),
compute the optimal value of the following optimization problem,

sdp(A) ' max Z aij(wi, v;)
ij

where the maximum is over all vectors ug, ..., u,, € B@ and all vectors vy,. .., v, € B@.
Here B@ denotes the unit ball in R? and we choose d > m + n. Note that the optimum
value sdp(A) is always attained for vectors with ||u;|| = |lv;|| = 1.

Remark 10.2.1. Since Ky n-QUADRATICPROGRAMMING is a GCSP, the LC relaxation
would be the canonical relaxation to consider. However, the LC relaxation is equivalent
to the above semidefinite program. The proof of equivalence follows along the lines of

196

Lemma 4.1.3 that proves a similar equivalence for the case of MAX CUT with the Goemans-
Williamson SDP.

Definition 10.2.1. The Grothendieck constant K¢ is the supremum of sdp(A)/opt(A) over
all matrices A.

For F,G € Ly(2), we denote (F,G) def E FG, | F|| def EF2, and || F||» def SUPgeq F ().
We have || F|| < || F]|oo-

Lemma 10.3.1. Given an operator A on Lo(QF), and functions F,G,F',G' € Lgd)(QR)
satisfying |71, 161, |71, 1G] < 1, then

[(F,AG) — (F,AGH < AII(IF = Fl + 116 - d'lD) -

Lemma 10.3.2 (Bootstrapping Lemma). Given an m x n matriz A = (a;;), and vectors
U, ..., Uy and v1,...,0,, then

> aijui,vg) < (maxfui]]) (max|v;ll) - sdp(A4) < 2(max|u;|) (max]|v;) - opt(a)
]

Proof. On scaling the vectors u;, v; by (max;||u;||) and (max;||v;||) respectively, the resulting
vectors have lengths bounded by 1. Therefore, the scaled vectors form a feasible SDP
solution. Therefore we get,

Z aij(i Y > < Sdp(A) .

- max;||u; || max;||v;|

Common Influences. For a function F € Ly({£1}7), we define Inf; F = 3 __. F2, where
F is the Fourier-transform of F. Let us denote MaxInf F % max;c(g) Inf; . For a pair of

functions F, G € Lo({£1}7), we define MaxComInf(F,G) o max;e(p min{Inf; 7, Inf;G} to
be the mazimum common influence.

031

Lemma 10.3.3. Let u,v € R? be two unit vectors, and F,G € Ly({£1}F). Then,

E F(2u)G(Pv) = (F. Tuv)9)

where ® is a R x d Gaussian matrix, that is, the entries of ® are mutually independent

normal variables with standard deviation ﬁ.

Proof. 1t suffices to show the lemma for the case that both F and G are the same multilinear
monomial. Since the variables are independent, one may assume that the monomial has
degree 1. For this case, it is trivial. [|

Here we state a version of the invariance principle suited for the application at hand.

197

Truncation of Low-influence Functions. For F: R® — R, let trunc F: R¥ — [~1,1]
denote the function

1 if F(z) > 1,
Flx) if—1< Fz) <1,
-1 if Fz) < —1.

trunc F(x) def

Theorem 10.4 (Invariance Principle, [125]). There is a universal constant C' such that,
for all p =1 —¢ € (0,1) the following holds: Let F € Lo({£1}®) with |Fl|l.. < 1 and
Inf;(T,F) < 7 for all i € [R]. Then,

|T,F — trunc T, F|| < 7¢°¢
where F € Ly(G™) denotes the (unique) multilinear extension of F to RE.

10.2.1 Dictatorship Tests

In the current context, a dictatorship test can be defined succinctly as follows.

Definition 10.2.2. A dictatorship test B is an operator on Lo({#1}%) of the following
form:

R
B= Z NaPy
d=0

where P, is the projection operator on to the degree d part, and |\1| > |A\g| for all d. We
define two parameter of B:

Completeness(B) def inf(xi, Bx;), where y;(x) = x; is the i’ dictator function.
(2
Soundness, ;(B) def sup (F,BG), where p=1—e¢.
j:vg:{:l:l}R_)[_l?l]v
MaxComlInf(T,F,T,G)<T

10.3 From Integrality Gaps to Dictatorship Tests

In the first step, we describe a reduction from a matrix A of arbitrary size, to a dictatorship
test DICTS on Lo({£1}f) for a constant R independent of the size of A.

Towards this, let us set up some notation. Let A = (a;;) be an m x n matrix with SDP
value sdp(A). Let uy,...,u,, € B and vy, ...,v, € B@ be an SDP solution such that

Z a;j(u;,vj) = sdp(A).
tj
In general, an optimal SDP solution uy,...,u,, and vy,...,v, might not be unique. In
the following, we will however assume that for every instance A we can uniquely associate

an optimal SDP solution, e.g., the one computed by a given implementation of the ellipsoid
method. With this notation, we are ready to define the dictatorship test Dj.

198

Definition 10.3.1. For d € N, let us define coefficients \j € R,
def
)\d é Z aij <ui, ’Uj>d .
j
Define linear operator D4 DICTS on Lo({£1}%) as follows:
R R
DaE N NPy, DICTS, € T,DAT, = > p* NPy,

d=0 d=0

where p =1 —¢.
By the definition of Completeness(DICT%), we have:

Lemma 10.4.1. For all matrices A, Completeness(DICTS) = Aip? > sdp(A)(1 — 2¢).

10.3.1 A Rounding Scheme

Towards bounding Soundness, -(DICT%), we define a rounding scheme Round. £ g for every
pair of functions F,G € Lo({£1}¥) and p < 1. The rounding scheme Round. rg is an
efficient randomized procedure that takes as input the optimal SDP solution for A, and
outputs a solution x1,...,Zm, Y1, ..,Yn € {£1}.

For functions F,G € Lo({£1}%), define the rounding procedure Round £ g as follows:

Round. 7 g
Input : Anm xn matrix A = (a;;) with SDP solution {ui,us, ..., un},{v1,v2,...,v,} C
B(d)

— Let T,F,T,G denote the multilinear polynomials obtained by Fourier expansion of
functions T,,F,T,G. Compute T,F and T,,G explicitly.

— Generate R x d matrix ¢ all of whose entries are mutually independent normal
variables of standard deviation 1/va.

— Assign x; = truncT,F(®u;) and y; = truncT,G(Pv;) for all i € [m],j € [n].
The expected value of the solution returned Round. 7 g(A) is given by:

Roundr g(A) = IqE)l >_ijaijtrunc T, F(®u;)trunc T,G(Pv;)

Definition 10.3.2. Round. rg(A) is the expected value of the solution returned by the
randomized rounding procedure Round. g on the input A.

In this section, we will show following relationship between performance of rounding
schemes and soundness of the dictatorship test [125].

199

Theorem 10.5. Let A be a matriz. For functions F,G € Lo({£1}) satisfying || F || s, |G <
1 and MaxComInf(T,F,T,G) < T for p =1 — ¢, there exists functions F',G' € Ly({£1}F)
such that

(F,DICT,G) < Round. 7 g/(A) + (10705/8 NG) sdp(A).

Further the functions F',G" satisfy minInf;T,F', Inf,T,G" < 7 for all i.

By taking the supremum on both sides of the above inequality over all low influence
functions, one obtains the following corollary:

Corollary 10.5.1. For every matriz A and € > 0,

Soundness, ,(DICT%) << sup Rounde,ﬁg(A)) (107’05/8/\/_> sdp(4),

F.GeLa({£1}1),
MaxComlInf(T,F,T,G)<T

where p=1—¢.

As Round. 7 ¢ is the expected value of a {1} solution, it is necessarily smaller than
opt(A). Further by Grothendieck’s inequality, sdp(A) and opt(A) are within constant factor
of each other. Together, these facts immediately imply the following corollary:

Corollary 10.5.2. For a fized € > 0, if 7 < 27100108¢/C then then for all matrices A,

Soundness. (DICT) < opt(A)(1 +¢)

10.3.2 Relaxed Influence Condition

The following lemma shows that we could replace the condition MaxComInf (7] o, Tpg) <7
in Definition 10.2.2 by the condition MaxInf T, F, MaxInf T,G < /7 with a small loss in the
soundness.

Lemma 10.5.1. Let A be a dictatorship test on Lo({£1}*), and let F,G be a pair of
functions in Lo({£1}) with || F|«, |Gl < 1 and MaxComInf(T,F,T,G) < T for p = 1—¢.
Then for every T > 0, there are functions F',G' € Lo({£1}®) with | F'|, |G|« < 1 and
MaxInf T,F’', MaxInf T,G' < 7" such that

(T,F',AT,G"Y > (T,F, AT,G) — 2||A||\/T/7'e.

Proof. Let J denote the set of variables ¢ with Inf;7,F > 7’. Since the total influence of
T,F is bounded by 1/ (see Lemma 3.0.2), the set J has cardinality at most 1/e. Let M
be the orthogonal projector on the space of functions that do not depend on any variable
in J. We define 7/ = My F and G’ = M;G. We still have [|F'||.,||G'|| < 1. Note that
Inf,T,G < 7 for every i € J. Hence, ||T,G — T,G'||> < |J|7. Now,

<Tp*7:’ATpg> - <Tp]:’ ATpg/> = <Tp~7'—aATp(g - g/)>
TAINT,FN - TG =GNl

<
<V T

200

On the other hand, (T,F, AT,G") = (T,F', AT,G’), because
(T,(F = F,AT,G") = (T,F,(I — My)AM,;T,G) = (T,F,A(l — M;)M;T,G) =0,

where we used the fact that the operators A and M; commute (as both are diagonalized
by the Fourier transform), and that (I — M ;)M ; = 0.

We repeat the same argument with the set K of variables ¢ with Inf;7,G > 7/. Again,
projecting on My changes the value of (T,F', AT,G’) by at most /|J|7. [|

With this background, we now present the soundness analysis.

10.3.3 Proof of Theorem 10.5

Proof. By Lemma 10.5.1, there exists function F/,G’ € Lo({#1}) with || F'||-, |G']|« < 1
and MaxInf T, 7', MaxInf T,G' < /7 such that

(F',DICTSG") = (F,DICTSG) — 2||Da| - 74/ = (F,DICTSG) — dopt(A) - 7/ /e .
On the other hand, we have
(F',DICT4G ZZ (T, 7', aij(wi, v) Pa(T,G')) = aig{TpF, T) (TpG)) (10.1)
ij d=0 i

We can assume that all vectors u; and v; have unit norm. By Lemma 10.3.3, we have

EZ%T F(Qu)T,G (Dv;) = Y ai{TpF', Tiy,)(1pG") (10.2)
ij ij
From the above equations we have
(F,DICT4G) = Igz ai; T, F' (®u;)T,G' (dv;) (10.3)
]
By the invariance principle (Theorem 10.4), we have

| T,F" — trunc T, F'|| < 79/2 and ||T,G" — trunc T,G'|| < 79%/2. (10.4)

Now we shall apply the simple yet powerful bootstrapping trick. Let us define new vectors
in Lg(QRXd),

=T,F' (Pu;) v; = T,G'(Pv;)

ul
and

uj = trunc T, F' (Pu;) vj = trunc T,G'(Pv;)

201

Equation (10.4) implies that [|u} — «/|| < 7¢/2 and [v; —vf]l < 7C2/2. Using the boot-
strapping argument (Lemma 10.3.2), we finish the proof

// //
Round&]:/’g/(A):E aij{ug, vy) g aij(ug, v5) E agj(u;—uj, vj) — E aij(uf, v;—vj)

> Z agj(ug, v5) — 27 opt(A) — 27%opt(A)

> (F,DICT5G) — 4795/ 20pt(A) — 47/ %opt(A)/ve . (10.5)

10.4 From Dictatorship Tests to UG-hardness

Although, Ky ny-QUADRATICPROGRAMMING is a GCSP, the generic UG-hardness reduc-
tion in Chapter 7 does not apply directly, since the resulting instance is required to be
bipartite. Towards achieving bipartiteness, the soundness analysis of the dictatorship test
(Theorem 10.5) has been strengthened in that it yields common influential coordinates be-
tween the functions involved. Armed with this stronger soundness condition, the UNIQUE
GAMES-hardness reduction for GCSP (Theorem 7.1) can be modified easily to yield bi-
partite instances. For the sake of completeness, we include a sketch of the UG-hardness
reduction below.

Lemma 10.5.2. Given a dictatorship test A with completeness ¢ and soundness s, and a
UNIQUE GAMES instance ®, it is possible to efficiently construct an operator ®®,A satisfies
the following to two conditions:

1. if val(®) > 1 — v, then opt(P @, A) = ¢(1 — 0z 4—0(1)),
2. if val(®) < 6, then opt(® ®, A) < s(1+ 0-5-0(1)),

The UGC asserts that for every € > 0, there is a R such that for a unique game ® on
alphabet [R] it is hard to distinguish between val(®) > 1 — ¢ and val(®) < e.

Formally, we will represent a unique game ® on alphabet [R] as a distribution over triples
(v,w,), where v € Vg and w € Wy are vertices, and 7 is a permutation of [R]. Here we
can and will assume that the game is bipartite, i.e., Vg and Weg are disjoint.

Let A =} c(r) Aalu be a dictatorship test on Lo({£1}%). For p = 1 — ¢, we define a

linear operator ® ®. A on (Lg({il}R))lvq’leq" as follows:

(F,(®®.A)G) def (E) @(Tp(w.}“v),ATpgw%

where F = (Fy)veve, G = (Guw)wews, and m.F, denotes the function Fy(z(1),- .., Tr(r))-
We claim the following properties of the reduction ® — & ®. A. This claim implies
Lemma 10.5.2.

202

Claim 10.5.1. For 1,e € [0,1], p =1 — ¢, and every unique game ®, we have
1. If val(®) > 1 — € then opt(A ®. ®) > Completeness(A)(1 — O(e +¢).
2. If val(®) < (7¢)? then opt(A ®. ®) < Soundness. - (T,AT,) + O(rc)Completeness(A).

Proof. By scaling!, we may assume \; = 1 and Ay € [~1,1] for all d € [R], where A =
> aAiPa. Note that Completeness(A) = A; = 1.
Suppose that val(®) > 1 —e. Then there exists a labeling ¢: Vo U Wg — [R] such that

Pr {77(6(?))) - e(w)} >1-¢.

(’U7’u‘))7.r),\J¢

We choose F and G such that F,(z) = x4, and Gy (x) = x4, are dictator functions. If
7(¢(v)) = £(w), then 7. F, = G,,. Hence, (T,n.F,, AT,G,) = p*A\1 = p*. On the other hand,
if 7(4(v)) # ¢(w), then clearly |(T,n.F,, AT,G,)| < 1. Thus,

(E) (I)(Tp(ﬂ.fv),ATpgw> >(1—¢)-p?—e>1—2 —2¢.
It follows that opt(® ®. A) > ¢ — 0.(1) for any game ¢ with val(®) > 1 —e.
Now suppose that opt(® ®. A) > Soundness. ;(A) + J, where § = 7e. In this case, we
want to show that val(®) > ¢ for ¢ = 7¢®. Let F = (F,) and G = (G,,) be vectors with
| Fulloos |Gwls < 1 that achieve

E (T,(n.F,),AT,G,) > Soundness. (A) + 4. (10.6)

(v,w,m)~P
In hindsight, let us define a set of candidate labels for vertices v € Vg and w € Wy,
L(v) = {i | Inf;T,(Fy) > 7} and L(w)={i|Inf;T,(Gy) > T} .

Since p = 1 — &, we have |L(v)|, |L(w)| < 1/er (see Lemma 3.0.2). Since A is contracting, we
get from equation (10.6) that

Pr {(pr.fv,ATpgw> > Soundnesse,T(A)} >0.
(v,w,m)~P

The situation (T,7.F,, AT,G.) > Soundness, -(A) implies that Inf;T,(7.F,) > 7 and Inf;7,G,, >

7 for some i € [R]. Of course, Inf;T,(7.F,) > 7 just means that variable 7~ (i) has influence

Infr—1yTp(Fy) > 7. It follows that i € L(w) and 7 (i) € L(v). Thus,

Pr {az' € [R]. i € L(v) and (i) € L(w)} >4,

(v,w,m)~P

'Note that scaling A by a factor «, scales opt(® ®. A), Completeness(A), and Soundness. -(A) by the
same factor a

203

Hence, if we choose a random element of L(v) as the label ¢(v) and a random element of
L(w) as the label ¢(w), we have

P Ji € [R]. ¢(v) =i and l(w) =7(i) y = 8- (1¢)?,
W 130 € [R] f0) =i and f(w) = (i) } > 6 (re)
where we use the fact that |L(v)||L(w)| < 1/r2¢2. We can conclude that val(®) > 672¢? for
every unique game ® with opt(® ®. A) > Soundness. -(A) + §. By our choice of 7 and
5, we have 672c? = e. Hence, we get val(®) > (7¢)3 for every ® with opt(® @, A) >
Soundness, ;(A) 4+ 6 = Soundness, -(A) + 7¢.

|

10.4.1 Proof of Theorem 10.1

Let A be a finite matrix for which the ratio of sdp(A)/opt(A) > K¢ —e. Consider the
dictatorship test DICT% obtained from the matrix A. By Lemma 10.4.1, the completeness of
DICT, is sdp(A)(1 —¢). Further by Corollary 10.5.2, the soundness is at most opt(A)(1+¢)
for sufficiently small choice of 7. Plugging this dictatorship test DICT in to the above
lemma, we obtain a UG-hardness of (K¢ —¢)(1 —¢)/(1 +¢) > K¢ — be. Since € can be
made arbitrarily small, the proof is complete.

10.5 From UG-hardness to Integrality Gaps

Completing the cycle of reductions, here we show that a dictatorship test can be used to
construct an integrality gap, such that the ratio between the completeness and soundness
of the dictatorship translates in to the integrality gap ratio. More precisely, we will show

Theorem 10.6. For all e > 0, there exists R, T such that following holds: For any dictator-
ship test B on Lo({£1}%), there exists an instance B’ of Ky y-QUADRATICPROGRAMMING
such that,

sdp(B')
opt(B’)

Completeness(B) (1 — 5¢) (10.7)

P
< Soundness; ;(B) (1 + ¢) 4+ eCompleteness(3) (10.8)

In particular, the choices T = O(27100<%) and R = Q(2200/2°) suffice.

Proof Sketch: As in the case of MaAx CuT Section 6.7 and other GCSPs Section 7.7,
the idea is to execute the UG-hardness reductions starting with an SDP integrality gap for
UNIQUE GAMES. More precisely, if Red denotes the hardness reduction that maps instances
of UNIQUE GAMES to an instance of Ky n-QUADRATICPROGRAMMING. Starting with an
SDP integrality gap ® as input to Red, the resulting instance can be shown to be an SDP
integrality gap for Ky ny-QUADRATICPROGRAMMING.

For each vertex u € Vo U Ws, there are R vectors {b, ¢} in the UNIQUE GAMES SDP
solution. As in the case of MAX CuT, the SDP vector corresponding to a vertex (u,x) €

204

(Vo UWs) x {£1} is given by,

Vu,w = Z Ty bu,f
L€[R]

It is easy to check that the vectors V, , are unit vectors, and their objective value is at
least Completeness(B) (1 — 5¢). In particular, the proof follows almost along the lines of the
corresponding reduction for MAX CUT (presented in Section 6.7). We omit the details of
the proof from the thesis.

By definition, the Grothendieck constant K¢ is the maximum possible integrality gap
for Kn n-QUADRATICPROGRAMMING. Therefore, we have the following corollary of the
above theorem.

Corollary 10.6.1. Fiz R = Q(ZQOO/ES) and T = 0(2_100/53). Then for any dictatorship test
over {£1}* we have

1
Soundness, . (B) > <K— - 66) Completeness(B)
G

10.6 Implications

In this section, we follow the implications of the reductions between dictatorship tests,
integrality gaps and UG-hardness results in order to prove the main theorems of this chapter.
10.6.1 Proof of Theorem 10.2

Consider the following idealized algorithm for the Ky ny-QUADRATIC PROGRAMMING prob-
lem

— Find the optimal SDP solution wu;, v;
~ Fix R = 2200/¢" and 7 = 27100/<° For every function F,G € Lo({£1}%) with

IF], 1G]l < 1, run the rounding scheme Round. rg(A) to obtain a {£1} solution.
Output the solution with the largest value.

The value of the solution obtained is given by supz ger,(y+137) Round. 7 g(A). From Corol-
lary 10.5.1 we have

sup Round. rg(A) > sup Round. r g(A)
FGeLy({£1}17),[I711,11G11<1 F.GeLa({£1}1),
MaxComInf (T, F,T,G)<t

> Soundness, (DICT%) — (107’05/8/\/5) - sdp0A)

From Lemma 10.4.1, we know Completeness(DICT%) = sdp(A)(1—¢). By the choice of R, T,
we can apply Corollary 10.6.1 on DICT% to conclude
1

Soundness. (DICT%) > Completeness(DICT%) (K— — a) > sdp(A)(KL - 5) (1 —£(10.10)
G G

205

From Equations 10.9 and 10.10, we conclude that the value returned by the algorithm is at
least

sdp(A) <<KLG — 6) (1—¢)— 107’05/8/\/E> ,

which by the choice of 7 is at least sdp(A)(1/K¢q — 4¢).

In order to implement the idealized algorithm, we discretize the unit ball in space
Lo({£1}%) using a k-net in the Ly norm. As R is a fixed constant depending on ¢, there is
a finite k-net that would serve the purpose. To finish the argument, one needs to show that
the value of the solution returned is not affected by the discretization. This follows from
the following lemma:

Lemma 10.6.1. For F,G,F',G" € Lo({£1}7) with ||F||, |Gl ||, 1] < 1,
[Roundz,g(A) — Roundzr g/ (A)] < sdp(A)(|F = F'|[+ |G = G}

Proof. Define uj = truncT,F(®u;) ,v; = truncT,G(Pv;) and u] = trunc T, (Pu;) , v =
trunc G’ (®v;). Substituting we get,

Roundz g(A) — Roundz g = Z agj(u; — uy,vj) + Z aij(ug , v; — vj)
ij ij

As trunc and T), are contractive operators, [lugl[, [[uf |, [[v}]], [|v]|| < 1. Further, observe that
[|u; —uf|| < [|F — F'|| and [|v} —v][| < [|G — G|, since for all z, [trunc F(z) —trunc F'(z)| <

|F(x) — F'(x)]. Substituting in the above equation, we get the required result. [|

10.6.2 Proof of Theorem 10.3

A naive approach to compute the Grothendieck constant, is to iterate over all matrices A
and compute the largest possible value of sdp(A)/opt(A). However, the set of all matrices
is an infinite set, and there is no guarantee on when to terminate.

As there is a conversion from integrality gaps to dictatorship tests and vice versa, instead
of searching for the matrix with the worst integrality gap, we shall find the dictatorship
test with the worst possible ratio between completeness and soundness. Recall that a
dictatorship test is an operator on Lg({£1}%) for a finite R depending only on ¢ the error
incurred in the reductions. In principle, this already shows that the Grothendieck constant
is computable up to an error € in time depending only on &.

Define K as follows

R
1 .
— = inf sup (F, Zp2d)\deg> , where p =1 —¢.
K MelLiogasr , FIELEL), d=0
d€[-LIVOSASR \ o Comnf (T, F,T,6) <r
71, 11G11<1

Let P denote the space of all pairs of functions F,G € Lo({£1}*) with
MaxComlInf(T,F,T,G) < 7 and || F|,[|G]] < 1.. Since P is a compact set, there exists
an e-net of pairs of functions F = {(F1,G1),...,(Fn,Gn)} such that : For every point

206

(F,G) € P, there exists F;,G; € F satisfying ||F —F'||+ ||G — G’|| < €. The size of the e-net
is a constant depending only on R and ¢ (note: R depends only on ¢).
The constant K can be expressed using the following finite linear program:

1
Minimize 4 —
inimize — = p
R R
Subject to pu > Z Aa - (F, Z 0?2Q46) for all functions F,G € F
=0 d=0
Ai € [-1,1] forall0<i< R
M =1

207

Chapter 11
HARDEST CSP TO APPROXIMATE?

208

11.1 Introduction

In the MAX K-CSP problem, the input consists of a set of variables taking values over
a domain(say {0,1}), and a set of constraints with each acting on k of the variables. The
objective is to find an assignment of values to the variables that maximizes the number of
constraints satisfied. Several classic optimization problems like MAX-3SAT, MAXCur fall
in to the general framework of CSPs.

Apart from its natural appeal, the study of approximability of MAX k-CSP problem
is interesting for yet another reason. The best approximation ratio achievable for MAX
K-CSP equals the optimal soundness of a PCP verifier making at most k queries. In fact,
inapproximability results for MAX K-CSP have often been accompanied by corresponding
developments in analysis of linearity testing.

Over the boolean domain, the problem of MAX K-CSP has been studied extensively.
For a boolean predicate P : {0,1}* — {0,1}, the MAX K-CSP (P) problem is the special
case of MAX k-CSP where all the constraints are of the form P(ly,ls,...,[) with each
literal [; being either a variable or its negation. For many natural boolean predicates P,
approximation algorithms and matching NP-hardness results are known for MAX k-CSP
(P)[86]. For the general MAX K-CSP problem over boolean domain, the best known
algorithm yields a ratio of 9(2%) 32], while any ratio better than 2V2* /2% is known to be
NP-hard to achieve [51]. Further it is UG-hard to approximate MAX K-CSP problem to
a factor better than g—’,f [144].

In this chapter, we study the approximability of the MAX K-CSP problem over non-
boolean domains, more specifically over {0,1,...,q — 1} for some integer ¢, obtaining a
near-tight hardness result under the UGC. Specifically, we extend the techniques of [144]
to obtain a UGC hardness result when ¢ is a prime. More precisely, assuming the Unique
Games Conjecture, we show that it is NP-hard to approximate the problem to a ratio
greater than ¢%k/q". Except for constant factors depending on ¢, the algorithm and the
UG-hardness result have the same dependence on of the arity k. Independent of this work,
Austrin and Mossel [19] obtain a more general UG-hardness result using entirely different
techniques. Technically, the proof presented here extends the Gowers Uniformity based
approach of Samorodnitsky and Trevisan [144] to correlations on g-ary cubes instead of the
binary cube. This is related to the detection of multidimensional arithmetic progressions
by a Gowers norm of appropriately large degree.

11.1.1 Related Work

The simplest algorithm for MAX K-CSP over boolean domain is to output a random

assignment to the variables, thus achieving an approximation ratio of 2% The first improve-

ment over this trivial algorithm, a ratio of 2% was obtained by Trevisan [154]. Hast [79]

_k
log k2F

to the current best known algorithm achieving an approximation factor of 9(2%) [32].

On the hardness side, MAX K-CSP over the boolean domain was shown to be NP-hard
to approximate to a ratio greater than €(22V*/2%) by Samorodnitsky and Trevisan [143].
The result involved an analysis of a graph-linearity test which was simplified subsequently

proposed an approximation algorithm with a ratio of Q(), which was later improved

209

by Hastad and Wigderson [84]. Later, using the machinery of multi-layered PCP developed
in [49], the inapproximability factor was improved to O(2m /2%) in [51].

A predicate P is approximation resistant if the best optimal approximation ratio for
MAX k-CSP (P) is given by the random assignment. While no predicate over 2 variables
is approximation resistant, a predicate over 3 variables is approximation resistant if and
only if it is implied by the XOR of 3 variables [86, 163]. Almost all predicates on 4 variables
were classified with respect to approximation resistance in [80].

Assuming the Unique Games Conjecture, a tight inapproximability of © (2%) for the
MAX k-CSP problem over the boolean domain was shown in [144]. The proof relies on
the analysis of a hypergraph linearity test using the Gowers uniformity norms. Building on
this work, Hastad showed that if UGC is true, then as k increases, nearly every predicate
P on k variables is approzimation resistant [83].

Subsequently, it was shown in [136] that for every CSP over an arbitrary finite do-
main, the best possible approximation ratio is equal to the integrality gap of a well known
Semidefinite program. Further the same work also obtains an algorithm that achieves the
best possible approximation ratio assuming UGC. Although the results of [136] apply to
non-boolean domains, they do not determine the value of the approximation factor explic-
itly, but only show that it is equal to the integrality gap of an SDP. Further the algorithm
proposed in [136] does not yield any approximation guarantee for MAX K-CSP uncon-
ditionally. Thus neither the inapproximability nor the algorithmic results of this work are
subsumed by [136].

Austrin and Mossel [19] obtain a sufficient condition for a predicate P to be approxima-
tion resistant. Through this sufficiency condition, they obtain strong UG-hardness results
for MAX K-CSP problem over the domain {1,...,q} for arbitrary k£ and ¢. For the case
when ¢ is a prime power, their results imply a UG-hardness of kq(q — 1)/¢*. The hard-
ness results in this work and [19] were obtained independently and use entirely different
techniques.

11.1.2 Organization of the Chapter

We begin with background on the Gowers norm and influence of variables in Section 11.2. In
Section 11.3, we present a linearity test that forms the core of the UG-hardness reduction.
We prove our inapproximability result (for the case when ¢ is a prime) by a reduction
from UNIQUE GAMES in Section 11.4. The proof uses a technical step bounding a certain
expectation by an appropriate Gowers norm; this step is proved in Section 11.5.

11.2 Preliminaries
For a positive integer n, we use the notation [n] for the ring Z/(n) = {0,1,...,n — 1}.

11.2.1 Gowers uniformity norm and influence of variables

We now recall the definition of the Gowers uniformity norm. For an integer d > 1 and a
complex-valued function f : G — C defined on an abelian group G (whose group operation

210

we denote by +), the d’th uniformity norm Uy(f) is defined as

= 5 | 1]]—"(az—kai) I]—"(m—i—Zyi) BNEY
1,2,...,d} ay
eve

SC{1,2,..., ieS SC{1,2,..., ieS
ven

IS| 1s| odd

where the expectation is taken over uniform and independent choices of x, yo, . .., yq_1 from
2
the group G. Note that U'(F) = <Ew[f($)]> .

We will be interested in the case when the group G is [¢]" for positive integers ¢, n, with
group addition being coordinate-wise addition modulo ¢. G is also closed under coordinate-
wise multiplication modulo ¢ by scalars in [¢], and thus has a [¢]-module structure. For
technical reasons, we will restrict attention to the case when ¢ is prime and thus our groups
will be vector spaces over the field IF, of ¢ elements. For a vector a [q]k, we denote by
ai,a9,...,a its k coordinates. We will use 1,0 to denote the all 1’s and all 0’s vectors
respectively (the dimension will be clear from the context). Further denote by e; the ith
basis vector with 1 in the i¢th coordinate and 0 in the remaining coordinates. As we shall
mainly be interested in functions over [¢]™ for a prime ¢, we make our further definitions in
this setting. Firstly, every function F : [¢]" — C has a Fourier expansion given by:

f(x) = Z ﬁO'XO'(‘T)
o€(q]

where F, = Erelgn [F(2)xe ()] and xo(x) = [T, w?i® for a ¢ root of unity w.
The central lemma in the hardness reduction relates a large Gowers norm for a function
f, to the existence of an influential coordinate.

The following well known result relates influences to the Fourier spectrum of the function.
Fact. For a function f : [¢]" — C and a coordinate i € {1,2,..., R},

If;(f)= > |7

ai;«éo,ae[q}”

The following lemma is a restatement of Theorem 12 in [144].

Lemma 11.0.2. There exists an absolute constant C such that, if F : [¢|™ — C is a
function satisfying |F(x)| < 1 for every x then for every d > 1,

UYF) < UYF) + 29 max Inf; (F)

11.2.2 Noise Operator

Like many other UG-hardness results, one of the crucial ingredients of our reduction will be
a noise operator on functions over [g]". We define the noise operator T;_. formally below.

211

Definition 11.2.1. For 0 < € < 1, define the operator T7_. on functions f : [¢]" — C as :

712 f(x) = ELF (x + 1)

where each coordinate 7; of n is 0 with probability 1 — & and a random element from [q]
with probability €. The Fourier expansion of T7_.f is given by

Th_F(x)= Z (1- 5)‘0‘7}0)(0(37)

o€lqg”

11.3 Linearity Tests and MAX k-CSP Hardness

The best approximation ratio possible for MAX K-CSP is identical to the best soundness
of a PCP verifier for NP that makes k queries. This follows easily by associating the proof
locations to CSP variables, and the tests of the verifier to k-ary constraints on the locations.
In this light, it is natural that the hardness results of [143, 51, 144] are all associated with
a linearity test with a strong soundness. The hardness result in this work is obtained by
extending the techniques of [144] from binary to g-ary domains. In this section, we describe
the test of [144] and outline the extension to it.

For the sake of simplicity, let us consider the case when k = 2% — 1 for some d. In [144],
the authors propose the following linearity test for functions F : {0,1}" — {0,1}.

Complete Hypergraph Test (F,d)

— Pick z1,29,...,24 € {0,1}" uniformly at random.

FO @) => Fla)

€8 €S

— Accept if for each S C [r],

The test reads the value of the function F at k& = 2% — 1 points of a random sub-
space(spanned by z1,...,x4) and checks that F agrees with a linear function on the sub-
space. Note that a random function F would pass the test with probability 2d/ 2k since
there are 27 different satisfying assignments to the k binary values queried by the veri-
fier. The following result is a special case of a more general result by Samorodnitsky and
Trevisan [144].

Theorem 11.1. [144] If a function F : {0,1}" — {0,1} passes the Complete Hypergraph
Test with probability greater than 2%/2F + ~, then the function F(z) = (—=1)7®) has a large
d" Gowers norm. Formally, UY(F) > C(v,k) for some fized function C of ~, k.

Towards extending the result to the domain [¢], we propose a somewhat similar linearity
test. Again for convenience, let us assume k = ¢¢ for some d. Given a function F : [¢]" — [q],
the test proceeds as follows:

212

Affine Subspace Test (F, d)

— Pick x,y1,¥2,-..,¥d € [¢]" uniformly at random.
— Accept if for each a C [¢]?,

F<x+ iaiyi) = <1 — Za,)F(x) + iaﬁ(x—i—yi)

=1 =

Essentially, the test queries the values along a randomly chosen affine subspace, and
tests if the function F agrees with an affine function on the subspace. Let w denote a ¢'th
root of unity. From Theorem 11.4 presented in Section 11.5, the following result can be
shown:

Theorem 11.2. If a function F : [¢]™ — [q] passes the Affine Subspace Test with probability
greater than ¢**'/q* +~, then for some q’th root of unity w # 1, the function F(x) = wF@)
has a large dq’th Gowers norm. Formally, UM (F) > C(v,k) for some fired function C of
v, k.

The above result follows easily from Theorem 11.4 using techniques of [144], and the
proof is ommited here. The Affine Subspace Test forms the core of the UG-hardness reduc-
tion presented in Section 11.4.

11.4 Hardness reduction from Unique Games

In this section, we will prove a hardness result for approximating MAX K-CSP over a
domain of size ¢ when ¢ is prime for every k > 2. Let d be such that ¢~ +1 < k < ¢%. Let
us consider the elements of [g] to have a natural order defined by 0 < 1 < ... < ¢g— 1. This
extends to a lexicographic ordering on vectors in [g]?. Denote by [¢]¢, the set consisting of
the k lexicographically smallest vectors in [¢]?. We shall identify the set {1,...,k} with set
of vectors in [¢]%,. Specifically, we shall use {1,...,k} and vectors in [¢]%, interchangeably
as indices to the same set of variables. For a vector x € [¢]" and a permutation 7 of [n],
define () € [q]" defined by (7(2)); = Tx(i)-

Let ® = Wg U Vg, E\IT = {n. : [n] — [n]le € E},[n]) be a bipartite UNIQUE GAMES
instance. Towards constructing a k-CSP instance & from ®, we shall introduce a long
code for each vertex in Vg. Specifically, the set of variables for the k-CSP & is indexed by
Vo X [¢]™. Thus a solution to & consists of a set of functions F,, : [¢]™ — [g], one for each
w E Vp.

Similar to several other long code based hardness results, we shall assume that the long
codes are folded. More precisely, we shall use folding to force the functions F,, to satisfy
Fu(x+1) =F(x)+ 1 for all x € [¢]". The k-ary constraints in the instance J are specified
by the following verifier. The verifier uses an additional parameter ¢ that governs the level
of noise in the noise operator.

213

~ Pick a random vertex w € Ws. Pick k vertices {vala € [¢g]2,} from N(w) C Vo
uniformly at random independently. Let m, denote the permutation m,, , on the
edge (w,vy).

— Sample x,y1,y2,...,¥d € [¢]" uniformly at random. Sample vectors 7, € for

[q]"

each a € [¢], from the following distribution: With probability 1—¢, (1a); = 0 and
with the remaining probability, (1a); is a uniformly random element from [q]-

— Query Fy, (ﬂ'a(X—I— > 45Y; +7ya)> for each a € [q]i - Accept if the following equality
holds for each a € [¢]Z,

d d

Foa (malx+D ajys+na)) = (1- Ed:a]) Fup (m0(0ct10)) + 3 ajF o, (mey (¢ + 35 + 7))

j=1 j=1 7j=1

Theorem 11.3. For all primes q, positive integers d, k satisfying ¢ < k < ¢%, and every
v > 0, there exists small enough 6, > 0 such that

— COMPLETENESS: If ® is a (1 — d)-perfectly satisfiable instance of UNIQUE GAMES,
then opt(S) = (1 — =)

d+1

7 + 7.

~ SOUNDNESS: opt(®) < § = opt(J) < £

Proof. We begin with the completeness claim, which is straightforward.

Completeness: There exists labellings to the Unique Game instance ® such that for 1 — ¢
fraction of the vertices w € Wy all the edges (v, w) are satisfied. Let A : Wp U Vg — [n]
denote one such labelling. Define an assignment to the k-CSP instance by Fy,(x) = 2 4(w)
for all w € Vg.

With probability at least (1 — §), the verifier picks a vertex w € Wsg such that the
assignment A satisfies all the edges (w,v,). In this case for each a, ma(A(v)) = A(va). Let
us denote A(v) = . By definition of the functions F,,, we get Fy, (7a(7)) = (Ta(2)) A(va) =
Trl(A(a)) = Tt for all x € [¢g]*. With probability at least (1 — ¢)*, each of the vectors
Na have their /th component equal to zero, i.e (7a)¢ = 0. In this case, it is easy to check
that all the constraints are satisfied. In conclusion, the verifier accepts the assignment with
probability at least (1 —&)(1 — ¢)*. For small enough 6, ¢, this quantity is at least (1 —).

Soundness: Suppose there is an assignment given by functions F, for v € Vg that the
verifier accepts with probability greater than q‘;% + 7.

Let z1,z29,...,2; be random variables denoting the k values read by the verifier. Thus
21, ...,z take values in [¢]. Let P : [¢]* — {0,1} denote the predicate on k variables that
represents the acceptance criterion of the verifier. Essentially, the value of the predicate
P(z1,...,2) is 1 if and only if z,..., 2, values are consistent with some affine function.
By definition,

214

d+1
Br| Verifier Accepts] = E B B E[Pm)] 2T+

Let w denote a ¢ root of unity. The Fourier expansion of the function P : [¢]* — C is
given by

P(z1,...,2k) = Z ngg(zl,...,zk)

o€[q)
where x5 (21,...,2;) = Hle W% and P, = E., 2 [P(z1,...,2k)Xo (%1, ..., 2k)]. Notice
that for o = 0, we get xo(21,...,2r) = 1. Further,
. d+1
Po=_E [P(2,...,2)] = Pr[random assignment to z1, 2o, ..., 2, satisfies P] = ——
212k q
Substituting the Fourier expansion of P, we get

- gt
Pr[Verifier Accepts ——1— P, E E E[Uz,...,
[P] q UZ#% wEWq)UaEN() X,¥1,--Yd Na X (! k)

Recall that the probability of acceptance is greater than qZ# + 7. Further |I30| < 1 for all
o € [q]F. Thus there exists o # 0 such that,

|: 1t] ‘ 2 —
EWs va€EN(w) X,¥15--,¥d Na Xo’(Zl Zk))k

L

For each w € Vg,t € [g], define the function FP [q] — C as f(t)() w!Fw (@) For
convenience we shall index the vector o with the set [¢]2, instead of {1,...,k}. In this
notation,

E E E_E| [] F 7Tax—|—Za2y1+77a))” -

WEWs va€EN(w) X,¥1,--,¥d Na =1 q
ae[q]<k

Let gﬁi) : [¢]* — C denote the smoothened version of function fg). Specifically, let

gV () = Tl_efl(f) (x) = Ey o (x 4+ n)] where n is generated from e-noise distribution.
Since each 7, is independently chosen, we can rewrite the above expression,

wel%\&p Uae%(w |: H g 7a) 7Ta X+ Zaz}’1 H lk .

,}’17 -Yd
ac(q],

For each w € Wa,t € [q], define the function gt . [¢]* — Cas g{¥ (#) = Epen(w [gw (Tye—w(x))].

215

As the vertices v, are chosen independent of each other,

~
ol T 6 S>3
weWs X,YL ~Yd H g X + Z @i k

ac(q],

As 0 # 0, there exists an index b € [q]‘ik such that op # 0. For convenience let us
denote ¢ = oyp. Define
7\
=927 Cdq
<2q)

where C' is the absolute constant defined in Lemma 11.0.2.

For each w € Ws, define the set of labels L(w) = {¢ € [n] : Inf,(GS) > k}. Similarly
for each v € Vg, let L(v) = {¢ € [n] : Infy(GS) > k/2}. Obtain a labelling A to the UNIQUE
GAMES instance ® as follows : For each vertex u € We U Vg, if L(u) # ¢ then assign a
randomly chosen label from L(u), else assign a uniformly random label from [n].

The functions gf,f) are given by QL(UC) — Tl_equf) where J-"ff) is bounded in absolute value
by 1. By Lemma 3.0.2, the sum of its influences is bounded by % Consequently, for all
v € Vg the size of the label set L(v) is bounded by % Applying a similar argument to
w € Wa, |L(w)] < .

For at least /2¢" fraction of vertices w € Wg we have,

‘XYL 7Yd|: H gcra X+Za2y1”

<k

We shall refer to these vertices as good vertices. Fix a good vertex w.
Observe that for each u € Wy U Vg the functions G satisfy]Qz(f) (x)] < 1 for all .
Now we shall apply Theorem 11.4 to conclude that the functions gﬁ,f’ have a large Gowers

norm. Specifically, consider the collection of functions given by F, = Q(UUE‘) for a € [q]‘ik,
and F, = 1 for all a ¢ [¢]2,. From Theorem 11.4, we get
244
inUda(gloa)) > (L)
m;nU (GT)) = o0
2dq
In particular, this implies U dq(gf,f)) > (ﬁ) . Now we shall use Lemma 11.0.2 to

conclude that the function G, has influential coordinates. Towards this, observe that the
functions £ satisfy FO (x+1) = FH (x) - w' due to folding. Thus for all ¢+ # 0 and all
v € Vg, Ey o (z)] = 0. Specifically for ¢ # 0,

U6 = (Blg @) = (B EEFO@+n)]) =0

veEN(w) N *

Hence it follows fromquemma 11.0.2 that there exists influential coordinates 7 with
2
Infi(gf,f)) > 2- qu(;k) = k. In other words, L(w) is non-empty. Observe that, due

216

to convexity of influences,

Inf (G =Inf)(E [GY))< E Inf (c)
n Z(gw) n Z(UEN(w)[gv]) vEN (w) n Wv&w(g)([g’l) (gj)])

If the coordinate ¢ has influence at least x on G\), then the coordinate ., (¢) has an
influence of at least /2 for at least /2 fraction of neighbors v € N(w). The edge Ty
is satisfied if ¢ is assigned to w, and my—(¢) is assigned to v. This event happens with
probability at least m > k2e2/2 for at least k/2 fraction of the neighbors v € N(w).

As there are at least (vy/2¢") fraction of good vertices w, the assignment satisfies at least
(7/2q%) - K22 - /4 fraction of the UNIQUE GAMES constraints. By choosing ¢ smaller than
this fraction, the proof is complete. [|

Since each test performed by the verifier involve k variables, by the standard connection
between hardness of MAX K-CSP and k-query PCP verifiers, we get the following
hardness result conditioned on the UGC.

Corollary 11.3.1. For every prime q, it is UG-hard to approrimate MAX K-CSP over
domain size q within a factor that is greater than ¢*k/ q.

Using the reduction of [120], the above UG-hardness result can be extended from primes
to arbitrary composite number g.

Corollary 11.3.2. [120] For every positive integer q, it is UG-hard to approzimate MAX
K-CSP over domain size q within a factor that is greater than ¢*k(1 + o(1))/q".

11.5 Gowers Norm and Multidimensional Arithmetic Progressions

The following theorem forms a crucial ingredient in the soundness analysis in the proof of
Theorem 11.3.

Theorem 11.4. Let ¢ > 2 be a prime and G be a F,-vector space. Then for all positive
integers ¢ < q and d, and all collections {Fn : G — (C}aemd of 14 functions satisfying
|Fa(2)| <1 for every x € G and a € [£]%, the following holds:

) ” 1/2d5
E | | Falx 4+ a1y1 + agyo + -+ + aqyq) | | < min (U (fa)>
Z,Y1,Y25--Yd aclqd ac[(d

(11.2)

The proof of the above theorem is via double induction on d,f. We first prove the
theorem for the one-dimensional case, i.e., d =1 and every ¢, 1 < ¢ < ¢ (Lemma 11.4.1).
This will be done through induction on £. We will then prove the result for arbitrary d by
induction on d.

Remark 11.5.1. Green and Tao, in their work [68] on configurations in the primes, isolate
and define a property of a system of linear forms that ensures that the degree t Gowers
norm is sufficient to analyze patterns corresponding to those linear forms, and called this

217

property complexity (see Definition 1.5 in [68]). Gowers and Wolf [67] later coined the term
Cauchy-Schwartz (CS) complexity to refer to this notion of complexity. For example, the
CS-complexity of the ¢ linear forms z,z + y,z + 2y,...,x + (¢ — 1)y corresponding to a
g-term arithmetic progression equals ¢ — 2, and the U9~! norm suffices to analyze them. It
can similarly be shown that the CS-complexity of the d-dimensional arithmetic progression
(with ¢ linear forms as in (11.2)) is at most d(¢ — 1) — 1. In our application, we need a
"multi-function” version of these statements, since we have a different function F, for each
linear form x 4+ a -y. We therefore work out a self-contained proof of Theorem 11.4 in this
setting.

Lemma 11.4.1. Let ¢ > 2 be prime and €, 1 < { < q, be an integer, and G be a Fy-vector
space. Let {H, : G — Cl,cpq be a collection of € functions such that |H,(z)| < 1 for all
o€ [l] and x € G. Then

1
E - < min (U (H,))*
5| L rtelotom < g (01000

(11.3)

Proof. The proof is by induction on £. For ¢ = 1, the LHS of (11.3) equals | E,[Ho(x)]|, and
the RHS equals \/U!(Hy). By definition U (Hg) = E;, [Ho(z)Ho(z + y1)] = | EL[Ho(2)] %

Now consider £ satisfying 1 < £ < g. By a change of variables it suffices to upper bound
4
the LHS of (11.3) by (UZ(Hg_l))l/2 . We have

2 2
E H, < E[Ho(2)]?] - E||E He /
E | TT Hole+om) elro@f] - B|[E|] Holo+on)
o€/ oe{l,....0—1}
< E [[1 Hole+oy)Hola+ ozi)]
PR L e 1)

T,Y1,%1

= E [Il Houle+op)Hora(@+oy + (0 + 1)2’1)}
o€{0,1,...,0—2}

- E|E het :
E1E [H hZ (x + Jyl)} (11.4)
oelt—1]

where we define hZ (t) := Hy11(t)Hg41(t + (0 + 1)z1). By induction hypothesis, the inner
expectation in (11.4) satisfies

1
721 {—1/7z1 2f—1
ngl[E];[_H h2 (x +ay1)} < (U (h€_2)> . (11.5)

218

Now,

2271

<zl v D <E[UG)

=E E — i - -1 i
i z,zQ,...,zl[H He 1(33+ZZ)H6 1(w+ (¢)21+ZZ)

SC{2,3,...,d} €S €S
|s| even
H HZ 1$+ZZZHZ 1517“‘ —1z1+zzz:|
SC{2,3,..., €S €S
1S| odd
= U“(Hy-1) (11.6)

where the last step uses the fact that for a random choice of 21, (£ — 1)z is distributed

uniformly in G (this is why we need ¢ to be a prime). Combining (11.4), (11.5), and (11.6),
1/2¢

Eas [[loetg Ho(@ + om)] | < (UF0e1)) N

we obtain our desired conclusion

Proof of Theorem 11.4: Fix an arbitrary £, 1 < £ < ¢q. We will prove the result by

induction on d. The base case d = 1 is the content of Lemma 11.4.1, so it remains to
consider the case d > 1.

)

1/2d5
By a change of variables, it suffices to upper bound the LHS of (11.2) by (Udg(f(g_1)1)>
and this is what we will prove.

For o € [{], and y2,y3, . ..,yq € G, define the function

Gervi(z) = 11 Flap) (@ + baya + -+ - + baya) - (11.7)
b:(bz,bg,...,bd)é[ﬂdfl

The LHS of (11.2), raised to the power 2%, equals

9dt . 2(d71)(
2
E E Y2;--5Yd < E E Y2,--Yd
Y2;--Yd T,Y1 [H g (:I: + ayl):| Y2,--5Yd [z,Y1 H g (;L' + ayl) }
€l a€ll]
2((171)2
<| EUHGEY (using Lemma 11.4.1)
Y2,0Yd
o(d—1)¢
= E E [H Gy ’yd<x+2zl)}
Y2,--5Yd Ty215--+320 S§{172,, } icS
Defining the function
Pr)= [Fuoim (t +3 Zi) (11.8)
5C{1,2,...,0} icS

219

for every b € [/]9" and z,...,2 € G, the last expression equals
o(d—1)¢
E E [H 'Pf,l""’zz (33 + boyo + -+ + bdyd>]
Rl 320 T:Y25--5Yd
b=(b2,....ba)€[¢]4~*
which is at most
2(d71)(
E E [H 'Ptz)l’""zz (x + boyo + -+ + bdyd>] (11.9)
Z1yees2l Z,Y2,--Yd

b:(bz,...,bd)é[f}d71

By the induction hypothesis, (11.9) is at most

ML GE]

Recalling the definition of Pf,l"""z‘ from (11.8), the above expectation equals

Zl}?’z(E H .7:(5_1)1 (m + Z 2 + Z 23)

z.{25} SC{1,2,....6} ieS ieT
1<G<@-DE [pcirsn e ‘ I

which clearly equals U% (Fle=1)1)-

11.6 Extending the CMM Algorithm for Non-Boolean CSPs

In this section, we outline a reduction from Non-boolean CSPs to boolean CSPs which in
conjunction with CMM algorithm yields another algorithm for MAX k-CSP .

Consider the case when ¢ = 2! for an integer t. Given a CSP instance § = (V, P), for each
variable z € V in the g-ary CSP, introduce t boolean variables corresponding to the encoding
of the value x in to binary. Every constraint on k variables in V), translate in to a constraint
on kt of the boolean variables. Using the algorithm from [32] on the boolean CSP instance,
it is possible to obtain an assignment of value at least 0.44%0pt(%) > 0.44[1% opt(S).

Set r = 2l°84). Then we have ¢ > r > q/2. We will reduce the g-ary CSP instance
= (V,P) toaCSP Q' = (V',P’) over a domain of size r. The variables of S are the same
as that of ¥, i.e V = V. For each variable x € V', its domain(set of allowed values) is a
randomly chosen subset of size r of the set [¢]. Thus the domain of each variable in V' is
a set of size r. The constraints in P’ are the same as the constraints in P in the following
sense: For any constraint ¢ € P, there is a corresponding constraint ¢ € P’ whose satisfying
assignments are the same as that of c.

Consider the optimal assignment A to the instance §. We will obtain an assignment to
the instance S’ as follows: For a variable x € V, if the assignment A(x), is not an allowed
value for z in 37, just reassign a random allowed value to z. For any given k-tuple of variables
(z1,...,xy), with probability at least (r/q)¥ over the choice of the random restriction, all

220

the values A(x1), A(z2),. .., A(xy) are allowed. Thus the expected number of constraints P’

k
satisfied by the optimal assignment A is at least (g) -opt(). Running the CMM algorithm

k
on the instance ¥/ produces an assignment that satisfies at least 0.44% . (Z) . opt(J) >
T

q
0.44% - opt(S).

221

Part III
UNCONDITIONAL LOWER BOUNDS

222

Chapter 12
LIMITS OF SEMIDEFINITE PROGRAMMING

223

12.1 Introduction

Irrespective of the truth of UGC, it is now clear that UGC precisely identifies an algorithmic
barrier reached by existing work on approximation algorithms. In particular, the results of
Chapters 7, 8, 9 and 10 demonstrate this for many large classes of problems. A natural
question that arises is whether stronger semidefinite programming relaxations are sufficient
to breach this barrier and disprove the UGC? or does disproving UGC warrant the use of a
new technique different from semidefinite programming?

Unfortunately, progress towards answering this compelling question has been slow and
difficult. In the influential paper of Khot—Vishnoi [104], the authors construct an integrality
gap instance for a simple SDP relaxation of UNIQUE GAMES. To the best of our knowledge,
this is the sole SDP gap construction for UNIQUE GAMES that appears in literature. On
one hand, this leaves out the possibility that strong SDPs disprove UGC. More alarmingly,
except in a few cases, most UG-hardness results could possibly be falsified using a strong
SDP relaxation. Except for VERTEX COVER [64], and k-CSPs [145, 157], in all other cases,
there are no strong SDP gaps supporting a UG-hardness result.

Obtaining strong SDP gap that support a UG-hardness result has been a difficult exer-
cise. In fact, the work of [104] stemmed out of an effort in this direction for the SPARSEST
CuTt problem. Specifically, the Goemans-Linial conjecture regarding embeddability of L%
metrics into L was refuted in [104] by constructing a SDP gap supporting the UGC based
hardness for sparsest cut.

The following possibility is entirely consistent with the existing literature: Even for the
Max Cut problem which is fairly well studied [99, 132], including an extra inequality on
every set of 5 variables into the Goemans-Williamson semidefinite program (GW) yields a
better approximation, thus disproving UGC.

12.1.1 Results

In this chapter, we exhibit an integrality gap for certain strong SDP relaxations of UNIQUE
GAMES. More precisely, we consider two strong hierarchies of SDP relaxations {LH,},en
and {SA,},en defined in Chapter 4. We recall the rough definition of these relaxations
here for the convenience of the reader. Formal definitions are reproduced in Section 12.3.
The r*® level relaxation LH, consists of the following: 1) SDP vectors for every vertex of
the unique game, 2) All valid constraints on vectors corresponding to at most r vertices.
Equivalently, the LH, relaxation consists of SDP vectors and local distributions pg over
integral assignments to sets .S of at most r variables, such that the second moments of local
distributions g match the corresponding inner products of SDP vectors.

The SA, relaxation is a strengthening of LH, with the additional constraint that for two
sets S,T of size at most r, the corresponding local distribution over integral assignments
s, b must have the same marginal distribution over SNT'. The SA, relaxation corresponds
to simple SDP relaxation strengthened by " round of Sherali-Adams hierarchy [150]. Let
LH,(®) and SA,(®) denote the optimum value of the corresponding SDP relaxations on the
instance ®. Further, let opt(®) denote the value of the optimum labeling for ®. For the LH
and SA hierarchies, we show:

224

Theorem 12.1. For all constants n > 0, there exists a UNIQUE GAMES instance ® on N
1
vertices such that LH,(®) > 1 — 1 and opt(®) < n for r = O(2(leglos N)T)

Theorem 12.2. For all constants n > 0, there exists a UNIQUE GAMEls instance ® on N
vertices such that SA,.(®) > 1 —n and opt(®) < n for r = O((loglog N)1)

Demonstrated for the first time in [104], and used in numerous later works [34, 146, 157,
136, 73, 121], it is by now well known that integrality gaps can be composed with hardness
reductions. A reduction from UG-hardness results to SDP integrality gaps was presented
in great detail in Section 6.7. Such a reduction were also utilized in Chapters 7 and 10.

In particular, given a reduction Red from UNIQUE GAMES to a certain problem A, on
starting the reduction with a integrality gap instance ® for UNIQUE (GAMES, the resulting
instance Red(®) is a corresponding integrality gap for A. Composing the integrality gap
instance for LH, or SA, relaxation of UNIQUE GAMES, along with UG reductions in [99,
17, 136, 73, 121, 137], one can obtain integrality gaps for LH, and SA, relaxations for
several important problems. For the sake of succinctness, we will state the following general
theorem:

Theorem 12.3. Let A denote a problem in one of the following classes:

— A Generalized Constraint Satisfaction Problem (Definition 2.4.1).
— An Ordering Constraint Satisfaction Problem (Definition 9.8.2).

Let LC denote the SDP relaxation that yields the optimal approzimation ratio for A under
UGC. Then the following holds: Given an instance S of the problem A, with LC(T) > ¢ and
opt() < s, for every constant n > 0, there exists an instance ¥, over N wvariables such
that:

~ LH,(¥y)) > ¢ —n and opt(¥,) < s +n with r = O(Z(IOglogN)1/4).
- SA.(¥,,) = ¢ —n and opt(¥,) < s +n with r = O((log log N)1/4).

The O notation in the number of rounds hides a constant depending on 7.

The classes of problems for which the above result holds include Max Cut [99], MAX
2-SAT [17], GROTHENDIECK PROBLEM (also called Ky n-QUADRATICPROGRAMMING) [137]
k-wAy Cut [121] and MAXIMUM ACYCLIC SUBGRAPH [73]. Notable exceptions that do not
directly fall under this framework are VERTEX COVER and SPARSEST CUT.

Reductions from UNIQUE GAMES to SPARSEST CUT have been exhibited in [104] and
[38]. With the integrality gap for LH, relaxation of UNIQUE GAMES (Theorem 12.1), these
reductions imply a corresponding LH, integrality gap for SPARSEST CUT. Integrality gaps
for SPARSEST CUT are directly related to lower bounds for distortion required to embed
a given metric into L; metric. Here the L; metric consists of points in R for arbitrarily
large d, and the distance between two points (x,y) is ||x — y|l1. An L2 metric consists of a
set of points in R? such that the squares of the distances between them also form a metric
(satisfy triangle inequality). Restated in this language, the SDP vectors of the SPARSEST
CuT integrality gap that we construct, yield the following result:

225

Theorem 12.4. For some absolute constants ,6 > 0, there exists an N-point L3 metric
that requires distortion at least Q(loglog N)° to embedd into Ly, while every set of size at
most 0210818 N)Y embedds isometrically into L.

The UNIFORM SPARSEST CUT problem is among the many important problems for which
no UNIQUE GAMES reduction is known. In [48], the techniques of [104] were extended to
obtain an integrality gap for UNIFORM SPARSEST CUT for the SDP with triangle inequali-
ties. Roughly speaking, the SDP gap construction in [48] consists of the hypercube with its
vertices identified by certain symmetries such as cyclic shift of the coordinates. Using the
techniques from this chapter, the following SDP integrality gap for the BALANCED SEPA-
RATOR problem can be exhibited. The details of the proof of this theorem are omitted from
the thesis.

Theorem 12.5. For some absolute constants v,6 > 0, there exists an instance G on N
vertices of BALANCED SEPARATOR such that the ratio opt(G)/LH,(G) = Q(loglog N)° for
r = O(loglog N)7.

12.1.2 Related Work

In a breakthrough result, Arora et al. [16] used a strong semidefinite program with triangle
inequalities to obtain O(y/logn) approximation for the SPARSEST CUT problem. Inspired by
this work, stronger semidefinite programs have been utilized to obtain better approximation
algorithms for certain graph coloring problems [40, 12, 42]. We wish to point out that the
work of Chlamtac and Singh [42] uses the SA, hierarchy to obtain approximation algorithms
for the hypergraph coloring problem.

In this light, hierarchies of stronger SDP relaxations such as Lovdsz—Schriver [118],
Lasserre [110], and Sherali-Adams hierarchies [150] (See [112] for a comparison) have
emerged as possible avenues to obtain better approximation ratios.

Considerable progress has been made in understanding the limits of linear programming
hierarchies. Building on a sequence of works [10, 11, 152, 153], Schoenebeck et al. [147]
obtained a 2 — e-factor integrality gap for Q(n) rounds of Lovész—Schriver LS hierarchy.
More recently, Charikar et al. [34] constructed integrality gaps for Q(n%) rounds of Sherali-
Adams hierarchy for several problems like MAX CUT, MINIMUM VERTEX COVER, SPARSEST
CuT and MAXIMUM ACYCLIC SUBGRAPH. Furthermore, the same work also exhibits Q(n?)-
round Sherali-Adams integrality gap for UNIQUE GAMES, in turn obtaining a corresponding
gap for every problem to which UNIQUE GAMES is reduced to.

Lower bound results of this nature are fewer in the case of semidefinite programs. A Q(n)
LS round lower bound for proving unsatisfiability of random 3-SAT formulae was obtained
in [28, 1]. In turn, this leads to Q(n)-round LS, integrality gaps for problems like SET
COVER, HYPERGRAPH VERTEX COVER where a matching NP-hardness result is known.
Similarly, the %—integrality gap for Q(n) rounds of LS, in [146] falls in a regime where a
matching NP-hardness result has been shown to hold. A significant exception is the result

of Georgiou et al. [64] that exhibited a 2 — e-integrality gap for Q(logn) rounds of LS

loglogn
hierarchy. More recently, building on the beautiful work of [145] on Lasserre integrality gaps

226

for Random 3-SAT, Tulsiani [157] obtained a Q(n)-round Lasserre integrality gap matching
the corresponding UG-hardness for k-CSP [144].

12.1.3 Qwverview of the Technique

In this section, we will present a brief overview of the techniques and a roadmap for the
rest of the chapter.

The overall strategy in this work to construct SDP integrality gaps is along the lines
of Khot—Vishnoi [104]. Let us suppose we wish to construct a SDP integrality gap for
a problem A (say MAX Cut). Let Redp be a reduction from UNIQUE GAMES to the
problem A. The idea is to construct a SDP integrality gap ® for UNIQUE GAMES, and then
execute the reduction Red, on the instance @, to obtain the SDP gap construction Redy (®).
Surprisingly, as demonstrated in [104], the SDP vector solution for ® can be transformed
through the reduction to obtain the SDP solution for Red (®).

Although this technique has been used extensively in numerous works [34, 147, 157, 136,
73, 121] since [104], there is a crucial distinction between [104] and later works. In all other
works, starting with an SDP gap ® for UNIQUE (GAMES, one obtains an integrality gap
for an SDP relaxation that is no stronger. For instance, starting with a integrality gap for
10-rounds of a SDP hierarchy, the resulting SDP gap instance satisfies at most 10 rounds
of the same hierarchy.

The surprising aspect of [104], is that it harnesses the UG reduction Red, to obtain
an integrality gap for a “stronger” SDP relaxation than the one which it stared with.
Specifically, starting with an integrality gap ® for a simple SDP relaxation of UNIQUE
GAMES, [104] exhibit an SDP gap for MAX CuT which obeys all valid constraints on 3
variables. The proof of this fact (the triangle inequality) is perhaps the most technical and
least understood aspect about [104]. One of the main contributions of this chapter is to
conceptualize and simplify this aspect of [104]. Armed with the understanding of [104],
we then develop the requisite machinery to extend it to a strong SDP integrality gap for
UNIQUE GAMES.

To obtain strong SDP gaps for UNIQUE GAMES, we will apply the above strategy on the
reduction from UNIQUE GAMES to E2Lin, obtained in [99]. Note that E2Lin, is a special case
of UNIQUE GAMES. Formally, we show the following reduction from a weak gap instance
for UNIQUE GAMES over a large alphabet to a integrality gap for a strong SDP relaxation
of E2Lin,.

Theorem 12.6. (Weak Gaps for UNIQUE GAMES = Strong gaps for E2Lin,)

For a positive integer q, let Redgoyin, denote the reduction from UNIQUE GAMES to E2Lin,.
Given a (1—n,6)-weak gap instance ® for UNIQUE GAMES, the E2Lin, instance Redgayin, (P)
is a (1 —2v,1/q"? + 05(1)) SDP gap for the relazation LH, for r = 200/ - Fyrther,
Redeatin, (@) is a (1 —,0) SDP gap for the relaxation SA, for r = O(1/n'%).

Using the weak gap for UNIQUE GAMES constructed in [104], along with the above
theorem, implies Theorems 12.1 and 12.2. As already pointed out, by now it is fairly
straightforward to compose an r-round integrality gap for UNIQUE GAMES, with reductions
to obtain a r round integrality gaps for other problems. Hence, Theorem 12.3 is a fairly
straightforward consequence of Theorems 12.1 and 12.2.

227

12.1.4 Organization

In the next section, we present a detailed proof overview that describes the entire integrality
gap construction restricted to the case of MAX CuT. The formal definitions of the SDP
hierarchies LH,,SA, and their robustness are presented in Section 12.3. We formally define
weak gap instances for UNIQUE GAMES in Section 12.4. We also outline an alternate inte-
grality gap for a very minimal SDP relaxation of UNIQUE GAMES in the same section. This
section is followed by the description of the integrality gap instance for E2Lin, obtained by
reduction of Khot et al. [99]. In the rest of the chapter, we construct SDP vectors and local
distributions to show that this is an integrality gap for the strong SDP relaxations — LH,
and SA,. The two subsequent sections are devoted to developing the requisite machinery of
integral vectors, their tensor products and local distributions for UNIQUE GAMES. The SDP
vectors and local distributions for the integrality gap instance described in Section 12.5 are
exhibited in Sections Section 12.8 and Section 12.8.2.

12.2 Proof Overview

For the sake of exposition, we will describe the construction of an SDP integrality gap for
Max Cut. To further simplify matters, we will exhibit an integrality gap for the basic
Goemans-Williamson relaxation, augmented with the triangle inequalities on every three
vectors. While an integrality gap of this nature is already part of the work of Khot—Vishnoi
[104], our proof will be conceptual and amenable to generalization.

Let ® be a SDP integrality gap for UNIQUE GAMES on an alphabet [R|. For each vertex
B in @, the SDP solution associates R orthogonal unit vectors B = {by,--- ,br}. For the
sake of clarity, we will refer to a vertex B in ® and the set of vectors B = {by,...,bg}
associated with it as a “cloud”. The clouds satisfy the following properties:

— (Matching Property) For every two clouds A, B, there is a unique matching mp. 4
along which the inner product of vectors between A and B is maximized. Specifically,
if p(A, B) = maxgeapep(a,b), then for each vector a in A, we have (a,7p_4a(a)) =
p(A, B).

— (High objective value) For most edges e = (A, B) in the UNIQUE GAMES instance @,
the maximal matching 74._p is the same as the permutation 7. corresponding to the
edge, and p(A4, B) ~ 1.

Let Redyiax cur(®) be the MAX CUT instance obtained by executing the reduction in
[99] on ®. The reduction Redyiax cur in [99] introduces a long code (2R vertices indexed
by {—1,1}%) for every cloud in ®. Hence the vertices of Redyiax cur(®) are given by pairs
(B, x) where B is a cloud in ® and z € {—1,1}%.

The SDP vectors we construct for the integrality gap instance resemble (somewhat sim-
pler in this work) the vectors in [104]. Roughly speaking, for a vertex (B,), we associate
an SDP vector VP defined as follows:

1
VB,m - Z wzb;@t
VR 5,

i€[R

228

The point of departure from [104] is the proof that the vectors form a feasible solu-
tion for the stronger SDP. Instead of directly showing that the inequalities hold for the
vectors, we exhibit a distribution over integral assignments whose second moments match
the inner products. Specifically, to show that triangle inequality holds for three vertices
S ={(A,z),(B,y),(C, z)}, we will exhibit a g distribution over {£1} assignments to the
three vertices, such that

E [YA,xyB,y] — <VA,Z" VB,y>
{Ysz,Yva,YC’Z}N,U,S

The existence of an integral distribution matching the inner products shows that the
vectors satisfy all valid inequalities on the three variables, including the triangle inequality.
We shall construct the distribution pg over local assignments in three steps,

Local Distributions over Labelings for Unique Games For a subset of clouds S
within the UNIQUE GAMES instance ®, we will construct a distribution ps over labelings
to the set S. The distribution ps over [R]® will be “consistent” with the SDP solution to
®. More precisely, if two clouds A and B are highly correlated (p(A, B) ~ 1), then when
the distribution ps assigns label £ to A, with high probability it assigns the corresponding
label T4 () to B. Recall that p(A, B) was defined as max,c 4 pep(a,b).

Consider a set S where every pair of clouds A, B are highly correlated (p(A, B) > 0.9).
We will refer to such a set of clouds as Consistent. For a Consistent set S,assigning a label
¢ for a cloud A in S, forces the label of every other cloud B to mp.4(¢). Furthermore,
it is easy to check that the resulting labeling satisfies consistency for every pair of clouds
in §. (see Lemma 12.9.2 for details) Hence, in this case, the distribution ps could be
simply obtained by picking the label ¢ for an arbitrary cloud in § uniformly at random, and
assigning every other cloud the induced label.

Now consider a set S which is not consistent. Here the idea is to decompose the set of
clouds § into clusters, such that each cluster is consistent. Given a decomposition, for each
cluster the labeling can be independently generated as described earlier. In this chapter,
we will use a geometric decomposition to decompose the set of clouds S into clusters. The
crucial observation is that the correlations p(A, B) for clouds A, B € S, can be approximated
well by a certain L2 metric. More precisely, for each cloud A, we can associate a unit vector
VA= e a®® such that the L% distance between v4,vp is a good approximation of the
quantity 1 — p(A, B).

By using t random halfspace cuts on this geometric representation, we obtain a partition
into 2¢ clusters. A pair of clouds A, B that are not highly correlated (p(A, B) < 1 — 1/16),
are separated by the halfspaces with probability at least 1 — (3/4)!. Hence for a large enough
t, all resulting clusters are consistent with high probability. (see Lemma 12.9.3).

A useful feature of the geometric clustering is that for two subsets 7 C S, the distribution
over labelings p7 is equal to the marginal of the distribution pus on 7. To see this, observe
that the distribution over clusterings depends solely on the geometry of the associated
vectors. On the downside, the geometric clustering produces inconsistent clusters with a
very small but non-zero probability. (see Corollary 12.9.2).

The details of the construction of local distributions to UNIQUE GAMES are presented

229

in 12.7.

Constructing Approximate Distributions Fix a set S C S x {1} of vertices in
the MAX CuUT instance Redyiax cor(®). We will now describe the construction of the local
integral distribution ug.

In the reduction Redyisx cur, the labeling ¢ to a cloud B in the UNIQUE GAMES in-
stance is encoded as choosing the ¢th dictator cut in the long code corresponding to cloud
B. Specifically, assigning the label ¢ to a cloud B should translate into assigning x, for
every vertex (B,z) in the long code of B. Hence, a straightforward approach to define the
distribution pug would be the following;:

— Sample a labeling ¢ : § — [R] from the distribution pgs,

— For every vertex (B, z) € S, assign Ty(B)-

Although inspired by this, our actual construction of ug is slightly more involved. First, we
make the following additional assumption regarding the UNIQUE GAMES instance ®:

Assumption: All the SDP vectors for the integrality gap instance ® are {+1}-
vectors (have all their coordinates from {+1}).

The SDP gap instance for UNIQUE GAMES constructed in [104] satisfies this additional
requirement. Furthermore, we outline a generic transformation to convert an arbitrary
UNIQUE GAMES SDP gap into one that satisfies the above property (see Observation 12.6.1).
A {£1}-vector is to be thought of as a distribution over {£1} assignments. It is easy to
see that tensored powers of {41}-vectors yield {#1}-vectors. Let T denote the number of
coordinates in the vectors V2. The distribution g is defined as follows,

— Sample a labeling ¢ : S — [R] from the distribution ps, and a coordinate i € [T
uniformly at random.

— For every vertex (B,z) € S, assign Y27% to be the ith coordinate of the vector
&t
:EZ(B)bZ(B)'

We will now argue that the first two moments of the local distributions pg defined above,
approximately match the corresponding inner products between SDP vectors.

Consider the inner product <VA’x,VB’y> of the SDP vectors corresponding to some
pair of vertices (A, x) and (B,y) in S. The inner product consists of R? terms of the form
(z;a$", yjb;@t>. The crucial observation we will utilize is that the inner product (V4% VB)
is approximately determined by the R terms corresponding to the matching mp._ 4. In other
words, we have

<VA’w7 VB’y> ~ % Z LeYrp_A(0) <az®t’ b?;HA(gﬁ < p(Av B)t
LE[R]

(see Section 12.4.2 for details)

230

If p(A,B) < 0.9, then with high probability the clustering would place the clouds
A, B in different clusters. Hence the labels assigned to A, B would be completely inde-
pendent of each other, and so would the assignments to (A, z) and (B,y). Hence, we would
have E[Y4*YB¥] = 0. On the other hand, by the above inequality the inner product
<VA’x,VB’y> < 0.9" ~ 0. Therefore, for clouds A, B that are not highly correlated, the
inner product of vectors VA% VBY agree approximately with the distribution over local
assignments.

At the other extreme, if p(A, B) ~ 1, then with high probability the clustering would
not separate A from B. If A, B are not separated, then the distribution pus over labelings
will respect the matching between A and B. Specifically, whenever A is assigned label ¢ by
is, with high probability B is assigned the label mp. 4(¢). Consequently, in this case we
have

A,(E B, _ ~ A,"E B7
E[Y Y y] - %gz{}:ﬂ (xﬁa?ta yT‘-B%A(Z)b?;HA(Z)> ~ <V 7V y>
(S

Smoothing In Chapter 4, we showed a robustness property for the LH, and SA, re-
laxations by which approximately feasible solutions to these hierarchies can be converted
(smoothed) into perfectly feasible solutions with a small loss in the objective value.

To illustrate the idea behind the robustness, consider a set of unit vectors {v;}2, that
satisfy all triangle inequalities up to an additive error of ¢, i.e.,

v — v;[I* + flv; — vell® = llvi — vel* > —¢

For the sake of completeness, we include the statements of the claims about the robust-
ness of solutions to LH, and SA, (Theorems 12.8, 12.7) in Section 12.3. We refer the reader
to Section 4.8 for the proofs of these claims.

Extending to E2Lin, The above argument for MAX CUT can be made precise. How-
ever, to obtain an SDP gap for larger number of rounds, we use a slightly more involved
construction of SDP vectors.

{£1}-vectors were natural in the above discussion, since Max CuT is a CSP over {0, 1}.
For E2Lin,, it is necessary to work with vectors whose coordinates are from F,, as opposed
to {£1}. The tensoring operation for F,-integral vectors is to be appropriately defined to
ensure that while the behaviour of the inner products resemble traditional tensoring, the
tensored vectors are [Fy-integral themselves (see Section 12.6 for details).

For the case of MAX CuUT, we used a gap instance ® for UNIQUE GAMES all of whose
SDP vectors where {+1}-vectors. In case of E2Lin,, the SDP vectors corresponding to the
UNIQUE GAMES instance ® would have to be F,-integral vectors. We outline a generic
transformation to convert an arbitrary UNIQUE GAMES SDP gap into one that satisfies this
property (see Observation 12.6.4).

231

12.3 Preliminaries

Here we recall the definitions of the LH, and SA, hierarchies. We refer the reader to
Section 4.7 for more details. Let & be a GCSP (say UNIQUE GAMES) instance over a set of
variables V), alphabet size ¢ and arity k. A feasible solution to the LH, relaxation consists
of the following:

1. A collection of (local) distributions {ps}scy |si<r Where pg: [¢]° — Ry is a distribu-
tion over [g]-assignments to S, that is, us € A([q]).

2. A (global) vector solution {b;q}icy ac|q, Where b;, € RY for every i € V and a € [q].

LH,-Relaxation.

maximize E E P(x) (LH,)
P~Px~pp

subject to (bjq,bjp) = Pr {3:2 =a,x; = b} SCV,|S|<r, i,j7€8, a,belq],
zps
(12.1)
ps € A ([q]°) (12.2)

Here, A ([q]°) denotes probability distributions over [¢]°. As usual, we denote by LH,(S)
the value of an optimal solution to this relaxation.

The above relaxation succinctly encodes all possible inequalities on up to r vectors. The
next remark makes this observation precise.

Remark 12.3.1. A linear inequality on the inner products of a subset of vectors {b; o }ic 5 acq]
for S C V is walid if it inequality if it holds for all distributions over [g]-assignments to the
variables S. A feasible solution to the LH,-relaxation satisfies all valid inequalities on sets
of up to r vectors.

12.3.1 SA,-Relazation

Enforcing consistency between the marginals of the local distributions yields the SA,-
relaxation.

SA,-Relaxation:

maximize E E P(x) (SA,)
PP x~pp
subject to (bjq,bjp) = Pr {3:2 =a,x; = b} SCV, |S|<r, 1,7€8, a,be]q],
TS

(

12.3)
| margin s 114 — marginges sl =0 ABCY, [ALIBl<r. (124)
ps € A ([q)%) (12.5)

232

Remark 12.3.2. The SA, relaxation is closely related to the 7 level of the Sherali-Adams
hierarchy. In fact, SA, is obtained from the basic SDP relaxation by r-rounds Sherali-Adams
lift-and-project.

12.3.2 Robustness

In Section 4.9, we showed that the LH, and SA, are robust in that approximately feasible
solutions to these relaxations can be converted into a completely feasible relaxation with
a small loss in objective value. Here we restate the claims regarding robustness for the
convenience of the reader.

Definition 12.3.1. An SDP solution {v; a}iev,aeF,, {145} scv,s|<r is said to be e-infeasible
for LH, (or SA,) if it satisfies all the constraints of the program up to an additive error of
€.

Theorem 12.7. Given an e-infeasible solution {b;.}iev aer,, {1s}tscy,si<r to the LH,
relazation, there exists a feasible solution {b;’a},{ﬂg}SCy"S|<r for LH,. such that for all

subsets S C V,|S| < r, ||us — s, < poly(q) - re.

Theorem 12.8. Given an e-infeasible solution {b;q}icy acr,, {115}scy,s)<r to the SA,
relavation, there ewists a feasible solution {b; ,},{t's}scy,sj<r for SA. such that for all
subsets S CV,|S| <, |lus — wsl < poly(q) -e-q"

12.4 Weak Gaps for Unique Games

We refer to an integrality gap instance for a fairly simple SDP relaxation of UNIQUE GAMES
as a weak gap instance. Formally, a weak gap instance for Unique games is defined as follows.

Definition 12.4.1. (Weak SDP solutions and weak gap instances) Let Y = (V, E, {m.: [n] —
[n|}eer). We say a collection B = {By }yecv is a weak SDP solution of value 1 — n for Y if
the following conditions hold:

1. (Orthonormality) For every vertex u € V, the collection B contains an ordered set
By ={by1,-..,byn} of n orthonormal vectors in RA.

2. (f3-triangle inequality) Any two vectors in |JB have non-negative inner product
and any three vectors in | B satisfy the £3-triangle inequality (||z —y[|* < ||z — 2||* +

Iz =%

3. (Strong Matching Property) For every pair of vertices u,v € V, the sets B, and
B, satisfy the following strong matching property: There exists n disjoint matchings
between B, B, given by bijections #(), ... 7" : B, — B, such that for all i €
[n], b,/ € By, we have (b, 7 (b)) = (', 7D (¥/)).

4. (High SDP wvalue) For every edge e = (u,v) € E, the vector sets B, and B, have
significant correlation under the permutation = = .. Specifically, (b, , bwr(g)>2 > 0.99
for all £ € [n].

233

5. The collection B of orthonormal sets is a good SDP solution for Y, in the sense that

B 1 z b ,b I >1-—-n.
veV ww'eNw) " e%%f w,m(€)s Ow! (é)> n
T=Tw,v, n’:ﬂw,yu

We say that Y is a weak (1 —n,0)-gap instance of UNIQUE GAMES if T has a weak SDP
solution of value 1—7 and no labeling for T satisfies more than a § fraction of the constraints.

Remark 12.4.1. The weak gap instances defined here are fairly natural objects. In fact,
if & is an instance of I'-Max-2Lin(R) with sdp(J) > 1 — n and opt(3) < 4, it is easy to
construct a corresponding weak gap instance 3’. The idea is to start with an optimal SDP
solution for &, symmetrize it (with respect to the group @), and delete all edges of & that
contribute less than \/?% to the SDP objective.

We observe the following consequence of Fact 12.4.1 and item 4 of Definition 12.4.1.

Observation 12.4.1. If B = {By}uecv is a weak SDP solution for ® = (V,E,{r.}ccE),
then for any two edges (w,v), (w',v) € E, the two bijections m = 7T(_w1,) O (w,v) and TB,, B,
(see Def. 12.4.2) give rise to the same matching between the vector sets By, and By,

m() =j <= 7B, —B,(bwi) =buw ;.

The previous observation implies that in a weak gap instance ® the collection of per-
mutations {7, }.cp is already determined by the geometry of the vector sets in a weak SDP
solution B.

12.4.1 Constructing Weak Gap Instances

There are a few explicit constructions of weak gap instances of UNIQUE GAMES, most
prominently the Khot—Vishnoi instance [104]. In particular, the following observation is a
restatement of Theorem 9.2 and Theorem 9.3 in [104].

Observation 12.4.2. For all 7,6 > 0, there exists a weak (1 — n,0)-gap instance with
220(10g(1/5)/n)

vertices.

Here we sketch the construction of an integrality gap for a simple SDP relaxation of
UNIQUE GAMES. The instance we present does not have all the properties required in
Definition 12.4.1. However, the construction is extremely simple and intuitive, and with a
little more effort modified into a weak gap instance.

To begin with, we describe a UG instance with infinitely many vertices. Using standard
techniques, it can be discretized to obtain finite instances with the same SDP integrality
gap. Recall that G¢ denotes the d-dimensional Gaussian space. It is most natural to describe
our UG instance as a 2-player game. The details of the game are described in Figure 12.1.
Recall that Ag denote the R-dimensional simplex. Let F : (G9)® — AR corresponding to
the strategy F; as follows:

F(Q) = ea)

234

A Simple UNIQUE GAMES Integrality Gap

— The verifier samples g = (g1, 92, - - . ,gr) where each g; = %gz’- for a sample g/ drawn
independently from G¢. Define h = (hy, ho,..., hg) as follows:

hi = (1—¢)gi + Ve

where {; = %C{ for an i.i.d sample ¢/ from G%.

— Generate two random permutations w4, 7 : [R] — [R]. The questions Q4,Qp €
(GHE to the two provers A, B are defined by:

Qa = (gT('A(l)7g7TA(2)7"'7g7TA(R))
Qs = (hry0) hrg)y - Ragr)

— The provers choose one of the R vectors in G% presented to them. The provers win, if
they choose the corresponding vectors g;, h; for some i. Formally, let A,B : (G4 —
[R] denote the strategies of the two provers. Provers win if,

71 (A(Qa)) = 7' (B(Qp))

Figure 12.1: A Simple UNIQUE GAMES Integrality Gap

235

Similarly, define the function F’ corresponding to the strategy B. Note that each of the
functions F, F’ consist of R real valued functions. Specifically, let F = (F1,Fa,...,FRr)
and F' = (F1, F5, ..., Fp).

Arithmetizing the probability of success, we get:

R
Pr[Success] = Pr [7,'(A(Qa)) =75 (B(Qp))] = E [Z fWA(i)(QA)j:;/TB(i)(QB)]

g,h,mA, 7R g,h, 1
A, TR L1=
(12.6)
For a permutation 7 : [R] — [R], and a vector g = (g1,...,gg) in (G)E, define 7(g) =
(Gr(1)>- - -»9r(r)). With this notation, we can rewrite
R
PriSuccess] = 3 E | Fryo(mal9) Py (ms(h)] (12.7)
=1 FA

Define functions a;, b; : (G9)® — [0,1] for i € [R] as follows:

ailg) =B [Fa(nlg))] bilh) =E [F1(, (x(h)]

where the expectation is over a uniform choice of the permutation 7. Further, observe that

Blu(@) =& |

™

E [Fr (W(g))]] —E {

g ™

E (700 =2

g . E[ﬁr(i)(g)” =E [%} :%

™ g
(12.8)

In the above computation, we used the fact that for a fixed permutation 7, g and 7(g) are
identically distributed. Now we rewrite equation 12.7 in terms of functions a;, b; to get:

R
Pr[Success] = ZgEh[ai(g)bi(h)] (12.9)
i=1""

By construction, the vectors g, h are 1 — e correlated random Gaussian vectors of dimension
dR. Hence the above expression is equal to ZZR; 1{ai, Ui—cb;) where Uj_. is the Ornstein-
Uhlenbeck operator (see Section 3.7). Using the Gaussian isoperimetric theorem of Borell
(Theorem 3.4) we obtain an upper bound of I'y_.(1/R) on the probability of success for
any strategy of the provers. Using estimates for Gaussian noise stability I'y_. [125], this

quantity is roughly equal to O (1 / RZETE).

Now we shall construct an SDP vector solution with value 1 — O(e). Firstly, ob-
serve that the inner product of two random Gaussian vectors is concentrated at around
O(1/+/d). In particular, for large enough d, with very probability close to 1, the vectors

236

{917927 -+-»9R, h17 h27 cee ahR} SatiSfy:
(gi,gj)| <e/R® |(hi,hj)| <e/R® Vi jel[R]
1—e/R* < {(gi,gi), (hi,hi) <1+¢/R* < /R Vi € [R]
> (gihi) = R1—¢)

2

Thus for most questions Q 4, Q p to the two provers, the R vectors part of the question form
a good candidate for SDP vectors. The SDP solution we will use is obtained by performing
a surgery operation on these candidate solutions. In fact, all we need to do is to perform
a Gram-Schmidt orthogonalization and normalization for the set of vectors (g1, g2,...,9R)
to obtain an orthonormal set of R vectors. Formally, the vectors {bg, ;} associated with
the question Q 4 are:

1
bQ.a.i = ﬁGm(i)
where the vectors (G1,Ga,...,GRr) are obtained by orthonormalizing the set of vectors
(91,92, ---,9r). Similarly, the vectors for @ p are obtained starting from vectors (hy, ..., hR).

As the vectors are nearly orthonormal to begin with, this surgery does not affect the inner
products between {g;} and {h;} by more than . Thus the objective value of the SDP is at
least 1 — O(e).

We stress here that the SDP gap instance obtained is for the simplest semidefinite
program for UNIQUE GAMES. To make the instance satisfy additional constraints, it could
be necessary to perform more complex operations like tensoring of the vectors.

12.4.2 Properties of Weak Gap Instances

Observation 12.6.4 implies that without much loss we can assume that a weak SDP solution
is Fy-integral, that is, all vectors are [-integral. Here we use again (-,-)y := (¢(-),¥(:)) as
inner product for F,-integral vectors.

Lemma 12.8.1. Let ® = (V, E, {7 }ecr) be a weak (1—mn,0)-gap instance. Then, for every
q € N, we can find a weak Fy-integral SDP solution of value 1 — O(y/nlogq) for a UNIQUE
GAMES instance ® which is obtained from ® by deleting O(y/nlogq) edges.

Proof. Let B be a weak SDP solution for ® of value 1 — 7. By applying the transformation
from Observation 12.6.4 to the vectors in B, we obtain a collection B’ = { B! },cv of sets of
[F,-integral vectors. For every u € V, the vectors in Bj, are orthonormal. Furthermore, any
two sets B!, B, in B’ satisfy the strong matching property (using the facts that the original
sets By, B, satisfy this property and that (b, ;, b, ;)y is a function of (by.i,by,;)).

Let Mpwuwe = 1= (b r(e)s bur 7r(0))- Using Jensen’s inequality, we can verify that the

237

value of the SDP solution B’ is high,

E E 1 b/w - , b,w/ ot
veV w,w'eN(v) R Zg[}:%]< ;m(£) , (€)>¢

_ r_
T=Tw,v, T =Ty

> E E % Z 1-0 (\/T]mw,w/,g log q) (by Obs. 12.6.4)

ev 'eN
v w,w' €N (v) (e[R]

>1—0(y/nlogq) (using Jensen’s inequality) .

So far, we verified that B’ satisfies all requirements of a weak SDP solution besides item 4
of Definition 12.4.1. We can ensure that this condition is also satisfied by deleting all edges
from E where the condition is violated. Using standard averaging arguments, it is easy to
see that the matching property and the high SDP value imply that this condition is satisfied
for all but at most an O(y/nlog q) fraction of edges. [|

We will refer to the set of orthonormal vectors associated with a vertex B as a cloud.
In what follows, we identify the vertices B in a weak gap instance with their corresponding
clouds, and thus refer to vertices/clouds interchangeably.

Definition 12.4.2. For A, B € B, we denote

def
p(AaB) - aelfﬁ},al;)éBKaj b>‘ :

We define mp._4: A — B to be any! bijection from A to B such that |(a,7p_a(a))| =
p(A, B) for all a € A.

As a direct consequence of the orthogonality of the clouds in B, we have the following
fact about the uniqueness of mp. 4 for highly correlated clouds A, B € B.

Fact 12.4.1. Let A,B € B. If p(A,B)? > 3/4, then there ewists evactly one bijection
w: A — B such that |{a,7(a))| = p(A, B) for all a € A.

Remark 12.4.2. The collection B succinctly encodes a UNIQUE GAMES instance. For a
graph G = (B, E) on B, the goal is to find a labeling {4 € A} sep (a labeling can be seen
as a system of representatives for the clouds in B) so as to maximize the probability

WE {eA - WAHB(eB)} .

Tensoring
Lemma 12.8.2. Fort € N and every pair of clouds A, B € B,
oY lenl <2

acAbeB
a#Fma—p(b)

!The matching property asserts that such a matching exists. If it is not unique, we pick an arbitrary one.
We will assume ma_.p = ngA.

238

Proof. By near-orthogonality, Y, 5(a,b)? < 3/2 for every b € B. Hence, (a,b)? < 3/ for all
a # ma—p(b). Thus,

2 t—2
o> lewlf<E T g Y Ke b <) -9k,
acA,beB a€AbeB
a#ma—p(b)

The notation X =Y =+ Z means that |[X — Y| < Z.

Corollary 12.8.1. Fort € N and every pair of clouds A, B € B,

% Z <a7 b>t = % Z<a>7rB<—A((I)>t + 2. (3/4)t/2)

ac€AbeB acA

Remark 12.4.3. The left-hand side in the corollary is the inner product of the vectors
YUVEY eau® and Y/VEY., o v®'. If t is even, then we can replace the right-hand side by
p(A, B)t. This fact that the functional p(A, B)! is closely approximated by inner products
averaged-tensored vectors has implicitly been used in [104] and was explicitly noted in [14,
Lemma 2.2].

12.5 Integrality Gap Instance for Unique Games

In this section, we will exhibit the construction strong SDP integrality gap for the E2Lin,
problem. Recall that the E2Lin, problem is a special case of UNIQUE GAMES. To this end,
we follow the approach of Khot—Vishnoi [104] to construct the gap instance.

Khot et al. [99] show a UGC-based hardness result for the E2Lin, problem. Specifically,
they exhibit a reduction ®, , that maps a UNIQUE GAMES instance ® to an E2Lin, instance
P, 4(®) such that the following holds: For every v > 0 and all ¢ > go(7),

— Completeness: If ® is 1 — n-satisfiable then ®, ,(®) is 1 — v — 0,5(1) satisfiable.

— Soundness: If ® has no labeling satisfying more than §-fraction of the constraints, then
no assignment satisfies more than ¢="/2 + o, 5(1)-fraction of equations in ®. ,(®).

Here the notation o, 5(1) refers to any function that tends to 0 whenever 7 and § go to
naught. The details of the ®, ; reduction are included in Figure 12.2 for the sake of com-
pleteness.

The rest of the chapter is devoted to the proof of the following theorem.

Theorem 12.9. Let ® be a weak (1 — n,0)-gap instance of UNIQUE GAMES. Then, for
every q of order unity, there exists an SDP solution for the E2Lin, instance ®. 4(®) such
that

— the SDP solution is feasible for LH, with r = 29(1/"1/4),

239

E2Lin, Hardness Reduction [99]

Input A UNIQUE GAMES instance ® with vertex set V', edge set £ C V x V (we assume
the graph (V, E) to be regular), and permutations {7m.: [R] — [R]}ecE.

Output An E2Lin, instance ®, 4(®) with vertex set V =V x FE. Let {F,: FF — Fgloer
denote an Fg-assignment to V. The constraints of @, ,(®) are given by the tests
performed by the following probabilistic verifier:

— Pick a random vertex v € V. Choose two random neighbours w,w’ € N(v) C V.
Let 7, 7" denote the permutations on the edges (w,v) and (w',v).

— Sample z € Ff uniformly at random. Generate y € Ff as follows:

{xi with probability 1 —
Yi =

uniform random element from [, with probability

— Generate a uniform random element c € F,,.
— Test if Fy(yom +c-1) = Fy(xon’)+ c. (Here, z o7 denotes the vector
(@))iclr)-)

Figure 12.2: Reduction from UNIQUE GAMES to E2Lin,

240

~ the SDP solution is feasible for SA, with r = Q(n'/*),

— the SDP solution has value 1 — v — oy 5(1) for @ 4(®).

In particular, the E2Lin, instance ® 4(®) is a (1 — — 0,5(1),¢""? + 0,5(1))) integrality
gap instance for the relaxation LH, for r = 20(1/n'/1). Further, ®4(®) is a (1 — v —
0n5(1),q7? + 0, 5(1)) integrality gap instance for the relazation SA, for r = Q(1/n'/4).

12.6 Integral Vectors

In this section, we will develop tools to create and manipulate vectors all of whose coordi-
nates are “integral”.

{£1}-integral vectors We begin by defining our notion of a {+1}-integral vector.

Definition 12.6.1. Let R = (2, 1) be a probability space. A function u: R — {£1} is
called an {£1}-integral vector. In other words, u is a {£1}-valued random variable defined
on the probability space R. We define an inner product of functions u,v: R — {%1} by

(u,v) = TINERu(r)v(r) .

In our construction, we often start with {41}-integral vectors given by the hypercube
{£1}%. In the terminology of {41}-integral vectors, we can think of the hypercube {1}
as the set of {£1}-integral vectors where R is the uniform distribution over {1,..., R}.

The following lemma shows how the Goemans—Williamson [65] rounding scheme can be
thought of as a procedure to “round” arbitrary real vectors to {41}-integral vectors.

Observation 12.6.1. Given a family of unit vectors {vy,...,vg} € RY, define the set
of {+1}-valued functions v},...,vh : R — {£1} with R = G¢ - the Gaussian space of
appropriate dimension as follows:

vi (9) = sign({vi, 9))
for g € G4 The {£1}-valued functions {v}} satisfy (vi,v3) = 2arccos((v1,v2))/m. Specifi-
cally, this operation obeys the following properties:
(u,v) =0 <= (W vy =0 (u,v) =1—¢ = (u*,v*) > 1-0(e)

The tensor product operation on {£1}-integral vectors, yields a {£1}-integral vector.

Definition 12.6.2. Given two {£1}-valued functions v : Ry — {£1} and v : Ry — {1},
the tensor product u ® v : Ry X Rg — {£1} is defined as u @ v(ry,re) = u(ry)v(re).

Observation 12.6.2. For u,u': Ry — {£1} and v,v": Re — {£1}, we have

(uv,u @v)= E [u®uv(ry,ro)u @' (ry,m)]

1,72

= Efu(r) (r)] E[o(r2)"(r2)] = (u, ') v, o)

T2

241

F,-integral vectors Let g be a prime. Now, we will define F -integral vectors and their
tensor products.

Definition 12.6.3. A F,-integral vector v: R — F, is a function from a measure space R
to F,. For a F-integral vector v: R — F, its symmetrization v: R x F; — F; is defined
by o(r,t) =t - v(r).

Given a map f:F, — C9, we denote by f(v) := f owv the composition of functions f
and v. Here are few examples of functions that will be relevant to us:

1. The function x: F, — C4~! given by

where w is a primitive ¢'" root of unity. The vector x(i) € CI~! is the restriction of
the ¢*® character function of the group Zq to the set Fy. It is easy to see that

(x(@),x(B)) = E_[w' - w "] :{1_L EZZ
q—1 ’

2. Let 4o, 91, ...,1%4—1 denote the corners of the g-ary simplex in R?~! translated so that
the origin is its geometric center. Define the function ¢: F, — RI71 as (i) := ;.
Again, the vectors satisfy

1 ifa=0
a), (b)) = - ’
(¥(a), (b)) {—q% ifab.

Remark 12.6.1. A Fg-integral vector v € IE‘(]JV can be thought of as a F,-valued function
over the measure space ([N], x) where u is the uniform distribution over [N].

Remark 12.6.2. The following notions are equivalent: Collection of Fy-valued functions
on some measure space R <= Collection of jointly-distributed, IF;-valued random variables
<= Distribution over F,-assignments.

For the case of [Fy-integral vector, the tensor product operation is to be defined carefully, in
order to mimic the properties of the traditional tensor product. We will use the following
definition for the tensor operation ®,.

Definition 12.6.4. Given two F,-valued functions u: R — F, and v': R’ — F,, define the
symmetrized tensor product u ®, u’: (R x Fy) x (R’ x Fy) — F, as

(w@q ') (ry b7 8) b u(r) + - ().

Lemma 12.9.1. For any Fy-valued functions u,v: R — Fq and v',v": R' — F,,

(Y(u@q '), (v @qv")) = (Y(u), P(0)(P('), v()).

242

Proof.

(P(u ®, u/)v ¢(U/ ®q U/)>
= (x(u®qu'), x(v' ®g ")) (using (v, ¥p) = (x(a), x(0)))

= E E E ofu+e() =)=t) (by definitions of ®, and)
(r,t) (r',t") LEF,

- E E w@tu(r)—@tv(r) . E w o'l (r')—et'v' (r')
LeFy \ (rt) (r' ")

= B, (Bbc(tulr) (o)) - (Eb(er) e ()

=y

=, E_(x(w), x(0o)) {x(tu), x(tv'))

= (x(u), x(0){(x(@), x(v")) (using (x(fa), x(¢b)) = (x(a)

,X(b)) for £ €)
= ((u), ()W), (")) (using (Ya,) = (x(a), x()))

Remark 12.6.3. Unlike the ordinary tensor operation, the g-ary tensor operation we de-
fined is not associative. Formally, we define the tensoring operation to be right-associative

def
Uy Qg U Qg+ + . Qg Up—1 Qg Uk = U] ®q <u2 Ryq (...(uk_l ®quk))) .
The lack of associativity will never be an issue in our constructions.

We need the following simple technical observation in one of our proofs.

Observation 12.6.3. Let u,v: R — [y be two “symmetric” Fy-integral vectors. that is,
Pr{u(r) —v(r) = a} = Pr.{u(r) —v(r) = b} for all a,b € F;. Then, for all a,b € Fy, we
have E, (¢ (a + u(r)), ¥ (b+v(r))) = (a @ u,b @ v).

We wish to point out that in our applications, the vectors u and v will be tensor powers.
In this case, the symmetry condition is always satisfied.

Proof. Using the symmetry assumption, we see that

Pr {ta +tu(r) = th+ t'v(r)}
r~RttEFS

= Fly o=t ()))

= rg% {a —b=w(r)— u(r)} (12.10)
If we let p denote this probability, then we have (a @ u,b @ v) = p — (1 —)/(q — 1) (using
the left-hand side of Eq. (12.10) as well as E, (¢ (a+u(r)), ¥ (b+v(r))) = p—(1—p)/(g—1)
(using the right-hand side of Eq. (12.10)). [

243

The following procedure yields a way to generate IF -integral vectors from arbitrary
vectors. The transformation is inspired by the rounding scheme for UNIQUE GAMES in
Charikar et al. [35].

Observation 12.6.4. Define the function (: G4 — F, on the Gaussian domain as follows:

C(x1,.. ., mq) = argmax;c (g (12.11)
Given a family of unit vectors {vi,...,vg} € R?, define the set of Fy-valued functions
Vi, 0p R — Fy with R = (GH9 —the Gaussian space of appropriate dimension— as

follows:

i (915 ---59q) = C({vir g1), - - -5 (vi, gg))
for gi,...,94 € (G. The F -valued functions {v}} satisfy,
1. {u,v) =0 = (Y(u*),¥(v")) =0,
2. (u,0) =1—e= (¥(u),(v")) =1 f(e,q) =1 - O(Velogq).

Proof. To see (1), observe that if (u,v) = 0, then the sets of random variables
{(u,91),...,(u,94)} and {(v,91),...,(v,g94)} are completely independent of each other.
Therefore,

W), v = E [v@)] E [ue@)]=o.

regda regda

Assertion 2 follows from Lemma C.8 in [35]. [|

12.7 Local Distributions for Unique Games

In this section, we will construct local distribution over labelings to a UNIQUE GAMES
instance.
The following facts are direct consequences of the (symmetrized) ¢3-triangle inequality.

Fact 12.7.1. Let a,b,c € B with |[{a,b)| =1 —na, and |(b,c)| =1 — npe. Then, |{a,c)| =
1 —Nab — M-

Fact 12.7.2. Let A,B,C € B with p(A,B) = 1 —nap and p(B,C) = 1 —npc. Then,
p(A,C) =21 —nap —npc-

The construction in the proof of the next lemma is closely related to propagation-style
UG algorithms [155, 14].

Definition 12.7.1. A set S C B is consistent if
VA,B € S. p(A,B) > 1—1/16.
Lemma 12.9.2. If S C B is consistent, there exists bijections {ma: [R] — A} acs such that

VA, B € S. TR = TR AOTA.

244

Proof. We can construct the bijections in a greedy fashion: Start with an arbitrary cloud
C € S and choose an arbitrary bijection m¢: [R] — C'. For all other clouds B € S, choose
TR ‘= TRBC O T(C-

Let A, B be two arbitrary clouds in S. Let 04 g :=mg 0 77151. To prove the lemma, we
have to verify that o4 p = m4—p. By construction, o4 p = Ta—c o Tc—p. Let n = 1/16.
Since p(A,C) =21 —nand p(B,C) > 1 —mn, we have [(b,04_p(b))| >1—2nforallbe B
(using Fact 12.7.1). Since (1 —2n)? > 1 — 4n = 3/4, Fact 12.4.1 (uniqueness of bijection)
implies that o4 p = T4 p. [|

Hence, for a consistent set of clouds S, the distribution over local UNIQUE GAMES
labelings ps can be defined easily as follows:

Sample ¢ € [R] uniformly at random, and for every cloud A € S, assign 74 (¢)
as label.

To construct a local distribution for a set S which is not consistent, we partition the set S
into consistent clusters. To this end, we make the following definition:

Definition 12.7.2. A set S C B is consistent with respect to a partition P of B (denoted
Consistent(S, P)) if

VCeP. YA, BeCnNS. p(A,B) > 1—1/16.

We use Inconsistent(S, P) to denote the event that S is not consistent with P. The
following is a corollary of Lemma 12.9.2.

Corollary 12.9.1. Let P be a partition of B and let S C B. If Consistent(S, P), then there
exists bijections {ma: [R] — A | A € S8} such that

YCeP. VA, Be(CnS. TR = TR AOTA.

The following lemma relies on the fact that the correlations p(A, B) behave up to a small
errors like inner products of real vectors. In other words, there is a geometric representation
of the correlations p(A, B) that can be used for the decomposition. This insight has also
been used in UG algorithms[14].

Lemma 12.9.3. For every t € N, there exists a distribution over partitions P of B such
that

—if p(A,B) > 1 — ¢, then
Pr{P(A) = P(B)} 21— O(te).
—if p(A,B) < 1—1/16, then

Pr{P(4) = P(B)} < (3/1)".

245

Proof. Let s € N be even and large enough (we will determine the value of s later). For
every set B € B, define a vector vg € RP with D := d* as

vp ::ﬁZv(@S.

veEB

We consider the following distribution over partitions P of B: Choose t random hyperplanes
Hy,...,H; through the origin in RP. Consider the partition of R formed by these hyper-
planes. Output the induced partition P of B (two sets A, B € B3 are in the same cluster of
P if and only if v4 and vp are not separated by any of the hyperplanes Hy, ..., Hy).

Since s is even, Corollary 12.8.1 shows that for any two sets A, B € B,

(va,vp) = p(A, B)* £2- (3/2) /2.
Furthermore, if p(A, B) = 1 — &, then
(va,vB) 2 (1—¢)° > 1—se.

Let n = 1/16. We choose s minimally such that (1—n)°+2-(3/4)7%/2 < 1/v/2. (So s is an
absolute constant.) Then for any two sets A, B € B with p(A, B) < 1—m, their vectors have
inner product (v4,vg) < 1/ V2. Thus, a random hyperplane through the origin separates
vy and vp with probability at least 1/4. Therefore,

Pr{P(4) = P(B)} < (3/1)' .

On the other hand, if p(A, B) = 1 — ¢, then the vectors of A and B have inner product
(vg,vp) = 1 — se. Thus, a random hyperplane through the origins separates the vectors
with probability at most O(/€). Hence,

Pr{P(4) = P(B)} > (1-0(v&)) > 1-0(tVa).

Remark 12.7.1. Using a more sophisticated construction, we can improve the bound

1 — O(tye) to 1 — O(Vte).
The previous lemma together with a simple union bound imply the next corollary.

Corollary 12.9.2. The distribution over partitions from Lemma 12.9.3 satisfies the follow-
ing property: For every set S C B,

Pr {Inconsistent(S,P)} <SP - (3/a)t

Remark 12.7.2. Using a slightly more refined argument (triangle inequality), we could
improve the bound 72 - (3/4) to r - (3/4)%.

246

12.8 Construction of SDP Solutions for E2LIN(q)

In this section, we construct SDP vectors and local distributions for B x Ff that form the
variables in the ®, ,(®) instance described in Section 12.5. The set B x Ff correspond to
the set of vertices in the instance obtained by applying a g-ary long code based reduction
on the UNIQUE GAMES instance encoded by B. For a vertex (B,x) € B X Ff, we index the
coordinates of x by the elements of B. Specifically, we have © = (xp)pep € Ff .

Geometric Partitioning Apply Lemma 12.9.3 to the collection of sets of vectors B. We
obtain a distribution P over partitions P of B into 7" disjoint subsets {P,}._;. For a subset
S C B, let S = {S,}1_, denote the partition induced on the set S, that is, S, := P, N S.
For a family B € B, let ap denote the index of the set P, , in the partition P that contains
B.

12.8.1 Vector Solution

For a vertex (B,z) € B X IF‘R, the corresponding SDP vectors are given by functions
VjB’x: P x [T] x R — RY defined as follows:

W (r) = * > (w—j+ 6% (r)) (12.12)
beB
B,x _ B,x
U (Pa,r) = Po(B) - W5 (r) (12.13)
Bax 1 Vq—17y7B,x
Vol = Vo + =T (12.14)

Here R is the measure space over which the tensored vectors b®! are defined. The nota-
tion P,(B) denotes the 0/1-indicator for the event B € P,. Further, Vj is a unit vector
orthogonal to all the vectors U JB -

Let us evaluate the inner product between two vectors VZ-A’m and VjB’y, (in this way, we
also clarify the intended measure on the coordinate set)

<'V7;A,Z‘7'V"7'B7y> — q% + q_qT<UAx UB,y>
— Ax ,
=+ qq_l E Za \Po(A)Po(BYW Y W)
Ax ,
= g+ 4 Pr{P(4) = P(B)} (W7 W) (12.15)

Let us also compute the inner product of VVZ-A’Z and WjB’y. Recall the notation (u,v)y =

247

(¥ (u), (v)).

WA WP =L ST E (na— i+ a®)y~ + 07 ()

aeapen ™"

= % Z ((xq — 1) ®a®, (yp — §) ® b®t>¢ (by Observation 12.6.3)
acAbeB

=1 N ((wa —), 0y —) b)l, (by Lemma 12.9.1) (12.16)
acAbeB

12.8.2 Local Distributions

Fix a subset S C B of size at most r. In this section, we will construct a local distribution
over F,-assignments for the vertex set S = § x Ff (see Figure 12.3). Clearly, the same
construction also yields a distribution for a general set of vertices S’ C B x Ff of size at
most 7.

Remark 12.8.1. In the construction in Figure 12.3, the steps 6-7 are not strictly necessary,
but they simplify some of the following calculations. Specifically, we could use the IF -
assignment {5 "} (B,x)es to define the local distribution for the vertex set S. The resulting
collection of local distributions could be extended to an approximately feasible SDP solution
(albeit using a slightly different vector solution).

We need the following two simple observations.
Observation 12.8.1. For all a,b € F,, we have

Elgllgq[a—l—/{:i/\b—k/{:j]Zglf+q—_r1<¢(a—i)a¢(b—j)>-

Proof. If a —i = b — j then both LHS and RHS are equal to 1/¢, otherwise both are equal
to 0. |

Observation 12.8.2. Fiz a,b € F;, over a random choice of hi,hy € IFy,

o By (0@), (b + ha))] = 0.

Proof. Follows easily from the fact that (¢(i),1(j)) =1 if i = j and —1/¢g—1 otherwise. W

The next lemma shows that the second-order correlations of the distribution us approx-
imately match the inner products of the vector solution {V;Ax}

Lemma 12.9.4. For any two vertices (A, x),(B,y) € S,

ZIEES [ZA,gc — i AZBY — il = <‘/iA7:c’ ‘/jB,y> 4 10|5|2(3/4)t/2]

248

For § =8 x Ff, the local distribution pg over assignments Fqs is defined by the following
sampling procedure:
Partitioning:

1. Sample a partition P = {P,}1_; of B from the distribution P obtained by
Lemma 12.9.3. Let a4, ap denote the indices of sets in the partition P that contain
A, B € S respectively.

2. If Inconsistent(S, P) then output a uniform random Iy -assignment to S = S x Ff.
Specifically, set

Z(B:%) — yniform random element from F, VB e S, x € Ff .

Choosing Consistent Representatives:

4. If Consistent(S, P) then by Corollary 12.9.1, for every part S, = P, NS, there exists
bijections IIs, = {np: [R] — B | B € S,} such that for every A, B € S,,

TA—=TA—BOTRH.

5. Sample L = {{,}1_, by choosing each ¢, uniformly at random from [R]. For every
cloud B € S, define g = {,,. The choice of L determines a set of representatives
for each B € S. Specifically, the representative of B is fixed to be m5(¢p).

Sampling Assignments:
5. Sample r € R from the corresponding probability measure and assign

FB’””(P,L,T) = Trptp) T WB(EB)(@t(T))

6. Sample H = {h,}._, by choosing each h,, uniformly at random from [g]. For every
cloud B € B, define hg = hqp.

7. Sample £ uniformly at random from [g].

8. For each B € S, and x € Ff, set

Z8%(P L,r,H k) = FB*(P,L,r)+ hp + k.

9. Output the F -assignment {ZB’x}(B,x)GS.

Figure 12.3: Local distribution over F, -assignments

249

Proof. Firstly, since Pr[Consistent(S, P)] > 1 — |S|(3/4)! (by Corollary 12.9.2),

Py [ZA’I =i nZBY = j] = Pr [ZA’I — i AZPY = j | Consistent(S, P)| +[S2(3/a)" .
1s

ts
(12.17)
Using Observation 12.8.1, and the definition of Z4* and Z5¥ we can write

Pr (24" =i A ZPY = j | Consistent(S, P)]
ps

=%+ o [(W(FA" + ha — i), (FPY + hp — j)) | Consistent(S, P)| . (12.18)

If A, B fall in the same set in the partition P (that is a4 = ag), then we have hy = hp. If
A, B fall in different sets (that is a4 # ap), then hy, hp are independent random variables
uniformly distributed over F,. Using Observation 12.8.2, we can write

WE (WA 4 ha =), 0(FPY 4 hig —) | Consistent(S, P)|

= P’I%’T [l(aA = ag)(W(FA® — i), p(FBY — j)) ‘ Consistent(S, P)} . (12.