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Abstract

Approximating NP-hard Problems

Efficient Algorithms and their Limits

Prasad Raghavendra

Chair of the Supervisory Committee:
Associate Professor Venkatesan Guruswami

Computer Science and Engineering

Most combinatorial optimization problems are NP-hard to solve optimally. A natural
approach to cope with this intractability is to design an “approximation algorithm” – an
efficient algorithm that is guaranteed to produce a good approximation to the optimum
solution. The last two decades has witnessed tremendous developments in the design of
approximation algorithms mostly fueled by convex optimization techniques such as linear
or semidefinite programming.

In this thesis, we present algorithmic and lower bound results that characterize the power
and limitations of these techniques on large classes of combinatorial optimization problems.
The thesis identifies a specific simple semidefinite program and demonstrates the following:

– This semidefinite program yields the optimal approximation to every problem in one of
the large classes such as constraint satisfaction problems (CSP), metric labeling prob-
lems and ordering constraint satisfaction problems under the Unique Games Con-
jecture (UGC). To show this, we exhibit a general black-box reduction from hard
instances to a linear/semidefinite program to corresponding hardness results based on
the UGC. Not only does this confirm a widely suspected connection, it settles the
approximability of classic optimization problems such as CSPs, Multiway Cut and
Maximum Acyclic Subgraph under UGC.

– The thesis presents a generic algorithm for constraint satisfaction problems (CSP)
based on this semidefinite program. Irrespective of the truth of UGC, this generic
algorithm is guaranteed to obtain an approximation at least as good as all known
algorithms for specific CSPs.

– Independent of the truth of UGC, the approximation obtained by this semidefinite
program cannot be improved by any convex relaxation that is obtained by including

any valid constraints on at most O(2(log logN)
1
4 ) vectors.
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Chapter 1

INTRODUCTION
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Combinatorial optimization is one of the most commonly arising computational tasks.
In a combinatorial optimization problem, the goal is to find a solution that maximizes or
minimizes a certain objective value among a discrete set of feasible solutions. To demon-
strate the ubiquity of combinatorial optimization problems, and to give the reader a flavor
of the problems studied in this dissertation, we present a few examples below.

Problem 1. A 3-CNF boolean formula consists of a set of variables and clauses of the form
xi ∨ xj ∨ xk. Find an assignment to the variables that satisfies the maximum number of
clauses.

This problem belongs to the class of Constraint Satisfaction Problems (CSP) that have
numerous applications, from artificial intelligence and planning to VLSI chip design.

Problem 2. Given a graph and three designated nodes called terminals, decompose the
graph into three parts containing one terminal each, while minimizing the number of edges
between the partitions.

This is an example of a Metric Labelling Problem that arises naturally in several contexts
such as image segmentation.

Problem 3. Given the results of all chess games played in major tournaments over a year,
let us suppose we wish to rank the players. Specifically, we would like to find a ranking
that agrees with the results of maximum number of games. Here the result of a game agrees
with the ranking if the higher ranked among the two players wins.

Here we are trying to find an ordering/permutation/ranking that satisfies the maximum
number of given constraints. This problem is a classic example of an Ordering CSP (OCSP).

Problem 4. Given a system of sparse linear equations over real numbers that is completely
consistent, it is easy to find a solution using Gaussian elimination. Suppose that the system
is not completely consistent in that some of the equations are erroneous. In this case, the
natural optimization problem to consider is to find a solution that satisfies the maximum
number of equations.

While combinatorial optimization problems occur very naturally in practice, many seem-
ingly different tasks such as pattern classification, clustering, and learning can also be posed
as combinatorial optimization. For instance, consider the following problem,

Problem 5. Suppose that we are given a set of points labelled + or − in a high dimensional
space. For instance, this could be a representation of a set of emails with the labellings
indicating whether they are spam or non-spam. Find a halfspace (also referred to as a
perceptron) that correctly classifies the maximum number of the given set of points.

Unfortunately, for an overwhelming majority of combinatorial optimization problems,
finding the optimal solution turns out to be NP-hard. Therefore, unless P = NP, there
are no efficient algorithms to solve any of the above problems optimally.



3

To cope with this intractability, one settles for solutions that are approximately optimal.
For instance, can one design an efficient algorithm that always outputs a solution that is at
least half as as good as the optimum? Formally, an algorithm is an α-approximation to a
problem, if on every instance the solution output by the algorithm has value within an α-
factor of the optimal solution. In this dissertation, in contrast to most previous work we will
consider not just a single approximation ratio, but the entire spectrum of approximations
that depend on the quality of the optimal solutions.

The following question stems naturally from the notion of approximation algorithms:

For a given combinatorial optimization problem, what is the best approximation
to the optimum that can be efficiently computed?

There are two important facets to answering the above question, designing approximation
algorithms and showing that no efficient algorithm can approximate better (hardness result).

In this dissertation, we present both optimal approximation algorithms and hardness
results that apply in general to entire classes of problems such as the constraint satisfaction
problems. More precisely, we exhibit a generic algorithm for every constraint satisfaction
problem whose approximation behaviour is at least as good as that of all known algorithms.
The generic algorithm relies on a convex optimization subroutine, specifically a simple
semidefinite program. Furthermore, we show that under the well-known Unique Games
Conjecture, this simple semidefinite program yields the best approximation for every prob-
lem in one of the classes: constraint satisfaction problem (CSP), ordering CSP and metric
labelling problem. Specifically, this demonstrates that existing algorithmic techniques have
reached a common barrier on every problem in these classes, a barrier that is achieved by
the generic algorithm and encapsulated by the Unique Games Conjecture.

In the remainder of the introduction, we lay out the motivation and context for our
work by surveying the relevant milestones in the study of approximation algorithms and
highlighting the main contributions of this dissertation.

1.1 Motivation

It is beyond any doubt that NP-hard combinatorial optimization problems are indispens-
able in many practical applications. Therefore, it is obligatory to develop heuristics to
cope with their intractability. Any systematic study of heuristics should provide ways to
measure, analyze, compare, and improve their performance. It is our viewpoint that the
study of approximation algorithms is an attempt in this direction, in that it is a systematic,
theoretical study of heuristics. In what follows, we make an attempt to justify this position.

Why worst-case analysis? By definition, an NP-hardness result concerns the perfor-
mance of any efficient algorithm over the worst-case choice of input. Therefore it is con-
ceivable that efficient algorithms could be designed for subclasses of inputs that occur in
practice. A large body of work has emerged motivated along these lines, some of whose
highlights include:



4

– Efficient algorithms for problems over special classes of graphs such as sparse graphs,
dense graphs, planar or low-genus graphs, and perfect graphs.

– Algorithms that are guaranteed to perform well with high probability when the input
is generated from a certain distribution.

– Parametrized Complexity: Here the running time of an algorithm is not only measured
in terms of the input size, but also an additional parameter associated with the input.
In particular, the goal is to design algorithms that are efficient on inputs where the
associated parameter is small.

In many real-life settings, the inputs are generated from complex processes that makes
discovering additional structure in them a daunting task. Furthermore, some optimization
problems remain hard even on special classes of inputs such as sparse graphs or those with
some small parameter.

There is little reason to believe that the general distributions that have been analyzed
truly reflect problems in real-life settings. The worst-case guarantees that approximation
algorithms provide make them applicable even in contexts where there is little or no addi-
tional information available about the inputs. In this dissertation, we restrict ourselves to
approximation algorithms that have provable guarantees over all inputs.

Why these problems? There are a few classic problems such as Max Cut and Max
3-Sat that have received considerable amount of attention in approximation algorithms
literature. One possible intent of this extensive study is to determine the best possible
approximation ratios/curves for these specific problems. However, the exact value of ap-
proximation ratio for, say, Max Cut is probably of little value in practice. More often than
not, a combinatorial optimization problem that arises in practice is a variant or entirely
different from any problem appearing in approximation algorithms literature.

The real motivation to extensively study problems like Max Cut is that they serve
as simple examples that help us understand the power and limits of existing algorithmic
techniques. An ambitious goal is to translate insights from these classic examples to general
results for arbitrary combinatorial optimization problems, thereby making the results appli-
cable in practical scenarios. This dissertation makes progress towards this goal by exhibiting
very generic algorithms and hardness results that hold for every problem in large classes
such as constraint satisfaction problems and might be more likely effective in practice.

Approximation ratios and approximation curves Recall that an α-approximation
algorithm is one that always outputs a solution whose value is within α factor of the opti-
mum. This is just one possible measure for the quality of a heuristic. In some cases, the
correct measure would be an additive approximation where the algorithm’s output is within
α additive error of the optimum. A more refined measure is to plot the the output of the
algorithm as a function of the optimum value of the instance. Formally, the approximation
curve α(c) of an algorithm A is the plot of the value of the solution returned by the algo-
rithm A on instances where the optimum value is c. The approximation curve encodes a lot
of information about the performance of the heuristic algorithm A.
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The study of approximation algorithms encompasses all these measures of performance
for heuristics. With this broad agenda, this dissertation studies the performance and limits
of approximation algorithms by attempting to map out their entire approximation curves
instead of approximation ratios alone.

1.2 Relaxation and Rounding Methodology

A vast majority of approximation algorithms follow a two step approach consisting of re-
laxation and rounding. To describe the context and contributions of the dissertation, a
rudimentary understanding of this popular paradigm would be useful.

Relaxation By virtue of the fact that the space of feasible solutions is discrete, every
combinatorial optimization problem can be reformulated as an optimization problem with
integer-valued variables, i.e., an integer program. In other words, given an instance of
a combinatorial optimization problem, we can encode it as maximizing or minimizing a
function of a set of variables (say {x1, . . . , xn}) that take certain integer values (say {0, 1})
and are required to satisfy a set of constraints.

Being a reformulation, the resulting integer program is also NP-hard. Technically, the
intractability of the integer program stems from the non-convexity of the space of solutions.
The main idea is to relax the constraints of the integer program so as to make it tractable.
Specifically, we will relax the condition that the variables are to be assigned values 0 or 1
only, and permit them to be assigned real numbers, or even vectors.

By a suitable relaxation, the intractable integer program is converted to a convex opti-
mization problem that can be solved in polynomial time.

Clearly, the relaxation permits more solutions than the original integer program does.
Hence, it immediately follows that the optimum of the relaxation is at least as good as the
optimum of the integer program. Formally, let = be an instance of a minimization problem.
If opt(=) denotes the value of the optimum solution to the instance =, and Conv(=) denotes
the optimal value of the corresponding relaxation, then Conv(=) 6 opt(=).

The value of Conv(=) serves as an efficiently computable estimate for opt(=). Of course,
it is completely unclear at this point how good an estimate Conv(=) is. The “integrality
gap” is a coarse measure of the quality of the estimate Conv(=). In particular, the integrality
gap is the worst-case ratio between opt(=) and its estimate Conv(=) over all instances =.
The “hard” instances for the relaxation, where the worst-case ratio is achieved are referred
to as integrality gap instances.

Rounding The optimal solution to the relaxation will probably consist of an assignment of
real or possibly vector values to the variables. However, only integer-valued assignments to
the variables will correspond to a possible solution to the original combinatorial optimization
problem =. In the next step, a procedure (a rounding scheme) is devised to “round” the
real or vector valued assignment to the variables into an integer assignment. The challenge
is to devise a rounding scheme that incurs only a small loss in the objective value.

Formally, a rounding scheme of an α-approximation algorithm is an algorithm that takes
as input the optimal solution to the relaxation Conv consisting of real or vector values and
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rounds the solution to an integer/discrete solution by losing at most an α-factor in the
value.

Since Conv(=) 6 opt(=), the value of the rounded solution is at most α-times the value
of the optimal solution. Therefore, the convex relaxation along with the above rounding
scheme yields a α-approximation to the problem.

1.3 Relaxation Techniques

An overwhelming majority of approximation algorithms use a specific type of convex relax-
ation - linear programming. A linear program consists of either maximizing or minimizing
a linear function over real-valued variables while satisfying certain linear constraints among
them. There are numerous techniques to solve linear programs, while the simplex method
and its variants are used extensively in practice, others such as interior point methods (see
Alizadeh [2], Nemirovsky et al. [127]) are provably efficient.

Not only have linear programming been instrumental in the design of approximation
algorithms for a vast array of combinatorial optimization problems, it is a technique that is
extensively used in practice. We refer the reader to the book by Vazirani [158] for a glimpse
of the pervasiveness of linear programs in the field of approximation algorithms.

Apart from linear programs, the other relaxation technique that has proved useful in
this context are semidefinite programs. A semidefinite program consists of vector-valued
variables, with linear constraints on their inner products. The objective being optimized is
a linear function of the inner products of the variables. Semidefinite programs can be solved
in polynomial time using the ellipsoid method (see Grotschel et al. [70]) or interior point
methods (see Alizadeh [2], Nemirovsky et al. [127]). More precisely, semidefinite programs
can be optimized to within an error ε in time polynomial in ln 1

ε and the size of the program.

Semidefinite programs (SDP) made their appearance in combinatorial optimization as
early as 1979 with the classic work of Lovász [117]. The Lovász Theta function, as it is
referred to today, is a semidefinite programming relaxation for the Maximum Independent
Set problem. In [117], this relaxation was used to show that the Maximum Independent
Set problem, and the Minimum Vertex Cover problem can be solved efficiently on
perfect graphs.

After what seems to be a hiatus, semidefinite programming (SDP) made a comeback in
approximation algorithms with the seminal work of Goemans and Williamson [65] on the
Max Cut problem in 1994 . At the time, it was clear by the work of Poljak et al. [135]
that linear programming techniques cannot yield an approximation better than 1

2 for the
Max Cut problem. Using a simple semidefinite programming relaxation and an elegant
rounding scheme, Goemans and Williamson obtained a 0.878 factor approximation for Max
Cut. Since the work of Goemans and Williamson, SDPs have fueled some of the major
advances in approximation algorithms. They have found application in problems ranging
from Constraint Satisfaction Problems (Charikar et al. [32], Lewin et al. [114], Karloff et
al. [93], Hast [79], Charikar et al. [35], Chlamtac et al. [41], Charikar and Wirth [36], Frieze
and Jerrum [62], Halperin and Zwick [78], Matuura et al. [122], Zwick [162], Goemans and
Williamson [66], Feige and Goemans [54], Zwick [161, 164]) to Vertex Coloring (Karger et al.
[90], Chlamtac [40], Arora and Chlamtac [12], Chlamtac and Singh [42]), Vertex Ordering
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(Charikar et al. [33], Chor [43]) to Graph decomposition (Frieze and Jerrum [62] Arora et
al. [16]), and Discrete optimization (Alon and Naor [4], Charikar and Wirth [36], Khot and
Naor [100], Nesterov [128]).

Among the two techniques, linear programming is a special case of its semidefinite
counterpart. Therefore, semidefinite programming is arguably one of the most powerful
tools in the design of approximation algorithms.

Stronger Relaxations In general, there is no single canonical choice for a convex relax-
ation of a given optimization problem. There are multiple ways to formulate a combinatorial
optimization problem as an integer program and, more importantly, many possible convex
relaxations of the integer program.

Furthermore, given a convex relaxation of an integer program, it could be strengthened
by introducing additional constraints. As one includes more constraints into a convex re-
laxation Conv, the optimum Conv(=) of the relaxation may be a much better estimate of
the optimum of the instance. Here again, there are numerous choices of additional con-
straints that can be included to strengthen a given convex relaxation. In fact, there are
several hierarchies of increasingly stronger relaxations called the Lovász-Schriver [118], the
Lasserre [110] and the Sherali-Adams hierarchies [150]. On the flipside, including additional
constraints increases the size of the relaxation thereby increasing the complexity of opti-
mizing it. For instance, optimizing the relaxation in the kth level of the above mentioned
hierarchies takes roughly nΩ(k) time.

Nearly every algorithm based on semidefinite programming actually makes use of a very
simple semidefinite relaxation. A notable exception is the breakthrough result of Arora,
Rao and Vazirani [16] that used a stronger semidefinite program with triangle inequalities
to obtain an O(

√
log n) approximation for the Sparsest Cut problem. This has sparked a

lot of interest in using stronger semidefinite programs to obtain better approximation algo-
rithms (Chlamtac [40], Arora and Chlamtac [12], Chlamtac and Singh [42]). In particular,
hierarchies of stronger SDP relaxations such as Lovász-Schriver [118], Lasserre [110] and
Sherali-Adams hierarchies [149] (see Laurent [112] for a comparison) have been touted as
tools to push the limits of approximability.

On one hand, this sounds like an opportunity, since stronger semidefinite programs
might yield much better approximation ratios. On the other hand, the lack of work in this
direction points to the difficulty of using stronger semidefinite programs in algorithms. In
the case of linear programming, there has been considerable progress in understanding the
limits of strong linear programming relaxations obtained via these hierarchies. However, for
the more powerful technique of semidefinite programming, the limits of stronger relaxations
are poorly understood.

1.4 Understanding the Limits

With every approximation algorithm devised, the question arises as to whether we could
find better approximations? Thus, the design of approximation algorithms is to be comple-
mented with the study of limits of approximability.
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The first breakthrough in this direction came in the early 1990’s with the celebrated PCP
theorem by Arora et al. [15]. The PCP theorem is equivalent to the following hardness
result,

Theorem 1.1 (PCP Theorem). For some constraint satisfaction problem (3-SAT), it is not
only NP-hard to find an assignment satisfying all constraints, even satisfying more than
0.99999999-fraction of the constraints is NP-hard.

Thus, the PCP theorem is a hardness of approximation result for the problem of sat-
isfying the maximum number of clauses in a 3-SAT formula. Over the last decade, using
fairly involved reductions starting from the PCP theorem, the approximability of several
important computational problems like Minimum Set Cover, Maximum Clique and
Coloring have been resolved. Table 1.1 lists a few of the NP-hardness results obtained
from the PCP theorem.

The pursuit of hardness of approximation results has been an extremely fruitful en-
deavor. In some cases like Minimum Set Cover, the lower bounds confirmed that a
simple heuristic (the greedy algorithm) is the best one can do. While in a few cases like the
work on Euclidean Traveling Salesman Problem by Arora [8], it led to new algo-
rithms with better guarantees. From a theoretical standpoint, this pursuit enriched the area
with connections to testing, computational learning, and techniques from discrete geometry
and Fourier analysis.

Despite considerable success in showing hardness of approximation results, the approx-
imability of many basic problems such as Minimum Vertex Cover still remain open. For
instance, the best known approximation algorithm for Minimum Vertex Cover achieves
a factor 2 approximation, while the best known lower bound on the approximation possible
is 1.36 shown by Dinur and Safra [50]. Hence, either there exists a better approximation
algorithm for Minimum Vertex Cover or the hardness result can be improved to a factor
2.

In 2002, Subhash Khot [97] introduced the Unique Games Conjecture, and observed
that it could imply tight hardness results. The Unique Games Conjecture is a hardness as-
sumption stating that a certain combinatorial optimization problem is hard to approximate
in a strong sense. For the sake of exposition, we present an equivalent formulation of the
Unique Games Conjecture (UGC) due to Khot et al. [99]. To this end, we first define a
special case of the Unique Games problem referred to as the Γ-Max Lin.

Problem 6 (Γ-Max Lin (p)). For a natural number p, given a set of linear equations over
integers of the form xi − xj ≡ cij (mod p), find an assignment satisfying the maximum
number of equations.

(Unique Games Conjecture [97]). For any ε, δ > 0, there is a large enough number
p such that: given a Γ-Max Lin (p) instance for which there is a solution satisfying a
1 − ε-fraction of equations, it is NP-hard to find one that satisfies even a δ-fraction of the
equations.

Assuming the UGC, hardness of approximation results have been obtained for several
fundamental optimization problems. Specifically, Unique Games and, in turn, Γ-Max
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Problem Best Algorithm NP-hardness UG-Hardness

Max 3-Sat 7
8

7
8 [86]

SET COVER lnn lnn[56]

INDEPENDENT SET n(log logn)2

log2 n
[26] n1−ε [85]

COLORING n
log2 n

[77] n1−ε [57]

Minimum Vertex Cover 2 1.36 [50] 2 [103]
Max Cut 0.878 [65] 0.941 [86] 0.878 [99]
Max 2-Sat 0.9401 [114] 0.9546[86] 0.9401 [17]

Sparsest Cut
√

log n[16] 1 + ε Every constant[38, 104]

MAX k-CSP Ω( k
2k ) [32] O(2

√
k

2k )[143] O( k
2k )[144, 19, 75]

Table 1.1: Results on Approximability

Lin (p) problems have been reduced to the task of approximating several problems like
Minimum Vertex Cover and Max Cut up to a certain ratio. Therefore, if the UGC is
true (the Unique Games problem is NP-hard), then it would imply that approximating
Minimum Vertex Cover and Max Cut are NP-hard beyond a specific threshold.

For the sake of clarity, we will say a problem is Unique Games-hard or just UG-hard,
if there is a reduction from Unique Games to the problem. For instance, by the work
of Khot and Regev [103], the problem of approximating Minimum Vertex Cover better
than factor 2 is UG-hard. If the UGC is true, then a problem that is UG-hard is indeed
NP-hard.

We list a few of the UG-hardness results in Table 1.1. Observe that UG-hardness re-
sults exactly match the best algorithms known for classic problems like Minimum Vertex
Cover, Max Cut and Max 2-Sat.

The Unique Games Conjecture (UGC) remains a notorious open problem today. Not
only is the conjecture unresolved, but there is no consensus among theorists about its truth.
There have been several attempts at disproving the conjecture (Trevisan [155], Gupta and
Talwar [72], Chlamtac et al. [41], Charikar et al. [35] and Arora et al. [14]) and much lesser
progress towards proving it (Feige and Reichman [60]).

While there is no consensus on its truth, studying the UGC and its implications has
been extremely fruitful. Several unconditional results (results that hold irrespective of
the truth of the UGC) have been obtained via UG-hardness reductions. Many of these
results have vastly improved our understanding of the power and limitations of semidef-
inite programming - arguably the most powerful technique in approximation algorithms.
For instance, the well-known Goemans-Linial conjecture asserted that a semidefnite pro-
gram yields a constant factor approximation for a fundamental graph partitioning problem,
namely the Sparsest Cut problem. In a breakthrough result, Khot and Vishnoi [104] used
UG-hardness reductions to disprove the conjecture. Starting with this work, UG-hardness
reductions have exposed the limits of semidefinite programs on numerous combinatorial
optimization problems.
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Finally, the study of the UGC and its implications could shed light on an approach
to its eventual resolution. A confirmation of the UGC will resolve the approximability of
fundamental combinatorial optimization problems, while a refutation is likely to lead to new
and powerful algorithmic techniques.

1.5 Integrality Gaps vs Hardness Results

The Minimum Set Cover problem is a classic combinatorial optimization problem. There
is a simple natural linear programming relaxation for the problem that has an integrality
gap of lnn. It was shown by Feige [56] that the best possible approximation ratio for the
problem is exactly lnn. It is rather surprising that the integrality gap of the relaxation
matches the best possible approximation ratio. Indeed, this is just one example of a long
and widely observed phenomena in approximation algorithms.

For a convex relaxation, recall that the integrality gap is the worst possible ratio between
the optimum of the relaxation and the optimal solution to the instance. An integrality gap
instance for a relaxation Conv is a hard instance for a particular algorithm given by the
relaxation Conv. Specifically, the integrality gap instance could possibly be an easy instance
(better approximated) for a different convex relaxation or algorithm.

For a combinatorial optimization problem, let the hardness threshold refer to the best
possible approximation computable in polynomial time. Therefore, the hardness threshold
measures the limits of all polynomial time algorithms, not just a specific convex relaxation.

Apriori, there is little reason to suspect that the integrality gap of a particular convex
relaxation to a problem would equal its hardness threshold. After all, the integrality gap is
the limit of a specific convex relaxation, while the hardness threshold measures the limit of
all polynomial time algorithms. Yet, it has often transpired that the integrality gap of a
simple convex relaxation exactly matches the hardness threshold. In other words, for many
classic combinatorial optimization problems, it has so transpired that certain simple convex
relaxations yield the optimal approximation computable in polynomial time.

This connection between integrality gaps and hardness thresholds have grown stronger
with the advent of the Unique Games Conjecture. For the Max Cut problem, the semidef-
inite programming based algorithm of Goemans and Williamson yields an approximation
ratio which is an irrational number close to 0.878. Surprisingly, the UG-hardness result for
Max Cut by Khot et al. [99] exactly matches the approximation factor! Even in the case
of Max 2-Sat, the UG-hardness result by Austrin [17] exactly matches the approximation
obtained using a semidefinite program due to Lewin et al. [114].

In earlier cases like Minimum Set Cover, the fact that integrality gap equals the
hardness threshold seemed more of a coincidence. However, with UG-hardness results as in
the case of Max Cut, the integrality gap instances appeared to play a role in the proof
of the hardness result. Furthermore, in the reverse direction, UG-hardness results paved
the way to new SDP integrality gaps for Sparsest Cut and Max Cut (Khot and Vishnoi
[104]).

Summarizing, the somewhat mysterious and long-observed relation between integrality
gaps and hardness thresholds has grown stronger with the advent of the Unique Games
Conjecture. While many earlier works such as Khot et al. [99], Austrin [17] and, Khot
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and O’Donnell [101] hinted at its existence, the work of Austrin [18] established a partial
connection between SDP integrality gaps and UG-hardness results.

1.6 Brief Summary of Contributions

The dissertation obtains both approximation algorithms and lower bound results, many
of which are based on the Unique Games Conjecture. Here, we present a brief summary
of the main contributions of this dissertation. By virtue of its brevity, the summary is
necessarily incomplete and imprecise. We refer the reader to Section 2.6 for a detailed
chapter-by-chapter description of the contributions of the dissertation.

The rest of the dissertation is organized into three parts: algorithmic techniques, the
UG Barrier and unconditional lower bounds.

Algorithmic Techniques We present a generic approximation algorithm that applies to
every constraint satisfaction problem (CSP). This generic algorithm obtains an approxima-
tion that is at least as good as all known algorithms designed for specific CSPs. In turn, it
unifies a large body of existing work on semidefinite programming based algorithms for con-
straint satisfaction problems. The SDP relaxation underlying the generic algorithm which
we term the LC relaxation, is also applicable to the classes of metric labelling problems and
ordering CSPs.

The Unique Games Barrier Among the main contributions of the dissertation is the
direct reduction from integrality gaps for semidefinite programs to UG-hardness results.
This confirms the long-suspected connection between integrality gaps and hardness of ap-
proximation.

Harnessing this connection, we show that the LC semidefinite program yields the optimal
approximation for every constraint satisfaction problem under the UGC. While this unifies
several earlier UG-hardness results for specific CSPs like Max Cut, it also asserts that the
generic algorithm presented in our algorithmic techniques section is optimal for every CSP
under the UGC.

Extending this connection further, we obtain optimal hardness results for every metric
labelling problem. More precisely, we show that a simple linear program that is referred
to in the literature as the “earthmover relaxation” yields the best approximation for every
metric labelling problem under the UGC. Specifically, this settles the approximability of
the classic problem of Multiway Cut that belongs to this class.

Developing technical machinery to work with orderings, we show that the fundamental
ordering problem of Maximum Acyclic Subgraph is UG-hard to approximate to a factor
better than 1

2 . More generally, the LC relaxation yields the optimal approximation for every
ordering CSP under UGC.

We also outline some other interesting consequences of the direct connection we establish
between integrality gaps and UG-hardness results. Specifically, we devise an algorithm to
compute the Grothendieck constant - an important mathematical constant determining
whose value remains a long-standing open question.
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Summarizing, we demonstrate that the Unique Games is a common barrier that ex-
isting algorithmic techniques seem to have reached on every problem in large classes like
CSPs, metric labelling problems and ordering CSPs. Furthermore, under UGC, the best
approximation for all these problems is given by one of the simplest semidefinite programs
– the LC relaxation.

Unconditional Lower Bounds The LC relaxation is simple enough that it can be solved
in near linear time up to any constant additive error (see Steurer [151]). This suggests that
a stronger relaxation could yield better approximations to these combinatorial optimization
problems, thus disproving the UGC. In Chapter 12, we obtain preliminary results towards
ruling out this possibility. Specifically, we show that for any constraint satisfaction, metric
labelling or ordering CSP, the SDP integrality gap does not improve on including all valid
constraints on O(2(log logN)1/4

) vectors to the LC relaxation (here N denotes the number of
variables in the combinatorial optimization problem). We also obtain hard instances for
the Balanced Separator problem thereby constructing metric spaces that are locally L1

embeddable yet require large distortiion to embedd in to L1 globally.
This result could be considered as very preliminary evidence for the intractability of

Unique Games. In the final chapter, generalizing the work of Hastad [86], we present
strong NP-hardness result for approximating sparse linear equations over reals.

1.6.1 The Approximation Landscape

Here we succinctly summarize the rough picture of the landscape of approximability that
has emerged in the course of this dissertation.

– Under the UGC, the LC semidefinite program which is arguably one of the simplest
SDP relaxations yields the optimal approximation for every constraint satisfaction
problem, metric labelling or an ordering CSP. All known algorithms for these classes
of problems obtain an approximation weaker than the LC relaxation.

– For the LC relaxation applied to CSPs, there are generic algorithms to round the
fractional solution optimally (to its integrality gap), and also compute the value of
the optimal approximation ratio (integrality gap).

– While the LC relaxation is simple, there is evidence showing that certain more compli-
cated SDP relaxations do not yield any better approximation. Specifically, irrespective
of the UGC, including any additional constraints on up to O(2(log logN)1/4

) vectors in
the LC relaxation does not improve the approximation ratio.
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Chapter 2

PRELIMINARIES AND ORGANIZATION OF THESIS

2.1 Relaxation and Rounding: Examples

In this section, we will describe the relaxation-rounding paradigm using two examples Min-
imum Vertex Cover and Max Cut both of which have been fundamental and influential
combinatorial optimization problems.

2.1.1 Minimum Vertex Cover

The Minimum Vertex Cover problem is defined as follows,

Problem 7 (Minimum Vertex Cover). An instance of Minimum Vertex Cover prob-
lem consists of a graph G = (V,E) over a set of vertices V and edges E. A vertex cover is
a set of vertices S, such that every edge in the graph, has one of its endpoints in the set S.
The goal is to find a vertex cover S with the minimum number of vertices.

Relaxation By virtue of the fact that space of feasible solutions is discrete, every com-
binatorial optimization problem can be reformulated as a constrained optimization with
integer valued variables, i.e., an integer program. In other words, given an instance of a
combinatorial optimization problem, we can encode it as maximizing or minimizing a func-
tion of a set of variables that takes certain integer values (say {0, 1}) and are required to
satisfy a set of constraints.

Let G = (V,E) be an instance of the Minimum Vertex Cover problem. To formulate
it as an integer program, introduce a variable Xv for every vertex v in the graph G. The
variable Xv indicates whether the vertex v belongs to the vertex cover or not. Specifically,
Xv is a {0, 1}-variable defined as follows:

Xv =

{

1 if v is in vertex cover ,

0 otherwise .

Consider an edge (u, v) in the graph G. In a valid vertex cover, at least one endpoint of the
edge (u, v) must belong to the vertex cover. Hence, the variables Xu,Xv corresponding to
u and v must satisfy Xu +Xv > 1. The integer program in variables Xv is given by,
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Integer Program for Minimum Vertex Cover

Minimize
∑

v∈V
Xv (size of the vertex cover)

Subject to Xu +Xv > 1 for each edge (u, v) in the graph

Xu ∈ {0, 1} for every vertex u .

Being a reformulation, the resulting integer program is also NP-hard. Technically, the
intractability of the integer program stems from the non-convexity of the space of solutions.
The main idea is to relax the constraints of the integer program so as to make it tractable.
Specifically, we will relax the condition that the variables are to be assigned values 0 or
1 only. We will let the variables Xu to take real values in the range [0, 1]. The resulting
relaxation is what is referred to as a linear program, and can be solved efficiently.

Linear Programming Relaxation for Minimum Vertex Cover

Minimize
∑

v∈V
Xv (size of the vertex cover)

Subject to Xu +Xv > 1 for each edge (u, v) in the graph

0 6 Xu 6 1 for every vertex u .

Clearly, any solution to the integer program is also a valid solution to the linear program-
ming relaxation. In other words, the relaxation permits more solutions than the original
integer program. Hence, it immediately follows that the optimum of the linear program is
at most the optimum of the integer program. Formally, if opt(G) denotes the size of the
minimum vertex cover of graph G, and Conv(G) denotes the optimal value of the linear
program, then Conv(G) 6 opt(G).

The value of Conv(G) serves as an efficiently computable estimate for opt(G). Of course,
it is completely unclear at this point how good an estimate Conv(G) is. The worst case ratio
between opt(G) and its estimate Conv(G) over all graphs G is referred to as the integrality
gap of the relaxation. The “hard” graphs for the relaxation, where the worst case ratio is
achieved are referred to as em integrality gap instances. Integrality gap serves as a coarse
measure of the quality of the estimate opt(G) and more refined measures will be used
whenever possible.

Consider the complete graph on 5 vertices, denoted by K5. It is easy to check that
Xv = 1/2 is a feasible solution to the linear program. Thus, conv(K5) 6 5 × 1/2 = 2.5 while
the size of every vertex cover is at least 4. Consequently, the integrality gap of the relaxation
is at least 4/2.5 = 1.6. More generally, the gap between the two quantities approaches 2 on
complete graphs with larger and larger size.

Rounding The value conv(G) is only an estimate for the value of the minimum vertex
cover (opt(G)). However, recall that our initial goal was to find a vertex cover of as small
a size as possible. Furthermore, as yet there is no guarantee on the quality of the estimate
conv(G).
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On optimizing the linear program, we obtain an assignment of values in the range [0, 1]
to the variables {Xv}v∈V . The value of the variable Xv was intended to indicate whether
vertex v belonged to the vertex cover or not. Thus, assigning Xv to some real value (say
0.9) seems to have no apparent meaning in the context of the graph G.

In this light, we will “round” the real valued solution Xv into an integral assignment X∗v
taking {0, 1} values, while losing a small factor on the size of the vertex cover. Specifically,
for each vertex v, if Xv > 1/2 then set X∗v to 1, else assign X∗v to 0. Notice that for any
edge (u, v), the constraint Xu + Xv > 1 ensures that at least one Xu and Xv is > 1/2.
Consequently, at least one of X∗u and X∗v is set to 1 for every edge (u, v). Hence, X∗u is
a valid solution to the integral program, and the above procedure is a correct rounding
scheme.

Now we will analyze the performance of the above rounding scheme. Observe that, for
each vertex v, X∗v is always at most 2 ×Xv by definition. Therefore, the size of the vertex
cover is bounded by

∑

v∈V
X∗v 6

∑

v∈V
2Xv = 2 · Conv(G)

There are two important conclusions to be derived from the above inequality. First,
since Conv(G) 6 opt(G), the value of the integral solution X∗v is at most twice the size
of the optimal vertex cover. Therefore, the linear programming relaxation along with the
above rounding scheme yields a 2-approximation to the Minimum Vertex Cover problem.
Furthermore, by definition of opt(G), any vertex cover of G has value at least opt(G). In
particular, this implies that

opt(G) 6
∑

v∈V
X∗v 6 2 · Conv(G) .

Thus the rounding scheme serves as a proof that the worst case ratio between opt(G) and
Conv(G) (the integrality gap) is at most 2.

In general, given an instance = of a combinatorial optimization problem, it is reformu-
lated as an integer program, and then a convex relaxation Conv(=) of the integer program
is constructed. The value of the optimum opt(Conv(=)) for the relaxation is an “estimate”
for the actual optimum value opt(=) (which is NP-hard to compute). The integrality gap of
the relaxation is a measure of how good an estimate opt(Conv(=)) is for the actual optimum
opt(=).

The optimal solution to the relaxation will probably consist of an assignment of real or
possibly vector values to the variables. In the next step, a procedure (rounding scheme) is
devised to “round” the real or vector valued assignment to the variables, into an integer
assignment, with a small loss in the objective value. The relaxation and rounding scheme
together yield an approximation algorithm.

2.1.2 The Max Cut Example

Problem 8 (Max Cut). Given a graph G = (V,E) with vertices V = {v1, · · · , vn} and
edges E, find a partition S ∪ S̄ = V of the set of vertices that maximizes the number of
edges cut by the partition. An edge e = (vi, vj) is cut, if vi ∈ S and vj ∈ S̄ or vice versa.
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In their seminal work, Goemans and Williamson [65] used a semidefinite programming
relaxation to obtain a 0.878-factor approximation for the problem.

Relaxation First, we will formulate the Max Cut problem as a quadratic program. For
each vertex vi ∈ V , introduce a variable xi that takes one of two values +1 or −1. The
value of xi indicates which set in the partition S ∪ S̄, the vertex vi lies in. Formally, let

xi =

{

+1 if vi ∈ S
−1 if vi ∈ S̄

In this encoding, an edge e = (vi, vj) is cut if and only if xi 6= xj. In fact, the following
holds

(xi − xj)
2

4
=

{

1 if the edge(vi, vj) is cut

0 otherwise

Therefore, the Max Cut problem on the graph G can be expressed as the following
quadratic program in the variables {xi}ni=1,

Maximize
1

4

∑

(vi,vj)∈E
(xi − xj)

2 (Number of edges cut)

Subject to x2
i = 1 ∀i, 1 6 i 6 n (xi is either + 1 or − 1)

Being an exact reformulation of the Max Cut problem, the above quadratic program
is NP-hard to optimize exactly. Consequently, we will consider a convex or more precisely
semidefinite relaxation of the above program.

Recall that the variables xi are equal to ±1, or equivalently each xi is a one-dimensional
vector of length 1. Relaxing this constraint, we will require the variables xi to be unit vectors
in a high dimensional space. More precisely, we will now associate a n-dimensional unit
vector vi to each vertex vi. This yields the following semidefinite programming relaxation.

GW(G) Relaxation (GW)

Maximize
1

4

∑

(vi,vj)∈E
‖vi − vj‖2

2 (Total Squared Length of Edges)

Subject to ‖vi‖2
2 = 1 ∀i, 1 6 i 6 n (all vectors vi are unit vectors)

Every feasible solution {xi}ni=1 to the original quadratic program is also a feasible solution
to the GW SDP relaxation, since the variables xi can be thought of as a n-dimensional vectors
with n− 1 coordinates equal to 0. Hence, the GW SDP relaxation is indeed a relaxation of
the quadratic program.
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It is well known that the above convex relaxation can be optimized efficiently [65], i.e.,
for any ε > 0, the optimum can be approximated to within ε in time polynomial in log 1/ε
and the size of the graph G.

Being a relaxation, it is immediate that

GW(G) > opt(G) (2.1)

where opt(G) denotes the value of the maximum cut of G. The integrality gap of the
relaxation GW is the maximum ratio between the two quantities over all graphs G, i.e.,

GapGW = min
graph G

opt(G)

GW(G)
.

Often, the term “integrality gap” is used to refer to the graph G for which the above ratio
is minimized.

Rounding On solving the GW SDP relaxation, we obtain a set of unit vectors {vi}ni=1

on the n-dimensional space R
n. Recall that the vector vi corresponds to the vertex vi in

the graph G. Hence, the optimum solution yields an embedding of the graph G on to the
n-dimensional unit sphere.

The following rounding scheme is a randomized procedure that takes as input a feasible
solution to the GW SDP and obtains a cut in the original graph G.

Halfspace Rounding Scheme (RoundH)
Input: A feasible solution {vi}ni=1 for the GW SDP for a graph G = (V,E).

– Sample a random hyperplane H passing through the origin.

The hyperplane H induces a partition of the n-dimensional unit sphere Sn into two
parts of equal hemispheres (say S+

n and S−n ).

– Output the cut induced by the hyperplane H on the graph G. Formally, output the
cut A ∪ Ā where A = S+

n ∩ V and Ā = S−n ∩ V.

Now we will estimate the expected value of the cut output by the above procedure.
Consider an edge e = (vi, vj) in the graph G. Let θ be the angle between the vectors
vi and vj given by θ = arccos(〈vi,vj〉). Note that a random hyperplane H projects to a
random line passing through the origin in the plane containing vi and vj. Therefore, we see
that,

Pr
H

[e = (vi, vj) is cut] =
arccos(vi · vj)

π

Let us suppose we execute the halfspace rounding scheme on the optimum solution
{vi}ni=1 to the SDP. Let RoundH(G) denote the expected value of the cut output by the
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above rounding procedure. Hence,

RoundH(G) = E
H

[Number of edges cut by H] =
∑

(vi,vj)∈E

arccos(vi · vj)
π

To bound the approximation ratio, the above quantity is to be compared with the
optimum cut of the graph G. Instead, by Equation 2.1, we can compare the above quantity
with the SDP value of the solution {vi}ni=1,

val({vi}ni=1) =
1

4

∑

(vi,vj)∈E
‖vi − vj‖2

2

We will use a “local analysis” (one edge at a time) to compare the two quantities. Specifi-

cally, an edge (vi, vj) contributes 1
4‖vi−vj‖2

2 = (1−vi·vj)/2 to GW(G), while it adds
arccos(vi·vj)

π
to RoundH(G). Now we will appeal to the following easy fact:

Fact 2.1.1. For x ∈ [−1, 1], arccos(x)
2π > αGW × (1−x)

2 where αGW is an absolute constant
greater than 0.878.

Consequently, for each edge (vi, vj) we have

arccos(vi · vj)
2π

> αGW × ‖vi − vj‖2
2

4

Summing the above inequality over all edges we get RoundH(G) > αGW×GW(G). As GW(G)
is at least the value of the maximum cut of G (opt(G)), we have RoundH(G) > αGW×opt(G),
i.e., RoundH along with the GW SDP relaxation gives a αGW-factor approximation algorithm
for Max Cut.

Moreover, the rounding scheme RoundH serves as a constructive proof that the integrality
gap of the GW SDP is at most αGW. Specifically, by definition, the value of the cut returned
by RoundH, is at most the optimum cut of G, i.e., opt(G) > RoundH(G). As an immediate
conclusion, for all graphs G we have,

opt(G) > RoundH(G) > αGW × GW(G) .

2.2 Definitions and Terminology

To begin with, we present the formal definition of an approximation algorithm.

Definition 2.2.1. A randomized algorithm A is said to be an α-approximation algorithm
for the maximization problem Λ, if for every instance = of the problem:

α = inf
=∈Λ

A(=)

opt(=)

Here A(=) denotes the expected value of the solution output by the algorithm A, while
opt(=) denotes the optimum solution to instance =. The infimum is taken over all in-
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stances = of the maximization problem Λ. For minimization problems, an α-approximation
algorithm should satisfy α = sup=∈Λ

A(=)
opt(=) .

Thus, the approximation ratio achieved by an algorithm A for a maximization problem
Λ, is given by inf=∈Λ

A(=)
opt(=) .

In many cases, the approximation factor is a function of the size of the input instance
=. Then, the approximation factor α(n) as a function of the input size n can be defined as

α(n) = inf
=∈Λ
|=|=n

A(=)

opt(=)

The approximation ratio is a somewhat crude measure of the performance of an approx-
imation algorithm. For several combinatorial optimization problems such as Max Cut, the
difficulty of approximating an instance =, varies considerably with the value of the optimum
opt(=). For instance, a Max Cut instance = that is completely satisfiable (all edges can
be cut by a partition) can be solved optimally in polynomial time. On the other hand, the
Max Cut problem is seemingly hardest to approximate on instances where the optimal cut
separates roughly 75% of the edges.

To take advantage of varying difficulty of approximation with the value of the optimum,
it will be useful to consider a refined measure of quality of approximation. Specifically, we
define the approximation curve of an algorithm is defined as follows:

Definition 2.2.2. Let A be a randomized algorithm for a maximization problem Λ. The
approximation curve α(c) of an algorithm A, parametrized by the value of the optimum c,
is the smallest value of the solution returned by A on instances with optimum value c, i.e.,

α(c) = inf
=∈Λ

opt(=)=c

A(=)

For minimization problems, the infimum in the above definition is replaced by a supremum.

Remark 2.2.1. The approximation ratio can be inferred from the approximation curve as
α = infc α(c)/c.

Remark 2.2.2. In the definition of the approximation curve, the range of values for the
parameter c is unspecified. Yet in most cases, after a suitable normalization, the optimum
can be assumed to lie in the range [−1, 1].

Relaxations, Integrality Gaps and Rounding Schemes Let Conv denote a convex
relaxation either a linear or a semidefinite program for a maximization problem Λ. For an
instance =, let Conv(=) denote the value of the optimum solution to the relaxation Conv on
the instance =.

The integrality gap is a coarse measure of the quality of the estimate obtained by the
convex relaxation Conv for the optimization problem Λ. Formally, the integrality gap of
Conv is defined as

GapRatioΛ,Conv = inf
=∈Λ

opt(=)

Conv(=)
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Again, it is useful to measure the integrality gap as a function of the optimum value of
the instance. In this light, we define the integrality gap curve or simply gap curve.

Definition 2.2.3. For a convex relaxation Conv of a maximization problem Λ, the inte-
grality gap curve GapConv(c) is defined as

GapΛ,Conv(c) = inf
=∈Λ

Conv(=)=c

opt(=)

Let (V ,µ) be a feasible solution to the convex relaxation Conv of the instance =. The
solution (V ,µ) could consist of real or possibly vector valued assignment to variables in the
convex relaxation Conv. Let val(V ,µ) denote the objective value of the solution (V ,µ).

To obtain an integral solution, the assignment (V ,µ) is to be rounded into an integral
assignment. Formally, the Round procedure takes as input a feasible solution to the relax-
ation Conv, and outputs a solution to the original instance =. Let Round(V ,µ) denote the
expected value of solution returned by the randomized procedure Round.

Definition 2.2.4. For a maximization problem Λ, the rounding ratio of a randomized
procedure Round is the following worst case ratio

RoundRatioΛ,Conv = inf
=∈Λ

Round(V ,µ)

val(V ,µ)

A rounding scheme is said to achieve the integrality gap, if the rounding ratio is equal
to the integrality gap ratio for the relaxation.

Here again, we define the rounding curve RoundConv(c) along the lines of approximation
and integrality gap curves.

RoundΛ,Conv(c) = inf
val(V ,µ)=c

Round(V ,µ)

For the sake of brevity, we will drop either Λ or conv from the subscripts, when it is
clear from the context.

Remark 2.2.3. Set (V ,µ) to be the optimal solution to the relaxation Conv, i.e., val(V ,µ) =
conv(=). By definition of opt(=), we have Round(V ,µ) 6 opt(=). Therefore, the rounding
curve RoundConv(c) is always at most the integrality gap curve Gapconv(c) of the relaxation,
for a maximization problem.

2.3 Problem Classes

The major problem classes considered in this thesis are constraint satisfaction, graph la-
belling and ordering constraint satisfaction problems. Definitions of specific problems con-
sidered in the thesis have been collected in Appendix A.
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Constraint Satisfaction Problems A large number of fundamental combinatorial op-
timization problems like Max Cut and Max 3-Sat fall under the category of constraint
satisfaction problems (CSP). The input to a CSP consists of a set of variables that can be
assigned values from a finite domain (say {0, 1}), and a set of constraints among them. The
objective is to find an assignment that satisfies the maximum number of constraints. By
restricting the type of constraints to different sets of predicates, one obtains different CSPs.
For instance, Max 3-Sat is a CSP over boolean variables where all the constraints are of
the form `i ∨ `j ∨ `k = TRUE, where each `i, `j , `k are either variables or their negations.

Constraint satisfaction problems arise naturally in a vast variety of applications in ar-
tificial intelligence, planning and other areas. The study of approximability of constraint
satisfaction problems is a rich and influential area, with problems such as Max Cut, Max
3-Sat that have been testing grounds for new algorithmic and hardness ideas, a large num-
ber of algorithms for specific CSPs based on semidefinite programming, and finally the
development of techniques such as long-code testing [86].

Graph Labelling Problems The simplest and probably most familiar problem in this
class is the minimum (s, t) cut problem. Given two terminals s and t in a graph G, the goal
is to split the graph into two parts separating s and t, while cutting the minimum number
of edges. This problem can be solved precisely in polynomial time following the classic work
of Ford and Fulkerson.

The 3-way cut problem is a natural generalization of the minimum (s, t) cut problem
where there are three terminals that need to be separated from each other. This close
variant of minimum (s, t) cut problem already turns turns out to be NP-hard. The best
known algorithm for the problem achieves an approximation ratio of 12

11 [46]. Separating
not three, but an arbitrary number of terminals is the objective in the Multiway Cut
problem. Generalizing this problem further, one obtains the class of 0-extension and
Metric Labeling problems. Many problems in this class arise naturally in applications
to computer vision [107], metric embeddings [108] and analysis [113].

Ordering Constraint Satisfaction Problems Given the results of games between sev-
eral football teams, let us suppose we wish to rank the teams. Specifically, we would like to
find a ranking that agrees with the results of maximum number of games. Here the result
of a game agrees with the ranking if the higher ranked among the two teams wins. For-
mally, the problem can be restated as follows: Given a directed graph find an ordering of its
vertices that maximizes the number of edges in the forward direction. This problem called
the Maximum Acyclic Subgraph problem is perhaps the most well-known problem in
this class. In particular, the Maximum Acyclic Subgraph figured in Karp’s early list of
NP-hard problems [94].

More generally, in an ordering constraint satisfaction problem, there are n objects that
are to be ordered. There are constraints such as “A is before B”, “B is between A and C” on
the ordering. The goal is to find an ordering that satisfies the maximum number of clusters.
By restricting the type of constraints between objects, one obtains various ordering CSPs.
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2.4 Generalized Constraint Satisfaction Problems

In this thesis, we define a class of combinatorial optimization problems referred to as the
Generalized Constraint Satisfaction Problems (GCSP). This class is a generalization of
the traditional constraint satisfaction problem, which encompasses both maximization and
minimization problems.

In a Constraint Satisfaction Problem (CSP), the goal is to satisfy the maximum number
of a set of constraints. Formally, a CSP Λ is specified by a family of predicates over a finite
domain [q] = {1, 2, . . . , q}. Every instance of the CSP Λ consists of a set of variables V,
along with a set of constraints P on them. Each constraint in P consists of a predicate from
the family Λ applied to a subset of variables. The objective is to find an assignment to the
variables that satisfies the maximum number of constraints. The arity k of the CSP Λ is
the maximum number of inputs to a predicate in the family Λ.

A constraint can be thought of as a payoff that returns either 0 or 1 depending on whether
it is satisfied. Roughly speaking, a GCSP is the natural generalization where the constraints
are replaced by bounded real-valued payoff functions, and the goal is to maximize the total
payoff. Formally,

Definition 2.4.1. A Generalized Constraint Satisfaction Problem (GCSP) Λ is specified
by a family of payoff functions Λ = {P |P : [q]k → [−1, 1]}. The integer k is referred to as
the arity of the GCSP Λ, while q denotes the domain size.

A payoff function is said to be of type Λ if it belongs to the family Λ.

Definition 2.4.2 (Λ-GenerlizedConstraintSatisfactionProblem (GCSP)). An in-
stance = of Generalized Constraint Satisfaction Problem Λ is given by = = (V,P) where

– V = {y1, . . . , ym} is the set of variables that are to be assigned values in [q].

– A function P ′ : [q]V → [−1, 1] is said to be of type Λ, if P ′(y) = P (yi1 , · · · , yik) for
some P ∈ Λ and some yi1, yi2 , . . . , yik ∈ V. P is a probability distribution over a
payoffs of type Λ.

The objective is to find an assignment y ∈ [q]V to the variables that maximizes the
expected payoff denoted by val(y), i.e.,

val(y) = E
P∼P

[

P (y)
]

.

We define the value opt(=) as

opt(=)
def
= max

y∈[q]V
val(y) .

For a payoff P ′ of type Λ, let V (P ′) ⊆ V denote the set of variables on which P ′ depends
on. Further, the arity of the GCSP Λ will be denoted by k. Now let us see how the classic
CSP Max Cut can be posed as a GCSP.
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Example 2.4.1. The Max Cut problem is a GCSP over the domain [2] = {0, 1}, with a
single payoff function P given by:

P (0, 0) = P (1, 1) = 0 P (0, 1) = P (1, 0) = 1

The 4-cycle graph is an instance of Max Cut problem. It would be specified as

= =
{

V = {y1, y2, y3, y4},P = uniform distribution over {P (y1, y2), P (y2, y3), P (y3, y4), P (y4, y1)}
}

Notice that the definition of GCSP does not restrict the Pay-Off functions to be positive
or negative. By permitting negative payoffs, the framework encompasses certain minimiza-
tion problems too. The idea is that, if we wish to minimize a positive function say f , then
it is equivalent to maximizing the negative function −f .

Example 2.4.2 (3-Way Cut). 3-Way Cut problem is a minimization problem in the
class of graph labelling problems mentioned earlier. In 3-Way Cut, the input consists of a
graph with three designated terminals. The goal is to partition the graph, so as to separate
the three terminals, while minimizing the number of edges cut. We can

The 3-Way Cut can be formulated as GCSP over the domain [3] = {0, 1, 2}, with four
payoff functions {Pe, P1, P2, P3} given by

Pe(x, y) =

{

−1 if x 6= y

0 if x = y
Pi(x) =

{

−1 if x 6= i

0 otherwise

Given a graph G = (V,E) and three terminals t1, t2, t3, we can write: V = {yv|v ∈ V −
{t1, t2, t3}}, and for each edge e,

– If e = (u, v) where neither u or v is a terminal, then introduce the payoff Pe(yu, yv).

– For an edge e = (u, ti), introduce the payoff Pi(u).

It is easy to check that the total payoff is exactly the negative of the number of edges cut,
by the partition induced by the assignment to variables yv.

More generally, all constraint satisfaction problems and graph labelling problems over
a constant number of labels, can be formulated as GCSP. Thus, the framework includes
maximization problems such as Max Cut, Max 2-Sat, Unique Games and Minimization
problems such as Multiway Cut , Metric Labeling and Min-SAT.

Remark 2.4.1. The GCSP definition requires a normalization, so as to ensure that the
P is a probability distribution over payoffs. This ensures that the value of any solution to
a GCSP instance is in the range [−1, 1]. In particular, the integrality gap curve and the
approximation curve are defined in the range [−1, 1].

Remark 2.4.2. Unless otherwise mentioned, the domain size q of a GCSP is assumed to
be an absolute constant. At times, it will be useful to consider GCSP with a domain size
growing with the input (say n). Specifically, in constructing relaxations for ordering CSPs,
it is convenient to think of them as a GCSP over a growing domain.
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2.5 Label Cover and Unique Games

The Label Cover problem which serves as a starting point for numerous reductions in
hardness of approximation is defined as follows:

Definition 2.5.1. An instance of Label Cover (c, s) is given by Φ = (WΦ∪VΦ, E, [R],Π)
consists of a bipartite graph over node sets VΦ,WΦ with the edges E between them, such
that all nodes in VΦ are of the same degree. Also part of the instance is a set of labels [R],
and a set of mappings Π = {πv←w : [R] → [R]} for each edge e = (w, v) ∈ E. An assignment
A of labels to vertices is said to satisfy an edge e = (w, v), if πv←w(A(w)) = A(v). The
problem is to distinguish between the following two cases:

– There exists an assignment A that satisfies at least a fraction c of the edge constraints
Π.

– Every assignment satisfies less than a fraction s of the constraints in Π.

The following strong hardness result for Label Cover has been the starting point for
numerous reductions in hardness of approximation.

Theorem 2.1. [140, 15] There exists an absolute constant γ > 0 such that for all large
enough integer constants n, the gap problem Label Cover (1, 1

Rγ ) is NP-hard, even when
the input is restricted to label cover instances with the size of the alphabet n.

From the PCP theorem [15], it is easy to show that there exists an absolute constant
ε such that Label Cover (1, 1 − ε) is NP-hard on instances where the size of alphabet is
restricted to a small absolute constant (say 7). With this as the starting point, one applies
the Parallel Repetition theorem [140] to obtain hardness of label cover instances over larger
alphabet. On applying k-wise parallel repetition, the 1 vs 1 − ε gap is amplified to 1 vs ck

for some absolute constant c, while the alphabet size also grows exponentially in k. This
yields the above inapproximability result with the required polynomial dependence between
the alphabet size n and the soundness 1

Rγ .

2.5.1 Unique Games Conjecture

Definition 2.5.2. An instance of Unique Games represented as Φ = (WΦ∪VΦ, E,Π, [R]),
consists of a bipartite graph over node sets WΦ,VΦ with the edges E between them. Also part
of the instance is a set of labels [R] = {1, . . . , R}, and a set of permutations πv←w : [R] → [R]
for each edge e = (w, v) ∈ E. An assignment A of labels to vertices is said to satisfy an
edge e = (w, v), if πv←w(A(w)) = A(v). The objective is to find an assignment A of labels
that satisfies the maximum number of edges.

For sake of convenience, we shall use a version of the Unique Games Conjecture which
was shown to be equivalent to the original conjecture [103]. To this end, we define the
notion of strong satisfiability below.
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Definition 2.5.3. An assignment A to a UG instance Φ is said to strongly satisfy a vertex
w ∈ WΦ if it satisfies all the edges (v,w) incident at w. The instance Φ is said to be (1−γ)-
strongly satisfiable if there exists an assignment A that strongly satisfies (1 − γ)-fraction of
the vertices w ∈ WΦ.

First, we define the following decision version of the Unique Games problem.

Problem 9 (Unique Games (R, 1 − γ, δ)). Given a bipartite Unique Games instance
Φ = (WΦ ∪ VΦ, E,Π = {πv←w : [R] → [R] | e = (w, v) ∈ E}, [R]) with number of labels R,
distinguish between the following two cases:

– (1 − γ)-strongly satisfiable instances: There exists an assignment A of labels such that
for 1 − δ fraction of vertices w ∈ WΦ are strongly satisfied, i.e., all the edges (w, v)
are satisfied.

– Instances that are not δ-satisfiable: No assignment satisfies more than a δ-fraction of
the edges E.

The Unique Games Conjecture asserts that the above decision problem is NP-hard when
the number of labels is large enough. Formally,

Conjecture 2.5.1 (Unique Games Conjecture [103]). For all constants γ, δ > 0, there
exists large enough constant R such that Unique Games (R, 1 − γ, δ) is NP-hard.

For conceptual clarity, we will state our results in terms of the notion of UG-hardness.

Definition 2.5.4 (UG-hardness). A decision problem Λ is UG-hard, if for all γ, δ > 0,
there exists a polynomial-time reduction from Unique Games (R, 1 − γ, δ) to Λ.

Assuming the UGC, a decision problem Λ which is UG-hard, is in fact NP-hard.

2.6 Results and Organization of thesis

In Chapter 2, we present some basic definitions, set up notation and recall some mathe-
matical preliminaries. The rest of the thesis is divided into three parts, the algorithmic
techniques, the Unique Games barrier and unconditional lower bounds.

2.6.1 Algorithmic Techniques

Chapter 4: Linear and Semidefinite Relaxations In this chapter, we present generic
linear and semidefinite programming relaxations that are applicable to the class of general-
ized constraint satisfaction problems (GCSP). The generic SDP relaxation LC unifies many
well known semidefinite programs for constraint satisfaction problems in literature. In fact,
we will demonstrate that the SDP relaxation LC is stronger than any relaxation used in
literature for constraint satisfaction problems. Yet the SDP relaxation LC is surprisingly
simple both conceptually, and in terms of complexity. Specifically, for CSPs, the LC re-
laxation can be solved in near-linear time by the techniques of [13]. At the end of the
chapter, we show that the generic SDP relaxation LC satisfies a certain robustness property
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by which near-feasible solutions to LC can be “corrected” to make them completely feasible.
This robustness property is surprisingly useful, both in solving the program efficiently, and
rounding it.

Chapter 5: Generic Rounding Scheme We exhibit a generic rounding scheme that
unconditionally achieves the integrality gap of the LC relaxation for every CSP. More gen-
erally, the rounding curve of the generic scheme for every GCSP Λ, is within an additive
error η of the integrality gap curve of the relaxation LC. The error η is a parameter of the
algorithm which can be chosen to be any small constant.

As the LC SDP is the stronger than any relaxation used in literature for a CSP, the
generic rounding scheme yields a single algorithm for all CSPs, which is at least as good as
all the known algorithms [65, 32, 114, 93, 79, 35, 41, 36, 62, 78, 122, 162, 66, 54, 156, 161, 164]
for various CSPs. Furthermore, we will see in Chapter 7 that it is UG-hard to obtain an
approximation better than that obtained by the generic rounding scheme.

The generic rounding scheme can be succinctly summarized as follows: Reduce the
dimension of the SDP solution by randomly projecting it into a constant dimensional space,
identify all variables whose projected vectors are close to each other, and solve the resulting
instance by brute force!

2.6.2 The Unique Games Barrier

In this part, we demonstrate that UG-hardness is a common barrier that approximation
algorithms have reached, on a surprising variety of combinatorial optimization problems.

Chapter 6: Dictatorship Tests, Integrality Gaps and UG-hardness results The
generality of the UG-hardness results shown in the thesis, stems from the formal connection
it establishes between integrality gaps and UG-hardness results. In fact, the direct reduction
between integrality gaps and UG-hardness results is one of the main contributions of the
thesis.

The direct conversion from integrality gaps to UG-hardness results is to be seen in the
context of other interesting connections that have emerged in recent years. In particular,
the notions of SDP integrality gaps, UG-hardness results and “Dictatorship tests” - which
are constructs useful in hardness reductions, have been intimately tied to each other in
many recent works [99, 104] including the thesis. While a conversion from dictatorship
tests to UG-hardness results was more or less demonstrated in [99], the work of Khot et al.
[104] exhibited a reduction from UG-hardness results to SDP integrality gaps. This work
completes the cycle of reductions by exhibiting a generic conversion from SDP integrality
gaps to dictatorship tests.

In Chapter 6, we survey all these emerging connections with Max Cut as a running
example. In subsequent chapters, we will harness these connections to obtain UG-hardness
results, rounding schemes and SDP integrality gaps for several classes of problems.

There is another interesting facet to the direct reduction between SDP integrality gaps
to Dictatorship tests exhibited by the thesis. The analysis of the reduction yields an efficient
rounding scheme for certain semidefinite programs! This exposes the intriguing connection
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between rounding schemes for semidefinite programs - an algorithmic construct, and dicta-
torship tests - a notion useful in hardness reductions. Analogous connection was discovered
earlier in the context of a certain dichotomy conjecture for constraint satisfaction problems.
In the final section of Chapter 6, we survey this intriguing connection and the implications
of the thesis on the dichotomy conjecture in detail.

Chapter 7: Generalized Constraint Satisfaction Problems In this chapter, we ex-
hibit the generality of the connections surveyed in Chapter 6, by exhibiting the connections
for every generalized constraint satisfaction problem. For instance, we show that for every
GCSP Λ, it is UG-hard to approximate Λ to an approximation better than the integrality
gap of the LC relaxation. Not only does this unify several well known UG-hardness results,
it settles the approximability of every CSP, if the UGC is true.

Harnessing the connection between dictatorship tests and rounding schemes, we also
obtain a generic rounding scheme for the LC relaxation of every GCSP, that is guaranteed
to achieve the integrality gap.

Surprisingly, the hardness reduction also yields a generic rounding scheme that achieves
the integrality gap of the LC relaxation. In particular, the hardness reduction exposes an
intriguing connection between rounding schemes for semidefinite programs - an algorithmic
construct, with dictatorship tests - a notion useful for showing hardness results. Further-
more, we exhibit an algorithm to compute the integrality gap curve of the LC relaxation to
any desired accuracy.

Chapter 8: Graph Labeling Problems For every problem in this class, the best known
approximation ratios [46, 30, 53, 107, 71, 39, 6] are achieved using linear programming. More
precisely, all known algorithms use a linear program that is either equivalent or strictly
weaker than the so called “earth-mover relaxation”. However, the hardness results [92,
47] known for the problems in this class, did not match the best known approximation
algorithms.

In Chapter 8, we show that for every graph labeling problem Λ, it is UG-hard to approx-
imate the problem to a factor better than the integrality gap of the earth mover relaxation
(EM-LP). Recall that the UG-hardness results in Chapter 6 and Chapter 7, matched the
integrality gap of a semidefinite program. For the class of graph labelling problems, the
UG-hardness we obtain matches the integrality gap of the linear program. Note that this
is a stronger conclusion since linear programs are in general weaker than their semidefinite
counterparts. To obtain this stronger UG-hardness result, we present a different reduction
from integrality gaps to UG-hardness, than the one in Chapters 6 and 7.

Chapter 9: Ordering Constraint Satisfaction Problems The approximability of
Maximum Acyclic Subgraph is one of the long-standing open questions in the area of
approximation algorithms. While the best known algorithm is the naive algorithm that
yields a 1/2-approximation, obtaining a 0.99-approximation to the problem has not been
ruled out.

In Chapter 9, we show that it is UG-hard to approximate the Maximum Acyclic
Subgraph problem to a factor greater than 1

2 . This UG-hardness result is the first tight
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inapproximability result for an ordering problem. While the central theme is still converting
SDP integrality gaps to UG-hardness results, implementing the program for ordering CSPs
poses considerable difficulties. In overcoming these technical hurdles, we develop technical
machinery such as the notion of influences for orderings.

The techniques developed in the case of Maximum Acyclic Subgraph readily gener-
alize to all ordering CSPs. Specifically, we show that for every Ordering CSP, it is UG-hard
to obtain an approximation ratio better than the integrality gap of the explicit semidefinite
program similar to the LC relaxation.

Chapter 10: Grothendieck Problem Formally, the input to the Grothendieck problem
is a matrix A = (aij)i,j and the goal is to solve the following optimization over {−1, 1} values:

Maximize
∑

i,j

aijxiyj for xi, yj ∈ {−1, 1} .

A natural SDP relaxation yields a constant factor approximation for the Grothendieck
problem. In fact, the well known Grothendieck inequality from functional analysis, is equiv-
alent to the fact that the integrality gap of the SDP relaxation is a constant. The value of the
integrality gap known as the Grothendieck constant (KG) is a fundamental mathematical
constant determining whose value remains a long standing open problem.

In Chapter 10, we utilize the connections outlined in Chapter 6 to obtain hardness results
and algorithms for the Grothendieck problem. Naively translating the techniques from
Chapter 6 runs into certain technical difficulties, since the additive error incurred in the
reductions presented in Chapter 6, could completely alter the approximation factor. Using
a bootstrapping argument, similar to the one used in the proof of Grothendieck inequality,
we translate the connections of Chapter 6 into this setting.

Specifically, using black box reductions from integrality gaps to UG-hardness results,
we show that it is UG-hard to approximate the Grothendieck problem to a factor better
than the Grothendieck constant KG. By virtue of the connection between dictatorship
tests and rounding schemes, this also yields a rounding scheme for the SDP relaxation for
Grothendieck problem, that achieves the integrality gap (an approximation factor equal to
KG).

More importantly, as the Grothendieck constant KG is the integrality gap of a SDP, we
obtain an algorithm to compute it to any desired accuracy, thereby taking a step towards
determining this fundamental mathematical constant.

Chapter 11: Hardest CSP A natural question regarding the approximability of CSPs
is,

Among all CSPs over a domain {0, 1, 2, . . . , q − 1}, with each constraint on at
most k variables, which CSP is the hardest to approximate?

Using techniques from additive combinatorics, Samorodnitsky and Trevisan [144] exhib-
ited a boolean CSP that is UG-hard to approximate by a factor better than O( k

2k ). Indeed,

an algorithm of Charikar et al. [32] achieves an approximation of O( k
2k ) for every boolean
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CSP of arity k, thus making this CSP, the hardest to approximate among boolean CSPs.
In Chapter 11, we extend this result to CSPs over larger domains [q] = {1, 2, . . . , q}, again
by appealing to techniques from additive combinatorics. Specifically, for every prime q, we
exhibit a CSP Λ over the domain {0, 1, . . . , q − 1} such that it is UG-hard to approximate

Λ to a factor better than q2k
qk .

2.6.3 Unconditional Lower Bounds

In the final part of the thesis, we obtain hardness of approximation results that hold in-
dependent of UGC. While some of these lower bounds are NP-hardness results, others
are against the special class of semidefinite programming based algorithms. On one hand,
the lower bounds against semidefinite programs support the validity of the Unique Games
barrier, while the NP-hardness results find ways to bypass the need for the notion of UG-
hardness in specific circumstances.

Chapter 12: Limits of Semidefinite Programming In view of the UG-hardness re-
sults, a natural question arises as to whether stronger semidefinite programming relaxations
are sufficient to breach this barrier and disprove the UGC. Or does disproving UGC warrant
the use of a new technique different from semidefinite programming?

Unfortunately, progress towards answering this compelling question has been slow and
difficult. The following possibility is entirely consistent with the existing literature: Even
for Max Cut, which is a fairly well-studied problem, including additional valid inequalities
on every set of five variables in the standard SDP relaxation yields a better approximation
than αGW ≈ 0.878, thus disproving UGC. In Chapter 12, we show that the Unique Games
Conjecture cannot be disproved by a strong SDP relaxation consisting of the vectors along
with all valid inequalities on the inner products of O(2(log logN)1/4

) vectors. Specifically, for
all problems for which a tight Unique Games hardness is known, a stronger SDP that
includes all valid constraints on O(2(log logN)1/4

) vectors does not yield a better approxi-
mation than the UG-hardness. We also obtain optimal integrality gaps for the basic SDP
relaxation strengthened by O((log logN)1/4) rounds of Sherali–Adams lift-and-project.

We wish to point out that for certain problems like Maximum Acyclic Subgraph and
Multiway Cut , integrality gaps for even the simple SDP were unknown.

Furthermore, we show strong SDP integrality gaps for Balanced Separator, and
exhibit an N -point negative-type metric such that every subset of size O(2(log logN)δ

) embeds
isometrically into L1, while the whole metric requires distortion Ω((log logN)α) to embedd
into L1 for some absolute constants α, δ > 0.

Chapter 13: Sparse Linear Systems By the work of Khot et al. [99], the Unique
Games Conjecture is equivalent to the following hardness for solving sparse linear systems:
for every ε, δ > 0, given a system of sparse linear equations of the form xi−xj = cij( mod p),
modulo a number p such that 1 − ε of the equations can be simultaneously satisfied, it is
NP-hard to find an assignment satisfying more than δ-fraction of the equations.

It is natural to ask whether the UGC is equivalent to a similar hardness of solving
sparse linear systems of integers or real numbers. Unfortunately, this question remains
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open. Building on the work of Hastad [86], we show that for every ε, δ > 0, given a system
of sparse (3-variables per equation) linear equations over reals such that 1−ε fraction of the
equations can be simultaneously satisfied, it is NP-hard to find an assignment satisfying
more than δ-fraction of the equations.

While the above result is the natural generalization of the celebrated work of Hastad
[86], the proof of the result is interesting from an alternate perspective. In proving the
result, we obtain an extreme derandomization of Hastad’s 3-query dictatorship test. An
extreme derandomization of this nature could lead to smaller gadgets (dictatorship tests)
for reductions, in turn yielding stronger hardness of approximation results.
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Chapter 3

MATHEMATICAL TOOLS

The goal of this chapter is to develop notation and introduce some of the mathematical
tools used in this dissertation. Each chapter in the dissertation includes a list of dependen-
cies to sections in this chapter.

3.1 Notation

We list below the notations for various sets that appear in the dissertation.
Notation Set

R set of real numbers
C set of complex numbers
[q] {1, 2, . . . , q}
Fq finite field with q elements
Zq {0, 1, 2, . . . , q − 1}
∆q set of standard basis vectors {e1, . . . , eq} in R

q

Nq convex hull of ∆q in R
q

N(S) set of probability distributions over the set S.

For two sets A,B, let AB denote the set of functions from A to B. For notational
convenience, if B = [n] then we will write An instead of A[n]. An element x ∈ An consists of
x = (x(1), . . . , x(n)) where each x(i) ∈ A. Unless otherwise specified we will use superscripts
to index the entries of an element x in a product space An.

For the sake of clarity, we will use different typefaces to indicate the type of objects. As
a rule, we will use boldface to denote multidimensional objects.

Typeface Object

G,L,X ensembles of random variables
ζ,g, `,z,x multidimensional random variables

F ,H one-dimensional real/complex valued functions
F ,H multidimensional real/complex valued functions
F,H one-dimensional multivariate polynomials
F ,H multidimensional multivariate polynomials
F,H one-dimensional functions with range [q]
b,v SDP vectors

3.2 Probability Spaces and Random Variables

A probability space Ω = (E , µ) consists of a set of atoms E and a probability distribution
µ over them. The words “event” and “atom” will be used interchangeably. The notation
E ∈ Ω will denote that atom/event E sampled from the distribution µ.
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A real-valued random variable ` on the probability space Ω is a function ` : E → R from
events to real numbers. Let L2(Ω) denote the set of square-integrable functions over Ω, i.e.
∫

E f
2dΩ 6 ∞. For the most part, we will be interested in finite probability spaces. For a

finite probability space Ω, L2(Ω) is just the set of all functions from E to R. Alternatively,
the vector space L2(Ω) consists of all real-valued random variables over the probability space
Ω. The following natural inner product is defined over the space L2(Ω).

〈`1, `2〉 = E
E∈Ω

[`1(E) · `2(E)]

Definition 3.2.1. For a random variable x, define ‖x‖ = (E[x2])
1
2 . Similarly, for a function

F ∈ L2(Ω), define

‖F‖ = ( E
z∈Ω

[F(z)2])
1
2 ‖F‖∞ = max

z∈Ω
|F(z)|

Fact 3.2.1. For every random variable z, we have ‖z‖ 6 ‖z‖∞

3.3 Harmonic Analysis of Boolean Functions

In numerous applications, the central object of study is a boolean function F : {0, 1}R →
{0, 1}. For reasons that will be clear later, it is convenient to represent the domain of
a boolean function as {±1}R instead of {0, 1}R. Specifically, encode {0, 1} into {±1} as
follows:

0 → 1 1 → −1 .

Using this encoding for the input and the output, we can rewrite F : {0, 1}R → {0, 1} as a
function F : {±1}R → {±1}.

Let us associate the uniform measure over the set {±1}. The space L2({±1}R) consists
of functions over {±1}R, with the natural inner product defined by

〈F ,F ′〉 = E
x∈ZR

2

[F(x)F ′(x)] .

For a subset S ⊆ [R], define the character function χS : {±1}R → {±1} as

χS(x) =
∏

i∈S
x(i) .

The following fact is an immediate consequence of the fact that (x(i))2 = 1 for all i ∈ [R].

Proposition 3.0.1. For S, T ⊆ [R], χS(x)χT (x) = χS∆T (x).

Proposition 3.0.2. The characters {χS |S ⊆ [R]} form an orthonormal basis for L2({±1}R).

Proof. For any S, T ⊆ [R],

〈χS , χT 〉 = E
x
[χS(x)χT (x)] = E

x
[χS∆T (x)] = E

x

[

∏

i∈S∆T

x(i)
]

.
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Using independence of the coordinates x(i), we can rewrite the above expression as,

E
x

[

∏

i∈S∆T

x(i)
]

=
∏

i∈S∆T

E
x
[x(i)] =

{

1 if S∆T = φ

0 otherwise.

�

By virtue of Proposition 3.0.2, any function F : {±1}R → R can be expressed as a linear
combination of the character functions. In particular, one can write F as,

F(x) =
∑

S⊆[R]

F̂S χS(x) ,

where F̂S = 〈F , χS〉 = Ex[F(x)χS(x)]. The quantities {F̂S}S⊆[R] are referred to as the
Fourier coefficients or the Fourier spectrum of F .

Proposition 3.0.3 (Plancherel’s identity). For any two functions F ,F ′ : {±1}R → R,

〈F ,F ′〉 =
∑

S⊆[R]

F̂SF̂ ′S .

On setting F = F ′ we get the Parseval’s identity.

(Parseval’s Identity) E
x
[F2(x)] =

∑

S⊆[R]

F̂2
S

Proof.

〈F ,F ′〉 = 〈(
∑

S⊆[R]

F̂SχS), (
∑

T⊆[R]

F̂ ′TχT )〉

=
∑

S,T⊆[R]

F̂SF̂ ′T 〈χS , χT 〉

=
∑

S⊆[R]

F̂SF̂ ′S (∵ orthonormality of characters.)

�

We will use Var[F ] to denote the variance of the random variable F(x) over a uniformly
random input x.

Proposition 3.0.4.

Var[F ] =
∑

S⊆[R],
S 6=∅

F̂2
S .
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Proof.

Var[F ] = E
x

[

F2(x)
]

−
(

E
x

[F(x)]
)2

=





∑

S⊆[R]

F̂2
S



− F̂∅
2

(using Parseval’s identity and definition of F̂∅)

=
∑

S⊆[R],
S 6=∅

F̂2
S

�

3.3.1 Influences

The influence of a coordinate on a boolean function is a measure of how often a change
in that coordinate affects the value of the function. To define influences formally, let us
denote by x` ∈ {±1}R the vector obtained by flipping the `th coordinate of x ∈ {±1}R.
The influence of the `th coordinate on a boolean function F : {±1}R → {±1} is defined as,

Inf`(F) = Pr
x

[F(x) 6= F(x`)] .

Proposition 3.0.5. For a function F : {±1}R → {±1}, Inf`(F) =
∑

S3` F̂2
S.

Proof. Since the function F takes only {±1} values,

Inf`(F) = Pr
x

[F(x) 6= F(x`)]

=
1

4
E
x

[

(F(x) −F(x`))2
]

=
1

4
E
x









∑

S⊆[R]

F̂SχS(x) −
∑

S⊆[R]

F̂SχS(x`)





2



Since |χS(x) − χS(x`)| = 2 if ` ∈ S and is 0 otherwise.

Inf`(F) = E
x





(

∑

S3`
F̂S χS(x)

)2


 =
∑

S3`
F̂2
S (∵ Parseval’s identity )

�

The notion of influences can be generalized to real valued functions F : {±1}R → {±1}.
To this end, denote let x(−`) denote the vector consisting of all but the `th coordinate of x.

Definition 3.3.1 (Influences). The influence of the `th coordinate on a function F :
{±1}R → R is given by Inf`(F) = Ex(−`)

[

Varx(`) [F(x)]
]

=
∑

S3` F̂2
S .

The following is an immediate consequence of the definition.



35

Proposition 3.0.6. For a function F : {±1}R → R and ` ∈ [R], Inf`(F) 6 Var[F(x)].

Proposition 3.0.7 (Convexity of Influences). Let F be a distribution over functions from
{±1}R to R and let H = E[F ] denote the average function. Then,

E[Inf`(F)] > Inf`(E[F ]) = Inf`(H) .

Proof. By definition and linearity of expectation, we have ĤS = E[F̂S ] for all S ∈ [R].
Writing out the expression for Inf`(H) we get,

Inf`(H) =
∑

S3`
Ĥ2
S =

∑

S3`

(

E[F̂S ]
)2

6
∑

S3`
E[F̂2

S ] = Inf`(F)

by concavity of the function h(x) = x2. �

3.3.2 Noise Stability

The notion of noise stability of boolean functions has numerous applications in computer
science ranging from hardness amplification, to computational learning, property testing to
hardness of approximation.

Fix a point x ∈ {±1}R. The notation y ∼ρ x indicates that the random vector y

is generated by flipping each bit independently with probability (1 − ρ). Formally y =
(y(1), . . . , y(R)) where,

y(`) =

{

x(`) with probability ρ

random bit with probability 1 − ρ

Definition 3.3.2. For ρ ∈ [−1, 1], the noise stability Sρ(F) of a boolean function F :
{±1}R → {±1} is given by

Sρ(F) = 2 Pr
x,y∼ρx

[

F(x) = F(y)
]

− 1 .

Definition 3.3.3. For ρ ∈ [−1, 1], define the operator Tρ on the space of functions
L2({±1}R) as,

TρF(x) = E
y∼ρx

[F(y)] .

Proposition 3.0.8. For a function F ∈ L2({±1}R),

TρF(x) =
∑

S∈[R]

ρ|S|χS(x) .
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Proof. First, observe that Ey(`)∼ρx(`) [y(`)] = ρ · x(`) + (1 − ρ) · 0 = ρx(`). Therefore,

TρF(x) = E
y∼ρx

[F(y)]

=
∑

S∈[R]

F̂S E
y∼ρx

[χS(y)]

=
∑

S∈[R]

F̂S
∏

`∈S
E

y(`)∼ρx(`)
[y(`)] =

∑

S∈[R]

∏

`∈S
ρx(`) =

∑

S∈[R]

ρ|S|χS(x) .

�

Fact 3.3.1. For a boolean function F : {±1}R → {±1}, Sρ(F) = 〈F ,TρF〉 =
∑

S∈[R] ρ
|S|F̂2

S.

Proof.

Pr
x,y∼ρx

[F(y) = F(x)] = E
x,y∼ρx

[

1 + F(x)F(y)

2

]

,

=
1

2
+

1

2
E
x

[

F(x) E
y∼ρx

[F(y)]

]

,

=
1

2
+

1

2
E
x

[F(x)TρF(x)] =
1

2
+

〈F ,TρF〉
2

.

The conclusion follows by using Plancherel’s identity (Fact 3.0.3). �

3.3.3 Attenuated Influences

Definition 3.3.4 (Attenuated Influences). For a function F : {±1}R → R, the ε-attenuated
influence of a coordinate ` is given by Inf`(T1−εF).

We defer the proof of the following fact to Section 3.4.3 where we prove it in a more
general setting.

Lemma 3.0.1 (Sum of Influences Lemma). For ε > 0 and a function F : {±1}R → R,
∑

`∈[R] Inf`(T1−εF) 6 Var[F ]/ε.

3.4 Functions on Product Spaces

Notions of influences and noise stability can be generalized to functions on arbitrary product
spaces. In this section, we will see how a function over a product space can be written as
a multilinear polynomial via the Fourier expansion, and how this leads to more general
notions of influences and noise stability.

Fix a probability space Ω = (E , µ). The product probability space ΩR is the probability
space consisting of R-tuples of events from E , with each coordinate chosen independently
from Ω. The notions of influences and noise operators can be extended to the general setting
of functions on ΩR.
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3.4.1 Multi-linear polynomials

First, we will see how a real valued function on an arbitrary product space ΩR can be
expressed as a multilinear polynomial.

Definition 3.4.1. A collection of finitely many real random variables L = {`0, . . . , `q−1}
will be referred to an ensemble. An ensemble L = {`0, . . . , `q−1} under inner product
〈f, g〉 = E[f · g], is said to be an Orthonormal ensemble if the random variables in L are
orthonormal, and `0 is the constant random variable 1.

For an ensemble L = {`0, . . . , `q−1} of random variables, we shall use LR to denote the

ensemble obtained by taking R independent copies of L. Further L(i) = {`(i)0 , . . . , `
(i)
q−1} will

denote the ith independent copy in LR.
Consider an ensemble L = {`0, . . . , `q−1} that forms a basis for the vector space L2(Ω).

Thus every function F : Ω → R can be expressed as a linear combination of the ensemble
L. Given such a basis L for L2(Ω), it induces a basis for the space L2(ΩR). Specifically, the
basis for L2(ΩR) is given by the following set of random variables:

{

R
∏

i=1

`(i)σi
|σ ∈ [q]R

}

.

Hence every function F : ΩR → R can be expressed as a multilinear polynomial in LR
where L is an arbitrary basis for L2(Ω). To illustrate this further, we will present a con-
crete example of a probability space below. However we first define a concise notation for
multilinear products borrowed from [124]

Definition 3.4.2. A multi-index σ is a vector (σ1, . . . , σR) ∈ N
R; the degree of σ denoted

by |σ|, is |{i ∈ {1, . . . , R}|σi 6= 0}|. Given a doubly-indexed set of indeterminates (formal

variables) XR = {x(j)
i |i ∈ N, 1 6 j 6 R} and a multi-index σ, define the monomial xσ as

xσ =

R
∏

i=1

x(i)
σi
.

The degree of the monomial xσ is given by |σ|. A multilinear polynomial over such a set of
indeterminates is given by

F (x) =
∑

σ

F̂σxσ

where F̂σ are real constants, all but finitely many of which are non-zero. The degree of F (x)
is max{|σ| : F̂σ 6= 0}.
Example 3.4.1. Let Ω be a probability space with two atoms {0, 1} occurring with prob-
ability 1

2 each. An example of an orthonormal ensemble in L2(Ω) is given by {`0 = 1, `1},
where

`0(0) = 1 `0(1) = 1

`1(0) = 1 `1(1) = −1 .
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Consider the product probability space ΩR. An orthonormal basis for L2(Ω
R) is given by

the ensemble {`σ : ΩR → R|σ ∈ {0, 1}R} where

`σ =

R
∏

i=1

`σi

Thus any random variable F ∈ L2(Ω)R can be written as a multilinear polynomial
∑

σ F̂σ`σ
in the ensemble LR. In terms of functions, this means that any function F : ΩR → R has a
multilinear expansion

F(z) =
∑

σ

F̂σ`σ(z)

where `σ(z) =
∏R
i=1 `σi(zi). We point out that the above expansion is exactly the Fourier

expansion of F and the functions `σ are the character functions.

A different ensemble in L2(Ω) is given by the indicator random variables L = {`0, `1}
defined as follows:

`0(0) = 1 `0(1) = 0

`1(0) = 0 `1(1) = 1 .

In this case, the multilinear expansion for a function F : ΩR → R is just

F(z) =
∑

σ∈{0,1}R
F(σ)`σ(z) .

We will always use the symbols F ,H to denote real-valued functions on a product
probability space ΩR. Thus F ,H take an atom in ΩR as input and output a real number.
L = {`0, `1, . . . , `t} will denote an ensemble forming a basis for L2(Ω). Further F (x),H(x)
will denote the formal multilinear polynomials corresponding to F ,H. Hence F (LR) is
a random variable obtained by substituting the random variables LR in place of x. For
instance, the following equation holds in this notation:

E
z∈ΩR

[F(z)] = E
x∈LR

[F (x)] = E[F (LR)] .

For the most part, the probability spaces Ω will have [q] = {0, . . . , q−1} as the atoms. A
natural basis for L2(Ω) consists of the ensemble of indicator variables L = {`0, . . . , `q−1}. We
shall refer to this basis as the Standard Ensemble/Basis. Specifically, the random variable
`i is defined as `i(i) = 1, `i(j) = 0∀j 6= i. Any function F : ΩR → R can be expressed as a
multilinear polynomial as

F(z) =
∑

σ∈[q]R
F(σ)`σ(z) .

Thus the corresponding formal multilinear polynomial is given by F (x) =
∑

σ∈[q]R F̂σxσ
where F̂σ = F(σ).
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The following identity is an easy generalization of the Plancherel’s identity in harmonic
analysis.

Proposition 3.0.9. For a function F : ΩR → R, if F(z) =
∑

σ F̂σ`σ(z) with respect to an

orthonormal ensemble L then Ez∈ΩR [F(z)] = F̂0 and Var[F ] =
∑

σ 6=0 F̂2
σ .

Proposition 3.0.10. Let F ,F ′ : ΩR → R be functions on a product space ΩR. Let L be an
orthonormal basis for L2(Ω). If F(z) =

∑

σ F̂σ`σ(z), F ′(z) =
∑

σ F̂ ′σ`σ(z) are multilinear
expansions obtained using the basis L, then

〈F ,F ′〉 =
∑

σ

F̂σF̂ ′σ .

On setting F = F ′ we get the analogue of Parseval’s identity.

(Analogue of Parseval’s Identity) E
z∈ΩR

[F2(z)] =
∑

σ

F̂2
σ .

3.4.2 Noise Operator

To begin with, we shall define the noise operator T1−ε on set of functions over a product
probability space ΩR.

Definition 3.4.3. For 0 6 ε 6 1, define the operator T1−ε on L2(Ω
R) as,

T1−εF(z) = E[F(z̃) | z]

where each coordinate z̃(i) of z̃ is equal to z(i) with probability 1−ε and a random element
from Ω with probability ε.

Let us suppose that F (x) =
∑

σ F̂σxσ is the multilinear expansion of the function F with
respect to an orthonormal basis L. The multilinear polynomial corresponding to T1−εF is
given by

T1−εF (x) =
∑

σ∈[k]R
(1 − ε)|σ|F̂σxσ .

We stress here that the above expression holds only for an orthonormal basis L. For a basis
that is not necessarily orthonormal, the following fact yields the required expansion.

Proposition 3.0.11. For a function F : ΩR → R, the multilinear expansion corresponding
to T1−εF is given by,

T1−εF (x) = F
(

(1 − ε) · x + ε · E[LR]
)

,

where F (x) is the multilinear expansion of F with respect to L. In other words, the formal

multilinear polynomial T1−εF (x) is just obtained by replacing each variable x
(i)
j in F (x)

with (1 − ε) · x(i)
j + E[`j ].
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Proof. Recall that by the multilinear expansion of F , we have

F(z) =
∑

σ

F̂σ

R
∏

i=1

`σi(z
(i)) .

By definition of T1−εF ,

T1−εF(z) = E[F(z̃)|z] =
∑

σ

F̂σ E

[

∏

i

`σi(z̃
(i))|z

]

.

Conditioned on the value of z, the coordinates z(i) are independent of each other. Thus,

T1−εF(z) =
∑

σ

F̂σ

R
∏

i=1

E

[

`σi(z̃
(i))|z

]

.

By definition of T1−ε we have, E

[

`σi(z̃
(i))|z

]

= (1− ε) · `σi(z
(i)) + εE[`σi ]. Substituting the

value we get

T1−εF(z) =
∑

σ

F̂σ

R
∏

i=1

(

(1 − ε) · `σi(z
(i)) + εE[`σi ]

)

.

By inspecting the above expression, the result follows. �

3.4.3 Influences

Definition 3.4.4. For a function F : ΩR → R, the influence of the `th coordinate is given
by

Inf`(F) = E
z(−`)∈ΩR−1

[

Var
z(`)∈Ω

[F(z)]

]

.

Here z(−`) consists of all but the `th coordinate of z.

As in the case of boolean functions, influences of coordinates on a function F ∈ L2(ΩR)
can be expressed in terms of its multilinear expansion. We omit the fairly straightforward
proof of the following proposition, which is along the lines of that of Proposition 3.0.5.

Proposition 3.0.12. For a function F : ΩR → R, if F(z) =
∑

σ F̂σ`σ(z) is its multilinear
expansion with respect to an orthonormal ensemble L then,

Inf`(F) =
∑

σ` 6=0

F̂2
σ .

Lemma 3.0.2 (Sum of Influences Lemma). Given a function F : ΩR → R, if H = T1−εF
then

∑

`∈[R] Inf`(H) 6
Var[F ]

2e ln 1/(1−ε) 6
Var[F ]

ε
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Proof. Let F(x) =
∑

σ F̂(σ)`σ(x) denote the multilinear expansion of F using an orthonor-

mal basis L. The function H is given by H(x) =
∑

σ(1 − ε)|σ|F̂(σ)`σ(x). Hence we get,

∑

`∈[R]

Inf`(H) =
R
∑

i=1

∑

σ,σi 6=0

(1 − ε)2|σ|F̂2(σ) =
∑

σ

(1 − ε)2|σ||σ|F̂2(σ)

6 max
σ∈NR

(

(1 − ε)2|σ||σ|
)

·
∑

σ 6=0

F̂(σ)2 6 max
σ

(1 − ε)2|σ||σ| ·Var[F ] .

The function h(x) = x(1 − ε)2x achieves a maximum at x = −1
2 ln(1 − ε). Substituting in

the above equation, we get the desired conclusion. �

It is easy to see that the convexity of influences holds in the general setting of functions
over arbitrary product spaces.

Proposition 3.0.13 (Convexity of Influences). Let F be a random function from ΩR to R

and let H = E[F ] denote the average function. Then,

E[Inf`(F)] > Inf`(E[F ]) = Inf`(H) .

3.4.4 Formal Polynomials

Multilinear polynomials arise out of expressing a real-valued function F over a probability
space ΩR. Properties such as influence and noise stability of F are expressible in terms of
the coefficients of the corresponding multilinear polynomial.

Now, we shall extend the notion of influences and noise stability to formal multilin-
ear polynomials themselves. These notions are necessary in order to state the invariance
principle.

Definition 3.4.5 (Influences for Polynomials). For a multilinear polynomial F (x) =
∑

σ F̂σxσ,
define the variance of F and the influence of the `th coordinate as, ith coordinate as follows:

Var[F ] =
∑

σ 6=0

F̂ 2
σ Inf`(F ) =

∑

σ` 6=0

F̂ 2
σ .

It is easy to see that if F ∈ L2(ΩR) is expressed as a multilinear polynomial F in an
orthonormal ensemble L then

Var[F ] = Var[F ] Inf`(F) = Inf`(F ) .

Thus, the above definition of influences and variance are the natural definitions to consider.

3.4.5 Vector Valued Functions and Polynomials

In many applications, it is natural to work with notions of influences, and noise operators
for vector-valued functions, or tuples of multilinear polynomials. The notion of variance,
influences and noise operators are generalized in the most natural way.
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For F = (F1, . . . ,Fd) define

T1−εF = (T1−εF1, . . . ,T1−εFd) ,
Var[F ] =

∑

i∈[d]
Var[Fi] ,

Inf`(F) =
∑

i∈[d]
Inf`(Fi) .

Along similar lines, one defines these notions for vector-valued polynomials F = (F1, . . . , Fd).
More often than not, vector valued functions F considered in this dissertation have a

range equal to the q-dimensional simplex for a positive integer q (denoted by Nq).

Proposition 3.0.14. Let F : ΩR → Nq be a vector-valued function over a probability space
Ω and let H = T1−εF . Then, Var[F ] 6 2 and

∑

`∈R Inf`(H) 6 2
ε .

Proof. Observe that for any two points x,y ∈ Nq, ‖x−y‖2
2 6 2. This implies that Var[F ] 6

2 and along with Lemma 3.0.2 implies that
∑

`∈R Inf`(H) 6 2
ε . �

3.5 Gaussian Random Variables

A one-dimensional Gaussian random variable g has a distribution given by

µ(g) =
1√
2πσ

e−
(g−ν)2

2σ2

where ν = E[g] is the mean and σ2 = E[(g − µ)2] is the variance of g.
A normal random variable is a Gaussian random variable with mean 0 and variance 1.

Unless otherwise specified, a Gaussian random variable refers to a normal random variable
(mean 0 and variance 1). Further, by Gaussian space we will refer to the probability space
G = (R, µ) consisting of the following probability distribution over the set of real numbers
R:

µ(x) =
1√
2
e−

x2

2

Definition 3.5.1. For each integer d > 0, the dthHermite polynomial Hd(x) is a uni-variate
degree d polynomial such that

E
x∈G

[Hd(x)Hd′(x)] =

{

1 if d = d′

0 otherwise

where G is the Gaussian space. In other words, the set of Hermite polynomials form an
orthonormal basis for the space of functions L2(G).

The distribution of an n-dimensional Gaussian random variable g = (g(1), . . . , g(n)) ∈ R
n

is specified by its means ν = (ν(1), . . . , ν(n)) and the covariance matrix Σ = (σij)i,j∈[n], i.e.,

ν(i) = E[g(i)] σij = E[g(i)g(j)] ∀i, j ∈ [n] .
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The probability distribution of g is given by

µ(g) =
1

(2π)
n
2 |Σ| 12

e(g−ν)T Σ−1(g−ν)

where |Σ| denotes the determinant of the matrix |Σ|.
Unless otherwise specified, a Gaussian vector refers to a vector all of whose coordinates

are i.i.d normal random variables. The probability space Gn refers to the n-ary product
of the Gaussian space G. We have the following standard property of Gaussian random
variables.

Property 3.1. For two vectors u,v ∈ R
n, and a n-dimensional Gaussian random vector ζ

whose coordinates are i.i.d normal random variables,

E
ζ
[〈u, ζ〉〈v, ζ〉] = 〈u,v〉

3.6 Invariance Principle

In its simplest form, the central limit theorem asserts the following:

“As n increases, the sum of n independent Bernoulli random variables (±1 ran-
dom variables) has approximately the same distribution as the sum of n inde-
pendent normal (Gaussian with mean 0 and variance 1) random variables”

Alternatively, as n increases, the value of the polynomial F (x) = 1√
n
(x(1)+x(2)+. . . x(n))

has approximately the same distribution whether the random variables x(i) are i.i.d Bernoulli
random variables or i.i.d normal random variables. More generally, the distribution of F (x)
is approximately the same as long as the random variables x(i) are independent with mean
0, variance 1 and satisfy certain mild regularity assumptions.

A phenomenon of this nature where the distribution of a function of random variables,
depends solely on a small number of their moments is referred to an invariance. A natural
approach to generalize of the above stated central limit theorem, is to replace the “sum”
( 1√

n
(x(1) + x(2) + . . . x(n))) by other multivariate polynomials.

It is easy to see that invariance does not hold for arbitrary multivariate polynomials. For
instance, consider the dictator function F (x) = x(1) that outputs the first coordinate. It is
clear that the polynomial F does not exhibit invariance. For instance, the distribution of F
is different when substituting Bernoulli and Gaussian random variables for the coordinates
of x. It is easy to see that all polynomials that depend on a small number of coordinates
(a junta) do not exhibit invariance.

The invariance principle for low degree polynomials was first shown by Rotar in 1979
[159]. More recently, invariance principles for low degree polynomials were shown in different
settings in the work of Mossel, O’Donnell, and Olekschewicz [125] and Chatterjee [37]. The
former of the two works also showed the Majority is Stablest conjecture, and has been
influential in introducing the powerful tool of invariance to hardness of approximation.
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Define functions f[0,1] : R → R and ξ : R
q → R as follows:

f[0,1](x) =











0 if x < 0

x if 0 6 x 6 1

1 if x > 1

ξ(x) =
∑

i∈[q]
(xi − f[0,1](xi))

2

The following invariance principle is an immediate consequence of the work of Mossel
[124].

Theorem 3.2. (Invariance Principle [124]) Fix 0 < α, ε 6 1/2. Let Ω be a finite probability
space such that every atom with non-zero probability has probability at least α 6 1/2. Let
L = {`1, `1, . . . , `m} be an ensemble of random variables over Ω. Let G = {g1, . . . , gm} be
an ensemble of Gaussian random variables satisfying the following conditions:

E[`i] = E[gi] E[`2i ] = E[g2
i ] E[`i`j] = E[gigj ] ∀i, j ∈ [m] .

Let F = (F1, . . . , Fd) denote a vector valued multilinear polynomial. Let Hi = T1−εFi, and
H = (H1, . . . ,Hd). If Inf`(H) 6 τ and Var[H`] 6 1 for all `, then the following holds

1. For every function Ψ : R
d → R that is thrice differentiable with all its partial deriva-

tives up to order 3 bounded uniformly by C0,

∣

∣

∣E

[

Ψ(H(LR))
]

− E

[

Ψ(H(GR))
]∣

∣

∣ 6 τKε/ log(1/α)

where K = K(d,C0) > 0 is a constant depending on C0, d.

2.
∣

∣

∣E[ξ(H(LR))] − E[ξ(H(GR))]
∣

∣

∣ 6 τKε/ log(1/α)

where K = K(d,C0) > 0 is a constant depending on C0, d.

Proof. The theorem is implicit in the work of Mossel[124]. Here we describe some minor
changes to deduce the result from Theorems 4.1 and 4.2 in [124].

Without loss of generality, the ensembles L and G can be assumed to be orthonormal.
Otherwise, since the ensembles L, G have matching inner products, there exists a linear
transformation T that transforms both L and G into an orthonormal basis. Replace the
polynomial F (x) by F (T−1(x)) and the ensembles L,G by orthonormal ensembles T (L)
and T (G). Here we use the fact that the notions Inf and Var are independent of the basis,
and would remain the same after the transformation T .

Truncate the polynomial H at degree D = log1−ε τ to obtain a vector valued polynomial
Q. Note that for each i, Infi(Q) 6 Infi(H) 6 τ . Apply Theorem 4.1 in [124] for Q and the
smooth functional Ψ,

∣

∣

∣E

[

Ψ(Q(LR))
]

− E

[

Ψ(Q(GR))
]∣

∣

∣ 6 τKε/ log(1/α) .
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Since Ψ is a smooth functional we have,

∣

∣

∣
E

[

Ψ(Q(LR)) − Ψ(H(LR))
]∣

∣

∣
6 C0‖Q(LR) − H(LR))‖ .

However since H = T1−εF ,

‖Q(LR) − H(LR))‖2 =
∑

|σ|>log1−ε τ

(1 − ε)2σF̂ 2
σ 6 τ2 Var[F ] .

Thus we get,

∣

∣

∣E

[

Ψ(Q(LR)) − Ψ(H(LR))
]∣

∣

∣ 6 C0τ(Var[F ])
1
2 ,

∣

∣

∣E

[

Ψ(Q(GR)) − Ψ(H(GR))
]∣

∣

∣ 6 C0τ(Var[F ])
1
2 .

Along with Equation 3.6, the above two inequalities imply the first part of the result. To
prove the second inequality, observe that if Inf6Di (H) 6 Infi(H) 6 τ for all i,D. Apply
Theorem 4.2 in [124], on the one dimensional polynomial Hi to show that

∣

∣

∣
E[ξ(Hi(LR))] − E[ξ(Hi(GR))]

∣

∣

∣
6 τKε/ log(1/α) .

Summing up the expression over all i we get

∣

∣

∣E[ξ(H(LR))] − E[ξ(H(GR))]
∣

∣

∣ 6 dτKε/ log(1/α) .

To finish the proof, observe that for a fixed d, we have dτKε/ log(1/α) = τK
′ε/ log(1/α) �

3.7 Noise Stability Bounds

An important application of invariance principle has been in showing upper bounds on
the noise stability of functions over product spaces. In fact, all applications of invariance
principle in hardness of approximation apart from those in this dissertation, rely only on
the noise stability bounds, and do not directly need the invariance principle.

The work of Mossel et al. [125] utilized the invariance principle to show the Majority
is Stablest theorem, which is essentially an upper bound on the noise stability of boolean
functions, with no influential coordinates. We include the formal statement of the result
below.

Theorem 3.3 (Majority is Stablest [125]). Let 0 6 ρ 6 1 and ε be given. Then there exists
τ > 0 such that if F : {±1}R → [−1, 1] satisfies E[F ] = 0 and Inf`(F) 6 τ for all ` ∈ [R],
then

Sρ(F) 6
2

π
arcsin ρ+ ε

Here Sρ(F) =
∑

S∈[R] ρ
|S|F̂2

S is the noise stability of F .

To obtain noise stability bounds for functions over product spaces, the idea is to re-
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late it to a certain Gaussian noise stability via the invariance principle. For the sake of
completeness, we define the Gaussian noise stability below.

Definition 3.7.1 (Ornstein-Uhlenbeck Operator). For ρ ∈ [−1, 1], the Ornstein-Uhlenbeck
operator Uρ operates on functions in L2(Gn) as follows,

UρF(z) = E
η∈Gn

[

F(ρ · z +
√

1 − ρ2 · η)
]

.

Definition 3.7.2 (Gaussian Noise Stability). For ρ ∈ [−1, 1], the Gaussian noise stability
at correlation ρ (noise 1 − ρ) of a function F ∈ L2(Gn) is 〈F ,UρF〉.

For a multilinear polynomial F(z) =
∑

S∈[R] F̂S
∏

`∈S z
(`), the noise stability is given

by 〈F ,UρF〉 =
∑

S∈[R] ρ
|S|F̂2

S . Let F : {±1}R → [−1, 1] be a boolean function all of whose
influences are low. Let F be the multilinear polynomial associated with F . The polynomial
F can be thought of as a function over the Gaussian space GR. Notice that the noise stability
of F is identically equal to the Gaussian noise stability of F , i.e.,

Sρ(F) =
∑

S⊆[R]

ρ|S|F̂2
S = 〈F,UρF 〉 .

Intuitively, the idea is to use the invariance principle to argue that like F , the function F
on GR takes values in [0, 1]. Then, one appeals to known bounds on Gaussian noise stability
to finish the argument.

By Borell’s isoperimetric result on the Gaussian space, among functions F : GR → [0, 1],
with a given value of E[F ] the one that maximizes 〈F ,UρF〉 are linear threshold functions
of the form:

F(z) =

{

1 if z(1) > t

0 otherwise.

Therefore, the noise stability bounds via the invariance principle are directly related
to the noise stability of linear threshold functions on the Gaussian space. In this light,
let us denote by Γρ the Gaussian noise stability of linear thresholds as a function of their
mean/expectation (µ). Formally, define Γρ as follows.

Definition 3.7.3 (Γρ). Given µ ∈ [0, 1], let t = Φ−1(µ) where Φ denotes the distribution
function of the standard Gaussian. Then,

Γρ(µ) = Pr[X 6 t, Y 6 t],

where (X,Y ) is a two-dimensional Gaussian vector with covariance matrix

(

1 ρ
ρ 1

)

.

In this notation, the formal statement of Borell’s isoperimetric theorem is as follows:

Theorem 3.4. ([27]) For F ,F ′ ∈ L2(R
R) with E[F ] = E[F ′] = µ and 0 6 ε 6 1,

〈F , U1−εF ′〉 6 Γρ(µ)
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The quantity Γρ being a double integral can be computed easily to arbitrary accuracy.
In many applications, the following asymptotic bound on the function Γρ is sufficient.

Theorem 3.5 (Theorem B.2 [125]). As µ→ 0,

Γρ(µ) ∼ µ2/(1+ρ)(4π ln(1/µ))−ρ/(1+ρ)
(1 + ρ)3/2

(1 − ρ)1/2
6 µ

3−ρ
2 .

Finally, through the invariance principle and the Borell’s isoperimetric theorem, Mossel
et al. [125] show the following bound on the noise stability of functions over a product
probability space.

Theorem 3.6 (Theorem 4.4, [125]). Let Ω be a finite probability space with the least non-
zero probability of an atom at least α. For every µ, ε, γ, δ > 0 there exists τ such that the
following holds: For every function F : ΩR → [0, 1] with µ = E[F ] and Inf`(T1−γF) < τ for
all ` ∈ [R],

〈F ,T1−εF〉 = E
z∈ΩR

[F(z)T1−εF(z)] 6 Γ1−ε(µ) + δ .
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Part I

ALGORITHMIC TECHNIQUES
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Chapter 4

LINEAR AND SEMIDEFINITE PROGRAMMING RELAXATIONS
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The focus of this chapter is linear and semidefinite programming relaxations for gen-
eralized constraint satisfaction problems, while the next chapter addresses the question
of rounding. Together, the two chapters yield approximation algorithms for the class of
GCSPs.

4.1 Introduction

Given a combinatorial optimization problem Λ, there are numerous relaxations that could
be considered to design approximation algorithms for Λ. In particular, there is no single
canonical way to write a relaxation given the combinatorial optimization problem Λ. Differ-
ent problems warrant different kinds of constraints in the relaxation. In some cases, multiple
relaxations have been used to obtain approximation algorithms for the same combinatorial
optimization problems.

Clearly, it would be extremely desirable to have a canonical relaxation for every com-
binatorial optimization problem. However, this is unrealistic to expect due to the sheer
diversity of combinatorial optimization problems. This thesis demonstrates that for the
class of Generalized Constraint Satisfaction Problems (GCSP), there is an SDP relaxation
referred to as the LC relaxation, that is canonical in numerous ways. This is surprising
since the class of GCSPs is a very large family of problems that includes maximization
problems such as Max Cut and Max 3-Sat on one hand, and minimization problems such
as Multiway Cut on the other.

In this chapter, we will motivate the LC relaxation and connect it to other linear and
semidefinite programs that have appeared in literature for specific GCSPs. In the upcoming
chapters, we will show that the LC-relaxation has the following properties that make it
canonical for the class of GCSPs.

– The LC relaxation can be shown to be equivalent to several well known SDPs on re-
stricting to specific GCSPs. For example, it is equivalent to the Goemans-Williamson
relaxation on restricting to the case of Max Cut.

– Among GCSPs that admit a constant factor approximation, no stronger relaxation
than LC has been utilized in an approximation algorithm. Thus, the LC relaxation
yields the best known approximations for GCSPs in almost all regimes.

– Under the Unique Games Conjecture, the LC relaxation yields the optimal approxi-
mation for every GCSP, when the approximation factor is an absolute constant (See
Chapter 6 and Chapter 7).

– Under the Unique Games Conjecture, for every metric labelling problem over a finite
metric, the optimal approximation ratio is obtained by the earthmover linear program.
The LC is a simple generalization of the earthmover linear program (EM-LP) (See
Chapter 8).

– Under the Unique Games Conjecture, for every Ordering CSP, the optimal approxi-
mation is obtained by the LC relaxation (See Chapter 9).
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– There is evidence to suggest that introducing certain additional constraints to the
LC relaxation does not improve the approximation it yields for any GCSP. Formally,
the integrality gap of the LC relaxation does not improve on introducing any valid

constraints on at most 2O((log logn)
1
4 ) SDP vectors (See Chapter 12).

– In recent work, Steurer [151] showed that the LC relaxation can be solved in near-linear
time up to an additive error ε for every GCSP . We refer the reader to Section 4.5 for
more details.

Organization In the next section, we formally define notions of equivalence between re-
laxations. In Section 4.3, we motivate a linear program (SIMPLE LP relaxation), whose
formal definition and its comparison with other well-known linear programs is presented
in Section 4.4. The SIMPLE LP relaxation is strengthened to obtain the LC SDP in
Section 4.5. In the same section, we also show a few simple properties of the LC relax-
ation. This is followed by a comparison of LC relaxation with other SDPs, particularly
those for boolean GCSPs in Section 4.6. We present two different hierarchies of stronger
relaxations that are natural strengthenings of the LC relaxation in Section 4.7. In the penul-
timate section Section 4.8, we show how approximately feasible solutions to LC relaxation
can be converted into a completely feasible solutions with a small loss in the objective value.
This property of a SDP relaxation that we refer to as robustness has numerous applications
in subsequent chapters. Finally, in Section 4.9 we show that the robustness property holds
for even the stronger SDP relaxations LHr and SAr, although with much weaker parameters.

4.2 Comparing Relaxations

With an infinitude of relaxations to choose from, it is necessary to compare relaxations,
and study relations among them. The notions of integrality gap, and the gap curve (See
Section 2.2) of a relaxation are measures useful to compare the quality of approximations.
In particular, a relaxation with a larger value of integrality gap clearly yields a better
approximation ratio.

In many scenarios, there is more that can be said about two relaxations than just the
comparison of the quality of the approximations they yield. For instance, two relaxations
could be exactly the same except for a renaming of the variables involved. In some cases,
the variables in one relaxation are obtained by a linear transformation of variables in the
other. To capture these notions of equivalence, we make the following definition:

Definition 4.2.1. Let conv1 and conv2 be two relaxations of a maximization problem Λ.
For an instance = of the problem Λ, let conv1(=) and conv2(=) denote the objective value
of the optimum solutions to relaxations conv1, conv2 respectively.

– The relaxation conv1 is said to be stronger than conv2, if for every instance = of the
maximization problem Λ,

conv1(=) > conv2(=)

The relaxation conv2 is said to be weaker than conv1 in this case. The inequality
reverses for the case of a minimization problem.
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– The relaxations conv1 and conv2 are said to be equivalent if for every instance = of
the problem Λ.

conv1(=) = conv2(=)

In the examples we consider, a much stronger equivalence holds between relaxations.
Specifically, there exists an efficiently computable bijection (possibly a linear transforma-
tion) from feasible solutions to conv1 to those of conv2. However, we refrain from formally
defining these stronger notions of equivalence.

4.3 Local Distributions and Consistency

Let = = (V,P) be an instance of a GCSP Λ. Let q denote the size of the alphabet, and let
k be the arity of the GCSP Λ. By definition, the goal is to find an assignment y ∈ [q]V that
maximizes EP∈P [P (y)].

GCSP Instance =: max
y∈[q]V

E
P∈P

[P (y)]

This is an optimization problem over the discrete set of q|V| assignments. To obtain a
convex relaxation, we need to modify the domain of optimization so as to make it convex.
The most natural technique to make a set convex would be to take its convex hull. Intu-
itively, this implies that the domain should not only include the assignments [q]V , but also
convex combinations of assignments.

In this light, let us change the domain of optimization to the set of all probability
distributions over assignments. Clearly, the set of probability distributions over assignments
is a convex set, since the average of two distributions is again a probability distribution.
Furthermore, any specific assignment y ∈ [q]V is represented by the distribution that has
all its mass on the assignment y.

Formally, let µ be a distribution over the set of all assignments [q]V . We can rewrite the
optimization problem in terms of the distribution µ as follows:

Integral Hull =: max
µ

E
y∈µ

E
P∈P

[P (y)]

Unfortunately, the above convex problem cannot be solved efficiently in general. To see
this, observe that to represent a distribution over all assignments, one needs exponentially
many (q|V|) different variables. In fact, it is easy to see that solving the above convex
program would yield an optimal solution to =.

Towards obtaining a tractable relaxation, observe that the payoff functions P are “local”–
in that they each payoff P ∈ P depends solely on at most k variables. Let V(P ) denote the
set of variables on which the payoff P depends. For a given payoff P ∈ P, the corresponding
value Ey∈µ[P (y)] depends solely on the distribution of the coordinates in V(P ).

Therefore, instead of requiring the entire probability distribution µ over all assignments
[q]V , we can restrict our attention to the marginal distributions of µ. Before we proceed
further, let us define some notation for marginal distributions. Given a distribution µ over
[q]S for some set S, and a subset T ⊆ S, let marginT µ denote the marginal distribution on
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the set T . Formally, let

marginT µ(x)
def
=

∑

y∈[q]S\T
µ(x, y) .

Here, (x, y) denotes the [q]-assignment to S that agrees with x on T and with y on S \ T .
For the sake of succinctness, let µP = marginV(P ) µ denote the marginal distribution

over the set V(P ) for a payoff P ∈ supp(P). Let µ = {µP |P ∈ supp(P)} denote the set
of marginal distributions. In terms of the marginal distributions µ, one can write a convex
program as follows:

Convex Relaxation =: max
µ

E
P∈P

E
x∈µP

P (x)

Note that a marginal distribution µP can be represented by q|V(P )| variables µP,x for all
x ∈ [q]V(P ). Hence, the set of marginal distributions µ = {µP |P ∈ P} can be represented
using at most |supp(P)| × qk variables. The objective value can be represented as a linear
function in these variables.

E
x∈µP

P (x) =
∑

x∈[q]V(P )

P (x)µP,x

Notice that there is no guarantee that the marginal distributions µ actually correspond
to a global distribution µ over the set of all assignments [q]V . However, we can enforce some
consistency constraints between the marginal distributions µP .

A natural consistency check between the distributions is the following: given two distri-
butions µP and µP ′ such that S = V(P ) ∩ V(P ′) is non-empty,

marginS µP = marginS µP ′ .

Specifically, the marginals of the distributions µP and µP ′ restricted on the same subset S
must be equal.

The above consistency check between distributions can be enforced for subsets S of
various sizes. Somewhat surprisingly, enforcing consistency only up to sets of size up to 2
is sufficient for many purposes.

4.4 A Simple LP Relaxation

In the previous section, we obtained the following natural linear programming relaxation
for an arbitrary GCSP Λ.

LP Relaxation for GCSPs

maximize E
P∼P

E
x∼µP

P (x) (SIMPLE LP)

subject to marginS µP = marginS µP ′ (P,P ′ ∈ supp(P), S ⊆ V(P ) ∩ V(P ′), |S| = 2) ,
(4.1)

µP ∈ N([q]V(P )) (4.2)
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Recall that N(S) denotes the set of probability distributions over the set S. In the above
relaxation, the constraint µP ∈ N([q]V(P )) implies that µP is a valid probability distribution
over [q]-ary assignments to variables V(P ).

Notice that we are enforcing the consistency constraints between marginals only for sets
of size up to 2. The above linear program is a simple linear program for every GCSP, that
already yields good approximations in some cases.

In this section, we compare the SIMPLE LP relaxation with some other linear programs
that have appeared in the context of Multiway Cut and Metric Labeling problems.

4.4.1 Multiway Cut relaxation

Definition 4.4.1 (Multiway Cut ). An instance = = (V, E ,L) of the Multiway Cut
problem consists of a weighted graph (V, E), along with a set of terminals L ⊂ V. The
objective is to delete a set of edges of minimum weight so as to separate every pair of
terminals. The weights over edges are assumed to sum up to 1, in that E is a distribution
over V × V.

Formulating Multiway Cut as a GCSP, the variables are the vertices V, and the
domain is the set of terminals L. Each edge e = (u, v) is associated with a payoff of the form
P (x, y) = −1[x 6= y]. Here we take the negative of the indicator, because we are posing
Multiway Cut - a minimization problem, as a GCSP where the goal is to maximize the
payoff.

The following linear programming relaxation for Multiway Cut was introduced in
[46], and yields the best known approximation for the problem. Let us suppose the number
of terminals |L| = q. Intuitively, the LP asks for an embedding of the vertices V on the
q-dimensional simplex Nq. For every vertex v, the corresponding point Xv ∈ ∆k represents
the probability distribution of each terminal being assigned to v. For example, each corner
of the simplex represents a particular terminal. Every terminal t` is to be assigned to itself,
and this is enforced by fixing Xt` to the `th corner of Nq. The objective to minimize is the
weighted sum of the L1 distances between adjacent vertices.

Formally, the relaxation is given by the following where e` denotes the `th corner of the
simplex Nq.

Simplex-based relaxation for Multiway Cut

maximize
1

2
E

e=(u,v)∈E
‖Xu −Xv‖1 (Simplex)

subject to Xu ∈ Nq ∀u ∈ V (4.3)

Xt` = e` (4.4)

Lemma 4.0.1. For the case of Multiway Cut , the SIMPLE LP relaxation is equivalent
to the simplex based linear program.

Proof. To show an equivalence, we will see how to convert an optimal solution to the
SIMPLE LP relaxation into one for the simplex based linear program with exactly the
same objective value (up to the sign) and vice versa.
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Let µ = (µe)e∈E be an optimal solution to the SIMPLE LP relaxation. Define Xv to be
the marginal distribution over the assignment to v, of a distribution µe for an edge incident
at v. Specifically, define

Xv = margin{v} µe for an edge e ∈ E , with v ∈ e

More precisely, define Xv,a = margin{v} µe(a) for all a ∈ [q]. As margin{v} µe is a distribution
over [q], the point Xv lies on the simplex Nq. Furthermore, the consistency constraints
among the local distributions in SIMPLE LP relaxation ensure that the Xv is well defined.

For a vertex v, it is useful to think of Xv as a distribution of mass 1 (of say sand) on the
points L = {1, 2, . . . , q}. For an edge e = (u, v), the local distribution µe can be thought of
as a flow that transforms the distribution of sand from Xu to Xv. The payoff amounts to
a cost of 1 for every unit of sand that is moved from one location to the other. Hence, the
optimal flow that minimizes the total cost incurs a cost exactly equal to 1

2‖Xu −Xv‖1. In
other words, for an optimal solution µ = (µe)e∈E , the payoff on edge e is exactly,

E
(a,b)∈µe

[P (a, b)] = −1

2
‖Xu −Xv‖1

Therefore, an optimal solution to SIMPLE LP yields a solution to the simplex based relax-
ation of the same value.

Conversely, let {Xv |v ∈ V} be an optimal solution to the simplex based relaxation. For
each edge e, there exists a feasible set of flows for each (u, v) that convert distribution Xu to
Xv, while incurring a cost of exactly 1

2‖Xu−Xv|1. These flows define the local distributions
µe that achieve the same value as the optimal solution {Xv |v ∈ V} for the simplex-based
relaxation. �

4.4.2 Earth-Mover Linear Program

Here we will compare the SIMPLE LP relaxation with the earthmover linear program in-
troduced in [39] for Metric Labeling problems. The best known approximation ratios
for Metric Labeling problems are achieved using the earthmover linear program.

For the sake of completeness, we include the definition of Metric Labeling below.

Definition 4.4.2. A Metric Labeling problem is specified as Λ = (L, d) where d is a
metric over the set of labels L.

We will use q to denote the number of labels |L|

Definition 4.4.3 (Λ-Metric Labeling ). An instance = = (V, E , {L(v)}v∈V ) of the Λ-
Metric Labeling problem consists of a set of vertices V, a probability distribution E over
pairs from V ×V (equivalent to edges with weights) and a family of subsets {L(v)}v∈V of L.
A valid labeling is a mapping L : V → L such that for each vertex, v ∈ V, L(v) belongs to
L(v). The cost of a labeling L, val=(L), is

E
(u,v)=e∈E

d(L(u),L(v)).
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The optimum value of the instance, opt(=), is the minimum cost labeling for the instance.

4.4.3 Earthmover Linear Program for Metric Labeling

The Earthmover linear programming (EM-LP) relaxation for Metric Labeling was in-
troduced by [39]. Let = = (V, E , {L(v)}v∈V ) be an instance of metric labeling. Intuitively,
the EM-LP program finds an embedding of the vertices V on the q-dimensional simplex Nq.
For every vertex v, there is a variable Xv = (Xv,`)`∈[q] which is a point on the q-ary simplex
Nq. The point Xv represents the probability distribution of labels being assigned to v.

The labeling constraint L(v) ∈ L(v) is enforced by a linear constraint on the probability
distribution Xv . Specifically, one can include the following constraints,

Xv,` = 0 for all ` /∈ L(v) .

These labeling constraints force the point Xv to lie in the face containing the allowed labels
L(v), denoted by NL(v). The objective is to minimize the weighted sum of the earthmover
distance between adjacent vertices which is defined below.

Definition 4.4.4 (Earthmover Distance). Given two points X,Y ∈ Nq, and a metric d(i, j)
on [q], the earthmover distance, d./(X,Y ) is given by the optimal value of the following LP:

Minimize
∑

i,j∈[q]
d(i, j)µij

s.t.
∑

i

µij = Yj
∑

j

µij = Xi ∀i, j ∈ [q]

µij > 0

In other words, the earthmover distance is the minimum cost of moving the probability
mass from distribution X to Y , given the distance metric d on the labels. It is easy to see
that this defines a metric on the simplex Nq. Thus, the earthmover distance generalizes a
metric on q points to a metric on Nq such that the distance between corner points is the
same as the original metric. In this notation, the linear program of [39] is simply:

Minimize E
(u,v)∈E

d./(Xu,Xv) (EM-LP)

s.t. Xu ∈ N (L(u)) ∀u ∈ V (4.5)

Here again, N (L(u)) refers to the set of probability distributions over the subset of labels
L(u).

Lemma 4.0.2. For a metric labelling problem Λ, the earthmover linear program is equiva-
lent to the SIMPLE LP relaxation.

Proof. Consider an optimal solution to the earthmover linear program. It consists of
{Xv}v∈V and the optimal flows {µe,ij}i,j∈L. Clearly, the flow variables µe,ij yield the local
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distributions µe, which are not only a feasible solution but have the exact same objective
value.

Conversely, given a solution to the SIMPLE LP relaxation, the Xv variables can be
obtained by setting Xv = margin{v} µe for some e 3 v. Furthermore, the local distributions
µe yield the flow variables for the earthmover relaxation. Trivially, the resulting solution
has the same objective value.

�

4.5 A Simple SDP Relaxation

In this section, we strengthen the SIMPLE LP relaxation to obtain a semidefinite program-
ming relaxation. The basic idea is to enforce the distributions µe to be realized as inner
products of vectors.

As earlier, let = = (V,P) be an instance of a GCSP Λ over a domain [q] and arity k.
The variables of the program consist of

– A collection of vectors {bi,a}i∈V ,a∈[q]. In the integral solution bi,a is 1 if variable i is
assigned a, and 0 otherwise.

The intent for the vector solution {bi,a} is that the vectors correspond to distributions
over integral assignments. Specifically, in the intended solution, all vectors have only
{0, 1}-coordinates and for every i and every coordinate r, exactly one of the vectors
bi,1, . . . , bi,q has a 1 in the rth coordinate.

– A collection {µP }P∈supp(P) of distributions over local assignments. For each payoff

P ∈ P, µP is a distribution over [q]V(P ) corresponding to assignments for the variables
V(P ).

The details of the relaxation are as follows:

LC Relaxation

maximize E
P∼P

E
x∼µP

P (x) (LC)

subject to 〈bi,a, bj,b〉 = Pr
x∼µP

{

xi = a, xj = b
}

; P ∈ supp(P), i, j ∈ V(P ), a, b ∈ [q] .

µP ∈ N([q]V(P ))

In the above definition of LC relaxation, the set N
(

[q]V(P )
)

refers to the set of probability
distributions over the [q]-ary assignments to V(P ).

Notice that we have omitted the consistency condition between the marginal distribu-
tions that were part of the SIMPLE LP relaxation. Specifically, these were constraints of
the form marginS µP = marginS µP ′ for two local distributions µP and µ′P . These consistency
constraints are enforced here via the constraints on the inner products of vectors. For a set
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S = {i, j} ⊆ V(P ) ∩ V(P ′) that lies in the intersection of two payoffs P,P ′ and a, b ∈ [q],

marginS µP (a, b) = Pr
x∈µP

{

xi = a, xj = b
}

= 〈bi,a, bj,b〉 = Pr
x∈µP ′

{

xi = a, xj = b
}

= marginS µP ′(a, b)

The total number of variables in the above semidefinite program is poly(qk, |supp(P)|).
Therefore, the above semidefinite program can be solved up to an additive error of ε, in
time poly(qk, |supp(P)|, log 1/ε) using interior point methods. More recently, building on
the work of Arora-Kale [13], Steurer [151] exhibited an algorithm running in near linear
time that computes the optimal SDP solution up to an additive error ε. For the sake of
completeness, we restate the result of Steurer [151] below:

Theorem 4.1 (Theorem 1.3, [151]). There is an algorithm A that on input a GCSP instance
= on n variables and m > n payoffs, alphabet size q and arity k, finds a SDP solution to the
LC relaxation whose objective value is at least LC(=)−ε. The running time of the algorithm
A is bounded by poly(qk/ε) × (m+ n log2 n).

Remark 4.5.1. Note that the LC relaxation can be solved in polynomial time even for
q = poly(n). Thus, the LC relaxation can be written for GCSPs whose domain size grows
with the input. Ordering constraint satisfaction problems (see Chapter 9 for definitions)
such as Maximum Acyclic Subgraph can be posed as a GCSP with a domain size n.
In Chapter 9, we will show that the resulting relaxation yields the optimal approximation
ratio for every OCSP.

4.5.1 Additional Properties

While the LC relaxation appears fairly minimal, feasible solutions to it satisfy several addi-
tional useful properties. We state some of these properties here.

Observation 4.5.1. For every variable i ∈ V, the set of vectors {bi,a|a ∈ [q]} satisfy:

〈bi,a, bi,a′〉 = 0 ∀ a, a′ ∈ [q], a 6= a′
∑

a∈[q]
〈bi,a, bi,a〉 = 1

Proof. Let P be a payoff such that i ∈ V(P ), and let µP denote the associated dis-
tribution. Both of the above equations follow trivially by observing that 〈bi,a, bi,a′〉 =
Prx∈µP

{xi = a, xi = a′}. �

Observation 4.5.2. Given an arbitrary feasible solution (V ,µ), there exists a feasible
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solution (V ∗,µ∗) with the same objective value and a vector b0 such that

∑

a∈[q]
b∗i,a = b0 ∀i ∈ V , (4.6)

〈b∗i,a, b0〉 = ‖b∗i,a‖2
2 ∀i ∈ V, a ∈ [q] , (4.7)

‖b0‖2
2 = 1 (4.8)

Proof. From Observation 4.5.1, for every vertex
∑

a∈[q] bi,a is a unit vector. Furthermore,
for two variables i, j that participate together in a payoff P ,

〈
∑

a∈[q]
bi,a,

∑

a′∈[q]
bj,a′〉 =

∑

a∈[q],a′∈[q]
〈bi,a, bj,a′〉 =

∑

a∈[q],a′∈[q]
Pr
x∈µP

{

xi = a, xj = a′
}

= 1 .

Note that the inner product between two unit vectors is 1 if and only if the two are equal.
Consequently, for two variables i, j ∈ V(P ) that belong to the same payoff P , we have
∑

a∈[q] bi,a =
∑

a′∈[q] bj,a′ .
Consider the hypergraph H whose vertices are the variables V, and hyperedges are the

sets {V(P )|P ∈ supp(P)}. Let C1 ∪ C2 ∪ . . . Ct = H be the decomposition of H into
connected components. For all variables i within a connected component C`, the vector
∑

a∈[q] bi,a are equal. Let b
(`)
0 denote the vector

∑

a∈[q] bi,a corresponding to i ∈ C`.

For each component C` for ` > 1, rotate all the corresponding vectors, so that b
(`)
0

coincides with b
(1)
0 . The transformed SDP vectors {b∗i,a} form the new SDP vectors. The

set of distributions µ∗ is the same as µ. Set b0 = b
(1)
0 .

The transformations preserve all inner products within connected components C`. In
particular, for any given payoff P , the inner products between SDP vectors {bi,a|i ∈
V(P ), a ∈ [q]} remain unchanged. Therefore, the inner products of transformed vectors
still match the local distributions {µP |P ∈ P}.

By definition, the vectors satisfy
∑

a∈[q] b
∗
i,a = b0 for all i ∈ V. Equations 4.6 and 4.7

follow easily from the definition of b0 and orthogonality of vectors {b∗i,a|a ∈ [q]} for every
i ∈ V. The formal proofs are included below for convenience.

〈b∗i,a, b0〉 = 〈b∗i,a,
∑

a′∈[q]
b∗i,a′〉 = ‖b∗i,a‖2

2 +
∑

a6=a′
a,a′∈[q]

〈b∗i,a, b∗i,a′〉 = ‖b∗i,a‖2
2

〈b0, b0〉 = 〈
∑

a∈[q]
b∗i,a,

∑

a′∈[q]
b∗i,a′〉 =

∑

a,a′∈[q]
〈b∗i,a, b∗i,a′〉 =

∑

a∈[q]
〈b∗i,a, b∗i,a〉 = 1

�

4.6 Comparison with Relaxations in Literature

To the best of our knowledge, the only instances where a semidefinite program stronger
than the LC relaxation has been used to approximate a GCSP is [41]. This work exhibits an
algorithm for Unique Games that uses techniques from the breakthrough work of Arora-
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Rao-Vazirani [16], and thereby relies on a semidefinite program with triangle inequalities.
Furthermore, even in this case, the stronger SDP only improves the approximation in a
sub-constant regime where the input is a Unique Games instance that is 1 − ε satisfiable
for ε 6 1

logn .

Therefore, for every GCSP when we are interested in approximation factors that are
constant, no SDP stronger than LC has proved useful.

We remark here that in some works like [35], the SDP relaxations used are stronger
than LC as they are stated. However, by Observation 4.5.2 the LC is equivalent to certain
stronger SDP relaxations with additional constraints. Moreover, a close examination of the
rounding schemes reveal that some of the constraints of the semidefinite program could be
omitted.

In the rest of the section, we will compare the LC relaxation with some well-known SDPs,
for GCSPs over the boolean alphabet.

{±1}-relaxations In the LC relaxation, assignments from the alphabet [q] to a variable
xi were encoded using q different variables {bi,1, . . . , bi,q}, exactly one of which can be
1. For combinatorial optimization problems over the boolean domain such as Max Cut
or Sparsest Cut, it is natural to use relaxations that arise out of a {±1}-encoding of
solutions.

Let us consider a GCSP Λ over the domain {0, 1}. By convention, we will encode 0 → 1
and 1 → −1, i.e., a→ (−1)a. Let = be an instance of Λ over a set of variables V. For each
variable i ∈ V, we introduce a vector vi in a {±1}-relaxation. In the integral solution, the
vector vi is intended to be either −1 or +1 when i is assigned 0 or 1 respectively. More
generally, the vector vi is intended to be a vector with {±1} coordinates. The LC relaxation
can be equivalently formulated as a {±1}-relaxations in the following manner.

An SDP solution (V ,µ) for the LC-BIN relaxation of an instance = consists of the
following:

– A collection of vectors {vi}i∈V ,. In the integral solution vi is 1 if variable i is assigned
0, and −1 otherwise.

– A collection {µP}P∈supp(P) of distributions over local assignments {±1}V(P ).

– A unit vector b0 which is intended to be equal to 1.

LC-BIN Relaxation

maximize E
P∼P

E
x∼µP

P (x) (LC-BIN)

subject to 〈vi,vj〉 = E
x∼µP

xixj (P ∈ supp(P), i, j ∈ V(P ) ) .

〈vi, b0〉 = E
x∼µP

xi (P ∈ supp(P), i ∈ V(P ) ) .

µP ∈ N({±1}V(P ))
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Lemma 4.1.1. The LC-BIN relaxation is equivalent to the LC relaxation for a GCSP Λ
over the boolean domain.

Proof. Let ({vi}i∈V ∪ {b0},µ) form a feasible solution to the LC-BIN relaxation. Define
vectors bi,a as follows,

bi,0 =
(b0 + vi)

2
, bi,1 =

(b0 − vi)

2
∀i ∈ V .

For a vector y ∈ {0, 1}d, we will write (−1)y to denote the {±1}-vector
(

(−1)xi
)d

i=1
. For

each payoff, define a probability distribution µ′P over {±1}V(P ) as µ′P (y) = µP
(

(−1)y
)

. We
claim that ({bi,0, bi,1}i∈V , {µ′P }P∈P) is a feasible solution to the LC relaxation. To see this,
observe that for every i, j ∈ V, P ∈ P and a, b ∈ {0, 1} we have,

〈bi,a, bj,b〉 =
1

4
〈(b0 + (−1)avi) , (b0 + (−1)avi)〉 ,

=
1

4

(

1 + (−1)a E
x∈µP

xi + (−1)b E
x∈µP

xj + (−1)a+b E
x∈µP

xixj

)

,

=
1

4
E

x∈µP

[

(1 + (−1)axi) ·
(

1 + (−1)bxj

)]

,

= Pr
x∈µP

{

xi = (−1)a, xj = (−1)b
}

= Pr
y∈µ′P

{

yi = a, yj = b
}

.

Conversely, let ({bi,0, bi,1}i∈V ,µ) be a feasible SDP solution for the LC relaxation. With-
out loss of generality, we may assume that there exists a unit vector b0 satisfying the prop-
erties outlined in Observation 4.5.2. Define the new SDP solution ({vi}i∈V ∪ {b0},µ′) as
follows,

vi = bi,0 − bi,1 ∀i ∈ V ,

µ′P (x) = µP

(

1− x

2

)

∀P ∈ P, x ∈ {±1}V (P ) .

Here 1 denotes the vector all of whose components are equal to 1. �

Boolean 2-CSP

Lemma 4.1.2. For a GCSP of arity 2 over the boolean domain {0, 1}, the LC is equivalent
to the BS relaxation described below.
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Maximize E
P∈P

[

∑

a,b∈{0,1}
P (a, b) ·

(

1

4
〈b0 + (−1)avi, b0 + (−1)bvj〉

)

]

(BS)

Subject to 〈(b0 ± vi), (b0 ± vj)〉 > 0 ∀i, j ∈ V
|vi|2 = 1 ∀i ∈ V
|vi|2 = 1 ∀i ∈ V

Proof. By Lemma 4.1.1, it is sufficient to show equivalence to the LC-BIN relaxation.

Firstly, the above relaxation is weaker than the LC-BIN. Specifically, the constraints of
LC-BIN yield,

〈(b0 ± vi), (b0 ± vj)〉 = E
x∈µP

(1 ± xi)(1 ± xj) > 0

.

Conversely, to show that LC-BIN is weaker than the BS, fix a payoff P , and let V(P ) =
{i, j}. Define a local distribution µP as follows:

µP (a, b) =
1

4
〈(b0 ± vi), (b0 ± vj)〉

The constraints of the SDP ensure that µP (a, b) > 0 for all a, b ∈ {±1}. Furthermore, it
follows immediately from the definition that µP (0, 0) + µP (0, 1) + µP (1, 0) + µP (1, 1) = 1.
Finally, it is a straight forward calculation to show that Ex∈µP

xixj = 〈vi,vj〉 and Ex∈µP
xi =

〈b0,vj〉. Thus, ({vi}i∈V , {µP }P∈P) is a feasible solution to the LC-BIN relaxation. �

Remark 4.6.1. The constraints of the form 〈(b0 ± vi), (b0 ± vj)〉 > 0 are just the triangle
inequalities between the vectors b0,vi and vj.

In [114], a variant of the BS SDP relaxation is used to obtain the best known approx-
imation for the Max 2-Sat problem. The SDP relaxation in [114] imposes the triangle
inequalities on every b0,vi,vj for all i, j ∈ V. Instead, the BS relaxation imposes the tri-
angle inequalities only for pairs i, j ∈ V that participate together in a payoff/constraint.
However, the rounding scheme presented in [114] still yields the same approximation ratio
when used with the seemingly weaker relaxation LC-BIN. Specifically, the analysis of the
rounding scheme in [114] is local in that it depends solely on the geometry of vectors within
individual constraints. The BS SDP relaxation

Max Cut Wrapping up the section, we finally compare the relaxation to the Goemans-
Williamson SDP relaxation for the classic problem of Max Cut. We restate the GW SDP
relaxation for the sake of convenience.
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GW(G) Relaxation (GW)

Maximize
1

4

∑

(vi,vj)∈E
‖vi − vj‖2

2 (Total Squared Length of Edges)

Subject to ‖vi‖2
2 = 1 ∀i ∈ V (all vectors vi are unit vectors)

Lemma 4.1.3. For Max Cut the LC relaxation is equivalent to the GW relaxation.

Proof. By Lemma 4.1.1 and Lemma 4.1.2 , it is sufficient to show equivalence between GW

and the BS relaxation.

Clearly, BS is a stronger relaxation than GW. Given a solution {vi}i∈V to the GW

relaxation, set b0 to be a unit vector orthogonal to all vi. Then, the SDP solution {vi}i∈V ∪
{b0} forms a feasible solution to the BS, thereby finishing the proof. �

4.7 Stronger Relaxations

Towards obtaining better approximations, a natural avenue is to utilize stronger LP/SDP
relaxations that include greater number of constraints. There are numerous choices of
additional constraints that can be included to strengthen a given convex relaxation. In
fact, there are several hierarchies of increasingly stronger relaxations such as the Lovász-
Schriver [118], Lasserre [110] and Sherali-Adams hierarchies [150] that have been proposed
in literature.

Here, we describe two hierarchies of relaxations that are natural strengthenings of the
LC relaxation, and are closely related to the Sherali-Adams hierarchy [150].

LHr relaxation In the LC relaxation, the inner products of SDP vectors {bi,a|i ∈ V, a ∈
[q]} are constrained to agree with the local distributions {µP |P ∈ supp(P)}. However, the
relaxation contains local distributions µS only for sets S that are S = V(P ) for some payoff
P ∈ supp(P). A natural way to strengthen the relaxation is to include local distributions
for every set S of size say r. We refer to the resulting SDP as the LHr relaxation.

For a constant r, it is easy to see that the LHr SDP has poly(nr, qk) constraints for a
GCSP instance = with n variables, over alphabet q and arity k. Hence, the LHr relaxation
can be solved in polynomial time for constant r. For the sake of convenience, we include
the detailed definition of the LHr relaxation.

Let = be a GCSP instance over a set of variables V, alphabet size q and arity k. A
feasible solution to the LHr relaxation consists of the following:

1. A collection of (local) distributions {µS}S⊆V ,|S|6r, where µS : [q]S → R+ is a distribu-

tion over [q]-assignments to S, that is, µS ∈ N([q]S).

2. A (global) vector solution {bi,a}i∈V ,a∈[q], where bi,a ∈ R
d for every i ∈ V and a ∈ [q].
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The intention for the local distributions {µS} is again that they arise as the marginal
distribution of a global distribution µ : [q]V → R+ over [q]-assignments to the variables V.
The intention for the vector solution {bi,a} is that all vectors have only {0, 1}-coordinates
and that for every i and every coordinate `, exactly one of the vectors bi,1, . . . , bi,q has a 1
in the `th coordinate.

LHr-Relaxation.

maximize E
P∼P

E
x∼µP

P (x) (LHr)

subject to 〈bi,a, bj,b〉 = Pr
x∼µS

{

xi = a, xj = b
}

S ⊆ V, |S| 6 r, i, j ∈ S, a, b ∈ [q] ,

(4.9)

µS ∈ N
(

[q]S
)

(4.10)

Here, N
(

[q]S
)

denotes probability distributions over [q]S . As usual, we denote by LHr(=)
the value of an optimal solution to this relaxation.

The above relaxation succinctly encodes all possible inequalities on up to r vectors. The
next remark makes this observation precise.

Remark 4.7.1. A linear inequality on the inner products of a subset of vectors {bi,a}i∈S,a∈[q]
for S ⊆ V is valid if it inequality if it holds for all distributions over [q]-assignments to the
variables S. A feasible solution to the LHr-relaxation satisfies all valid inequalities on sets
of up to r vectors.

4.7.1 SAr-Relaxation

Notice that the local distributions in the LHr-relaxation have redundancies. Specifically,
consider two sets A,B ⊆ V such that A ⊂ B and |A|, |B| 6 r. The local distribution
µB induces a distribution marginA µB over assignments to the set A, since A ⊂ B. (Here,
marginA µB denotes the marginal of µB on the set A) It is but natural to enforce that
marginA µB and µA be the same distribution.

SAr-Relaxation:

maximize E
P∼P

E
x∼µP

P (x) (SAr)

subject to 〈bi,a, bj,b〉 = Pr
x∼µS

{

xi = a, xj = b
}

S ⊆ V, |S| 6 r, i, j ∈ S, a, b ∈ [q] ,

(4.11)

‖marginA∩B µA − marginA∩B µB‖1 = 0 A,B ⊆ V, |A|, |B| 6 r . (4.12)

µS ∈ N
(

[q]S
)

(4.13)

Again, N([q]S) denotes the set of probability distributions over [q]-ary assignments for the
variables in S. As usual, we denote by SAr(=) the value of an optimal solution to this
relaxation.
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Remark 4.7.2. The SAr relaxation is closely related to the rth level of the Sherali–Adams
hierarchy. In fact, SAr is obtained from the basic SDP relaxation by r-rounds Sherali–
Adams lift-and-project. In other words, we are optimizing over the intersection of the basic
SDP relaxation and the Sherali–Adams relaxation.

{±1}-relaxations The LHr and SAr SDPs can also be written as {±1}-relaxations for
GCSPs over boolean alphabet. For the sake of completeness, we include the formulations
below.

LHr-Relaxation ({±1}-version)

maximize E
P∼P

E
x∼µP

P (x)

subject to 〈vi,vj〉 = E
x∼µS

xixj S ⊆ V, |S| 6 r, i, j ∈ S ,

〈vi, b0〉 = E
x∼µP

xi P ∈ supp(P), i ∈ V(P ) .

µS ∈ N
(

{±1}S
)

SAr-Relaxation ({±1}-version)

maximize E
P∼P

E
x∼µP

P (x) (SAr)

subject to 〈vi,vj〉 = E
x∼µS

xixj S ⊆ V, |S| 6 r, i, j ∈ S ,

〈vi, b0〉 = E
x∼µP

xi ,

marginA∩B µA = marginA∩B µB A,B ⊆ V, |A|, |B| 6 r .

µS ∈ N
(

{±1}S
)

Here, b0 ∈ R
d is an arbitrary fixed unit vector.

4.8 Robustness and Smoothing of the LC relaxation

In this section, we will be interested in the robustness of the SDP relaxations LC,LHr and
SAr to “noise”. More precisely, suppose (V ,µ) is a an approximately feasible solution in
that it satisfies all the constraints of one of these SDP relaxations within a tiny error of ±ε.
Then, the robustness of the SDP relaxation refers to how close the solution must be to a
completely feasible solution. Robustness of a SDP relaxation will prove useful in rounding
the SDP solutions (Chapter 5), constructing integrality gaps (Chapter 12), reductions from
integrality gaps to dictatorship tests (Chapter 7) and even in solving the SDPs efficiently
[151].

Formally, an ε-infeasible solution to a SDP relaxation is defined as follows.

Definition 4.8.1. An SDP solution {vi,a}i∈V ,a∈Fq , {µS}S⊆V ,|S|6r is said to be ε-infeasible
for a SDP relaxation if it satisfies all the constraints of the program up to an additive error
of ε.



66

As defined earlier, the LC relaxation is reasonably robust. However, including certain ad-
ditional constraints into the relaxation make the robustness argument simpler. Specifically,
we rewrite LC in the following equivalent fashion.

LC Relaxation (Equivalent Version)

maximize E
P∼P

E
x∼µP

P (x)

subject to 〈bi,a, bj,b〉 = Pr
x∼µP

{

xi = a, xj = b
}

P ∈ supp(P), i, j ∈ V(P ), a, b ∈ [q] .

(4.14)

〈bi,a, b0〉 = ‖bi,a‖2
2 ∀i ∈ V, a ∈ [q] , (4.15)

‖b0‖2
2 = 1 (4.16)

µP ∈ N([q]V(P ))

To the original definition of LC relaxation, we have included two additional constraints
(4.15) and (4.16). As was shown in Observation 4.5.1 and Observation 4.5.2, any solution
to the LC can be transformed to satisfy these additional constraints, without any loss in
objective value. Therefore, the above relaxation is equivalent to the LC relaxation.

Theorem 4.2 (Robustness of LC). Let P be a Λ-CSP instance on variable set V. Suppose
that {bi,a}i∈V,a∈[q], {µP }P∈supp(P) is an ε-infeasible SDP solution for P of value α. Here,
ε-infeasible means that all consistency constraints (4.14)–(4.16) of the relaxation LC are
satisfied up to an additive error of at most ε. Then,

sdp(P) > α−
√
ε · poly(kq) .

4.8.1 Surgery & Smoothing

Let {bi,a}, {µP} be an ε-infeasible SDP solution for a Λ-CSP instance P on the variable set
V = [n]. Recall that an ε-infeasible SDP solution satisfies ,

∣

∣

∣

∣

〈bi,a, bj,b〉 − Pr
x∼µP

{

xi = a, xj = b
}

∣

∣

∣

∣

6 ε (4.17)

for all P ∈ supp(P), i, j ∈ V(P ), and a, b ∈ [q] and for all i ∈ V(P ) and a ∈ [q],

∣

∣〈bi,a, b0〉 − ‖bi,a‖2
2

∣

∣ 6 ε (4.18)

We construct a feasible solution that is close to the given SDP solution in two steps.

In the first step, called “surgery”, we construct vectors {ui,a} and b0 that satisfy the
equality constraints on SDP vectors, i.e., 〈ui,a,ui,b〉 = 0 for all a 6= b ∈ [q] and all i ∈ V and
∑

a∈[q] ui,a = b0 for all i ∈ V.

In the second step, called “smoothing”, we construct a feasible SDP solution {wi,a},
{µ′P }. In this step, the vectors and the local distributions are “smoothed” which allows us
to modify the local distributions so that they match the vectors perfectly.
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Lemma 4.2.1. The vectors {bi,a} ∪ {b0} can be transformed to vectors {ui,a} ∪ {u0} such
that for all a 6= b ∈ [q] and all i ∈ V ,

〈ui,a,ui,b〉 = 0 , (4.19)

and for all i ∈ V ,
∑

a∈[q]
ui,a = u0 . (4.20)

Furthermore, for i ∈ V and a ∈ [q],

‖ui,a − bi,a‖ 6
√
ε · poly(q) . (4.21)

In particular, the SDP solution {ui,a}, {µP } is η-infeasible for η =
√
ε · poly(q).

Proof. First, the length of b0 is in the range, [1−ε, 1+ε]. Normalize the vector b0 to a unit
vector to obtain u0. From (4.17) and (4.18) it follows that ‖bi,a‖2 6 1+ε and |〈bi,a, bi,b〉| 6 ε.
for all a 6= b ∈ [q]. Therefore, if we apply the Gram–Schmidt orthogonalization process on
the vectors bi,1, . . . , bi,q, the resulting vectors v′i,1, . . . ,v

′
i,q satisfy ‖bi,a − b′i,a‖ 6 O(ε · q).

For every variable i ∈ V , we compute a rescaling factor αi such that bi,0 :=
∑

a∈[q] αiv
′
i,a

is a unit vector. Note that αi = 1 ± ε · poly(q). Furthermore, 〈bi,0, b0〉 > 1 − ε · poly(q).
Therefore, the angle ∠(bi,0, b0) =

√
ε ·poly(q). For every variable i ∈ V , we define a rotation

Ui which maps the vector bi,0 to b0 and acts as the identity on the space orthogonal to the
plane span{bi,0, b0}. We claim that the vector ui,a := αiUiv

′
i,a satisfy the conditions of the

lemma. By construction, the vectors satisfy the constraints (4.19) and (4.20). Since Ui is a
rotation by an angle of at most

√
ε · poly(q), we have ‖Ui − I‖ 6

√
ε · poly(q) and therefore

‖ui,a−αiv′i,a‖ 6
√
ε ·poly(q). Previous observations imply that ‖αiv′i,a−bi,a‖ 6 ε ·poly(q).

Thus, the vectors {ui,a} satisfy also the third condition (4.21). �

The existence of a local distribution µP imposes constraints on the vectors corresponding
to V(P ). Specifically, the inner products of vectors corresponding to V(P ) must lie in a
certain polytope QP of constant dimension, to ensure the existence of a matching local
distribution µP . The SDP solution {ui,a} has local distributions that match up to an error
of η. In other words, for every payoff P , the vectors corresponding to V(P ) are within η
distance from the corresponding polytope QP .

The idea of smoothing is to take a convex combination of the SDP solution {ui,a},
with the SDP solution corresponding to the uniform distribution over all assignments. By a
suitable basis change, the local polytopes QP can be made full-dimensional, in that they are
defined by a set of inequalities (no equations involved). The SDP solution corresponding
to the uniform distribution over all assignments, lies at the center of each of these local
polytopes QP . As {ui,a} is only η away from each of these polytopes, it moves into the
polytope on taking convex combination with the center. The above intuition is formalized
in the following lemma.
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4.8.2 Smoothing

Lemma 4.2.2 (Smoothing). The local distributions {µP } can be transformed to distribu-
tions {µ′P } such that for all P ∈ supp(P), i 6= j ∈ V(P ), and a, b ∈ [q],

Pr
x∼µ′P

{

xi = a, xj = b
}

= (1 − δ)〈ui,a,uj,b〉 + δ · 1
q2 , (4.22)

where δ = q4k2η. Furthermore, for every P ∈ supp(P),

‖µP − µ′P‖1 6 3δ

Proof. Let us fix a payoff function P ∈ supp(P). Let S = V(P ). We may assume that S =
{1, . . . , k}. We can think of µP as a function F : [q]k → R such that F(x) is the probability
of the assignment x under the distribution µP . For the case q = 2, the constraint (4.22)
translates to a condition on the degree-2 Fourier coefficients of F . For larger q, we will
use a suitable generalization of the Fourier bases. We refer the reader to Section 3.4 for an
introduction to multilinear expansion of functions.

Let χ1, . . . , χq be an orthonormal basis of the vector space {F : [q] → R} such that
χ1 ≡ 1. (Here, orthonormal means Ea∈[q] χi(a)χj(a) = δij for all i, j ∈ [q]). By tensoring

this basis, we obtain the orthonormal basis {χσ | σ ∈ [q]k} of the vector space {F : [q]k → R}.
For σ ∈ [q]k, we have χσ(x) = χσ1(x1) · · ·χσk

(xk). For a function F : [q]k → R, we denote by
F̂(σ) the χσ-coefficient of F , i.e., f̂(σ) :=

∑

x∈[q]k F(x)χσ(x). Note that F = Eσ∈[q]k F̂(σ)χσ .
Therefore, if we let F again be the function corresponding to µP , then for all i 6= j ∈ S and
a, b ∈ [q] we have

Pr
x∼µP

{

xi = a, xj = b
}

=
∑

x∈[q]k
xi=a,xj=b

E
σ∈[q]k

F̂(σ)χσ(x) (4.23)

= E
σ∈[q]2

F̂ij(σ)χσ(a, b) (4.24)

where F̂ij(s, t) is defined as the coefficient F̂(σ) for σi = s, σj = t and σr = 1 for all
r ∈ [q] \ {i, j}. In the second equality we used that for every σ with σr 6= 1 for some
r ∈ [q] \ {i, j}, the sum over the values of χσ in (4.23) vanishes.

For every variable pair i 6= j ∈ S, let Gij : [q]2 → R be the function Gij(a, b) = 〈ui,a,uj,b〉.
Similarly, we let Gi : [q] → R be the function Gi(a) = 〈ui,a,ui,a〉 = 〈ui,a, b0〉. We define a
function F ′ : [q]k → R as follows

F̂ ′(σ) =











Ĝi(s) if σi=s and σr=1 for all r ∈ [q]\{i},
Ĝij(s, t) if σi=s, σj= t and σr=1 for r∈ [q]\{i, j},
F̂(σ) otherwise.

The conditions (4.19) and (4.20) imply that Ĝi(s) = Ĝij(s, 1) for all i 6= j ∈ S. We also have
F̂(1) = Ĝi(1) = Ĝij(1) = 1. Therefore, the identity in (4.23)–(4.24) applied to F ′ shows
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that for all i, j ∈ S and a, b ∈ [q],

〈ui,a,uj,b〉 =
∑

x∈[q]k
xi=a,xj=b

E
σ∈[q]k

F̂ ′(σ)χσ(x) =
∑

x∈[q]k
xi=a,xj=b

F ′(x) . (4.25)

We could finish the proof at this point if the function F ′ corresponded to a distribution
µ′P over assignments [q]k. The function F ′ satisfies

∑

x∈[q]k F ′(x) = F̂(1) = 1 However, in

general, the function F ′ might take negative values. We will show that these values cannot
be too negative and that the function can be made into a proper distribution by smoothing.

Let K be an upper bound on the values of the functions χ1, . . . , χq. From the orthonor-
mality of the functions, it follows that K 6

√
q. Let Fij(a, b) = Prx∼µP

{xi = a, xj = b}.
Recall that we computed in (4.24) the coefficients of Fij in the basis {χs,t | s, t ∈ [q]}. Since
the SDP solution {ui,a}, {µP } is η-infeasible, we have

Ĝij(s, t) =
∑

a,b∈[q]
Gij(a, b)χst(a, b) =

∑

a,b∈[q]
Fij(a, b)χst(a, b)±K2q2η = F̂ij(s, t)±K2q2η.

Therefore, |F̂(σ) − F̂ ′(σ)| 6 K2q2η for all σ ∈ [q]k. Thus,

F ′(x) = E
σ∈[q]k

F̂ ′(σ)χσ(x) = E
σ∈[q]k

F̂(σ)χσ(x) ± δ/qk = F(x) ± δ/qk , (4.26)

where δ := K4k2q2η. Hence, if we let H = (1 − δ) · F ′ + δ · U, where U : [q]k → R is the
uniform distribution U ≡ 1/qk, then

H = (1 − δ)F ′ + δ/qk > (1 − δ)F > 0.

It follows that H corresponds to a distribution µ′P over assignments [q]k. Furthermore, from
(4.25) it follows that for all i 6= j ∈ S and a, b ∈ [q],

Pr
x∼µ′P

{

xi = a, xj = b
}

= (1 − δ)〈ui,a,uj,b〉 + δ · 1
q2
.

Finally, let us estimate the statistical distance between the distributions µP and µ′P ,

‖F −H‖1 = ‖δ(F − U) + (1 − δ)(F − F ′)‖1

6 2δ + ‖F − F ′‖1 (using triangle inequality)

6 3δ (using (4.26)) .

In this way, we can construct a suitable distribution µ′P for every P ∈ supp(P), which proves
the lemma. �
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4.8.3 Proof of Theorem 4.2 (Robustness of LC)

Let us consider an ε-infeasible SDP solution {bi,a}, {µP } for a Λ-CSP instance P. Suppose
that this SDP solution has value α. First, we construct vector {ui,a} as in Lemma 4.2.1.
These vectors together with the original local distributions {µP } form an η-infeasible SDP
solution for P, where η =

√
ε · poly(q). Next, we construct local distributions {µ′P } as in

Lemma 4.2.2. Define new vectors

wi,a
def
=

√
1 − δ · ui,a ⊕

√
δ · u′i,a ,

where ⊕ denotes the direct sum of vectors and {u′i,a} are vectors corresponding to the
uniform average over all feasible SDP solutions (which satisfy 〈u′i,a,u′jb〉 = 1/q2 for all
i 6= j ∈ V and all a, b ∈ [q]). From Lemma 4.2.1 and Lemma 4.2.2 it follows that {wi,a},
{µ′P } is a feasible SDP solution for P. It remains to estimate the value of this feasible SDP
solution:

E
P∼P

E
x∼µ′P

P (x) = α− E
P∼P

∑

x∈[q]V(P )

P (x)
(

µ(x) − µ′(x)
)

> α− E
P∼P

‖µ− µ′‖1

> α− η · poly(kq) .

For the first inequality, we used that |P (x)| 6 1. The second inequality follows from
Lemma 4.2.2. (In the last calculation, we just verified that the value of SDP solutions is
Lipschitz in the statistical distance of the local distributions.) �

4.9 Robustness of LHr and SAr relaxations

In this section, we will show that the LHr and SAr have the following robustness property.
Notice that the closeness of the completely feasible solution is expressed in terms of the L1

distance between the local distributions. Recall that the objective value in these relaxations
is expressed as an expectation over the local distributions. Therefore, a bound on the L1

distance between local distributions also corresponds to a bound on the change in the SDP
value.

Theorem 4.3. Given an ε-infeasible solution {bi,a}i∈V ,a∈Fq , {µS}S⊆V ,|S|6r to the LHr relax-
ation, there exists a feasible solution {b′i,a}, {µ′S}S⊂V ,|S|6r for LHr such that for all subsets

S ⊆ V, |S| 6 r, ‖µS − µ′S‖1 6 poly(q) · r2ε.

Theorem 4.4. Given an ε-infeasible solution {bi,a}i∈V ,a∈Fq , {µS}S⊆V ,|S|6r to the SAr relax-
ation, there exists a feasible solution {b′i,a}, {µ′S}S⊆V ,|S|6r for SAr such that for all subsets
S ⊆ V, |S| 6 r, ‖µS − µ′S‖1 6 poly(q) · ε · qr.

The proof follows along the lines of the corresponding proof for LC relaxation presented
in the previous section.

Let {χ1, . . . , χq} be an orthonormal basis for the vector space {F : [q] → R} such that
χ1(a) = 1 for all a ∈ [q]. (Here, orthonormal means Ea∈[q] χi(a)χj(a) = δij for all i, j ∈ [q].)
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For r ∈ N, let {χσ | σ ∈ [q]r} be the orthonormal basis of the vector space {F : [q]r → R}
defined by

χσ(x)
def
= χσ1(x1) · · · · · χσr(xr) , (4.27)

where σ = (σ1, . . . , σr) ∈ [q]r and x = (x1, . . . , xr) ∈ [q]q. Again, a function F : [q]r → R

can be written as the multilinear polynomial,

F̂(σ)
def
=
∑

x∈[q]r
F(x)χσ(x) . (4.28)

Using the fact Eσ∈[q]r χσ(x)χσ(y) = δxy for all x, y ∈ [q]r, we see that

F = E
σ∈[q]r

F̂(σ)χσ .

We define the following norm for functions F̂ : [q]r → R,

‖F̂‖1

def
=
∑

σ∈[q]r
|F̂(σ)| .

We say F : [q]r → R is a distribution if F(x) > 0 for all x ∈ [q]r and
∑

x∈[q]r F(x) = 1. We
define

K
def
= max

σ∈[q]r,x∈[q]r
|χσ(x)| .

In the next lemma, we give a proof of the following intuitive fact: If a function G : [q]q →
R satisfies the normalization constraint

∑

x∈[q]q G(x) = 1 and it is close to a distribution in

the sense that there exists a distribution F such that ‖F̂ − Ĝ‖ is small, then G can be made
to a distribution by “smoothing” it. Here, smoothing means to move slightly towards the
uniform distribution (where every assignment has probability q−r).

Lemma 4.4.1. Let F ,G : [q]r → R be two functions with F̂(1) = Ĝ(1) = 1. Suppose F is
a distribution. Then, the following function is also a distribution

(1 − ε)G + εq−r where ε = ‖F̂ − Ĝ‖1 ·K .

Proof. It is clear that the function H = (1 − ε)G + εq−r satisfies the constraint Ĥ(1) = 1.
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For every x ∈ [q]r, we have

H(x) = (1 − ε)G(x) + εq−r

> (1 − ε)
(

G(x) −F(x)
)

+ εq−r (using F(x) > 0)

= εq−r + (1 − ε) E
σ∈[q]r

(

Ĝ(σ) − F̂(σ)
)

χσ(x)

> εq−r − (1 − ε) E
σ∈[q]r

∣

∣

∣Ĝ(σ) − F̂(σ)
∣

∣

∣ ·K

= εq−r − (1 − ε)K‖F̂ − Ĝ‖1 · q−r

> 0 . (by our choice of ε)

�

Let V be a set. For a function F : [q]V → R and a subset S ⊆ V , we define the function
marginS F : [q]S → R as

marginS F(x)
def
=

∑

y∈[q]V \S
F(x, y) .

Note that if F is a distribution over [q]-assignments to V then marginS F is its marginal
distribution over [q]-assignments to T .

Lemma 4.4.2. For every F : [q]V → R and S ⊆ V ,

marginS F = E
σ∈[q]S

F̂(σ,1)χσ .

Here, σ,1 denotes the [q]-assignment to V that agrees with σ on S and assigns 1 to all
variables in V \ S.

Proof.

marginS F(x) =
∑

y∈[q]V \S
F(x, y)

=
∑

y∈[q]V \S
E

σ∈[q]V
F̂(σ)χσ(x, y)

=
∑

y∈[q]V \S
E

σ∈[q]S
E

σ′∈[q]V \S
F̂(σ)χσ(x)χσ′(y)

= E
σ∈[q]S

E
σ′∈[q]V \S

F̂(σ, σ′)χσ(x) ·
∑

y∈[q]V \S
χσ′(y)

= E
σ∈[q]S

F̂(σ,1)χσ(x) . (using
∑

y∈[q]V \Sχσ′(y) = 0 for σ′ 6= 1.)

�

The margin operator has the following useful property (which is clear from its definition).



73

Lemma 4.4.3. For every function F : [q]V → R and any sets T ⊆ S ⊆ V ,

marginT marginS F = marginT F .

Lemma 4.4.4. Let V be a set and let
{

µS : [q]S → R | S ⊆ V, |S| 6 r
}

be a collection of
distributions. Suppose that for all sets A,B ⊆ V with |A|, |B| 6 r,

‖marginA∩B µA − marginA∩B µB‖1 6 η .

Then, there exists a collection of distributions
{

µ′S : [q]S → R | S ⊆ V, |S| 6 r
}

such that

– for all A,B ⊆ V with |A|, |B| 6 r,

marginA∩B µ
′
A = marginA∩B µ

′
B .

– for all S ⊆ V with |S| 6 r,

‖µ′S − µS‖1 6 O(ηqrK2) ,

The previous lemma is not enough to establish the robustness of our SDP relaxations.
The issue is that we not only require that the distributions are consistent among themselves
but they should also also be consistent with the SDP vectors.

The following lemma allows us to deal with this issue.

Lemma 4.4.5 (SAr Smoothing). Let V be a set and let
{

µS : [q]S → R | S ⊆ V, |S| 6 r
}

be
a collection of distributions. Suppose that

– for all sets A,B ⊆ V with |A|, |B| 6 r,

‖marginA∩B µA − marginA∩B µB‖1 6 η .

– for all sets A,B ⊆ V with |A|, |B| 6 2,

marginA∩B µA = marginA∩B µB .

Then, for ε > qrK2η, there exists a collection of distributions
{

µ′S : [q]S → R | S ⊆ V, |S| 6 r
}

such that

– for all A,B ⊆ V with |A|, |B| 6 r,

marginA∩B µ
′
A = marginA∩B µ

′
B . (4.29)

– for all S ⊆ V with |S| 6 r,

‖µ′S − µS‖1 6 O(K2ηqr) , (4.30)
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– for all S ⊆ V with |S| 6 2,

µ′S = (1 − ε)µS + ε · q−|S| . (4.31)

Proof. For σ ∈ [q]V , let supp(σ) denote the set of coordinates of σ not equal to 1, and let
|σ| denote the number of such coordinates,

supp(σ)
def
= {i ∈ V | σi 6= 1} and |σ| def

= |supp(σ)| .

For every σ ∈ [q]V with |σ| 6 r, we define

F̂(σ) := E
x∼µS

χσ(x) where S = supp(σ) .

For every σ with |σ| > r, we set F̂(σ) := 0. We define µ′S in terms of F = Eσ F̂(σ)χσ,

µ′S := marginS (1 − ε)F + εq−|V | .

By Lemma 4.4.3, this choice of µ′S satisfies condition (4.29).

First, let us argue that the functions µ′S are distributions. Let S ⊆ V with |S| 6 r. For
σ ∈ [q]S with T := supp(σ) ⊆ S, we have

|F̂(σ,1) − E
x∼µS

χσ(x)| = | E
x∼µT

χσ(x) − E
x∼µS

χσ(x)|

6 ‖µT − marginT µS‖1 · max|χσ|
6 η ·K . (4.32)

Let FS denote the function marginS F . By Lemma 4.4.2, F̂S(σ) = F̂(σ,1) for all σ ∈ [q]S .
Hence, ‖F̂ − µ̂S‖1 6 qr ·Kη. It follows that for ε > qrK2η, the function µ′S = (1 − ε)FS +
εq−|S| is a distribution (using Lemma 4.4.1).

Next, let us verify that (4.30) holds. We have

‖µ′S − µS‖1 6 O(ε) + ‖marginS F − µS‖1

La. 4.4.2
= O(ε) +

∥

∥

∥

∥

E
σ∈[q]S

(

F̂(σ,1) − E
x∼µS

χσ(x)

)

χσ

∥

∥

∥

∥

1

(4.32)

6 O
(

ηK2 · qr
)

(using |F̂(σ,1) − µ̂S(σ)| 6 ηK and |χσ(x)| 6 K) .

Finally, we show that the new distributions satisfy (4.31). Let S ⊆ V be a set of
size at most 2. It follows from the consistency assumption that for all σ ∈ [q]S , we have
F̂(σ,1) = µ̂S(σ). Hence, FS = µS , which implies (4.31).

�

Lemma 4.4.6 (LHr Smoothing). Let V be a set and let
{

µS : [q]S → R | S ⊆ V, |S| 6 r
}

be
a collection of distributions. Suppose that
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– for all sets A,B ⊆ V with |A|, |B| 6 r,

‖marginA∩B µA − marginA∩B µB‖1 6 η .

– for all sets A,B ⊆ V with |A|, |B| 6 2,

marginA∩B µA = marginA∩B µB .

Then, for ε > qR2K2η, there exists a collection of distributions
{

µ′S : [q]S → R | S ⊆ V, |S| 6 r
}

such that

– for all A,B ⊆ V with |A|, |B| 6 r with |A ∩B| 6 2,

marginA∩B µ
′
A = marginA∩B µ

′
B . (4.33)

– for all S ⊆ V with |S| 6 r,

‖µ′S − µS‖1 6 O(K2ηqr2) , (4.34)

– for all S ⊆ V with |S| 6 2,

µ′S = (1 − ε)µS + ε · q−|S| . (4.35)

Proof. The proof is along the lines of the proof of the previous lemma.

Define F̂ : [q]r → R as before. We define new functions {µ∗S : [q]S → R | S ⊆ V, |S| 6 r}
such that

µ̂∗S(σ) =











µ̂S(σ) if supp(σ) > 2,

F̂(σ,1) if 1 6 supp(σ) 6 2,

1 otherwise.

Since |F̂(σ,1) − µ̂S(σ)| 6 Kη (see proof of previous lemma), we can upper bound ‖µ̂∗S −
µ̂S‖1 6 qr2 ·Kη (there are not more than qR2 different σ ∈ [q]S with F̂(σ,1) 6= µ̂S(σ). By
Lemma 4.4.1, for ε > qR2K2η, the functions {µ′S : [q]S → R | S ⊆ V, |S| 6 r} defined by
µ′S := (1 − ε)µ∗S + εq−|S| are the desired distributions. We can check that the assertions of
the lemma are satisfied in the same way as for the proof of the previous lemma. �

Proofs of Theorem 12.7 and Theorem 12.8 (Sketch). Without loss of generality, we may as-
sume that the original vector assignment {bi,a} is perfectly consistent with the marginals
of up to order 2. This is because, given an arbitrary vector assignment we can apply
Lemma 4.2.1 to obtain SDP vectors such that for every pair of vectors there exists a local
distribution agreeing with inner products. Now, change the marginals on sets of size 2 to
those determined by these inner products. We apply Lemma 4.4.6 or Lemma 4.4.5 to the
local distributions {µS} of the ε-infeasible LHr or SAr solution, respectively. We get a new
set of local distributions {µ′S} that have the desired consistency properties. It remains to
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change the vectors so that their inner product match the corresponding probabilities in
the local distributions. Let {ui,a} be the vector assignment that corresponds to the uni-
form distribution over all possible assignments to the variables (this vector assignment is
the geometric center of the set of all vector assignments). Then, we define the new vector
assignment {vi,a} as

vi,a =
√

1 − δ · bi,a ⊕
√
δui,a ,

where δ is the smoothing parameter in Lemma 4.4.6 or Lemma 4.4.5. It is easy to verify
that {vi,a} together with {µ′S} form a feasible LHr or SAr solution. �
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Chapter 5

A GENERIC ROUNDING SCHEME
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5.1 Introduction

Despite all the successes in designing approximation algorithms using SDP relaxations,
rounding the solution to a semidefinite program remains a difficult task. Contrast this
to linear programming which has seen the development of primal-dual [158] and iterative
rounding techniques [88, 111], leading to simple combinatorial algorithms. Part of the
problem is that the approximation ratios involved in SDP based algorithms are irrational
numbers stemming from the geometry of vectors. Even for problems like Max 3-Sat where
the optimal approximation ratio is a simple fraction like 7

8 [93], the analysis of the rounding
procedure is fairly involved.

In the previous chapter, we introduced the LC relaxation for the class of generalized
constraint satisfaction problems (GCSP). The class of GCSPs is the natural generaliza-
tion of CSPs obtained by replacing predicates with bounded real valued payoff functions
(Definition 2.4.1). Here, we present a generic rounding scheme that achieves the integrality
gap of the LC relaxation for every GCSP.

In Chapter 7, we will see that the LC relaxation yields the optimal approximation ratio
for every CSP, under the Unique Games Conjecture (UGC). Thus the rounding scheme
along with the LC relaxation yields a generic algorithm for CSPs that achieves the optimal
approximation ratio under UGC.

Furthermore, as seen in Chapter 4, the LC relaxation is stronger than or equivalent to
nearly every relaxation used in the literature to approximate CSPs. Hence, irrespective of
the truth of the UGC, the generic rounding scheme presented here, for every CSP, yields
an approximation at least as good as the best known algorithm [65, 32, 114, 93, 79, 35, 36,
62, 78, 122, 162, 66, 54, 156, 161, 164] in literature.

This thesis also demonstrates that the integrality gap of the LC relaxation cannot be
reduced by adding large classes of valid inequalities in the fashion of Sherali–Adams LP hi-
erarchies (See Chapter 12). As a consequence, the rounding scheme presented here achieves
the integrality gap of these stronger relaxations too, for every GCSP.

Even for seemingly simple CSPs like Max-2SAT or Max-3SAT, the analyses of the
best known algorithms are quite involved and require computer-aided calculations. Our
results do not obviate these calculations (indeed the calculations required to determine the
approximation ratio of our algorithm for concrete CSPs appear to be practically infeasible).
However, in contrast to all previous works on approximating CSPs, our analysis provides
a simple explanation why the approximation guarantee of the algorithm approaches the
integrality gap of the relaxation: If the rounding algorithm has an approximation ratio α
on an instance =, then the SDP has a gap of ≈ α on a related instance =′ which is obtained
from = by identifying variables. In other words, an instance is hard to round only if it is a
“blow-up” of an integrality gap instance.

The rounding scheme presented in this chapter can be succinctly summarized as fol-
lows: Reduce the dimension of the SDP solution by randomly projecting it into a constant-
dimensional space, identify all variables whose projected vectors are close to each other,
and solve the resulting instance by brute force! The analysis is elementary in that it avoids
the use of typical machinery from Unique Games reductions such as dictatorship tests,
Fourier analysis or the Invariance principle.
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A common theme of this chapter and Chapter 12 is a robustness lemma for SDP relax-
ations which asserts that approximately feasible solutions can be made feasible by “smooth-
ing” without changing the objective value significantly.

5.2 Result

To state the result of this chapter precisely, we need to define the SDP integrality gap curve
GapΛ(c) for a CSP Λ. Let sdp(=) denote the objective value of an optimal solution for the
LC relaxation of an instance =. Throughout this chapter, when we refer to “the” SDP or
“the SDP value” we will refer to the LC relaxation.

Let opt(=) denote the value of the optimal solution to =. The integrality gap curve
GapΛ(c) is the minimum value of opt(=), given that sdp(=) = c where the minimum is over
all instances = of the problem Λ. Formally,

GapΛ(c) = inf
=∈Λ,sdp(=)=c

opt(=)

Theorem 5.1. For every GCSP Λ and for every η > 0, there exists a polynomial time
approximation algorithm for Λ that returns an assignment of value at least GapΛ(c− η)− η
on an instance = with SDP value c. The algorithm runs in time exp(exp(poly(kq/η))).

The above result also holds in the more general setting where predicates are replaced by
bounded real-valued payoff functions. For a traditional CSP Λ consisting of predicates, the
above theorem implies the following corollary.

Corollary 5.1.1. Given a CSP Λ with positive valued payoff functions, for every η > 0,
there exists a polynomial time approximation algorithm for Λ with approximation ratio at
most the integrality gap ratio GapRatioΛ defined as,

GapRatioΛ
def
= sup
=∈Λ

sdp(=)

opt(=)
.

The algorithm runs in time exp(exp(poly(kq/η))).

On the downside, the proof of optimality of the rounding scheme is non-explicit. To
show the optimality of the rounding scheme, we proceed as follows: given an instance = on
which the rounding scheme only achieves an α approximation, we exhibit an instance on
which the integrality gap of the SDP is at least α. In particular, this yields no information
on the approximation ratio α achieved by the rounding scheme. To address this issue, we
also present an algorithm to compute the integrality gap of LC for any given CSP Λ.

Theorem 5.2. For every constant η > 0 and every CSP Λ, the integrality gap curve GapΛ(c)
can be computed to an additive approximation of η in time exp(exp(poly(kq/η))).

5.3 Proof Overview

In this section, we elucidate how these are employed to obtain rounding schemes for CSPs.
We begin by describing the generic SDP relaxation LC for a well known CSP - Max3SAT.
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Fix a Max3SAT instance = consisting of variables V = {y1, . . . , yn} and clauses P =
{P1, . . . , Pm}. The variables in LC are as follows:

– For each variable yi, introduce two vector variables {bi,0, bi,1}. In the intended so-
lution, the assignment yi = 1 is represented by bi,0 = 0 and bi,1 = 1, while yi = 0
implies bi,0 = 1, bi,1 = 0.

– For each clause we will introduce 8 variables to denote the 8 different states possi-
ble. For instance, with the clause P = (y1 ∨ y2 ∨ y3) we shall associate 8 variables
µP = {µ(P,000), µ(P,001), . . . , µ(P,111)}. In general, the variables µP form a probability
distribution locally over integral solutions.

The relaxation LC has the minimal set of constraints necessary to ensure that for every
clause P ∈ P, the following hold: Firstly, µP is a valid probability distribution over local
assignments ({0, 1}3). Further, the inner products of the vectors corresponding to variables
in P match the distribution µP . The objective value to be maximized can be written in
terms of the local integral distributions µP as follows:

∑

P∈P

∑

x∈{0,1}3
P (x)µP,x

We wish to point out that the relaxation LC is an extremely minimal SDP relaxation. For
instance, if two variables yi, yj do not occur in a clause together, then LC does not im-
pose any constraints on the inner products of the corresponding vectors {bi,0, bi,1, bj,0, bj,1}.
Specifically, the inner product of bi,0 and bj,0 could take negative values in a feasible solution.

Given the SDP solution to the instance =, we construct a constant sized Max3SAT
instance =′ which serves as a model for =. More specifically, we construct a partition
S1∪S2∪. . . Sm = V of the set of variables V intom subsets for some constantm. The instance
=′ is over m variables {s1, s2, . . . , sm} corresponding to subsets S1, . . . , Sm. Essentially, the
instance =′ is obtained by merging all the variables in each of the sets Si to a corresponding
variable si. We will refer to =′ as a folding of the instance =.

Observe that any assignment A′ to =′ yields a corresponding assignment A to = by
simple unfolding, i.e., assign A(yj) = A′(si) for every variable yj in the set Si. Clearly, the
fraction of clauses satisfied by assignment A on = is exactly the same as that satisfied by A′
on =′. Observe that any folding operation immediately yields a rounding scheme - “Find
the optimal assignment to =′ by brute force, and unfold it to an assignment for =.”

To show the optimality of this scheme, the crucial property we require of the folding
operation is that it preserves the SDP value. Clearly, any folding operation can only decrease
the value of the optimum for the SDP relaxation, i.e, sdp(=′) 6 sdp(=). We will exhibit
a folded instance =′ such that sdp(=′) ≈ sdp(=). More precisely, we will exhibit a folded
instance =′ with approximately the same clauses as =, and roughly the same SDP value.
Such a folded instance =′ will serve as a certificate for the optimality of the rounding scheme.
Recall that the folded instance is an integrality gap instance with a SDP value sdp(=′) ≈
sdp(=) and optimum value opt(=′). By definition, the scheme returns an assignment of value
opt(=′) on the instance = with SDP value sdp(=). Thus the rounding scheme achieves an
approximation no worse than the integrality gap of the SDP.
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At this juncture, we would like to draw a parallel between this approach and the work of
Frieze-Kannan [63] on approximating dense instances of NP-hard problems. Given a dense
instance of Max Cut, they construct a finite model that approximates the instance using
the Szemeredi Regularity lemma. This finite model is nothing but a folding of the instance
that preserves the optimum value for Max Cut. In contrast, we construct a finite model for
arbitrary instances that need not be dense, while preserving an arguably simpler property
- the SDP optimum.

Summarizing the discussion, the problem of rounding has been reduced to finding an
algorithm to merge variables in the instance into a few clusters, while preserving the SDP
value. Intuitively, the most natural way to preserve the SDP value would be to merge
variables whose SDP vectors are close to each other. In other words, we would like to
cluster the SDP vectors {bi,0, bi,1} into constant number of clusters. A first attempt at such
a clustering would be as follows: partition the ambient space in to bins of diameter at most
η, and merge all the SDP vectors that fall into the same bin. The number of clusters created
is at most the number of bins in the partition.

In general, the optimum SDP vectors {bi,0, bi,1} lie in a space of dimension equal to the
number of variables in the SDP (say n). A partition of the n-dimensional sphere into bins
of diameter at most η, would require roughly (1/η)n bins, while our goal is to use a constant
number of bins. Simply put, there is little chance that n vectors in a n-dimensional space are
clustered into a few clusters. To address this issue, we pursue the most natural approach:
first perform a dimension reduction on the SDP vectors by using random projections, and
then cluster them together.

Heuristically, for large enough constant d, when projected in to a random d-dimensional
space, at least a 1 − η fraction of the inner products will change by at most η. Further,
merging variables within the same bin of diameter η, could affect the inner products by at
most η. Thus the SDP value of the folded instance should be within O(η) of the original
SDP value. The number of variables in the folded instance would be (1/η)d - a constant.

Making the above heuristic argument precise forms the technical core of this chapter.
While this is easy for some 2-CSPs like Max Cut, extending it to CSPs of larger arity
and alphabet size is non-trivial. The central issue to be addressed is how to respect all the
constraints of the SDP during dimension reduction. In fact, for stronger SDP relaxations
such as the one in [16], it is unclear whether a dimension reduction can be carried out at
all. For a subset of CSP variables involved in a constraint P , the LC relaxation requires
the inner products of the corresponding SDP vectors to be consistent with a local integral
distribution µP . This translates into the SDP vectors satisfying special constraints amongst
themselves. For instance, even for a CSP of arity 3 such as Max3SAT, this implies the
triangle inequalities on every 3-tuple of variables involved in a clause.

To make the argument precise, we use the smoothing operation defined in [136] which in
some sense introduces noise to the SDP vectors. Interestingly, the smoothing operation was
applied for an entirely different purpose in [136]. For every CSP instance, there is a canonical
SDP solution {ui,0,ui,1} corresponding to the uniform distribution over all possible integral
solutions. Given an arbitrary SDP solution {bi,0, bi,1}, the smoothed solution is defined by

v∗i,a = (1 − η)bi,a ◦
√

2η − η2ui,a, where ◦ denotes the concatenation operation. Clearly,
the SDP objective value changes by at most O(η) due to smoothing. We observe that
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if the vectors {bi,a} are close to satisfying a valid inequality (say the triangle inequality)
approximately, then by smoothing, the new solution {v∗i,a} satisfies the inequality exactly.
We present a separate argument to handle the equality constraints in the SDP.

In the original instance =, for every clause P , the inner products of the vectors involved
match a local integral distribution µP . After random projection and discretization, for at
least 1 − η fraction of the clauses in =, the corresponding inner products match a local
integral distribution up to an error η. Let us refer to these 1 − η fraction of the clauses as
good. Apply the smoothing operation on the discretized SDP solution. For each good clause,
the smoothed SDP solution is consistent with a local integral distribution. To finish the
argument, we discard the η-fraction of the bad clauses from the folded instance =′. By the
definition of LC, once a bad clause P is dropped from the instance, it is no longer necessary
to satisfy the SDP constraints corresponding to P . Hence, we conclude sdp(=′) ≈ sdp(=).

Mathematical Tools: We use the method of expanding functions over product spaces as
multilinear polynomials from Section 3.4

5.4 Preliminaries

We refer the reader to Chapter 2 for the formal definition of GCSPs. The rounding scheme
presented in this chapter uses ε-nets for the unit ball. In this light, we present formal
definition of ε-net here.

Definition 5.4.1. Let B(0, 1) denote the unit ball in the d-dimensional space R
d. An ε-net

for the unit ball B(0, 1) is a finite set N of points in B(0, 1) such that for every x ∈ B(0, 1)
there exists a point y ∈ N such that ‖x − y‖2 6 ε.

The following is a fairly trivial bound on the size of ε-nets.

Fact 5.4.1. There exists an absolute constant c such that for every positive integer d and
ε > 0, there exists an ε-net N for the unit ball B(0, 1) in R

d such that |N | 6 (c/ε)d.

5.4.1 LC Relaxation

We restate the LC relaxation for the convenience of the reader. Given an instance = =
(V,P), the LC relaxation consists of vectors {bi,a}i∈V ,a∈[q] and a collection {µP }P∈supp(P) of

distributions over local assignments and a unit vector b0. Each distribution µP is over [q]V(P )

(the set of assignments to the variable set V(P )).
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LC Relaxation

maximize E
P∼P

E
x∼µP

P (x)

subject to 〈bi,a, bj,b〉 = Pr
x∼µP

{

xi = a, xj = b
}

P ∈ supp(P), i, j ∈ V(P ), a, b ∈ [q] .

(5.1)

〈bi,a, b0〉 = ‖bi,a‖2
2 ∀i ∈ V, a ∈ [q] , (5.2)

‖b0‖2
2 = 1 (5.3)

µP ∈ N([q]V(P ))

To the original definition of LC relaxation, we have included two additional constraints
(5.2) and (5.3). As was shown in Observation 4.5.1 and Observation 4.5.2, any solution
to the LC can be transformed to satisfy these additional constraints, without any loss in
objective value. As seen in Section 4.8, these additional constraints make the LC relaxation
robust in that, a solution that approximately satisfies all these constraints can be modified
into an exact solution.

5.5 Rounding General CSPs

In the following, let P be a Λ-CSP instance on the variable set V = [n]. We will also assume
that we can associate in a unique way an optimal SDP solution with every Λ-CSP instance.

Variable folding For a mapping ϕ : V → W , we define a new Λ-CSP instance P/ϕ on
the variable set W by identifying variables of P that get mapped to the same variable in W .
Formally, the payoff functions in P/ϕ are of the form P (xφ(1), . . . , xφ(n)) for x ∈ [q]W . Since
any assignment for P/φ corresponds to an assignment for P, we can note the following fact.

Fact 5.5.1. opt(P) > opt(P/φ).

In general, the optimal value of the folded instance might be significantly lower than
the optimal value of the original instance. However, we will show that we can always find a
variable folding that approximately preserves the SDP value of an instance that is close to
original instance.

Theorem 5.3. Given ε > 0 and a Λ-CSP instance P, we can efficiently compute another Λ-
CSP instance P ′ and a variable folding φ such that

1. P ′ is obtained by discarding an ε fraction of payoffs from the instance P. Formally,
V (P ′) = V (P) and the total variational distance between distributions P,P ′ is bounded
by ε, i.e., ‖P − P ′‖TV 6 ε,

2. sdp(P ′/φ) > sdp(P ) − ε,

3. the variable set of P ′/φ has cardinality exp(poly(kq/ε)).
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Given the above theorem, we can immediately show the main results of the chapter.

Proof of Theorem 5.1. Given a Λ-CSP instance P with variable set V = [n], we first com-
pute another instance P ′ and a variable folding φ according to Lemma 5.3. Since P ′/φ
has only exp(poly(kq/ε)) variables, we can compute an optimal assignment for P ′/φ in
time exp(exp(poly(kq/ε))). This assignment can be unfolded to an assignment x ∈ [q]n with
the same value for P ′. Since ‖P−P ′‖TV 6 ε, the assignment x has value at least opt(P ′/φ)−ε
for the instance P. By definition of GapΛ, we have opt(P ′/φ) > GapΛ(sdp(P ′/φ)) >

GapΛ(sdp(P) − ε). Hence the assignment x ∈ [q]n has value at least GapΛ(sdp(P) − ε) − ε
as claimed. �

Proof of Theorem 5.2. By Theorem 5.3, to compute the SDP integrality gap within ε, it
is sufficient to go over all instances of size exp(poly(kq/ε)). Thus the algorithm would just
discretize the space of instances with exp(poly(kq/ε)) many variables, and compute the SDP
and optimum value for each instance. �

The rest of this section is devoted to the proof of Theorem 5.3. The construction of P ′/φ
is described below:
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Construction of P ′/φ

Dimension reduction Let {bi,a}i∈V , a∈[q], {µP }P∈supp(P), b0 be an SDP solution for

a Λ-CSP instance P on the variable set V = [n]. Suppose that bi,a ∈ R
D. We apply the

following procedure to reduce the dimension from D to d.

1. Sample a d ×D Gaussian matrix Φ, where each entry is independently distributed
according to the Gaussian distribution N(0, 1/d).

2. For every vector bi,a, compute its image ui,a under the map Φ,

ui,a
def
= Φbi,a .

Furthermore, define u0 := Φb0.

Discarding bad constraints Let Bε ⊆ supp(P) be the set of payoff functions P such
that the vectors ui,a and the distributions µP violate one of the SDP constraints cor-
responding to P by more than ε. Define the instance P ′ on the set of variables V by
removing all payoff functions in Bε from P. Formally, P ′ is obtained by conditioning the
distribution P on the event P 6∈ Bε.

Folding by Discretization Let N be an ε-net for the unit ball in R
d. We have |N | 6

(c/ε)d for some absolute constant c by Fact 5.4.1. For every vector ui,a, let wi,a denote its
closest vector in N . We identify variables of P ′ that have the same vectors wi,a. Formally,
we output the Λ-CSP instance P ′/φ where φ : V → N q is defined as

φ(i)
def
= (wi,1, . . . ,wi,q) .

5.5.1 Property of Dimension Reduction

The key property of the dimension reduction is that it preserves inner products between
vectors approximately.

Lemma 5.3.1 (Inner products are preserved approximately). For any two vectors b1, b2 ∈
R
D in the unit ball,

Pr
Φ

{

∣

∣〈Φv1,Φv2〉 − 〈v1,v2〉
∣

∣ > t√
d

}

6 O (1/t2) .

Proof. Note that we may assume that both vectors are unit vectors (otherwise, we can
normalize them). Suppose that 〈v1,v2〉 = α. By rotational invariance, we can assume
that v1 = (1, 0) and v2 = (α, β), where β =

√
1 − α2. Hence, 〈Φv1,Φv2〉 has the same
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distribution as

1
d

(

d
∑

i=1

αξ2i + βξiξ
′
i

)

,

where ξ1, ξ
′
1, . . . , ξd, ξ

′
d are independent standard Gaussian variables (mean 0 and standard

deviation 1).

For each i, the expectation of αξ2i + βξiξ
′
i is equal to α and the variance is bounded (at

most 2). Hence, the expectation of 〈Φv1,Φv2〉 is equal to α and the standard deviation is
O(1/

√
d). The lemma follows from Chebychev’s inequality. �

It is clear that the dimension-reduced vectors ui,a together with the distributions µP
need not form a feasible SDP solution. However, we can deduce from Lemma 5.3.1 that
with good probability most of the constraints will be nearly satisfied. It follows that not
too many payoffs are discarded from P to construct P ′.

Lemma 5.3.2. For every payoff P ∈ supp(P),

Pr
Φ
{P ∈ Bε} 6 O

(

k2q2

ε2d

)

.

Proof. Fix a payoff P ∈ supp(P). There are k2q2 SDP constraints associated with the payoff
P , all of the form (5.1) in the LC program. By Lemma 5.3.1, each inner product is preserved
up to an error ε with probability at most 1−dε2 (substitute t = ε

√
d in Lemma 5.3.1). By a

union bound over all the k2q2 constraints, we get that PrΦ{P ∈ Bε} is at most k2q2/ε2d. �

5.5.2 Discretization

Consider two vectors ui,a and uj,b in the unit ball. It is clear that if we move the vectors
to their closest point in N , their inner product changes by at most 2ε. (Since N is an ε-net
of the unit ball, each vector is moved by at most ε.)

A minor technical issue is that some of the points ui,a might be outside of the unit
ball. However, vectors of norm more than

√
1 + ε can be ignored, because they violate the

constraint 〈ui,a,ui,a〉 6 1 by more than ε.

In particular, the following lemma holds.

Lemma 5.3.3. For small enough ε > 0, suppose the vectors ui,a satisfy all constraints cor-
responding to some payoff function P ∈ supp(P ′) up to an error of ε. Then, the vectors wi,a

satisfy all constraints corresponding to P up to an error of 4ε.

The discretization into the ε-net changes each inner product by at most 2ε. The vectors
ui,a could be ε away from the unit ball, which in turn introduces another 2ε error in the
inner products.

Here we are using the fact that for each payoff P ∈ supp(P ′), the corresponding con-
straints in the relaxation sdp(P ′) involve just a single inner product. We also use the fact
the vectors ui,a for a variable i ∈ V(P ) with P ∈ supp(P ′) have norms at most

√
1 + ε.



87

5.5.3 Robustness of SDP Relaxation LC

To finish the proof of Theorem 5.3, we need to construct a completely feasible SDP solution
to P ′/φ from the vectors wi,a which nearly satisfy all the constraints.

We will use the following theorem concerning the robustness of LC relaxation from
Section 4.8.

Theorem 5.4 (Robustness of LC). Let P be a Λ-CSP instance on variable set V. Suppose
that {bi,a}i∈V,a∈[q], {µP }P∈supp(P) is an ε-infeasible SDP solution for P of value α. Here, ε-
infeasible means that all consistency constraints (5.1)–(5.3) of the relaxation LC are satisfied
up to an additive error of at most ε. Then,

sdp(P) > α−
√
ε · poly(kq) .

5.5.4 Proof of Theorem 5.3

Assuming Theorem 5.4 (Robustness of LC) we can now complete the proof of Theorem 5.3.
For simplicity, we assume that the SDP solution {bi,a}, {µP } that was used in the

construction of P ′/φ has value sdp(P). (The proof also works if the value of this SDP
solution is close to the optimal value.)

Recall that Bε ⊆ supp(P) is the set of payoff functions P whose constraints are violated
by more than ε by the dimension-reduced vectors ui,a. For d � k2q2/ε3, Lemma 5.3.2
implies that with high probability, ‖P − P ′‖TV 6 ε. Note that the vectors {ui,a} together
with the original local distributions {µP } form an ε-infeasible SDP solution for P ′. Hence, by
Lemma 5.3.3, the SDP solution {wi,a}, {µP } is 4ε-infeasible. The value of this SDP solution
for the instance P ′ is at least sdp(P)−‖P −P ′‖1 > sdp(P)− ε. The key observation is now
that the SDP solution {wi,a}, {µP } is also a solution for the folded instance P ′/φ. To see
this, observe that all the vectors that are merged to a single variable under the folding φ, have
the same SDP vector (due to discretization using the ε-net). Therefore, we see that P ′/φ has
a 4ε-infeasible SDP solution of value at least sdp(P) − ε. Theorem 5.4 (Robustness of LC)
asserts that in this situation we can conclude sdp(P ′/φ) > sdp(P)−√

ε·poly(kq). Finally, we
observe that the cardinality of the variable set of P ′/φ is at most |N |q 6 (c/ε)dq = 2poly(kq/ε).

�
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Part II

THE UNIQUE GAMES BARRIER
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Chapter 6

DICTATORSHIP TESTS, ROUNDING SCHEMES AND UNIQUE

GAMES CONJECTURE

One of the main contributions of this thesis is the direct connection it establishes between
SDP integrality gaps and UG hardness results. In this chapter, we present an exposition of
the connections that have emerged in this thesis and other works, between SDP integrality
gaps, UG-hardness results, and objects commonly referred to as “Dictatorship tests”. In
the subsequent chapters, we will demonstrate how these connections have implications on
the approximability of several large classes of problems.

Organization We begin the chapter by introducing the notion of dictatorship tests us-
ing Max Cut as an example. In Section 6.2, we survey the surprising connections that
have emerged between the three objects of interest in this chapter, dictatorship tests, UG-
hardness results and SDP integrality gaps. In the next section, we present the reduction
from dictatorship test to UG-hardness result for Max Cut from [99]. A reduction from
integrality gaps to dictatorship tests is presented in sections 6.4 and 6.5. While we present
the reduction and an intuitive idea of the proof in Section 6.4, a formal proof is presented
in Section 6.5. This reduction and its various applications is one of the major contributions
of this dissertation. In the subsequent section, we will show how the analysis of this reduc-
tion can be used to obtain a rounding scheme for the semidefinite program. In Section 6.7,
we present the reduction of Khot-Vishnoi [104] from UG hardness results to SDP integral-
ity gaps. Finally, we will study the surprisingly strong implications of these reductions in
Section 6.8

Mathematical Tools: This chapter uses harmonic analysis of boolean functions, and asso-
ciated notions of influences and noise stability (Section 3.3). Invariance principle (Section 3.6)
lies at the heart of the reduction from integrality gaps to dictatorship tests presented in
Section 6.7. However, we present a simple version of the invariance principle suited for the
application at hand in Section 6.5.

6.1 Dictatorship Tests

The motivation for the problem of dictatorship testing arises from hardness of approxi-
mation and PCP constructions. To show that an optimization problem Λ is NP-hard to
approximate, one constructs a reduction from a well-known problem that is NP-hard to
approximate such as Label Cover to Λ. Given an instance Φ of the Label Cover prob-
lem, a hardness reduction produces an instance Φ′ of the problem Λ. The instance Φ′ has
a large optimum value if and only if Φ has a high optimum. Dictatorship tests serve as
“gadgets” that encode solutions to Label Cover, as solutions to the problem Λ. In fact,
constructing an appropriate dictatorship test almost always translates into a corresponding
hardness result based on the Unique Games Conjecture.
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Dictatorship tests, or long-code tests as they are also referred to, were originally con-
ceived purely from the insight of error correcting codes. Let us suppose we are to encode a
message that could take one of R different values {m1, . . . ,mR}. The long code encoding
of the message m` is a bit string of length 2R consisting of the truth table of the function
F(x1, . . . , xR) = x`. This encoding is maximally redundant in that any binary encoding with
more than 2R bits would contain 2 bits that are identical for all R messages. Intuitively,
the greater the redundancy in the encoding, the easier it is to perform the reduction.

While long code tests/dictatorship tests were originally conceived from a coding-theoretic
perspective, somewhat surprisingly these objects are intimately connected to semidefinite
programs.

6.1.1 The case of Max Cut

The nature of dictatorship test needed for a hardness reduction varies with the specific
problem one is trying to show is hard. To keep things concrete and simple, we will restrict
our attention to the Max Cut problem.

A dictatorship test DICT for the Max Cut problem consists of a graph on the set of
vertices {±1}R. By convention, the graph DICT is a weighted graph where the edge weights
form a probability distribution (sum up to 1). We will write (z,z′) ∈ DICT to denote an
edge sampled from the graph DICT (here z,z′ ∈ {±1}R).

A cut of the DICT graph can be thought of as a boolean function F : {±1}R → {±1}.
For a boolean function F : {±1}R → {±1}, let DICT(F) denote the value of the cut. The
value of a cut F is given by

DICT(F) =
1

2
E

(z,z′)∈DICT

[

1 −F(z)F(z′)
]

and is the probability that z,z′ are on different sides of the cut. It is also useful to define
DICT(F) for non-boolean functions F : {±1}R → [−1, 1] that take values in the interval
[−1, 1]. To this end, we will interpret a value F(z) ∈ [−1, 1] as a random variable that takes
{±1} values. Specifically, we think of a number a ∈ [−1, 1] as the following random variable

a =

{

−1 with probability 1−a
2

1 with probability 1+a
2

(6.1)

With this interpretation, the natural definition of DICT(F) for such a function is as follows:

DICT(F) =
1

2
E

(z,z′)∈DICT

[

1 −F(z)F(z′)
]

.

Indeed, the above expression is equal to the expected value of the cut obtained by randomly
rounding the values of the function F : {±1}R → [−1, 1] to {±1} as described in Equation
6.1.

The dictator cuts are given by the functions F(z) = z` for some ` ∈ [R]. The Completeness



91

Figure 6.1: Dictator and Non-Dictator cuts

of the test DICT is the minimum value of a dictator cut, i.e.,

Completeness(DICT) = min
`∈[R]

DICT(z`)

The soundness of the dictatorship test is the value of cuts that are far from every dictator.
We will formalize the notion of being far from every dictator is formalized using influences
as follows:

Definition 6.1.1 ((τ, ε)-quasirandom). A function F : {±1}R → [−1, 1] is said to be
(τ, ε)-quasirandom if for all ` ∈ [R], Inf`(T1−εF) 6 τ .

Definition 6.1.2 (Soundnessτ,ε). For a dictatorship test DICT over {±1}R and ε, τ > 0,
define the soundness of DICT as

Soundnessτ,ε(DICT) = max
F :{±1}R→[−1,1]

F is (τ,ε)−quasirandom

DICT(F) .

6.1.2 Property Testing Perspective

The goal of a property testing algorithm is to determine if an object satisfies a certain
property by making very few queries to it. For instance, given a function F : {±1}R → {±1},
one would wish to determine if F is a constant function by making very few queries (say
constantly many) to the value of F . However this is an impossible to achieve and one relaxes
the goal to determining with good probability if the object satisfies the property or is far
from satisfying the property. A function F can be said to be ε-far from being a constant,
if it differs from every constant function on ε-fraction of the inputs. Hence, in this case
one would wish to distinguish whether the F is a constant function or is ε-far from being
constant.

Dictatorship tests are specific examples of property testing algorithms, where the con-
cerned objects are boolean functions and the property being tested is whether the function
is a dictator. Given a boolean function F(x1, x2, . . . , xR) on R bits, the goal is to distinguish
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whether F is a dictator (F(x) = xi for some i) or is far from being a dictator by making
constantly many queries to F .

Formally, a dictatorship test is a randomized procedure DICT that, given the truth table
of F , queries a few locations (say 2) in the truth table, tests a predicate P on the values
it queried and outputs ACCEPT or REJECT. The randomized procedure will often be
referred to as the Verifier.

The main parameters of interest in a dictatorship test are :

– Completeness(c) Every dictator function F(x) = xi is accepted with probability at
least c.

– Soundness(s) Any function F which is far from every dictator is accepted with
probability at most s.

– Number of queries made, and the predicate P used by the test.

This notion of dictatorship tests as a verifiers is equivalent to the earlier definition of
dictatorship tests as gadgets.

Let us restrict our attention to dictatorship tests for Max Cut. Let DICT be a verifier
corresponding to a dictatorship test for functions on {±1}R. Let us suppose that DICT

makes two queries, and always tests a predicate P (x, y) = 1[x 6=y]. The distribution of

queries of the DICT yield a weighted graph on {±1}R, sum of whose weights sum to 1. Every
boolean function F : {±1}R → {±1} corresponds to a cut of this graph. The probability of
the verifier accepting F is exactly the fraction of edges cut by the corresponding cut.

Conversely, let DICT be a graph on {±1}R with edge weights summing to 1. Consider
a verifier that picks a random edge (x,y) in DICT, and tests if F(x) 6= F(y). It is easy to
see that the probability of acceptance of a function F is exactly the fraction of edges cut
by the corresponding cut.

Both formulations of dictatorship tests are convenient for use in different contexts, and
it is thus important to be mindful of the two.

6.2 Emerging Connections (history)

Dictatorship tests/long-code tests were introduced into hardness of approximation by the
work of Bellare,Goldreich, and Sudan [22]. Long-code tests have since been the main proof
strategy in numerous influential works such as the hardness of approximation results for
Max 3SAT [86] and Maximum Clique [82]. We refer the reader to [98] for a survey on
the various applications of dictatorship testing in hardness of approximation.

With the advent of the Unique Games Conjecture, dictatorship tests have started playing
an even greater role in hardness of approximation. In fact, the work of Khot [97] that
introduced the Unique Games Conjecture made use of long-code tests to obtain a hardness
for Max 2-Sat. Like most previous works, the notion of being far from a dictator was
defined there in terms of non-existence of sparse Fourier coefficients of large weight.

The notion of dictatorship tests as defined earlier in this chapter made its appearance
in the work of Khot et al. [99]. Although influences of functions figured earlier in the work
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Figure 6.2: Connections Between SDP Integrality Gaps, UG-hardness Results and Dicta-
torship Tests

of Dinur and Safra [50], it is [99] that used them to define the notion of being far from
a dictator. The authors used this notion of dictatorship testing to obtain a UG-hardness
result for Max Cut that matches the approximation obtained by Goemans-Williamson
algorithm. This work has since served as a general template to obtain UG-hardness results
starting with dictatorship tests [17, 18, 136]

In fact, it is true as a rule of thumb that an appropriate dictatorship test often leads
to a UG-hardness result. Specifically, given a dictatorship test with completeness c and
soundness s such that the verifier only tests a predicate P , it often implies a c-vs-s UG-
hardness result for the constraint satisfaction problem where the constraints are of the
form - predicate P applied to subset of variables. However, we stress that in many cases
(such as Ordering CSPs Chapter 9), executing this conversion from dictatorship tests into
UG-hardness results poses considerable challenges.

The next connection emerged with the influential work of Khot-Vishnoi [104] who ex-
hibited a reduction from a UG-hardness result to a SDP integrality gap. First, the paper
constructed a UG-hardness reduction for Sparsest Cut. Going a step further, the work
constructed a SDP integrality gap instance Φ for Unique games and executed the hardness
reduction for Sparsest Cut on Φ. Surprisingly, the instance of Sparsest Cut so produced
was a SDP integrality gap! This yielded a super-constant integrality gap for Sparsest Cut
thus disproving an earlier conjecture of Goemans and Linial. Among the many reasons that
make this work remarkable, the reduction from a UG-hardness result to an SDP integrality
gap is clearly an important one. Since this work, the reduction from UG-hardness results
to SDP integrality gaps has been executed for various problems like Maximum Acyclic
Subgraph [73] and Metric Labeling [121]. As a rule of thumb, it could be said that a
c-vs-s UG-hardness result for a problem Λ yields an instance of Λ with SDP value c while
the integral optimum is only s.
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This dissertation exhibits a reduction from SDP integrality gaps to dictatorship tests.
Roughly speaking, we show that starting with a c-vs-s SDP integrality gap for a problem Λ,
one can construct a dictatorship test DICT with completeness c and soundness s. Moreover,
DICT is a test that could be used for showing a UG-hardness for Λ, in that it is a gadget
for the problem Λ.

This completes the cycle of reductions between dictatorship tests, SDP integrality gaps
and UG-hardness results. Not only does this prove a certain equivalence of the three no-
tions, it has led to optimal UG-hardness results and matching approximation algorithms for
various classes of problems such as constraint satisfaction problems. Furthermore, direct re-
ductions from integrality gaps to dictatorship tests have paved the way to obtaining optimal
hardness results for combinatorial optimization problems for which even integrality gaps are
unknown. Specifically, for problems such as k-Way Cut for which the correct value of the
integrality gap is unknown, the techniques of this dissertation show that a certain linear
program yields the optimal approximation under UGC whatever the approximation factor
may be. Finally, the reduction establishes a formal connection between integrality gaps and
hardness results that was long suspected, but rarely formalized.

6.3 From Dictatorship Tests to UG-hardness Results

In this section, we will see how dictatorship tests can be translated into obtain Unique
Games based hardness result.Formally, we show

Theorem 6.1. For every ε, τ, η > 0, there exists positive integer k0 such that, if DICT
ε is

a dictatorship test for Max Cut over {±1}k for some k > k0, then given a Max Cut
instance Ψ, it is UG-hard to distinguish between the following two cases:

– There exists a cut of Ψ of value at least Completeness(DICT
ε) − η,

– No cut of the graph Ψ has value greater than Soundnessτ,ε(DICT
ε) + η.

Roughly speaking, if we construct a dictatorship test DICTε for every large dimension,
with completeness c and soundness s, then we get a c vs s-UG-hardness for Max Cut.

To prove the above theorem, we will exhibit a reduction from unique games problem to
Max Cut, via the dictatorship test. Specifically, we will show the following reduction.

Reduction Let Φ = (WΦ ∪ VΦ, E,Π, [R]) be a bipartite Unique Games instance. Let
DICTε denote a dictatorship test for Max Cut over the R-dimensional hypercube ({±1}R).

Starting from the Unique Games instance Φ, we shall construct an instance Ψ =
(VΨ, EΨ) of the Max Cut problem. The graph Ψ contains 2R vertices indexed by {±1}R
for every vertex of the Unique Games instance Φ. Formally, the set of vertices Ψ is given
by VΨ = VΦ × {±1}R.

For a Unique Games vertex v ∈ VΦ, the set of 2R vertices {(v,x)|x ∈ {±1}R} is
the long code corresponding to the Unique Games vertex v. The choice of a label for
the Unique Games vertex v, is encoded as a cut of the corresponding set of 2R vertices.
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Specifically, if the vertex v is assigned a label ` ∈ [R], then the `-th dictator cut is chosen
for the corresponding set of vertices.

v is assigned ` ∈ [R] =⇒ For all x ∈ {±1}R, (v,x) is assigned x` .

In terms of coding theory, we are encoding the label assigned to vertex v, using its long code
which is a code of length 2R.

To describe the edges EΨ, we first set up some notation. For a vector x ∈ {±1}R and a
permutation π : [R] → [R] define the vector π ◦ x ∈ {±1}R as follows:

π ◦ x = (xπ(1), xπ(2), · · · , xπ(R))

As usual, the graphs DICTε and Ψ are weighted graphs, where the edge weights form
a probability distribution (sum of edge weights = 1). The edges EΨ can be sampled using
the following procedure:

Edges of the graph Ψ

– Sample a random vertex w ∈ WΦ. Pick two random neighbors v, v′ of the vertex w
independently at random.

– Sample an edge (z,z′) from the graph DICTε.

– Output the edge between (v, πw←v ◦ z) and (v′, πw←v′ ◦ z′)

By definition, a cut of the graph Ψ consists of a map F : VΨ → {±1}. For each vertex
v ∈ VΦ, let the function Fv : {±1}R → {±1} denote the cut restricted to the long code
corresponding to vertex v.

Now, let us calculate the value of an arbitrary cut given by functions {Fv : {±1}R →
{±1}|∀v ∈ VΦ}. We can write the value of the cut as follows:

val({Fv}) = E
w∈WΦ

E
v,v′∈N(w)

E
z,z′

[

1[Fv(πw←v ◦ z) 6= Fv′(πw←v′ ◦ z′)]
]

.

For two numbers a, b ∈ {±1}, we can write 1[a 6= b] = 1/2(1 − ab). Substituting this
expression, we obtain

val({Fv}) =
1

2
E

w∈WΦ

E
v,v′∈N(w)

E
z,z′

[

1 −Fv(πw←v ◦ z) · Fv′(πw←v′ ◦ z′)
]

.

Notice that the choices of neighbors v, v′ are independent of each other and of the choices
of z and z′. Consequently, we can rewrite the above expression as,

val({Fv}) =
1

2
E

w∈WΦ

E
z,z′

[

1 − E
v∈N(w)

[

Fv(πw←v ◦ z)
]

· E
v′∈N(w)

[

Fv′(πw←v′ ◦ z′)
]

]

.
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For a w ∈ WΦ, define the function Fw : {±1}R → [−1, 1] as follows:

Fw(z) = E
v∈N(w)

[Fv(πw←v ◦ z)] for all z ∈ {±1}R .

The function Fw is an average of the functions Fv corresponding to its neighbors v ∈ N(w),
composed with the appropriate permutations. In terms of the functions Fw, we get

val({Fv}) =
1

2
E

w∈WΦ

E
z,z′

[

1 −Fw(z) · Fw(z′)
]

= E
w∈WΦ

[

DICTε(Fw)
]

. (6.2)

To complete the proof of Theorem 6.1, we analyze the value of the Max Cut instance
Ψ in the completeness and soundness cases. Specifically, we will show

Theorem 6.2. For all δ, γ > 0, given an instance Φ of Unique Games, the Max Cut
instance Ψ satisfies the following properties:

– Completeness: If Φ is a (1− γ)-strongly satisfiable instance of Unique Games, then
opt(Ψ) > (1 − γ)Completeness(DICT

ε)

– Soundness: opt(Φ) 6 δ ⇒ opt(Ψ) 6 Soundnessτ,ε(DICT
ε) + δ

ε2τ3 .

Completeness Let A : VΦ∪WΦ → [R] be an assignment to the Unique Games instance
that strongly satisfies 1 − γ-fraction of the vertices in WΦ. Recall that, an assignment
strongly satisfies a vertex w ∈ WΦ if A(w) = πw←v(A(v)) for all neighbors v of the vertex
w.

Define a cut for the graph Ψ as follows:

Fv(z) = zA(v) for all vertices v ∈ VΨ .

In other words, for each Unique Games vertex v ∈ VΦ, the cut of {v}×{±1}R corresponds
to the long code of the label A(v).

Consider a vertex w ∈ WΦ that is strongly satisfied by the assignment A. By definition,
for each of its neighbors v ∈ N(w), we have πw←v(A(v)) = A(w). For such a vertex w, the
function Fw is given by

Fw(z) = E
v∈N(w)

[

Fv(πw←v ◦ z)
]

,

= E
v∈N(w)

[

(πw←v ◦ z)A(v)

]

,

= E
v∈N(w)

[

zπw←v(A(v))

]

,

= E
v∈N(w)

[

zA(w)

]

= zA(w) . (∵ ∀v ∈ N(w), πw←v(A(v)) = A(w)) .
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For a strongly satisfied vertex w, the fraction of edges cut is given by

DICTε(Fw) =
1

2
E

z,z′

[

1 −Fw(z)Fw(z′)
]

=
1

2
E

z,z′

[

1 − zA(w)z
′
A(w)

]

(6.3)

= DICT(zA(w)) > Completeness(DICTε) (6.4)

For a vertex w that is not strongly satisfied, trivially we have DICTε(Fw) > 0. Using
Equation 6.3, we can estimate the value of the cut

val({Fv}) = E
w∈WΦ

[

DICTε(Fw)
]

> Pr
w∈WΦ

[w is strongly satisfied] · Completeness(DICTε)

+ Pr
w∈WΦ

[w is NOT strongly satisfied] · 0

> (1 − γ)Completeness(DICTε) .

Soundness For the sake of brevity, let us denote η = δ/ε2τ3. Let us suppose there is a cut
of the graph Ψ, with value greater than Soundnessτ,ε(DICTε) + η. Then we have

E
w∈WΦ

[DICTε(Fw)] > Soundnessτ,ε(DICTε) + η .

Since DICTε(Fw) is always bounded above by 1. Hence, for at least η fraction of the vertices
w ∈ WΦ, DICTε(Fw) > Soundnessτ,ε(DICTε) by Markov’s inequality. Henceforth we refer
to these vertices as good vertices.

By definition of Soundnessτ,ε(DICTε), for every good vertex w ∈ WΦ, the function Fw is
not (τ, ε)-quasirandom. In particular, for a good vertex w ∈ WΦ, there exists coordinates
` ∈ [R] that are influential for the function Fw, i.e., Inf`(T1−εFw) > τ .

For each vertex w ∈ WΦ, define the set of labels L(w) as

L(w) = {`|Inf`(T1−εFw) > τ} .

Similarly, for each v ∈ VΦ define,

L(v) = {`|Inf`(T1−εFw) > τ/2} .

By the Sum of Influences Lemma (Lemma 3.0.2), we have |L(w)| 6 1/ετ for a vertex w ∈ WΦ

and |L(v)| 6 3/ετ for v ∈ VΦ.

For each of the good vertices w ∈ WΦ have a non-empty label set L(w). Fix a good vertex
w with a nonempty label set L(w). Fix a label ` ∈ L(w). By definition of L(w), we have
Inf`(T1−εFw) > τ . The function T1−εFw is given by T1−εFw(z) = Ev∈N(w)[T1−εFv(πw←v ◦
z)]. By convexity of influences (see Proposition 3.0.13), if Inf`(T1−εFw) > τ then

E
v∈N(w)

[Infπ−1
w←v(`)(T1−εFv)] > τ (6.5)

Since the range of the function Fv is {±1}, we have Inf`(T1−εFv) 6 1 for all v, `. Hence for
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at least a τ/2 fraction of neighbors v ∈ N(w), Infπv←w(`)(T1−εFv) > τ
2 . Summarizing the

above argument, for a good vertex w and a label ` ∈ L(w), the coordinate πv←w(`) ∈ L(v)
for at least a τ/2-fraction of the neighbors v ∈ N(w).

Define a labeling A for the Unique Games instance Φ as follows: For each vertex
u ∈ WΦ ∪ VΦ, assign a random label from L(u) if it is nonempty, else assign a uniformly
random label. Specifically,

A(u) =

{

a random label in L(u) if L(u) is nonempty

an arbitrary label if L(u) is empty .

For a good vertex w, at least τ/2 fraction of the edges (w, v) are satisfied with probability
1

|L(v)||L(w)| > 2ε2τ2 by the assignment A. At least η fraction of the vertices w ∈ WΦ are good

vertices. Therefore, in expectation, the assignment A satisfies at least η · τ/3 · 3ε2τ2 fraction
of the edges, which is greater than δ by design.

6.4 From Integrality Gaps to Dictatorship Tests

A black box reduction from integrality gaps to dictatorship tests is one of the primary
contributions of the thesis. In this section, we present an exposition of the technique for
the Max Cut problem.

Let G = (V,E) be an an arbitrary instance of the Max Cut problem. Specifically, G
is a weighted graph over a set of vertices V = {v1, . . . , vn}, whose edge weights sum up
to 1 (by convention). Thus, the set of edges E will also be thought of as a probability
distribution over edges. We begin by recalling the Goemans-Williamson semidefinite pro-
gramming relaxation for Max Cut. The variables of the GW SDP consist of a set of vectors
V = {v1, . . . ,vn}, one vector for each vertex in the graph G.

Goemans Williamson SDP

GW(G) Relaxation

Maximize val(V ) =
1

2
E

(vi,vj)∈E

[

1 − 〈vi,vj〉
]

(Average Squared Length of Edges)

Subject to ‖vi‖2
2 = 1 ∀i, 1 6 i 6 n (all vectors vi are unit vectors)

The above relaxation is identical to the SDP relaxation GW presented in Chapter 2,
with the objective function 1

4‖vi − vj‖2
2 rewritten as,

1

4
‖vi − vj‖2

2 =
1

4

(

‖vi‖2
2 + ‖vj‖2

2 − 2〈vi,vj〉
)

=
1

2
(1 − 〈vi,vj〉) .

6.4.1 Intuition

We begin by presenting the intuition behind the black box reduction.
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Dimension Reduction Without loss of generality, the SDP solution V can be assumed
to lie in a large constant dimensional space. Specifically, given an arbitrary SDP solution
V in n-dimensional space, project it into a random subspace of dimension R – a large
constant. Random projections approximately preserve the lengths of vectors and distances
between them. Hence, roughly speaking, the vectors produced after random projection yield
a low-dimensional SDP solution to the same graph G.

Formally, sample R random Gaussian vectors {ζ1, . . . , ζR} of the same dimension as the
SDP vectors V = {v1, . . . ,vn}. Here R is to be thought of as a large constant independent
of the size of the graph G. Define a solution to the GW SDP relaxation as follows:

wi =
1

√

∑

j∈[R]〈vi, ζj〉2
(

〈vi, ζ1〉, . . . , 〈vi, ζR〉
)

for all vertices vi in graph G

The vector wi is just the projection of the vector vi along directions {ζ1, . . . , ζR}, normalized
to unit length. Since they are of unit length, the vectors wi form a feasible SDP solution
to GW SDP.

For every η > 0, by choosing R to be a sufficiently large constant, if is fairly well
known that the following can be ensured: the distance between any two vectors vi and vj
is preserved up to (1 ± ε)-multiplicative factor with probability at least 1 − ε. A formal
proof of this statement can be seen in Lemma 5.3.1. Consequently, there exists some choice
of {ζ1, . . . , ζR} such that the vectors wi form a low-dimensional SDP solution with roughly
the same value as {vi}, i.e., val({w1, . . . ,wn}) > val(V ) − η.

Henceforth, without loss of generality, we will assume that the SDP solution V =
{v1, . . . ,vn} consist of R-dimensional vectors for a large enough constant R.

Sphere Graph A graph on the unit sphere, will consist of a set of unit vectors, and
weighted edges between them. As usual, the weights of the graph form a probability distri-
bution, in that they sum up to 1.

The SDP solution V for a graph G, yields a graph on the R-dimensional unit sphere,
that is isomorphic to G. Recall that the objective value of the GW SDP is the average
squared length of the edges. Hence, the SDP value remains unchanged under the following
transformations:

– Rotation Any rotation of the SDP vectors V about the origin preserves the lengths
of edges and the distances between them. Thus, rotating the SDP solution V yields
another feasible solution with the same objective value.

– Union of Rotations Let {T1v1, . . . , T1vn} and {T2v1, . . . , T2vn} be two solutions
obtained by applying rotations T1, T2 to the SDP vectors V . Let G1, G2 be the
associated graphs on the unit sphere. Let G′ denote the union of the two graphs, i.e.,
G′ = G1 ∪G2. The set of all distinct vectors in T1V ∪T2V are the vertices of G′. The
edge distribution of G′ is the average of the edge distributions of G1 and G2.

The average squared lengths of edges in both T1V and T2V are equal to val(V ).
Hence, the average squared edge length in G′ is also equal to val(V ). Thus, taking
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the union of two rotations of a graph preserves the SDP value.

Define the sphere graph SV as follows:

Sphere Graph SV : Union of all possible rotations of the graph G (on the set of
vectors {wi}) on the R-dimensional unit sphere.

Figure 6.3: Construction of Sphere Graph

Clearly the sphere graph SV is an infinite graph. The sphere graph SV is solely a con-
ceptual tool, and an explicit representation is never needed in the reduction. Nevertheless,
due to its symmetry, indeed the sphere graph SV can be represented succinctly.

By construction, the SDP value of the sphere graph SV is the same as that of the original
graph G. However, we will argue that SV is as hard an instance of Max Cut as the original
graph G. In fact, given a cut for the sphere graph SV , it is possible to retrieve a cut for the
original graph G with the same objective value.

Let us suppose that F : SV → {±1} is a cut of the sphere graph SV that cuts a c-fraction
of the edges. Notice that SV consists of a union of infinitely many copies (or rotations) of
the graph G. Therefore, on at least one of the copies of G, the cut F must cut a c-fraction of
the edges. Indeed, if we have oracle access to the cut function F , we can efficiently construct
a cut of the graph G with the same value as F using the following rounding procedure:

RoundεF

– Sample a rotation T of the unit sphere, uniformly at random.

– Output the cut induced by F : SV → {±1} on the copy TV of the graph G.
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The expected value of the cut output by the RoundεF procedure is equal to the value of
the cut F on the sphere graph SV . An immediate consequence is that,

opt(SV ) 6 opt(G) . (6.6)

The sphere graph SV inherits the GW SDP value as G, while the optimum value opt(SV )
is at most that of the graph G. In this light, the sphere graph SV is a harder instance of
Max Cut than the original graph G.

It is easy to see that the following is an equivalent definition for the sphere graph SV .

Definition 6.4.1 (Sphere Graph SV ). Given a feasible solution V to the GW SDP, the set
of vertices of the sphere graph SV is the set of all points on the R-dimensional unit sphere.
To sample an edge of SV use the following procedure:

– Sample an edge (vi, vj) in the graph G,

– Sample two points (g,g′) on the sphere at a squared distance ‖vi− vj‖2
2 uniformly at

random.

– Output the edge between (g,g′).

Hypercube Graph Finally, we describe the construction of the graph DICTεV on the
R-dimensional hypercube. Here we refer to the hypercube suitably normalized to make all
its points lie on the unit sphere.

DICTεV

The set of vertices of DICTεV are points in
{

− 1√
R
, 1√

R

}R
. An edge of DICTεV can be

sampled as follows:

– Sample an edge (vi, vj) in the graph G.

– Sample two points (z,z′) in {− 1√
R
, 1√

R
}R, at squared distance ‖vi− vj‖2

2 uniformly

at random.

– Output the edge between (z,z′).

It is likely that there are no pair of points on the hypercube
{

− 1√
R
, 1√

R

}R
at a distance

exactly equal to ‖vi−vj‖2
2. For the sake of exposition, we will ignore this issue for now. To

remedy this issue in the final construction, for each edge (vi, vj), we introduce a probability
distribution over edges such that the expected length of an edge is indeed ‖vi − vj‖2

2.

Completeness Consider the `th dictator cut F : DICTεV → {±1} given F(z) =
√
Rz`.

This corresponds to the axis-parallel cut of the DICTεV graph along the `th axis of the
hypercube. Let us estimate the value of the cut DICTεV (F). An edge (z,z′) is cut by the
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`th dictator cut if and only if z` 6= z′`. Therefore, the value of the `th dictator cut F is given
by:

DICTεV (F) = E
(vi,vj)∈G

E
z,z′

[

1[z` 6= z′`]
]

Notice that two points z,z′ in {±1}R at a squared distance d = ‖z − z′‖2
2 differ on exactly

d/4 coordinates. Hence, two random points at distance z,z′ at a squared distance d differ
on a given coordinate with probability d/4. Therefore, we can rewrite the expression for
DICTεV (F) as follows:

DICTεV (F) =
1

4
E

(vi,vj)∈G

[

‖vi − vj‖2
2

]

=
1

2
E

(vi,vj)∈G

[

1 − 〈vi,vj〉
]

= val(V ) .

Hence, the completeness Completeness(DICTε) test is at least val(V ).

Soundness Consider a cut F : DICTεV → {±1} that is far from every dictator. Intuitively,
the cut is not parallel to any of the axis of the hypercube. Note the strong similarity in the
construction of the sphere graph SV and the hypercube graph DICTεV . In both cases, we
sampled two random points at a distance equal to the edge length. In fact, the hypercube
graph DICTεV is a subgraph of the sphere graph SV . The existence of special directions
(the axes of the hypercube) is what distinguishes the hypercube graph DICTεV from the
sphere graph SV . Thus, roughly speaking, a cut F that is not parallel to any axis must be
unable to distinguish between the sphere graph SV and the hypercube graph DICTεV . If we
visualize the cut F of DICTεV as a geometric surface not parallel to any axis (see Figure 6.4),
then the same geometric surface viewed as a cut of the sphere graph must separate roughly
the same fraction of edges.

Indeed, the above intuition can be made precise if the cut F is sufficiently smooth (low
degree). The cut F : DICTεV → {±1} can be expressed as a multilinear polynomial F (by
Fourier expansion), thus extending the cut function F from {−1/

√
R, 1/

√
R}R to R

R. The
function F is smooth if the corresponding polynomial polynomial F is low degree. If F is
smooth and far from every dictator, then one can show that,

Value of F on DICTεV ≈ Value of F on SV

By inequality 6.6, the maximum value of a cut of the sphere graph SV is at most opt(G).
Therefore, for any cut F : DICTεV → {±1} that is smooth and far from every dictator, we
get DICTεV (F) - opt(G).

Ignoring the smoothness condition for now, the above argument shows that the sound-
ness of the dictatorship test DICTεV is at most opt(G). Summarizing the above discussion,
starting from a SDP solution {vi} for a graph G, we constructed hypercube graph (dictator-
ship test) DICTεV such that Completeness(DICTεV ) > val({vi}), and Soundnessτ,ε(DICTεV ) -

opt(G).
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Figure 6.4: Extending the Cut from DICTεV to SV

By suitably modifying the construction of DICTεV , the smoothness requirement for the
cut can be dropped. The basic idea is fairly simple yet powerful. In the definition of DICTεV ,
while introducing an edge between (z,z′), perturb each coordinate of z and z′ with a tiny
probability ε to obtain z̃ and z̃′ respectively, then introduce the edge (z̃, z̃′) instead of
(z,z′). The introduction of noise to the vertices z and z′ has an averaging effect on the cut
function, thus making it smooth.

6.5 Formal Proof of Reduction

Let G = (V,E) be an arbitrary instance of Max Cut. Let V = {v1, . . . ,vn} be a feasible
solution to the GW SDP relaxation.

Locally, for every edge e = (vi, vj) in G, there exists a distribution over {±1} assignments
that match the SDP inner products. In other words, there exists {±1} valued random
variables zi, zj such that

〈vi,vj〉 = E[zi · zj ] .
For each edge e = (vi, vj), let µe denote the local integral distribution over {±1} assignments.

The details of the construction of dictatorship test DICTεV are as follows:



104

DICTεV (MaxCut Example)
The set of vertices of DICTεV consists of the R-dimensional hypercube {±1}R. The distri-
bution of edges in DICTεV is the one induced by the following sampling procedure:

– Sample an edge e = (vi, vj) ∈ E in the graph G.

– Sample R times independently from the distribution µe to obtain zRi =

(z
(1)
i , . . . , z

(R)
i ) and zRj = (z

(1)
j , . . . , z

(R)
j ), both in {±1}R.

– Perturb each coordinate of zRi and zRj independently with probability ε to obtain

z̃Ri , z̃
R
j respectively. Formally, for each ` ∈ [R],

z̃
(`)
i =

{

z
(`)
i with probability 1 − ε

uniformly random value in {±1} with probability ε

– Output the edge (z̃Ri , z̃
R
j ).

Theorem 6.3. There exist absolute constants C,K such that for all ε, τ ∈ [0, 1], for any
graph G and an SDP solution V = {v1, . . . ,vn} for the GW-SDP relaxation of G,

– Completeness(DICT
ε
V ) > val(V ) − 2ε

– Soundnessτ,ε(DICT
ε
V ) 6 opt(G) + CτKε .

Let F : {±1}R → {±1} be a cut of the DICTε graph. The fraction of edges cut by F is
given by

DICTεV (F) =
1

2
E

(vi,vj)∈E
E

zR
i ,z

R
j

E
z̃R

i ,z̃
R
j

[

1 −F(z̃Ri ) · F(z̃Rj )
]

(6.7)

In the above expression, the expectation over z̃i z̃j refers to an expectation over the noise.
Thus, formally the inner expectation should be written as over z̃i|zi and z̃j|zj.
Completeness : Consider the `th dictator cut given by F(zR) = z(`). With probability
(1 − ε)2, the perturbation does not affect the `th coordinate of zi and zj . In other words,

with probability (1 − ε)2, we have z̃
(`)
j = z

(`)
j and z̃

(`)
i = z

(`)
i . Hence,

DICTεV (F) > (1 − ε)2 · 1

2
E
e

E
zR

i ,z
R
j

[

1 − z
(`)
i · z(`)

j

]

Observe that if the edge e = (vi, vj) in G is sampled, then the distribution µe is used to

generate each coordinates of zRi and zRj . Specifically, this means that the coordinates z
(`)
i

and z
(`)
j satisfy,

E
zR

i ,z
R
j

[

1 − z
(`)
i · z(`)

j

]

= E
µe

[1 − z
(`)
i · z(`)

j ] = 1 − 〈vi,vj〉 .
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Therefore, DICTεV (F) > (1 − ε)2 · 1
2 Ee [1 − 〈vi,vj〉] > (1 − ε)2 · val(V ).

Soundness : For the sake of analysis, we will construct a graph GV , roughly similar to the
sphere graph SV described earlier.

Gaussian Graph GV

The vertices of GV are points in R
R. The graph GV is the union of all random projections

of the SDP solution V in to R dimensions. Formally, an edge of GV can be sampled as
follows:

– Sample R random Gaussian vectors ζ(1), . . . , ζ(R) of the same dimension as the SDP
solution V .

– Project the SDP vectors V = {v1, . . . ,vn} along directions ζ(1), . . . , ζ(R) to obtain
a copy of G in a R

R. Formally define

gRi = (〈vi, ζ(1)〉, . . . , 〈vi, ζ(R)〉) .

– Sample an edge e = (vi, vj) in G, and output the corresponding edge (gRi ,g
R
j ) in R

R

As lengths of vectors are approximately preserved under random projections, most of
the vectors are {gRi } are roughly unit vectors. Hence, the Gaussian graph GV is a slightly
fudged version of the sphere graph SV described earlier.

As the graph GV consists of a union of several isomorphic copies of G, the following
claim is an immediate consequence.

Claim 6.3.1. opt(GV ) 6 opt(G) .

Let us suppose that F : {±1}R → {±1} is a (τ, ε)-quasirandom function. For the sake of
succinctness, let us denote H = T1−εF . Essentially, H(zR) is the expected value returned
by F on querying a perturbation of the input zR. Thus the function H is a smooth version
of F , obtained by averaging the values of F .

Now we will extend the cut F from the hypercube graph DICTεV to the Gaussian graph
GV . To this end, we write the functions H,F as a multilinear polynomials in the coordinates
of zR = (z(1), . . . , z(R)). In particular, the Fourier expansion of F and H yields the intended
multilinear polynomials.

F (x) =
∑

σ

F̂σ
∏

i∈σ
x(i) and H(x) =

∑

σ

(1 − ε)|σ|F̂σ
∏

i∈σ
x(i) .

The polynomials F and H yield natural extensions of the cut functions F and H from
{±1}R to R

R. However, unlike the original cut function F , the range of its extension need
not be restricted to {±1}. To ensure that the extension defines a cut of the graph GV , we
will round the extension in the most natural fashion. Formally, define the rounding function
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f[−1,1] as follows:

f[−1,1](x) =











−1 if x < −1

x if − 1 6 x 6 1

1 if x > 1 .

The extension H∗ of the cut F to GV is given by

H∗(gR) = f[−1,1](H(gR)) where H(gR) =
∑

σ

(1 − ε)|σ|F̂σ
∏

j∈σ
g(j)

Let val(H∗) denote the value of the cut H∗ of the graph GV . Now we will show the
following claim.

Claim 6.3.2. There exists an absolute constant K > 0 such that for a (τ, ε)-quasirandom
function F : {±1}R → {±1},

val(H∗) = DICT
ε
V (F) ± τKε .

By definition of opt(GV ), we have val(H∗) 6 opt(GV ). Along with Claim 6.3.1, this
implies that Soundnessτ,ε(DICTεV ) 6 opt(G) + τKε, completing the proof of Theorem 6.3.

Proof of Claim 6.3.2. Returning to the definition of DICTεV , notice that the random variable
z̃Ri depends only on zRi . Thus, the value of a cut F : {±1}R → {±1} can be rewritten as,

DICTεV (F) =
1

2
E
e

E
zR

i ,z
R
j

[

1 − E[F(z̃Ri )|zRi ] · E[F(z̃Rj )|zRj ]
]

By the definition of the noise operator T1−ε,T1−εF(zR) = Ez̃R [F(z̃R)|zR]. Hence DICTεV
can be rewritten as

DICTεV (F) =
1

2
E

e=(vi,vj)
E

zR
i ,z

R
j

[

1 −H(zRi ) · H(zRj )
]

=
1

2
E

e=(vi,vj)
E

zR
i ,z

R
j

[

1 −H(zRi ) ·H(zRj )
]

By definition of the Gaussian graph GV , we have

val(H∗) =
1

2
E

e=(vi,vj)
E

gR
i ,g

R
j

[

1 −H∗(gRi ) ·H∗(gRj )
]

Firstly, let us denote by P : [−1, 1]2 → [−1, 1] the function given by P (x, y) = 1 − xy. Let
us restrict our attention to a particular edge e = (v1, v2). For this edge, we will show that

E
zR

1 ,z
R
2

[

P (H(zR1 ),H(zR2 ))
]

= E
gR
1 ,g

R
2

[

P
(

H∗(gR1 ),H∗(gR2 )
) ]

± τKε (6.8)

By averaging the above equality over all edges e in the graph G, the claim follows. We will
use the invariance principle to show the above claim.

Here is a statement of the invariance principle (see Section 3.6) tailored to the application
at hand.
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Theorem 6.4 (Invariance Principle [125]). Let z = {z1, z2} and G = {g1, g2} be two sets
of random variables such that:

E[zi] = E[gi] = 0 E[z2
i ] = E[g2

i ] = 1 for all i ∈ [2]

and E[z1z2] = E[g1g2]. Let zR,GR denote R independent copies of the random variables z

and G.

There is an absolute constant K > 0, such that for all τ, ε > 0 the following holds:

If F be a multilinear polynomial given by F (x) =
∑

σ F̂σ
∏

i∈σ x
(i), and if H(x) =

T1−εF (x) =
∑

σ(1 − ε)|σ|F̂σ
∏

i∈σ x
(i) be such that Inf`(H) 6 τ for all ` ∈ [R] then,

1. For every function Ψ : R
2 → R that is thrice differentiable with all its partial deriva-

tives up to order 3 bounded uniformly by C0,

∣

∣

∣
E

[

Ψ(H(zR1 ),H(zR2 ))
]

− E

[

Ψ(H(gR1 ),H(gR2 ))
]∣

∣

∣
6 τKε

2. Define the function ξ : R
2 → R as ξ(x) =

∑

i∈[2](xi − f[−1,1](xi))
2 Then, we have

∣

∣

∣E[ξ(H(zn1 ),H(zn2 ))] − E[ξ(H(gn1 ),H(gn2 ))]
∣

∣

∣ 6 τKε

By design, for each edge e = (vi, vj) the pairs of random variables {zi, zj} and {gi, gj}
satisfy,

E
ζ
[gi] = E

µe

[zi] = 0 E
ζ
[g2
i ] = E

µe

[z2
i ] = 1

E
ζ
[gj ] = E

µe

[zj ] = 0 E
ζ
[g2
j ] = E

µe

[z2
j ] = 1

E
ζ
[gigj ] = E

µe
[zizj ] = 〈vi,vj〉 .

The predicate/payoff is currently defined as P (x, y) = 1 − xy in the domain [−1, 1]2.
Notice that the function P (x, y) = 1−xy by itself does not have uniformly bounded deriva-
tives in R

2. Extend the payoff P to a smooth function over the entire space R
2, with all its

partial derivatives up to order 3 bounded uniformly throughout R
2. Further, it is easy to

ensure that the extension satisfies the following Lipschitz condition for some large enough
constant C > 0,

|P (x, y) − P (x′, y′)| 6 C(|x− x′| + |y − y′|) ∀(x, y), (x′, y′) ∈ R
2 . (6.9)

We will prove Equation 6.8 in two steps.

Step I : Apply the Invariance Principle with the ensembles z = {z1, z2} and G = {g1, g2},
for the vector of multilinear polynomials H and the smooth function Ψ = P . This yields,

E
zR

1 ,z
R
2

[

P (H(zR1 ),H(zR2 ))
]

= E
gR
1 ,g

R
2

[

P (H(gR1 ),H(gR2 ))
]

± τKε (6.10)
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Step II : In this step, we bound the effect of the rounding operation used in extending
the cut F from DICTεV to GV .

As F is a cut of DICTεV , its range is {±1}. Hence, the corresponding polynomial F takes
{±1} values on inputs from {±1}R. As H = T1−εF is an average of the values of F , the
values H(zR1 ) and H(zR2 ) are always in the range [−1, 1].

By the invariance principle, the random variable (H(zR1 ),H(zR2 )) has approximately
the same behaviour as (H(gR1 ),H(gR2 )). Roughly speaking, this implies that the values
H(gR1 ),H(gR2 ) are also nearly always in the range [−1, 1]. Hence intuitively, the rounding
operation must have little effect on the value of the cut.

This intuition is formalized by the second claim in the invariance principle. The function
ξ measures the squared deviation from the range [−1, 1]. For random variables (zR1 ,z

R
2 ),

clearly we have E[ξ(H(zR1 ),H(zR2 ))] = 0. By the invariance principle applied to polynomial
H we get,

E[ξ(H(gn1 ),H(gn2 ))] 6 E[ξ(H(zn1 ),H(zn2 ))] + τKε = 0 + τKε = τKε (6.11)

Using the Lipschitz condition satisfied by the payoff, we can write:

∣

∣

∣
E

gR
1 ,g

R
2

[

P (H∗(gR1 ),H∗(gR2 ))
]

− E
gR
1 ,g

R
2

[

P (H(gR1 ),H(gR2 ))
]

∣

∣

∣

6C E
gR
1 ,g

R
2

[

∣

∣H∗(gR1 ) −H(gR1 )
∣

∣+
∣

∣H∗(gR2 ) −H(gR2 )
∣

∣

]

6C
(

2 E
gR
1 ,g

R
2

[

∣

∣H∗(gR1 ) −H(gR1 )
∣

∣

2
+
∣

∣H∗(gR2 ) −H(gR2 )
∣

∣

2
])1/2

by Cauchy-Schwartz ineq

6C
(

2 E
gR
1 ,g

R
2

[

ξ(H(gR1 ),H(gR2 ))
])1/2

(by Definition of ξ)

62CτKε 6 τK
′ε (by Equation 6.11)

Along with Equation 6.10, the above inequality implies Equation 6.8. This finishes the
proof of Claim 6.3.2.

�

6.6 Dictatorship Tests and Rounding Schemes

The proof of soundness in Section 6.4 can be translated into an efficient rounding scheme.
Specifically, given a cut F of the graph DICTεV , let H∗ denote its extension to the Gaussian
graph GV . The idea of the rounding scheme RoundεF is to sample a random copy of the
graph G inside the Gaussian graph GV and output the cut induced by H∗ on the copy. The
details of the rounding scheme are described in Figure 6.6.

Let RoundεF (V ) denote the expected value of the cut returned by the above rounding
scheme on an SDP solution V . Then we can write,

RoundεF (V ) =
1

2
E

e=(vi,vj)
E

gR
i ,g

R
j

[

1−H∗(gRi )·H∗(gRj )
]

=
1

2
E

e=(vi,vj)
E

gR
i ,g

R
j

[

P (H∗(gRi ),H∗(gRj ))
]

.
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RoundεF
Input: SDP solution V = {v1, . . . ,vn} for the GW SDP relaxation of the graph G.

– Sample R random Gaussian vectors ζ(1), . . . , ζ(R) of the same dimension as the SDP
solution V .

– Project the SDP vectors V = {v1, . . . ,vn} along directions ζ(1), . . . , ζ(R). Let

gRi = (〈vi, ζ(1)〉, . . . , 〈vi, ζ(R)〉) .

– Compute H∗(gRi ) for all i ∈ [n] as follows:

H∗(gRi ) = f[−1,1](H(gRi )) where H(gRi ) = T1−εF (gRi ) =
∑

σ

(1 − ε)|σ|F̂σ
∏

j∈σ
g
(j)
i .

– Assign vertex vi the value 1 with probability (1 + H∗(gRi ))/2 and −1 with the re-
maining probability.

Figure 6.5: Rounding Scheme RoundεF

Here P denotes the smooth extension of the payoff function from [−1, 1]2 to R
2. The

following is an immediate consequence of Claim 6.3.2,

Theorem 6.5. There is a constant K > 0 such that for a (τ, ε)-quasirandom function
F : {±1}R → [−1, 1],

RoundεF (V ) = DICT
ε
V (F) ± τKε

On one hand, the above theorem exposes an interesting duality between rounding
schemes and dictatorship tests.

It is clearly desirable to execute the scheme RoundεF for a (τ, ε)-quasirandom function F
that maximizes the acceptance probability against DICTεV . However, it could be difficult to
explcitly find a (τ, ε)-quasirandom function F that maximizes this acceptance probability
for an SDP solution V .

The crucial insight is that the size of the domain 2R is an absolute constant independent
of the SDP solution V . Furthermore, the performance of the rounding scheme RoundF (V )
is a continuous function of F . Formally, we have the following lemma:

Lemma 6.5.1. There exists an absolute constant C0 such that if F ,F ′ : {±1} → [−1, 1]
are two functions and let V be a GW SDP relaxation for a graph G. Then,

|RoundεF (V ) − RoundεF ′(V )| 6 2C0‖F − F ′‖2
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Proof. Starting with the expression for RoundεF , we can rewrite

|RoundεF − RoundεF ′ | =
∣

∣

∣ E
e=(vi,vj)

E
gR

i ,g
R
j

[

P (H∗(gRi ),H∗(gRj )) − P (H ′∗(gRi ),H ′∗(gRj ))
]∣

∣

∣

6 C0 E
e=(vi,vj)

E
gR

i ,g
R
j

[

|H∗(gRi ) −H ′∗(gRi )| + |H∗(gRj )) −H ′∗(gRj )|
]

(by the Lipschitz condition for payoffP

6 C0 E
e=(vi,vj)

[

(

E
gR

i

|H∗(gRi ) −H ′∗(gRi )|2
)1/2

+
(

E
gR

j

|H∗(gRj ) −H ′∗(gRj )|2
)1/2
]

(by Cauchy Schwartz inequality)

6 2C0‖H∗ −H ′∗‖2

To finish the proof of the claim, observe that

‖H∗ −H ′∗‖2 6 ‖H −H ′‖2 6 ‖F − F ′‖2 ,

where the two inequalities use the fact that the operators f[−1,1] and T1−ε are contractive. �

Using the continuity of RoundεF , the space of functions can be discretized, and searched

by bruteforce. Every function F : {±1}R → [−1, 1] can be thought of as a point in R
2d

.
The natural metric between two functions given by ‖F − F ′‖2 = Ex[(F(x) −F ′(x))2]1/2 is

a scaled version of the natural `2 metric on R
2d

. Thus to discretize the space of functions,
it is sufficient to pick a κ-net for the unit ball in R

2d
. The formal definition of a κ-net is as

follows:

Definition 6.6.1. Let B(0, 1) denote the unit ball in the d-dimensional space R
d. A κ-net

for the unit ball B(0, 1) is a finite set N of points in B(0, 1) such that for every x ∈ B(0, 1)
there exists a point y ∈ N such that ‖x − y‖2 6 ε.

Roundεκ scheme
Input : A feasible solution to the GW SDP relaxation.
Let Sκ = {F1, · · · ,FM} be a set of functions such that for every F : {±1}R → [−1, 1]
there exists Fi ∈ Sκ satisfying ‖Fi −F‖2 6 κ.

– For each function Fi ∈ Sκ, run the subroutine RoundεFi
on the SDP solution

– Output the assignment obtained with the largest objective value.

As an immediate consequence of Theorem 6.5 and Lemma 6.5.1 we get the following
theorem.

Theorem 6.6. For every η, ε > 0, there exists choices of κ, τ such that

Roundεκ(V ) > Soundnessτ,ε(DICT
ε
V ) − η
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Proof. Recall that Soundnessτ,ε(DICTεV ) was defined as

Soundnessτ,ε(DICTεV ) = max
F∗:{±1}R→[−1,1]

F∗ is (τ,ε)−quasirandom

DICTεV (F) .

Let F∗ : {±1}R → [−1, 1] be the function for which the maximum is achieved in the above
definition. Let Fj ∈ Sκ denote the closest point to F∗ in the κ-net Sκ, i.e., ‖F∗−Fj‖2 6 κ.

Since F∗ is (τ, ε)-quasirandom, by Theorem 6.5 we have

RoundεF∗(V ) = DICTεV (F∗) ± τKε = Soundnessτ,ε(DICTεV ) ± τKε

By the continuity of RoundεF (Lemma 6.5.1), we have |RoundεF∗(V ) − RoundεFj
(V )| 6

2C0‖F∗ −Fj‖2 = 2C0κ. Consequently we obtain the conclusion of the theorem.

Roundεκ(V ) > RoundεFj
(V ) > Soundnessτ,ε(DICTεV )−τKε−2C0κ > Soundnessτ,ε(DICTεV )−η

�

Comparison with Half space Rounding The Goemans-Williamson algorithm [65] for
Max Cut uses a halfspace rounding wherein a single random projection {gi|gi = 〈vi, ζ〉, i ∈
[n]} of the SDP solution V = {v1, . . . ,vn} is sampled, and for each i ∈ [n], the vertex vi is
assigned sgn(gi).

Equivalently, since the sum of several Gaussian random variables is also Gaussian, the
halfspace rounding can be rephrased in the following manner: follows:

– Project the SDP solution V = {v1, . . . , vn} along R random Gaussian directions
{ζ(1), . . . , ζ(R)} to obtain

gRi = (〈vi, ζ(1)〉, . . . , 〈vi, ζ(R)〉) for each i ∈ [n]

– For each i ∈ [n], assign sgn(g
(1)
i + g

(2)
i + . . . , g

(R)
i ) to vertex vi

For every τ, ε > 0, with a large enough choice of R, the function F∗(x) = sgn(x1 + . . .+
xR) is (τ, ε)-quasirandom. During the bruteforce search, the Roundεκ scheme will iterate
over a function F that is close to F∗. Therefore, the rounding scheme Roundεκ achieves an
approximation that is at least as good as that of the Goemans-Williamson algorithm.

The design of a rounding scheme such as the Goemans-Williamson halfspace rounding
often requires ingenuity, and knowledge about the nature of the CSP involved. By yielding a
constant sized search space of rounding schemes Theorem 6.5 removes the need for ingenuity,
thus making it more amenable to generalization for arbitrary CSPs. On the flip-side, specific
rounding schemes such as the halfspace rounding are vastly more efficient than the generic
rounding scheme outlined here, although both are polynomial time algorithms.

Comparison with the generic rounding scheme in Chapter 5 The Roundεκ scheme
is arguably the same as the generic rounding scheme for CSPs presented in Chapter 5.
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To see this, let us pick an η-net for the R-dimensional sphere for sufficiently small η, and
subdivide the sphere into Voronoi cells for the η-net. Being a smooth extension of the cut
F , the value of H∗ is roughly constant on each of the cells. A brute force search over the
space of all functions F amounts to a search over all possible assignments to the cells. The
Roundεκ algorithm randomly projects the SDP vectors along R directions, and each vertex
vi is assigned the value H∗(gRi ). In particular, all vertices whose projections fall into the
same Voronoi cell, will get assigned the same value.

Therefore, the execution of the Roundεκ scheme can be rephrased as follows: Project the
SDP vectors along R random directions and merge vertices whose projections fall in to the
same Voronoi cell. Finally, perform a brute force search over the constant sized graph that
is obtained after merging the vertices. Indeed, this is exactly how the rounding scheme
presented in Chapter 5 proceeds towards rounding the SDP solution.

6.7 From UG-hardness to Integrality Gaps

A UG-hardness result for a problem Λ almost always yields an SDP integrality gap instance
for Λ. Clearly, a UG-hardness result for Λ, involves a polynomial time reduction Red from
Unique Games to the problem Λ. Specifically, given a UG instance Φ, the reduction Red

produces an instance Red(Φ) such that,

opt(Φ) > 1 − γ =⇒ opt(Red(Φ)) > c and opt(Φ) 6 δ =⇒ opt(Red(Φ)) 6 s .

To obtain an SDP integrality gap using the reduction, one starts with a SDP integrality
gap instance Φ for Unique Games. Formally, let Φ be an instance of Unique Games with
sdp(Φ) > 1 − γ while opt(Φ) 6 δ. Consider the instance = of problem Λ produced by
executing the UG-hardness reduction Red on the instance Φ. As opt(Φ) 6 δ clearly we
have opt(=) 6 s. Surprisingly, the SDP solution for Φ can be composed with the reduction
in order to demonstrate that sdp(=) > c. Thus a c vs s-UG hardness result yields an
integrality gap instance where the SDP value is c, while the integral optimum is at most s.

In this section, we will demonstrate the above proof technique for our running example
of the Max Cut problem. We will show the following theorem.

Theorem 6.7. For all γ, δ, τ, ε > 0, given a dictatorship test DICT over {±1}R for R >

(1
δ )

100
γ , there exists a Max Cut instance Ψ such that sdp(Ψ) > (1− γ)Completeness(DICT)

and opt(Ψ) 6 Soundnessτ,ε(DICT) + δ
ε2τ3 .

We begin by recalling the properties of a SDP integrality gap instance for Unique Games.

Definition 6.7.1. A weak gap instance Φ for Unique Games consists of Φ = (WΦ ∪
VΦ, E,Π, [R]), and a set of SDP vectors B = {Bv}v∈VΦ

where Bv = {bv,i|i ∈ [R]}. The SDP
vectors B form a feasible solution for the following SDP relaxation.
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Maximize val(B) = E
(v,w)∈E

∑

`∈[R]

〈bv,πv←w(`), bw,`〉 (UG)

Subject to 〈bv,`, bv′,`′〉 > 0, 〈bv,`, bv,`′〉 = 0 ∀v, v′ ∈ VΦ, `, `
′ ∈ [R]

∑

`∈[R]

|bv,`|2 = 1 ∀v ∈ VΦ

∣

∣

∑

`∈[R]

bv,` −
∑

`∈[R]

bv′,`
∣

∣

2
= 0 ∀v, v′ ∈ VΦ

The SDP vectors B can be assumed to satisfy the following additional properties:

– There exists a unit vector b0 such that for each v ∈ VΦ,
∑

`∈[R] bv,` = b0 and

〈b0, bv,`〉 = |bv,`|2 for all ` ∈ [R]. Observe that
∑

`,`′〈bv,`, bv′,`′〉 = 〈b0, b0〉 = 1.

– The collection B of orthonormal sets is a good SDP solution for Φ, in that val(B) >

1 − γ. Furthermore, it can be assumed that

E
w∈WΦ

E
v,v′∈N(w)

(

∑

`∈[R]

〈bv,πv←w(`), bv′,πv′←w(`)〉
)

> 1 − γ. (6.12)

– (Strong Matching Property) For every pair of vertices u, u′ ∈ VΦ ∪WΦ, the sets
Bu and Bu′ satisfy the following strong matching property : There exist R disjoint
matchings between Bu, Bu′ given by bijections π(1), . . . , π(R) : Bu → Bu′ such that for
all i ∈ [R], b, b′ ∈ Bu, we have 〈b, π(i)(b)〉 = 〈b′, π(i)(b′)〉 .

– For every edge e = (w, v) ∈ E, the vector sets Bw and Bv have significant correlation
under the permutation π = πv←w. Specifically,

∀` ∈ [R]. 〈bw,`, bv,π(`)〉2 > 0.99.

Let Φ denote a weak gap instance for Unique Games with sdp(Φ) > 1−γ and opt(Φ) 6

δ. By the work of Khot and Vishnoi [104], there exists a weak gap instance for Unique

Games over an alphabet size R > (1
δ )

100
γ . Execute the reduction to Max Cut outlined in

Section 6.3 starting with the instance Φ. We claim that the resulting Max Cut instance
Ψ is an SDP integrality gap for Max Cut.

Since opt(Φ) 6 δ, it immediately follows from Theorem 6.2 that
opt(Ψ) 6 Soundnessτ,ε(DICTε) + δ/ε2τ3. All that is left to finish the proof of Theorem 6.7,
is to show that sdp(Ψ) > (1 − γ)Completeness(DICTε). Towards this goal, we will use the
SDP vectors for Φ to exhibit an SDP solution for the GW relaxation of Max Cut for the
graph Ψ.

The idea behind the construction of SDP vectors is pretty simple. Let us pretend for the
moment that the SDP solution B for the unique games instance Φ is integral. Specifically,
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let us suppose that the SDP solution B consists of one-dimensional vectors that are either 0
or 1. Thus for a vertex u ∈ WΦ∪VΦ, exactly one of the vectors {bv,`}`∈[R] is equal to 1 while
the remaining are identically zero vectors. Furthermore if bv,` = 1 then it is interpreted as
assigning the label ` to the vertex v.

The vertices of the Max Cut instance Ψ consists of a long code for every vertex v ∈ VΦ,
i.e., VΨ = VΦ × {±1}R. Consider a vertex (v,x) in the graph Ψ. The reduction encodes
the choice of a label ` to a Unique Games vertex v, as the `th dictator cut for the set
of vertices {v} × {±1}R. Therefore, if the vertex v is assigned label `, then (v,x) is to be
assigned x(`). Consequently, the value assigned to vertex (v,x) is given by

V(v,x) =
∑

`∈[R]

x(`)bv,` .

Clearly, if the SDP vectors bv,` are integral, then the solution V(v,x) is the intended solution
for the Max Cut instance Ψ. More generally, the SDP vectors {bv,`} are to be thought of
as random variables {bv,`} that take integral values. In other words, each bv,` is a random
variable that takes values 0 or 1, and satisfies

E[bv,`bv′,`′ ] = 〈bv,`, bv′,`′〉

Equivalently, the SDP vectors B correspond to a probability distribution over labellings to
the Unique Games instance Φ.

Consider a vertex w and two of its neighbors v, v′. Since B is an SDP solution with high
objective value (6.12), the probability distribution over labellings almost always assigns
labels that satisfy the edges (w, v) and (w, v′). With high probability, the distribution
over labellings assigns w → `, v → πv←w(`) and v′ → πv′←w(`) for some label ` ∈ [R].
Equivalently, with high probability we have bw,` = bv,πv←w(`) = bv′,πv′←w(`) = 1 for some

label `. In turn, the long codes corresponding to v and v′ are assigned πv→w(`)th and
πv′→w(`′)th dictator cuts respectively. On assigning such matching dictator cuts, at least
Completeness(DICTε) fraction of edges between the long codes of v and v′ are cut. As this
happens with high probability, the fraction of edges cut is roughly Completeness(DICTε).

While the above argument outlines the intuition behind the SDP value, the formal proof
is a fairly easy calculation. To check the feasibility of the SDP solution {V(v,x)|v ∈ VΦ,x ∈
{±1}R}, all that is required is that the vectors Vv,x are unit vectors. Indeed the vectors
Vv,x are unit vectors as shown below:

〈V(v,x),V(v,x)〉 =
∑

`,`′∈[R]

x(`)x(`′)〈bv,`, bv,`′〉

=
∑

`∈[R]

(x(`))2〈bv,`, bv,`〉 (textsince〈bv,`, bv,`′〉 = 0 for all ` 6= `′)

=
∑

`∈[R]

|bv,`|2 = 1
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Now we shall turn to the analysis of the value of SDP solution.

val({Vv,x}) =
1

2
E

w∈WΦ

E
v,v′∈N(w)

E
z,z′

[

1 − 〈Vv,πw←v◦z,Vv′,πw←v′◦z′〉
]

.

Let us denote x = πw←v ◦ z and y = πw←v′ ◦ z′. Rewrite the inner expectation as,

E
z,z′

[

1 − 〈Vv,πw←v◦z,Vv′,πw←v′◦z′〉
]

= E
x,y

[

1 − 〈Vv,x,Vv′,x′〉
]

Using Vv,x =
∑

` x
(`)bv,` and

∑

`,`′∈[R]〈bv,`, bv′,`′〉 = 〈b0, b0〉 = 1, we can rewrite

E
z,z′

[

1 − 〈Vv,πw←v◦z,Vv′,πw←v′◦z′〉
]

= E
x,y

[

∑

`,`′∈[R]

〈bv,`, bv′,`′〉 −
∑

`,`′∈[R]

x(`)y(`′)〈bv,`, bv′,`′〉
]

=
∑

`,`′∈[R]

〈bv,`, bv′,`′〉 E
x,y

[

1 − x(`)y(`′)] .

Observe that 〈bv,`, bv′,`′〉 > 0 and Ex,y[1 − x(`)y(`′)] > 0 for all `, `′. Dropping all terms
other than terms of the form πv←w(`), πv′←w(`) for ` ∈ [R], we get:

E
z,z′

[

1 − 〈Vv,πw←v◦z,Vv′,πw←v′◦z′〉
]

>

∑

`∈[R]

〈bv,πv←w(`), bv′,πv′←w(`)〉 E
x,y

[

1 − x(πv←w(`))y(πv′←w(`′))] .

By definition of x and y, we have x(πv←w(`)) = z(`) and y(πv′←w(`)) = z′(`). Consequently,

E
z,z′

[

1−〈Vv,πw←v◦z,Vv′,πw←v′◦z′〉
]

>
∑

`∈[R]

〈bv,πv←w(`), bv′,πv′←w(`)〉 E
z,z′

[

1 − z(`)z′(`)
]

>
(

∑

`∈[R]

〈bv,πv←w(`), bv′,πv′←w(`)〉
)

·
(

2 · Completeness(DICTε)
)

.

Substituting this back in the expression for val(Vv,x), we obtain the desired conclusion.

val({Vv,x}) =
1

2
E

w∈WΦ

E
v,v′∈N(w)

E
z,z′

[

1 − 〈Vv,πw←v◦z,Vv′,πw←v′◦z′〉
]

> E
w∈WΦ

E
v,v′∈N(w)

(

∑

`∈[R]

〈bv,πv←w(`), bv′,πv′←w(`)〉
)

· Completeness(DICTε)

> (1 − γ)Completeness(DICTε) by 6.12

6.8 Implications

In this section, we study some of the implications of the connections exposed in this chapter.
Let GapMax Cut, UGhardMax Cut denote the SDP integrality gap and UG-hardness curves
for the Max Cut problem.
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Parameters We will choose parameters R, τ, ε, κ, γ, δ such that all the reductions outlined
in this chapter incur an additive error of at most η for some η > 0. With this in mind, first
set ε = η

10 and fix τ such that the error CτKε in Theorem 6.3 is at most η
10 . A value of

τ = 2
−O( log η

η
)

suffices for this purpose. Choose a value of κ = O(η) such that the error in
Theorem 6.6 is at most η

10 .

Set γ = η
10 and δ = ηε2τ3

10 = 2
−O( log η

η
)
to ensure that the reduction in Theorem 6.2 incurs

an error of at most η
10 in both the completeness and soundness cases. Finally, fix the value

of the alphabet size of Unique Games R as 2O(1/η3). This value is large enough to ensure
that there exists a weak gap instance of Unique Games with SDP value 1−γ and optimum
value δ.

Optimal UG-hardness Let us compose the conversion from SDP integrality gaps to
dictatorship tests (Theorem 6.3) with the reduction from dictatorship tests to UG-hardness
result (Theorem 6.1). As an immediate consequence, we obtain a UG-hardness result for
Max Cut that matches the SDP integrality gap. Formally,

Theorem 6.8. For all η > 0 and 1
2 6 c 6 1, it is UG-hard to distinguish between Max

Cut instances with value at least c− η from those with value GapMax Cut(c), i.e.,

UGhardMax Cut(c− η) 6 GapMax Cut(c) + η

Proof. Let G be a graph such that sdp(G) = c while opt(G) 6 GapMax Cut(c) + η
4 . The

existence of such a graph is guaranteed by the definition of the SDP integrality gap curve
GapMax Cut. Apply Theorem 6.3 for the graph G with its optimal SDP solution and the
above defined values of τ, ε. The claim follows by using the resulting dictatorship test in
UG-hardness reduction (Theorem 6.2). �

Optimal Rounding Scheme The following theorem shows that the rounding scheme
Roundεκ achieves the integrality gap of the semidefinite program. Let RoundingCurve(c)
denote the rounding curve associated with the Roundεκ scheme.

Theorem 6.9. For all η > 0, there exists choices of ε, κ such that

RoundingCurve(c) > GapMax Cut(c− η) − η

Proof. The choices of κ, ε as a function of η are as outlined earlier in this section.
By definition of RoundingCurve, there exists an instance G and an SDP solution V

for G such that val(V ) > c while Roundεκ(V ) 6 RoundingCurve(c) + η
2 . Consider the

dictatorship test DICTεV associated with SDP solution V . By Theorem 6.3, we have
Completeness(DICTεV ) > val(V )−2ε > c−η

2 . Further by Theorem 6.6 Soundnessτ,ε(DICTεV ) 6

Roundεκ(V ) + η
4 6 RoundingCurve(c) + 3η

4 .
Now we can use the dictatorship test DICTεV in Theorem 6.7 to obtain a SDP integrality

gap. Therefore by Theorem 6.7 we obtain a SDP integrality gap Ψ for Max Cut such that

sdp(Ψ) > (1 − γ)Completeness(DICTεV ) > c− η ,
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while,
opt(Ψ) 6 Soundnessτ,ε(DICTεV ) + δ/ε2τ3 6 RoundingCurve(c) + η .

Thus Ψ is an instance of Max Cut with SDP value c − η and optimum value at most
RoundingCurve(c) + η. By definition of the GapMax Cut curve, the optimum value of Ψ is
at least GapMax Cut(c − η). As an immediate consequence one gets RoundingCurve(c) >

GapMax Cut(c− η) − η. �

The following corollary follows immediately from the above two Theorems.

Corollary 6.9.1. The GW relaxation along with the rounding scheme Roundεκ form an
approximation algorithm for Max Cut whose approximation curve α(c) satisfies for all
η > 0:

α(c) > GapMax Cut(c− η) − η > UGhardMax Cut(c− 2η) − 2η

Roughly speaking, the GW relaxation along with the Roundεκ yield an algorithm that
achieves the optimal approximation under UGC. The important subtlety involved is the
continuity of the curves GapMax Cut and UGhardMax Cut.

The continuity of these curves is not an issue if one is solely interested in the worst case
approximation ratio over all c. In particular, if we define GapRatioMax Cut

and UGhardThresholdMax Cut as

GapRatioMax Cut = inf
c

GapMax Cut(c)

c
UGhardThresholdMax Cut = inf

c

UGhardMax Cut(c)

c
,

then, we have the following corollary.

Corollary 6.9.2. GapRatioMax Cut = UGhardThresholdMax Cut and further the algorithm
consisting of GW relaxation along with the Roundεκ rounding scheme achieves an approxi-
mation GapRatioMax Cut − η for all η.

The GapMax Cut and UGhardMax Cut were shown to be continuous by O’Donnell and Wu
(Corollary 5.4, [132]). Therefore, the above theorems yield matching UG-hardness results
and approximation algorithms for Max Cut. While all the above stated theorems and
corollaries generalize to arbitrary CSPs, the continuity of the curves involved does not hold
for arbitrary CSPs.

Computing Integrality Gaps In this section, we have obtained a UG-hardness result
and a matching approximation algorithm for Max Cut. However, the results are implicit in
that they do not shed light on the value of the approximation ratio, or the SDP integrality
gap. Now we will see how the connection between dictatorship tests and SDP integrality
gaps can be harnessed towards computing the curves GapMax Cut and UGhardMax Cut.

In Theorem 6.3 and Theorem 6.7, we have effectively established an equivalence between
SDP integrality gaps and dictatorship tests over a large constant dimensional hypercube.
The integrality gap curve GapMax Cut(c) is the worst case value of the optimum over all
instances with SDP value c. As there are infinitely many instances of all sizes with SDP
value c, it is unclear how GapMax Cut(c) can be computed in finite time.
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The crucial observation is that the set of all dictatorship tests over a constant dimensional
hypercube is a compact set, that can be easily discretized. Recall that a dictatorship test
over {±1}R is nothing but a weighted graph over {±1}R, whose edge weights sum up to
1. Hence, the space of all dictatorship tests can be identified with probability distributions
over {±1}R × {±1}R - a compact set.

Define Soundnessτ,ε(c) as follows:

Soundnessτ,ε(c) = inf
DICT− a dictatorship test over {±1}R

Completeness(DICT)=c

Soundnessτ,ε(DICT)

By Theorem 6.7, there exists a Max Cut instance Ψ with sdp(Ψ) > (1 − γ)c > c− η and
opt(Ψ) 6 Soundnessτ,ε(c) + η. Therefore we have

Soundnessτ,ε(c) > GapMax Cut(c− η) − η .

Furthermore by Theorem 6.3, we have

Soundnessτ,ε(c) 6 GapMax Cut(c+ η) + η

Observe that for any η > 0, by iterating over a sufficiently fine κ-net over the space of
dictatorship tests, the value Soundnessτ,ε(c) can be computed within an accuracy of η.

Corollary 6.9.3. There exists an algorithm that for any η > 0 and 1
2 < c < 1, runs in

time exp(exp(exp(O(1/η3)))) and computes a real number θ such that

GapMax Cut(c− η) − 2η 6 θ 6 GapMax Cut(c+ η) + 2η .

In particular, the algorithm can be used to estimate GapRatioMax Cut to any desired
accuracy η. Moreover, the continuity of the curve GapMax Cut ensures that θ is indeed a
good approximation for GapMax Cut(c) too.
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Chapter 7

GENERAL CONSTRAINT SATISFACTION PROBLEMS
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The connections between SDP integrality gaps, Dictatorship tests and Unique Games
hardness results were explored in Chapter 6. In this chapter, we will generalize these con-
nections and their implications to the class of generalized constraint satisfaction problems.

7.1 Results

In the next few sections, we generalize the reductions between SDP integrality gaps, dicta-
torship tests and UG-hardness results outlined in Chapter 6 to arbitrary GCSPs. As in the
case of Max Cut (Chapter 6), several interesting results emerge as implications of these
connections.

To state these implications let us recall some definitions. Recall that a generalized
constraint satisfaction problem (GCSP) is a the natural generalization of CSPs where we
allow both positive and negative payoff functions (See Definition 2.4.1. For a GCSP Λ,
GapΛ and UGhardΛ denote the associated SDP integrality gap curve and the UG-hardness
curve. Since, the value of any assignment to a GCSP instance lies in the range [−1, 1], the
curves GapΛ and UGhardΛ are defined in the range [−1, 1]. GapRatioΛ and UGhardThresholdΛ

are much coarser measures of approximation that are defined as,

GapRatioΛ = inf
c

GapΛ(c)

c
UGhardThresholdΛ = inf

c

UGhardΛ(c)

c
.

First, using the conversion from SDP integrality gaps and UG hardness results via
dictatorship tests, we will show that the best approximation to every GCSP problem Λ is
given by LC relaxation. The formal statement of the result is as follows:

Theorem 7.1. For a GCSP Λ, for all η > 0 and −1 < c 6 1, it is UG-hard to distinguish
between instances of Λ with value at least c− η from those with value GapΛ(c), i.e.,

UGhardΛ(c− η) 6 GapΛ(c) + η

The above theorem immediately implies a relation between the coarser measures GapRatioΛ

and UGhardThresholdΛ.

Corollary 7.1.1. Let Λ be a GCSP such that GapRatioΛ and UGhardThresholdΛ are both
finite. Then,

GapRatioΛ = UGhardThresholdΛ

Qualitatively, the result shows that if UGC is true, then LC is the strongest SDP for ev-
ery GCSP. Thus if UGC is true, then stronger SDPs obtained through the Lovasz-Schriver,
Lasserre and Sherali-Adams hierarchies do not yield better approximation ratios for any
GCSP. The proof of the reduction from integrality gaps to dictatorship tests yields a round-
ing scheme for the GCSP Λ.

Theorem 7.2. For all η > 0, there exists a rounding scheme Roundη running in time
exp(exp(exp(O(1/η3)))) ·poly(n) such that, if RoundingCurve(c) denotes the rounding curve
associated with the Roundη scheme then,

RoundingCurve(c) > GapΛ(c− η) − η ∀c ∈ (−1, 1]
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The following corollary is a restatement of the above result as an approximation algo-
rithm for Λ.

Corollary 7.2.1. For all η > 0, the LC relaxation along with the rounding scheme Roundη
form an approximation algorithm for Λ whose approximation curve α(c) satisfies:

α(c) > GapΛ(c− η) − η > UGhardΛ(c− 2η) − 2η

Roughly speaking, for every GCSP, the Roundη scheme achieves the integrality gap of
the LC relaxation, and is optimal under UGC, at every value of c. The caveat is that the
curves GapΛ and UGhardΛ need not be continuous, and therefore GapΛ(c−η) could be vastly
different from GapΛ(c).

In many special cases of interest, the continuity of the curves GapΛ and UGhardΛ is not
an issue. For instance, let us suppose Λ is a constraint satisfaction problem (CSP). Recall
that CSPs are a special case of GCSPs where the payoff functions take {0, 1} values. For
GCSPs with positive payoffs, the optimum of every instance is a number strictly bounded
away from 0. In other words, the curves GapΛ and UGhardΛ are defined in a range [θ, 1]
for some θ > 0. Let us further restrict our attention to approximation ratios, instead of
approximation curves that are more refined measures.

An immediate consequence of Theorem 7.2, the Roundη algorithm achieves an approx-
imation ratio that is within η of the integrality gap and the optimal possible under UGC
for every constraint satisfaction problem.

Corollary 7.2.2. Let Λ be a constraint satisfaction problem or more generally a GCSP
with positive payoffs. For every η > 0, the algorithm consisting of LC relaxation along with
the Roundη rounding scheme runs in exp(exp(exp(O(1/η3)))) · poly(n) time and achieves
an approximation GapRatioΛ − η = UGhardThresholdΛ − η.

The above results generalize a large number of algorithmic and UG-hardness results in
literature. However, the results are implicit in that they do not shed light on the value of
the approximation ratio or the UG-hardness threshold. The actual values of approximation
ration or the SDP integrality gap are a function of the predicates involved in the GCSP Λ.
It would be rather surprising if general black box reductions such as those presented here
can explicitly determine these quantities. On a positive note, the black box reductions do
yield an algorithm to compute these quantities for a GCSP.

Theorem 7.3. There exists an algorithm that for any η > 0 and −1 < c < 1, runs in time
exp(exp(exp(O(1/η3)))) and computes a real number θ such that

GapΛ(c− η) − 2η 6 θ 6 GapΛ(c+ η) + 2η .

Again, the continuity of the curves involved can be ignored in the following special case.

Corollary 7.3.1. Let Λ be a constraint satisfaction problem or more generally a GCSP with
positive payoffs. For every η > 0, there exists an algorithm that runs in exp(exp(exp(O(1/η3))))
time and computes GapRatioΛ within an additive error of η.
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Organization: The chapter begins by recalling the formal definition of GCSPs, the LC

relaxation and the invariance principle in Section 7.2. The reduction from integrality gap
to dictatorship tests is presented in Section 7.3. This reduction is among the major contri-
butions of this thesis, and its proof is presented in Section 7.4. In the subsequent section,
we present the reduction from dictatorship tests to UG-hardness results which essentially
follows from the work of Khot et al. [99]. We demonstrate that the soundness analysis of
the reduction from integrality gaps to dictatorship tests (Section 7.3) can be converted into
an efficient rounding scheme in Section 7.6. The last leg of the reduction from UG hardness
results to SDP integrality gaps is sketched in Section 7.7, a fairly straightforward gener-
alization from [104]. Finally, in Section 7.8 we use the reductions to derive Theorem 7.1,
Theorem 7.2 and Theorem 7.3 as immediate implications.

Mathematical Tools: The chapter uses multilinear expansion of functions over product
spaces, and the associated notions of influences and noise operators (Section 3.4), Gaussian
random variables (Section 3.5) and the invariance principle (Section 3.6).

7.2 Preliminaries

For the sake of convenience, we recall the definition of GCSP s here.

Definition 7.2.1. A Generalized Constraint Satisfaction Problem (GCSP) Λ is specified
by a family of payoff functions Λ = {P |P : [q]k → [−1, 1]}. The integer k is referred to as
the arity of the GCSP Λ, while q denotes the domain size.

A payoff function is said to be of type Λ if it belongs to the family Λ.

Definition 7.2.2 (Λ-GenerlizedConstraintSatisfactionProblem). (GCSP) of Gen-
eralized Constraint Satisfaction Problem Λ is given by = = (V,P) where

– V is the set of variables that are to be assigned values in [q]. For notational conve-
nience, we will associate V with the set [N ] = {1, . . . , N} for N = |V|.

– A function P ′ : [q]V → [−1, 1] is said to be of type Λ, if P ′(y) = P (yi1, . . . , yik) for
some P ∈ Λ and some i1, i2, . . . , ik ∈ V. P is a probability distribution over a payoffs
of type Λ.

The objective is to find an assignment y ∈ [q]V to the variables that maximizes the expected
payoff denoted by val(y), i.e.,

val(y) = E
P∼P

[

P (y)
]

.

We define the value opt(=) as

opt(=)
def
= max

y∈[q]V
val(y) .

For a payoff P ′ of type Λ, let V(P ′) ⊆ V denote the set of variables on which P ′ depends
on. Further, the arity of the GCSP Λ will be denoted by k.
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7.2.1 SDP Relaxation

We will now recall the LC relaxation for a Λ-GCSP here for the convenience of the reader.
Given an instance = = (V,P), the LC relaxation consists of vectors {bi,a}i∈V ,a∈[q] and a
collection {µP }P∈supp(P) of distributions over local assignments and a unit vector b0. Each

distribution µP is over [q]V(P ) (the set of assignments to the variable set V(P )).

LC Relaxation (Equivalent Version)

maximize E
P∼P

E
x∼µP

P (x)

subject to 〈bi,a, bj,b〉 = Pr
x∼µP

{

xi = a, xj = b
}

P ∈ supp(P), i, j ∈ V(P ), a, b ∈ [q] .

(7.1)

〈bi,a, b0〉 = ‖bi,a‖2
2 ∀i ∈ V, a ∈ [q] , (7.2)

‖b0‖2
2 = 1 (7.3)

µP ∈ N([q]V(P ))

7.2.2 Averaged Functions

A function F : [q]R → [q] is said to be the ith dictator function if F(x) = xi. In its simplest
form, the goal of a dictatorship test is to distinguish dictator functions from functions which
do not correlate with any dictators. Formally, given oracle access to a function F : [q]R → [q],
a dictatorship test queries the value of F on few random locations and concludes whether F

is a dictator or is far from being a dictator.
For the purposes of showing UG-hardness results, it is often necessary to construct a

dictatorship test for an average of several functions of the form F : [q]R → [q]. In this light,
we will construct a dictatorship test for the class of functions from the domain [q]R to the
range Nq.

Definition 7.2.3. For every function F : [q]R → [q], the corresponding ∆q-representation
is a function F : [q]R → ∆q given by

F(x) = eF(x)

where ej is the jth basis vector in R
q.

Given a function F : [q]R → Nq consider the distribution over functions F ′ : [q]R → ∆q

given by the following sampling procedure: For each x ∈ [q]R, set the value of F ′(x)
independently as

F ′(x) = ea with probability F(x)a for all a ∈ [q] .

It is easy to check that for each x ∈ [q]R, we have F(x) = E[F ′(x)].
With the above definitions, a function F : [q]R → Nq is a dictator if F(x) = exi for

some i ∈ [R]. On the other hand, a function F : [q]R → Nq is far from every dictator if the
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influences of each of the variables is small. The formal definition of this notion is presented
in Definition 7.3.3.

We will use the typeface F,G to denote functions from [q]R to [q], while denoting their
corresponding extensions to Nq by F ,G.

The domain of the payoff functions P in a GCSP Λ can also be extended from [q]k

to Nk
q . First, for a payoff P : [q]k → [−1, 1] define the corresponding ∆q-representation

P ′ : ∆k
q → [−1, 1] as,

P ′(ea1 , . . . ,eak
) = P (a1, . . . , ak) for all (a1, . . . , ak) ∈ [q]k .

The function P ′ can be extended to the domain Nkq using the multilinear extension. Recall
that each of the vectors xi ∈ Nq is given by xi = (xi,1, . . . , xi,q). Define the extension of P ′

as,

P ′(x1, . . . ,xk) =
∑

σ∈[q]k
P ′(σ)

k
∏

i=1

xi,σi for all x1, . . .xk ∈ Nq .

For the sake of intuition, let us suppose Xi is a independent random variable taking value
ea with probability xi,a for all a ∈ [q]. Then, by the multilinearity of the extension above,

E[P ′(X1, . . . ,Xk)] = P ′(x1, . . . ,xk) ,

as expected for an average. Abusing notation, we will use P to denote the original payoff
of the GCSP and the corresponding payoff on Nkq .

7.2.3 Invariance Principle

Define functions f[0,1] : R → R and ξ : R
q → R as follows:

f[0,1](x) =











0 if x < 0

x if 0 6 x 6 1

1 if x > 1

ξ(x) =
∑

i∈[q]
(xi − f[0,1](xi))

2

We recall the invariance principle (Theorem 3.2) here for the reader’s convenience.

Theorem 7.4. (Invariance Principle [124]) Fix 0 < α, ε 6 1/2. Let Ω be a finite probability
space such that every atom with non-zero probability has probability at least α 6 1/2. Let
L = {`1, `1, . . . , `m} be an ensemble of random variables over Ω. Let G = {g1, . . . , gm} be
an ensemble of Gaussian random variables satisfying the following conditions:

E[`i] = E[gi] E[`2i ] = E[g2
i ] E[`i`j] = E[gigj ] ∀i, j ∈ [m] .

Let F = (F1, . . . , Fd) denote a vector valued multilinear polynomial. Let Hi = T1−εFi, and
H = (H1, . . . ,Hd). If Inf`(H) 6 τ and Var[H`] 6 1 for all `, then the following holds

1. For every function Ψ : R
d → R that is thrice differentiable with all its partial deriva-
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tives up to order 3 bounded uniformly by C0,

∣

∣

∣
E

[

Ψ(H(LR))
]

− E

[

Ψ(H(GR))
]∣

∣

∣
6 τKε/ log(1/α)

where K = K(d,C0) > 0 is a constant depending on C0, d.

2.
∣

∣

∣
E[ξ(H(LR))] − E[ξ(H(GR))]

∣

∣

∣
6 τKε/ log(1/α)

where K = K(d,C0) > 0 is a constant depending on C0, d.

7.2.4 Smoothing

The reduction from SDP integrality gaps to dictatorship tests, requires the SDP solution
to satisfy a certain smoothness property defined below. Intuitively, a smooth SDP solution
satisfies all the inequalities of the relaxation with an extra slack. Roughly speaking, the
feasible solution lies in the interior of the polytope. Formally, the smoothness property is
defined as follows.

Definition 7.2.4. For α > 0, a feasible SDP solution (V ,µ) to the LC relaxation of a
Λ-GCSP instance = = (V,P) is said to be α-smooth if for every P ∈ P and x ∈ [q]V(P ), we
have µP (x) > α.

An arbitrary feasible solution to the LC relaxation can be transformed into a smooth
solution with a slight loss in the objective value.

Lemma 7.4.1 (Smoothing). For all 1
qk > α > 0, given a feasible solution (V ,µ) for the

LC relaxation, there exists an α-smooth SDP solution (V ∗,µ∗) such that

val(V ∗,µ∗) = val(V ,µ) − 2αqk

where k, q are the arity and domain size of GCSP Λ.

Proof. Let (V ′,µ′) denote the SDP solution that corresponds to the uniform distribution
over all assignments from [q]V . Recall here that the intended solutions for the LC relaxation
correspond to distributions over all assignments [q]V .

By definition of (V ′,µ′), for each payoff P the local distribution µ′P is the uniform
distribution over [q]V(P ). As the arity of GCSP Λ is k, for each distribution µ′P and x ∈
[q]V(P ) we have µ′P (x) > 1

qk . Consequently, the SDP solution (V ′,µ′) is a 1
qk -smooth

solution.

To make an SDP solution (V ,µ) smooth, the idea is to take a convex combination
with the solution (V ′,µ′) corresponding to the uniform distribution over all assignments.
Formally, define the new SDP solution (V ∗,µ∗) as follows:

1. For each i ∈ V, a ∈ [q], define b∗i,a =
√

(1 − αqk)bi,a ⊕
√

αqkb′i,a, where ⊕ denotes the
direct-sum between the two vectors.
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2. For each payoff P ∈ P, let µ∗P = (1 − αqk)µP + αqkµ′P .

It is straightforward to check that inner products of the SDP vectors b∗i,a agree with the
local distributions µ∗P . Furthermore, for every x ∈ V(P ) of a payoff P , we have µ∗P (x) >

αqk · µ′P (x) > α. Finally, the objective value of the SDP solution (V ∗,µ∗) can be bounded
as follows:

val(V ∗,µ∗) = (1 − αqk)val(V ,µ) + αqkval(V ′,µ′) > val(V ,µ) − 2αqk

The final inequality above follows from the fact that for every GCSP all payoffs are within
[−1, 1], and hence val(V ,µ), val(V ′,µ′) ∈ [−1, 1].

�

7.3 From Integrality Gaps to Dictatorship Tests

In this section, we will exhibit a generic conversion from an arbitrary SDP integrality gap
instance = = (V,P) for the Λ-GCSP, to a dictatorship test for functions on [q]R.

7.3.1 Construction of Dictatorship Test

Let = be an instance of a GCSP Λ of arity k and domain [q]. Let (V ,µ) denote an α-
smooth solution for LC relaxation of =. By Lemma 7.4.1, there exists such an α-smooth
SDP solution (V ,µ), with objective value val(V ,µ) > LC(=) − 2αqk

Let V = {1, . . . , N} denote the variables in the GCSP instance =. For each i ∈ [N ],
Ωi = ([q], µi) will refer to a probability space with atoms [q] = {1, 2, . . . , q}. In Ωi, the
probability of occurrence of an atom c ∈ [q] is given by µi(c) = ‖bi,c‖2.

Define the dictatorship test DICTεV ,µ for functions F : [q]R → Nq as follows:

DICTεV ,µ Test

– Sample a payoff P ∼ P. Let V(P ) = {s1, . . . , sk}.

– Sample zP = {zs1, . . . ,zsk
} from the product distribution µRP , i.e., for each 1 6 j 6

n, z
(j)
P = {z(j)

s1 , . . . , z
(j)
sk } is sampled using the distribution µP .

– Perturb zP by random noise to obtain z̃P . More precisely, for each si ∈ V(P ) and

each j ∈ [R], sample z̃
(j)
si as follows,

z̃(j)
si

=

{

z
(j)
si with probability 1 − ε ,

new sample from Ωsi with probability ε .

– Query the function values F(z̃s1), . . . ,F(z̃sk
).

– Return a payoff given by P
(

F
(

z̃s1
)

, . . . ,F
(

z̃sk

)

)

.
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Definition 7.3.1. DICTεV ,µ(F) is the expected payoff returned by the verifier of dictator-
ship test DICTεV ,µ on the function F as input.

7.3.2 Completeness of DICT
ε
V ,µ

Lemma 7.4.2.
Completeness(DICT

ε
V ,µ) > val(V ,µ) − 2εk

Proof. Consider a dictator function F(z) = ez(j) . The expected payoff returned by the
verifier DICTεV ,µ(F) is given by

E
P∈P

E
zP

E
z̃P

[

P
(

F
(

z̃s1
)

, . . . ,F
(

z̃sk

)

)]

= E
P∈P

E
zP

E
z̃P

[

P
(

z̃(j)
s1 , . . . , z̃

(j)
sk

)]

With probability (1− ε)k, z̃
(j)
si = z

(j)
si for each si ∈ V(P ). Further the payoff P takes values

in [−1, 1], when all their inputs belong to Nq. Hence a lower bound for the expected payoff
is given by

E
P∈P

E
zP

E
z̃P

[

P
(

F
(

z̃s1
)

, . . . ,F
(

z̃sk

)

)]

> (1 − ε)k E
P∈P

E
zP

[

P
(

z(j)
s1 , . . . , z

(j)
sk

)]

+ (1 − (1 − ε)k) · (−1)

> E
P∈P

E
zP

[

P
(

z(j)
s1 , . . . , z

(j)
sk

)]

− 2εk

The jth coordinates z
(j)
S = {z(j)

s1 , . . . , z
(j)
sk } are generated from the local probability distribu-

tion µP . Therefore we get,

Completeness(DICTεV ,µ) > E
P∈P

E
zP

[

P
(

z(j)
s1 , . . . , z

(j)
sk

)]

− 2εk = val(V ,µ) − 2εk ,

thus finishing the proof. �

7.3.3 Quasi-random functions

To complete the construction of the dictatorship test DICTεV ,µ, we need to bound the
expected payoff for functions that are quasi-random, i.e., far from being a dictator. In this
work, we will use a special notion of quasi-randomness that depends on the SDP solution
(V ,µ) to the instance =.

The natural definition of quasi-randomness used in numerous works is to bound the
influence of each coordinate. Formally, a function F : [q]R → Nq is quasi-random if the
influence Inf`(F) is small for all coordinates ` ∈ [R]. However, an underlying probability
measure on the domain [q] is necessary in order to define influences.

For the construction DICTεV ,µ, there is no single natural choice of probability measure. In
fact, for each variable i in the original GCSP instance = there is a corresponding probability
distribution over [q] given by Pr[i = a] = ‖bi,a‖2. Therefore, we will define the relative
notion of “quasi-random with respect to (V ,µ)”. Roughly speaking, we shall call a function
“quasi-random” if all its influences are low under nearly all of the probability distributions
corresponding to variables i ∈ V.
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Formally, for each i ∈ [N ], let Ωi = ([q], µi) denote the probability space with atoms [q]
and the probability of the atom a ∈ [q] given by µi(a) = ‖bi,a‖2. Recall that the instance =
has N variables V = {1, . . . , N}.

Let us fix a function F : [q]R → Nq. For each i, let F i denote the function F interpreted
as a function over the product probability space ΩR

i .
First, we define the notion of being quasi-random with respect to a payoff.

Definition 7.3.2. A function F : [q]R → Nq is said to (τ, ε)-quasirandom with respect to
a payoff P ∈ P if for each s ∈ V(P ) the following holds:

max
`∈[R]

Inf`(T1−εFs) 6 τ

Extending the notion further, we make the following definition.

Definition 7.3.3. A function F : [q]R → Nq is said to be (β, τ, ε)-quasirandom with respect
to a SDP solution (V ,µ) for a GCSP instance = = (V,P) if the following holds: For a
choice of payoff P ∼ P, with probability at least 1−β, F is (τ, ε)-quasirandom with respect
to P .

Definition 7.3.4. For β, τ > 0, define

Soundnessβ,τ,ε(DICTεV ,µ) = sup
F:[q]R→Nq

F is (β,τ,ε)−quasirandom w.r.t.(V ,µ)

DICTεV ,µ(F)

7.4 Soundness of Dictatorship Test DICT
ε
V,µ

7.4.1 Rounding Scheme

In this section, we will present the soundness proof of the dictatorship test DICTεV ,µ. To

this end, given a function F : [q]R → Nq, we will exhibit a randomized rounding scheme
RoundεF for the SDP relaxation LC. The details of the rounding scheme are presented in
Figure 7.1.

Definition 7.4.1. RoundεF(V ,µ) is the expected value of the assignment output by the
rounding scheme Roundε

F
on the SDP solution (V ,µ). Here the expectation is over the

random choices of the algorithm Roundε
F

.

The following lemma forms the core of the soundness analysis of the dictatorship test
DICTεV ,µ.

Lemma 7.4.3. There exists constants C = C(q, k),K = K(q, k) such that for all ε, τ, α, β,
if a function F : [q]R → Nq is (β, τ, ε) quasirandom with respect to a α-smooth SDP solution
(V ,µ) to a GCSP instance = then

RoundεF(V ,µ) = DICT
ε
V ,µ(F) ± C(β + τKε/ log(1/α))

In the rest of this section, we will present the proof of the above lemma. To this end,
we first develop some machinery concerning payoff functions, and certain random variables
associated with the dictatorship test.
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RoundεF Scheme

Input: An SDP solution (V ,µ) for a GCSP instance = = (V,P).
Setup: For each s ∈ V, the probability space Ωs = ([q], µs) consists of atoms [q] with
the distribution µs(c) = |bs,c|2. Let Fs denote the function obtained by interpreting the
function F : [q]R → Nq as a function over ΩR

s . Further, let us denote Hs = T1−εFs.
Let F s(x),Hs(x) denote the multilinear polynomials corresponding to functions Fs,Hs

respectively.
Scheme: Sample R vectors ζ(1), . . . , ζ(R) with same dimension as vectors in V , such that
each coordinate of ζ(i) for all i is an i.i.d normal random variable.
For each s ∈ V do

– For all j ∈ [R] and c ∈ [q], compute the projection h
(j)
s,c of the vector bs,c as follows:

g(j)
s,c = ‖bs,c‖2 +

[

〈(bs,c − ‖bs,c‖2b0), ζ
(j)〉
]

Let g
(j)
s = (g

(j)
s,1, . . . , g

(j)
s,q) and gRs = (g

(1)
s , . . . ,g

(R)
s ).

– Evaluate the multilinear polynomial Hs with gRs as inputs to obtain ps. Formally,
let ps = Hs(g

R
s ). By Fact 3.0.11, with access to the function F , the computation

of ps = Hs(g
R
s ) can be implemented as follows:

1. For each j ∈ [R] and c ∈ [q], let

h(j)
s,c = ‖bs,c‖2 + (1 − ε)

[

〈(bs,c − ‖bs,c‖2b0), ζ
(j)〉
]

2. Compute ps = (ps,1, . . . , ps,k) as follows: ps =
∑

σ∈[q]R F(σ)
∏R
j=1 h

(j)
s,σj

– Round ps to p∗s ∈ Nq using the following procedure.

f[0,1](x) =











0 if x < 0

x if 0 6 x 6 1

1 if x > 1

Scale(x0, x1, . . . , xq−1) =

{

1
∑

i xi

(

x0, . . . , xq−1

)

if
∑

i xi 6= 0

(1, 0, 0, . . . , 0) if
∑

i xi = 0

p∗s = Scale(f[0,1](ps,1), . . . , f[0,1](ps,q))

– Assign the GCSP variable s ∈ V the value j ∈ [q] with probability p∗s,j.

Figure 7.1: Rounding Scheme Roundε
F

for a function F
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Payoff Functions For the sake of the proof, we will extend the payoff functions P in the
family Λ to smooth real valued functions on Rqk.Given a payoff P : Nk

q → [−1, 1], we extend

the function P smoothly from Nkq to R
qk. Specifically, the smooth extension of P satisfies

the following properties for a constant C0(q, k) depending on q and k.

– (Property I) All the partial derivatives of P up to order 3 are uniformly bounded by
C0(q, k).

– (Property II:) For all {x1, . . . ,xk}, {y1, . . . ,yk} ∈ R
qk,

|P (x1, . . . ,xk) − P (y1, . . . ,yk)| 6 C0(q, k)

k
∑

i=1

‖xi − yi‖2

Local and Global Ensembles Now, we shall describe two ensembles of random variables,
namely the local integral ensembles LP for each payoff P , and a global Gaussian ensemble
G.

Recall that, for each payoff P , µP is a distribution over assignments to the GCSP
variables in set V(P ).

Definition 7.4.2. Let P be a payoff with V(P ) = {s1, . . . , sk}. The corresponding Local
Integral Ensemble LP is a set of random variables LP = {`s1, . . . , `sk

} each taking values
in ∆q generated as follows,

– Sample an assignment to V(P ) = {s1, . . . , sk} from the distribution µP .

– Set `si = esi for all i ∈ [k]. Here ej is the jth basis vector in R
q for all j ∈ [q].

Definition 7.4.3. The Global Ensemble G = {gs|s ∈ V, j ∈ [q]} are generated by setting
gs = {gs,1, . . . , gs,q} where

gs,j = ‖bs,j‖2 + 〈(bs,j − |bs,j|2b0), ζ〉 ∀j ∈ [q] ,

and ζ is a normal Gaussian random vector of appropriate dimension.

It is easy to see that the local and global integral ensembles have matching moments up
to degree two.

Observation 7.4.1. For any set P ∈ P, the global ensemble G matches the following
moments of the local integral ensemble LP

E[gs,j ] = E[`s,j] E[gs,j · gs′,j′ ] = E[`s,j · `s′,j′ ] ∀j, j′ ∈ [q], s, s′ ∈ V(P )

Proof. By definition of the local ensemble LP , property of the LC relaxation

E[`s,j] = Pr
µP

[s = j] = ‖bs,j‖2
E[`s,j · `s′,j′ ] = Pr

µP

[s = j ∧ s′ = j′] = 〈bs,j , bs′,j′〉 (7.4)
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For the global ensemble, we can write,

E[gs,j ] = ‖bs,j‖2 + E
ζ

[

〈
(

bs,j − ‖bs,j‖2b0

)

, ζ〉
]

= ‖bs,j‖2 . (7.5)

Further, we can write

E[gs,j · gs′,j′] = E
ζ

[(

‖bs,j‖2 + 〈
(

bs,j − ‖bs,j‖2b0

)

, ζ〉
)(

‖bs′,j′‖2 + 〈
(

bs′,j′ − ‖bs′,j′‖2b0

)

, ζ〉
)]

Using E[〈
(

bs,j − ‖bs,j‖2b0

)

, ζ〉] = E[〈
(

bs′,j′ − ‖bs′,j′‖2b0

)

, ζ〉] = 0, we can rewrite the above
equation as

E[gs,j · gs′,j′] = ‖bs,j‖2‖bs′,j′‖2 + E
ζ

[

〈
(

bs,j − ‖bs,j‖2b0

)

, ζ〉〈
(

bs′,j′ − ‖bs′,j′‖2b0

)

, ζ〉
]

.

Recall that Eζ[〈u, ζ〉〈v, ζ〉] = 〈u,v〉 (Property 3.1) for all vectors u,v. Therefore we get,

E[gs,j · gs′,j′] = ‖bs,j‖2‖bs′,j′‖2 + 〈
(

bs,j − ‖bs,j‖2b0

)

,
(

bs′,j′ − ‖bs′,j′‖2b0

)

〉
= ‖bs,j‖2‖bs′,j′‖2 + 〈bs,j , bs′,j′〉 − ‖bs,j‖2‖bs′,j′‖2 − ‖bs,j‖2‖bs′,j′‖2 + ‖bs,j‖2‖bs′,j′‖2

(using b0 · bi,a = ‖bi,a‖2for all i, a)

= 〈bs,j, bs′,j′〉 (7.6)

The claim follows from Equations 7.4, 7.5 and 7.6. �

Finally, we have developed the appropriate definitions and machinery to prove Lemma 7.4.3.

Proof of Lemma 7.4.3. For each i, the probability space Ωi has the set of atoms [q]. Thus
the function F can be interpreted as a function over the domain ΩR

i , instead of [q]R. We
shall use F i to denote the function obtained by interpreting the function F as a function
over ΩR

i . Further, let us denote Hi = T1−εF i. Let F i(x),H i(x) denote the multilinear
polynomials corresponding to functions F i,Hi respectively. Here again, we shall use the
standard basis over Ωi to obtain the multilinear expansion.

The expected payoff returned by the verifier in the dictatorship test DICTεV ,µ is given
by:

DICTεV ,µ(F) = E
P∈P

E
zP

E
z̃P

[

P
(

F s1

(

z̃s1
)

, . . . ,Fsk

(

z̃sk

)

)]

Each vector zsi is independently perturbed to obtain z̃si . The payoff functions P are
multilinear when restricted to the domain Nq. Consequently, we can write

DICTεV ,µ(F) = E
P∈P

E
zP

[

P
(

E
z̃s1

[Fs1

(

z̃s1
)

|zs1 ], . . . , E
z̃s1

[Fsk

(

z̃sk
|zsk

]
)

)]

= E
P∈P

E
zP

[

P
(

Hs1

(

zs1
)

, . . . ,Hsk

(

zsk

)

)]

The last equality is due to the fact Ez̃si
[F si(z̃si)|zsi ] = T1−εFsi(zsi) = Hsi(zsi). For each

s ∈ V(P ), the coordinates of zs are generated by the distribution µP . Therefore the above
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expectation can be written in terms of the polynomials Hs applied integral ensemble LP .
Specifically, we can write

DICTεV ,µ(F) = E
P∈P

E
zP

[

P
(

Hs1

(

zs1
)

, . . . ,Hsk

(

zsk

)

)]

= E
P∈P

E
LR

P

[

P
(

Hs1

(

`Rs1

)

, . . . ,Hsk

(

`Rsk

)

)]

(7.7)

Now we shall arithmetize the total payoff of the assignment returned by the rounding
scheme RoundεF. Note that the random variables gRi are nothing but samples from the
Global Ensemble G. Let us denote by H∗

s(g
R
s ) the rounding of Hs(g

R
s ). In other words,

H∗(gRs ) = p∗s. Clearly, we have

RoundεF(V ,µ) = E
P∈P

E
GR

[

P
(

H∗
s1

(

gRs1

)

, . . . ,H∗
sk

(

gRsk

)

)]

Call a payoff P ∼ P good, if F is (τ, ε)-quasirandom with respect to P . Fix a good payoff
P and let V(P ) = {s1, . . . , sk}. From Lemma 7.4.5, for a good payoff P ,

∣

∣

∣
E
GR

[

P
(

H∗
s1

(

gRs1

)

, . . . ,H∗
sk

(

gRsk

)

)]

− E
GR

[

P
(

Hs1

(

gRs1

)

, . . . ,Hsk

(

gRsk

)

)]∣

∣

∣
6 CτKε/ log(1/α)

Using Lemma 7.4.4,

∣

∣

∣ E
LR

P

[

P
(

Hs1

(

`Rs1

)

, . . . ,Hsk

(

`Rsk

)

)]

− E
GR

[

P
(

Hs1

(

gRs1

)

, . . . ,Hsk

(

gRsk

)

)]∣

∣

∣ 6 τKε/ log(1/α)

Adding the two inequalities, for every good payoff P the following holds:

∣

∣

∣ E
LR

P

[

P
(

Hs1

(

`Rs1

)

, . . . ,Hsk

(

`Rsk

)

)]

− E
GR

[

P
(

H∗
s1

(

gRs1

)

, . . . ,H∗
sk

(

gRsk

)

)]∣

∣

∣ 6 (C+1)τKε/ log(1/α)

Recall that all the payoff functions P are bounded in the range [−1, 1]. Thus for every
payoff P ∈ P,

∣

∣

∣
E
LR

P

[

P
(

Hs1

(

`Rs1

)

, . . . ,Hsk

(

`Rsk

)

)]

− E
GR

[

P
(

H∗
s1

(

gRs1

)

, . . . ,H∗
sk

(

gRsk

)

)]∣

∣

∣
6 2

In particular, the above inequality holds for all payoffs P which are not good. Using the
previous two inequalities, the lemma follows.

|RoundεF(V ,µ)−DICTεV ,µ(F)|
6 Pr

P∈P
[P is good] · (C + 1)τKε/ log(1/α) + (1 − Pr

P∈P
[P is good]) · 2 ,

6 (1 − β) · (C + 1)τKε/ log(1/α) + β · 2
< (C + 1)τKε/ log(1/α) + 2β .

�
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Lemma 7.4.4. If the function F is (τ, ε)-quasirandom with respect to a payoff P with
V(P ) = {s1, . . . , sk} then

∣

∣

∣
E
LR

P

[

P
(

Hs1

(

`Rs1

)

, . . . ,Hsk

(

`Rsk

)

)]

− E
GR

[

P
(

Hs1

(

gRs1

)

, . . . ,Hsk

(

gRsk

)

)]∣

∣

∣
6 τKε/ log(1/α)

where K = K(q, k) is a constant depending on q, k.

Proof. Without loss of generality we may assume V(P ) = {1, 2, . . . , k}. Let us denote
GP = {g1, . . . ,gk}. The idea of the proof is to apply the invariance principle on the vector
of multilinear polynomials (H1, . . . ,Hk) and ensembles LP and GP , with the payoff P as a
smooth functional.

To begin with, recall that H i is a multilinear polynomial representing the function
Hi = T1−εF i. Let F i be the multilinear polynomial representing function the F i.

Consider the joint probability space ΩP = (Ω1,Ω2, . . . ,Ωk). Note that the different
probability spaces Ωi are not independent of each other. In the terminology of [124], the
probability spaces Ωi are coarsenings of ΩP .

The probability space ΩP consists of atoms [q]V(P ) = [q]k and the distribution µP . As
(V ,µ) is an α-smooth SDP solution, the smallest probability of an atom in ΩP is at least
α.

By definition, the ensemble LP = {`1, . . . , `k} is an ensemble of random variables over
the probability space ΩP . By Observation 7.4.1, the ensemble GP is a Gaussian ensemble
whose moments up to degree two match with those of LP .

Apply the invariance principle with the finite probability space ΩP , the ensembles LP ,
GP , smooth function P and vector of multilinear polynomials: (F 1,F 2, . . . ,F k). As a
consequence, we get

∣

∣

∣
E
GR

P

[

P (H1(g
R
1 ), . . . ,Hk(g

R
k ))
]

− E
LR

P

[

P (H1(`
R
1 ), . . . ,Hk(`

R
k ))
]∣

∣

∣
6 τKε/ log(1/α) ,

where the constant K depends on q and k. The result follows by observing that expectation
over GP is equivalent to an expectation over G. �

7.4.2 Bounding the Rounding Error

Here we will prove the following lemma that bounds the loss of payoff incurred while round-
ing ps to p∗s in the rounding scheme RoundεF. With this lemma, we finish the proof of
soundness of DICTεV ,µ (Lemma 7.4.3). Formally, we will show:

Lemma 7.4.5. If a function F is (τ, ε)-quasirandom with respect to a payoff P with V(P ) =
{s1, . . . , sk}, then

∣

∣

∣
E
GR

[

P
(

H∗
s1

(

gRs1

)

, . . . ,H∗
sk

(

gRsk

)

)]

− E
GR

[

P
(

Hs1

(

gRs1

)

, . . . ,Hsk

(

gRsk

)

)]∣

∣

∣
6 CτKε/ log(1/α) ,

where C,K are constants depending on q, k, α and ε.

Before we present the proof of the above lemma, we show two claims that will be useful
for the proof.
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Claim 7.4.1. For all F : [q]R → Nq, s ∈ V and all choices of ζ(1), . . . , ζ(R),
∑

a∈[q] ps,a = 1.

Proof. Let us suppose that the function F : [q]R → Nq consists of q functions denoted by
F = (f1, . . . , fq). By definition,

∑

a∈[q]
ps,a =

∑

a∈[q]

∑

σ∈[q]R
fa(σ)

R
∏

j=1

h(j)
s,σj

=
∑

σ∈[q]R

(

∑

a∈[q]
fa(σ)

)

R
∏

j=1

h(j)
s,σj

=
∑

σ∈[q]R

R
∏

j=1

h(j)
s,σj

(

∵
∑

a∈[q]
fa(σ) = 1, since F(σ) ∈ Nq

)

=

R
∏

j=1

(

∑

σj∈[q]
h(j)
s,σj

)

(7.8)

Observe that,

∑

j∈[q]
hs,j =

∑

j∈[q]
‖bs,j‖2 + (1 − ε)〈

(

∑

j∈[q]
bs,j − (

∑

j∈[q]
‖bs,j‖2)b0

)

, ζ〉

Since
∑

j∈[q] bs,j = b0 and
∑

j∈[q]‖bs,j‖2 = 1 , we get
∑

j∈[q] hs,j = 1+(1−ε)〈(b0−b0), ζ〉 = 1.
Substituting in Equation 7.8, the claim follows. �

Claim 7.4.2. Let a,b ∈ R
q be such that

∑

i ai =
∑

i bi = 1. Define a∗ and b∗ as follows:

f[0,1](x) =











0 if x < 0

x if 0 6 x 6 1

1 if x > 1

Scale(x0, x1, . . . , xq−1) =

{

1
∑

i xi

(

x0, . . . , xq−1

)

if
∑

i xi 6= 0

(1, 0, 0, . . . , 0) if
∑

i xi = 0

a∗ = Scale(f[0,1](a1), . . . , f[0,1](aq)) b∗ = Scale(f[0,1](b1), . . . , f[0,1](bq))

Then,

∑

i∈[q]
(ai − a∗i )

2 6 (2q + 2)ζ(a)
∑

i∈[q]
(b∗i − a∗i )

2 6 (2q + 2)
∑

i

(bi − ai)
2

Proof. Let ã = (f[0,1](a1), . . . , f[0,1](aq)) and b̃ = (f[0,1](b1), . . . , f[0,1](bq)). First, observe

that
∑

i ãi > 0 and
∑

i b̃i > 0. Further, by definition of the function ζ, we have ζ(a) =
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∑

i(ãi − ai)
2.

∑

i

(ãi − a∗i )
2 =

∑

i

(

ãi −
ãi
∑

i ãi

)2
(by definition)

=
(

∑

i

ãi − 1
)2∑

i

ã2
i

(
∑

i ãi)
2

6
(

∑

i

ãi − 1
)2

=
(

∑

i

(ãi − ai)
)2

(∵
∑

i

ai = 1)

6 q
∑

i

(ãi − ai)
2 (Cauchy-Schwartz inequality) (7.9)

Now to finish the proof of the first assertion.

∑

i

(ai − a∗i )
2 6 2

(

∑

i

(ai − ãi)
2 +

∑

i

(ãi − a∗i )
2
)

6 (2q + 2)
∑

i

(ai − ãi)
2 (using Equation7.9)

= (2q + 2)ζ(a)

∑

i

(a∗i − b∗i ) =
∑

i

( ãi
∑

i ãi
− b̃i
∑

i b̃i

)2

=
1

(
∑

i b̃i)
2

∑

i

( ãi(
∑

i b̃i −
∑

i ãi)
∑

i ãi
− (b̃i − ãi)

)2

6
2

(
∑

i b̃i)
2

∑

i

[( ãi(
∑

i b̃i −
∑

i ãi)
∑

i ãi

)2
+ (b̃i − ãi)

2
]

6
2

(
∑

i b̃i)
2

[

∑

i ã
2
i

(
∑

i ãi)
2
(
∑

i

b̃i −
∑

i

ãi)
2 +

∑

i

(b̃i − ãi)
2
]

Since the numbers ãi are non-negative, we have
∑

i ã
2
i 6 (

∑

i ãi)
2. Using this, we get

∑

i

(a∗i − b∗i ) 6
2

(
∑

i b̃i)
2

[

(
∑

i

b̃i −
∑

i

ãi)
2 +

∑

i

(b̃i − ãi)
2
]

By Cauchy Schwartz inequality, we know (
∑

i b̃i −
∑

i ãi)
2 6 q

∑

i(bi − ai)
2. Hence,

∑

i

(a∗i − b∗i ) 6
2q + 2

(
∑

i b̃i)
2

∑

i

(b̃i − ãi)
2
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Observe that by definition of the function f[0,1], if
∑

i bi = 1 then
∑

i b̃i > 1. Using this
result in the above inequality, the result follows. �

Proof of Lemma 7.4.5. Without loss of generality, we may assume that V(P ) = {1, . . . , k}.
The function Hi = T1−εF i is over the domain [q]R and has the range Nq. The polynomials
H i = (H(i,0), . . . ,H(i,q−1)) are a representation of Hi in a standard basis.

Intuitively, the invariance principle asserts that the distribution of the random variable
Hs(g

R
s ) is roughly the same as that of Hs(`

R
s ). Observe that on inputs from the local

distribution `Rs , the value Hs(`
R
s ) is always contained in Nq. This suggests that the random

variables Hs(g
R
s ) is nearly always close to Nq. For a point p ∈ Nq, its rounded value

p∗ = p. Thus, the rounding of Hs(g
R
s ) only slightly changes its value, i.e., Hs(g

R
s ) ≈

H∗
s(g

R
s ). Recall that the payoff functions P is smooth in that they satisfy Property II

(7.4.1). Therefore if Hs(g
R
s ) ≈ H∗

s(g
R
s ) for all s, the two quantities in the above claim are

approximately equal.

From Property II (7.4.1) that the payoff functions satisfy,

∣

∣

∣
E
GR

[

P
(

H∗
s1

(

gRs1

)

, . . . ,H∗
sk

(

gRsk

)

)]

− E
GR

[

P
(

Hs1

(

gRs1

)

, . . . ,Hsk

(

gRsk

)

)]∣

∣

∣

6 C0

|S|
∑

i=1

(

E

[

‖H∗
i (g

R
i ) − Hi(g

R
i )‖2

2

]) 1
2

(7.10)

By Claim 7.4.1, we have
∑

a∈[q] ps,a = 1 for all variables s ∈ V(P ). Therefore, by Claim 7.4.2,
for all s ∈ V(P ),

E

[

‖H∗
s(g

R
s ) − Hs(g

R
s )‖2

2

]

6 (2q + 2) E

[

ζ(Hs(g
R
s ))
]

Since H i(`
R
s ) ∈ Nq we have E

[

ζ(Hs(`
R
s ))
]

= 0. Rewrite the above inequality as

E

[

‖H∗
s(g

R
s ) − Hs(g

R
s )‖2

2

]

6 (2q + 2)
∣

∣

∣E

[

ζ(Hs(g
R
s ))
]

− E

[

ζ(Hs(`
R
s ))
]∣

∣

∣ .

Now we shall apply the invariance principle to bound the quantity on the right hand side.
Applying the invariance principle on the vector valued function F s, and ensembles `Rs , gRs
,we get:

∣

∣

∣E

[

ζ(Hs(`
R
s ))
]

− E

[

ζ(Hs(g
R
s ))
]∣

∣

∣ 6 τKε/ log(1/α) ,

for a constant K depending on α, ε and q. Consequently,

E

[

‖H∗
s(g

R
s )−Hs(g

R
s )‖2

2

]

6 (2q+2)
∣

∣

∣
E

[

ζ(Hs(g
R
s ))
]

−E

[

ζ(Hs(`
R
s ))
]∣

∣

∣
6 (2q+2)τKε/ log(1/α)

Substituting in 7.10 we get the required result.

∣

∣

∣ E
GR

[

P
(

H∗
s1

(

gRs1

)

, . . . ,H∗
sk

(

gRsk

)

)]

− E
GR

[

P
(

Hs1

(

gRs1

)

, . . . ,Hsk

(

gRsk

)

)]∣

∣

∣ 6 CτKε/ log(1/α)

�
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7.4.3 Putting It Together

Now we are ready to show the following conversion from integrality gaps to dictatorship
tests.

Theorem 7.5. There exists constants C = C(q, k) and K = K(q, k) such that for all
α, ε, β, τ the following holds: Given a Λ-GCSP instance =, along with a α-smooth SDP
solution (V ,µ), the dictatorship test DICT

ε
V ,µ satisfies the following properties:

– Completeness(DICT
ε
V ,µ) > val(V ,µ) − 2εk.

– Soundnessβ,τ,ε(DICT
ε
V ,µ) 6 opt(=) + C(β + τKε/ log(1/α))

i.e., For every function F : [q]R → Nq that is (β, τ, ε)-quasi-random with respect to
(V ,µ),

DICT
ε
V ,µ(F) 6 opt(=) + C(β + τKε/ log(1/α))

Proof. Let C = C(q, k) and K = K(q, k) be the constants obtained in Lemma 7.4.3.

The claim about the completeness of the dictatorship test follows directly from Lemma 7.4.2
and the choice of ε. For a function F which is (β, τ, ε)-quasi-random with respect to =,
by Lemma 7.4.3, the expected value of the assignment returned by the rounding scheme
RoundεF satisfies,

DICTεV ,µ(F) 6 RoundεF(V ,µ) + C(β + τKε/ log(1/α)) .

By definition of opt(=), we have RoundεF(V ,µ) 6 opt(=). Therefore the claim follows. �

7.5 From Dictatorship Tests to UG-hardness Results

In this section, we will make use of the dictatorship test shown in Section 7.3 to obtain
Unique Games based hardness result.

Let Φ = (WΦ ∪ VΦ, E,Π, [R]) be a bipartite Unique Games instance. Further let
= = (V,P) be an instance of a GCSP problem Λ. Let DICT be a dictatorship test obtained
starting from a SDP solution for =.

Starting from the Unique Games instance Φ, we shall construct an instance =(Φ) of the
GCSP problem Λ. For each vertex v ∈ VΦ, we shall introduce a long code over [q]R. More
precisely, the instance =(Φ) is given by =(Φ) = (VΦ × [q]R,P ′). All the payoff functions in
P ′ are of type Λ ensuring that =(Φ) is also an instance of the GCSP problem Λ. Since the
set of variables of =(Φ) is given by VΦ × [q]R, an assignment to =(Φ) consists of a set of
functions,

Fv : [q]R → [q] for each v ∈ VΦ

For each v ∈ VΦ, define Fv : [q]R → Nq as follows:

Fv(z) = eFv(z)
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For a permutation π : [R] → [R] and z ∈ [q]R, define π(z) ∈ [q]R as
(

π(z)
)(j)

= z(π−1(j)) for
all j ∈ [R]. For each w ∈ WΦ, define a function Fw : [q]R → Nq,

Fw(z) = E
v∈N(w)

[

Fv(πv←w(z))
]

The basic idea behind converting a dictatorship test to Unique Games hardness is similar
to Khot et.al.[99]. Roughly speaking, the verifier performs the dictatorship test DICT on
the functions Fw for w ∈ WΦ. Note that the functions Fw are not explicitly available to
the verifier. However, this access can be simulated by accessing Fv for a random neighbor
v ∈ N(w).

Oracle(Fw)

– On a query Fw(z), Pick a random neighbor v ∈ N(w), and return Fv(πv←w(z)).

Verifier(=(Φ))

– Pick w ∈ WΦ at random.

– Perform the test DICT on Fw, by transferring each of the queries to the Oracle(Fw).

The queries of the Verifier(=(Φ)) through the oracle, translate into tests/payoffs over
the functions Fv. In turn, this is equivalent to tests/payoffs on the values of functions
{Fv|v ∈ VΦ}. Summarizing, the set of all tests of the above verifier yield a GCSP instance
over the variables VΦ × [q]R.

Theorem 7.6 (Dictatorship Tests ⇒ UG-hardness). Let DICT be a dictatorship test ob-
tained from a SDP solution to a instance = of a GCSP Λ. For all values of τ, β, ε, δ, γ > 0,
given a Unique Games instance Φ, =(Φ) is an instance of GCSP Λ such that,

– Completeness: Φ is a (1 − γ)-strong satisfiable instance then

opt(=(Φ)) > Completeness(DICT) − 2γ .

– Soundness: opt(Φ) 6 δ ⇒ opt(=(Φ)) 6 Soundnessβ,τ,ε(DICT) + 100δ
k2βε2τ3 .

Let z = {z1, . . . ,zk|zi ∈ [q]R} be random variables denoting the query locations of
Verifier(=(Φ)). Further, let P denote the payoff/test that the Verifier(=(Φ)) decides to
perform on these locations. Arithmetizing the expected payoff returned by the verifier we
get,

E
w∈WΦ

E
z

E
v1,...,vk∈N(w)

[

P
(

F
v1(πv1←w(z1)), . . . ,F

vk(πvk←w(zk))
)]

The payoff functions P are multilinear in the region Nq. The choices of the oracle v1, . . . , vk ∈
N(w) are independent of each other, and the verifier’s query locations. In this light, we can
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write the expected payoff as,

E
w∈WΦ

E
z

[

P
(

E
v1∈N(w)

[Fv1(πv1←w(z1))], . . . , E
vk∈N(w)

[Fvk(πvk←w(zk))]
)]

Hence the expected payoff is just equal to Ew∈WΦ
[DICT(Fw)]

Completeness: If Φ is a (1 − γ)-perfect satisfiable instance (see Definition 2.5.3), then
there exists an assignment A such that for (1 − γ)-fraction of the vertices w ∈ WΦ, all the
edges (v,w) incident at w are satisfied by A.

Let us refer to such vertices w ∈ WΦ as good vertices. The assignment to the GCSP
instance =(Φ) is given by the following set of functions: Fv(z) = z(A(v)) , or equivalently
Fv(z) = ez(A(v)) for all v ∈ VΦ. For every good vertex w ∈ WΦ, we have:

Fw(z) = E
v∈N(w)

[

Fv(πv←w(z))
]

= E
v∈N(w)

[

e
z(π
−1
v←w(A(v)))

]

= ez(A(w)) ,

where the final step in the above calculation used the fact that π−1
v←w(A(v)) = A(w) for all

v ∈ N(w). Therefore the functions Fw are dictator functions for every good vertex w ∈ WΦ.
With at least (1 − γ) fraction of the vertices in WΦ being good, the expected payoff is at
least

(1 − γ) · (Completeness(DICT)) + γ · (−1) > Completeness(DICT) − 2γ

Soundness: Suppose there is an assignment to the variables VΦ × [q]R whose payoff is
greater than Soundnessβ,τ,ε(DICT) +η. Then we have,

E
w∈WΦ

[DICT(Fw)] > Soundnessβ,τ,ε(DICT) + η

As all the payoff functions are bounded by 1, for at least η fraction of the vertices w ∈ WΦ,
DICT(Fw) > Soundnessβ,τ,ε(DICT). Henceforth we refer to these vertices as good vertices.
By definition of Soundnessβ,τ,ε(DICT), for every good vertex w ∈ WΦ, the function Fw is
not (β, τ, ε)-quasirandom with respect to =.

Consider a good vertex w ∈ WΦ. For a random choice of payoff P from the distribution
P, with probability at least β, the function Fw is not (τ, ε)-quasirandom with respect to S.
By an averaging argument, there exists a payoff P such that for at least β-fraction of the
good vertices w ∈ WΦ, the function Fw is not (τ, ε)-quasirandom with respect to P . Fix
such a payoff and let V(P ) = {s1, . . . , sk}. For convenience, let us denote Hu

s = T1−εFu
s for

each u ∈ WΦ ∪ VΦ and s ∈ V.

For each vertex w ∈ WΦ, define the set of labels L(w) as

L(w) = {`|∃s ∈ V(P ), Inf`(H
w
s ) > τ} .

Similarly, for each v ∈ VΦ define,

L(v) = {`|∃s ∈ V(P ), Inf`(H
v
s) > τ/3} .

Consider the following Labeling for the Unique Games instance Φ: For each vertex



140

u ∈ WΦ ∪ VΦ, assign a random label from L(u) if it is nonempty, else assign a uniformly
random label.

At least η fraction of the vertices w ∈ WΦ are good vertices. By the choice of payoff
P , at least β fraction of the good vertices w ∈ WΦ have a non-empty label set L(w).
Fix a good vertex w with a nonempty label set L(w). Consider a label ` ∈ L(w). By
definition of L(w) , we have Inf`(H

w
s ) > τ for some s ∈ V(P ). The function Hw

s is given
by Hw

s (z) = Ev∈N(w)[H
v
s(πv←w(z))]. By convexity of influences (see Proposition 3.0.13), if

Inf`(H
w
s ) > τ then

E
v∈N(w)

[Infπv←w(`)(H
v
s)] > τ

Since the range of the function Hv
s is Nq, we have Inf`(H

v
s) 6 2 for all v, `. Hence for at

least τ/3 fraction of neighbors v ∈ N(w), Infπv←w(`)(H
v
s) > τ

3 . Thus for at least τ/3 fraction
of the neighbors v ∈ N(w), there exists ` ∈ [R] such that ` ∈ L(w) and πv←w(`) ∈ L(v).
For every such neighbor v, the edge constraint πv←w is satisfied with probability at least

1
|L(v)||L(w)| .

From Lemma 3.0.2, each function Hw
s can have at most 1/τε influential coordinates.

Thus the maximum size of the label set L(w) is k/τε. In conclusion, the expected fraction of
Unique Games constraints satisfied is at least η × β × τ

3 × k−2τ2ε2 = τ3ε2ηβk2/3. This
implies that opt(Φ) > τ3ε2ηβk2/100, and the conclusion follows by setting τ3ε2ηβk2 = δ.

7.6 Optimal Algorithm

Theorem 7.7. Let Roundη(V ,µ) denote the expected value of assignment returned by the
rounding scheme Roundη on a SDP solution (V ,µ) for a GCSP instance =. For every
η > 0, given an instance =′ of the GCSP Λ, it is UG hard to distinguish whether,

opt(=′) > val(V ,µ) − 3η OR opt(=′) 6 Roundη(V ,µ) + 3η

Proof. By Lemma 7.4.1, the α-smooth SDP solution (V ∗,µ∗) satisfies val(V ∗,µ∗) > val(V ,µ)−
η. Let DICT= = DICTεV ∗,µ∗ be the dictatorship test obtained from the α-smooth SDP so-
lution (V ∗,µ∗).

The completeness of DICT= is at least val(V ∗,µ∗)−η > val(V ,µ)−2η by Lemma 7.4.2.

Among (β, τ, ε)-quasirandom functions, let F∗ be the function that achieves the optimal
expected payoff under DICT=, i.e., DICT=(F

∗) = Soundnessβ,τ,ε(DICT=). By Corollary 7.4.3,
and the choices of β, τ , we have Roundε

F
∗(V ∗,µ∗) > Soundnessβ,τ,ε(DICT=) − η.

By definition of Sκ, there exists some F i ∈ Sκ such that supx∈[q]R ‖F∗(x)−F i(x)‖ 6 κ.
By Lemma 7.7.1, we have RoundεFi

(V ∗,µ∗) > RoundF
∗(V ∗,µ∗)−η > Soundnessβ,τ,ε(DICT=)−

2η. Consequently, we get

Roundη(V ,µ) > Soundnessβ,τ,ε(DICT=) − 2η .

Summarizing the above argument, the completeness of DICT= is at least val(V ,µ)−2η,
while the soundness is given by Soundnessβ,τ,ε(DICT=) 6 Roundη(V ,µ) + 2η. By applying
the UG-hardness reduction (Theorem 7.6) starting from DICT=, the proof is complete. �
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Roundη Algorithm

Input: An SDP solution (V ,µ) for the GCSP instance = and a parameter η > 0 .

Parameters: Set α = η/qk, ε = η/4k. Fix the value of τ = exp(−O( log2 η
η )), β = η/100C

such that the error C(β + τKε/ log(1/α)) in Corollary 7.4.3 is less than η/10. Fix R =
exp(O( 1

η3 )) to ensure that the quantitative version of UGC can have completeness 1 −
η
10 and soundness ηβε2τ3k2/100. Let κ = η

8C0(q,k)qk where C0(q, k) is the smoothness

parameter of the payoffs P (Property II 7.4.1).
Smoothing: Using the transformation in Lemma 7.4.1, construct an α-smooth SDP solu-
tion (V ∗,µ∗).
Rounding (V ∗,µ∗): Let Sκ = {F1, . . . ,FM} be a set of functions such that for every
F : [q]R → Nq there exists F i ∈ Sκ satisfying supx∈[q]R ‖F i(x) − F(x)‖2 6 η

8C0(q,k)qk .

– For each function F i ∈ Sκ, run the subroutine RoundεFi
on the SDP solution (V ∗,µ∗)

– Output the assignment obtained with the largest objective value.

Figure 7.2: Roundη Algorithm

Lemma 7.7.1. Let C0(q, k) denote the smoothness of the payoffs P in Property II (7.4.1).
For two functions F ,F ′ : [q]R → Nq and an SDP solution (V ,µ) to a GCSP instance =,
we have

‖RoundεF(V ,µ) − Roundε
F
′(V ,µ)‖ 6 8C0(q, k)qk sup

x∈[q]R
‖F(x) − F ′(x)‖2

where the constant in O depends on the GCSP problem Λ.

Proof. For each variable s ∈ V, let Fs,F
′
s denote the functions F , F ′ thought of as

functions over the probability space Ωs. Let Hs and H ′
s denote the multilinear polynomials

representing T1−εFs and T1−εF ′s respectively. For a vector gR ∈ R
R, let H∗

s(g
R) and

H ′∗
s (gR) denote the rounding of Hs(g

R),H ′
s(g

R) to Nq. Then we have,

RoundF
′(V ,µ) = E

P∈P
E
GR

[

P
(

H ′∗
s1

(

gRs1

)

, . . . ,H ′∗
sk

(

gRsk

)

)]

RoundF(V ,µ) = E
P∈P

E
GR

[

P
(

H∗
s1

(

gRs1

)

, . . . ,H∗
sk

(

gRsk

)

)]

Fix a payoff P ∈ P. For the sake of convenience, we can rename the indices so that
V(P ) = {1, . . . , k}. From the smoothness (Property II 7.4.1) of the payoff P we see that,
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∣

∣

∣ E
GR

[

P
(

H∗
1

(

gR1
)

, . . . ,H∗
k

(

gRk
)

)]

− E
GR

[

P
(

H ′∗
1

(

gR1
)

, . . . ,H ′∗
k

(

gRk
)

)]∣

∣

∣

6 C0

k
∑

i=1

E

[

‖H ′∗
i (gRi ) − H i

∗(gRi )‖2

]

6 C0

k
∑

i=1

(

E

[

‖H ′∗
i (gRi ) − Hi

∗(gRi )‖2
2

])
1
2

(Cauchy-Schwartz inequality) (7.11)

From Claim 7.4.1, for each i that
∑

j∈[q] Hj(g
R
i ) =

∑

j∈[q] H
′
j(g

R
i ) = 1. By the second part

of Claim 7.4.2, for all random choices of gRi ,

‖H∗
i (g

R
i ) − H ′∗

i (gRi )‖2 6 (2q + 2)‖H i(g
R
i ) − H ′

i(g
R
i )‖2

Substituting in inequality 7.11 we get,

∣

∣

∣
E
GR

[

P
(

H∗
1

(

gR1
)

, . . . ,H∗
k

(

gRk
)

)

− P
(

H ′∗
1

(

gR1
)

, . . . ,H ′∗
k

(

gRk
)

)]∣

∣

∣

6 C0(2q + 2)
1
2

k
∑

i=1

(

E
gR

i

[

‖H i(g
R
i ) − H ′

i(g
R
i )‖2

]

) 1
2

(7.12)

As the ensembles gRi and `Ri have matching moments up to order 2, it is easy to see that

E
gR

i

[

‖H i(g
R
i ) − H ′

i(g
R
i )‖2

]

= E
`Ri

[

‖H i(`
R
i ) − H ′

i(`
R
i )‖2

]

(7.13)

Recall that H i is a representation of the function T1−εF i : Ωi → Nq, over the ensemble `Ri .
Therefore, we see that,

E
`Ri

[

‖H i(`
R
i )−H ′

i(`
R
i )‖2

2

]

= E
x∈ΩR

i

[

‖T1−εF i(x) − T1−εF
′
i(x)‖2

2]

6 E
x∈ΩR

i

[

‖F i(x) − F
′
i(x)‖2

2] (T1−ε is contractive for all Ωi)

6 sup
x∈[q]R

‖F i(x) − F ′i(x)‖2
2 (7.14)

From Equations 7.12,7.13 and 7.14, we see that for the payoff P ∈ P with V(P ) = {1, . . . , k},
∣

∣

∣ E
GR

[

P
(

H∗
1

(

gR1
)

, . . . ,H∗
k

(

gRk
)

)

− P
(

H ′∗
1

(

gR1
)

, . . . ,H ′∗
k

(

gRk
)

)]∣

∣

∣

6 C0(2q + 2)
1
2k sup

x∈[q]R
‖F(x) − F ′(x)‖2

Averaging the above inequality over all P ∈ P, the result follows.

�
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7.7 From UG-hardness to SDP integrality gaps

The reduction from UG-hardness results to SDP integrality gaps can be implemented for
the class of generalized constraint satisfaction problems. Specifically, the following holds:

Theorem 7.8. For all γ, δ > 0, given a dictatorship test DICT over {±1}R for R > (1
δ )

100
γ ,

there exists a Λ instance Ψ such that sdp(Ψ) > (1−γ)Completeness(DICT)−2γ and opt(Ψ) 6

Soundnessβ,τ,ε(DICT) + 100δ
k2βε2τ3 .

The idea of the proof is to execute the UG-hardness reductions starting from an integral-
ity gap instance Φ = (WΦ ∪ VΦ, E,Π, [R]) for the LHr relaxation (LHr) of Unique Games
for r = k+ 1. The existence of such strong integrality gaps for Unique Games is shown in
Chapter 12.

Let Ψ denote the instance generated by executing the UG-hardness reduction on Φ.
By the soundness analysis of the UG-hardness reduction (Theorem 7.6), we have opt(Ψ) 6

Soundnessβ,τ,ε(DICT).

It remains to argue that the sdp(Ψ) is at least Completeness(DICT) − 2γ. Let (V ,µ)
denote a feasible solution to the LHr relaxation of the unique games instance =.

The vertices of Ψ consist of (v,x) for some x ∈ [q]R. Define the SDP vectors associated
with vertex (v,x) are given as,

V
v,x
i =

∑

x(`)=i

bv,` ∀v ∈ VΦ,x ∈ [q]R, i ∈ [q] .

Fix a payoff P in the instance Ψ. Let V(P ) = {(v1,z1)(v2,z2), . . . , (vk,zk)}. Let S =
{v1, . . . , vk}, and let µS denote the corresponding local distribution from LC relaxation.
Thus µS is a probability distribution over [R]S . Define the local distributions {µP |P ∈ P}
on [q]V(P ) as,

µP (x) = Pr
`∈µS

[

z
(`1)
1 = x1 ∧ · · · ∧ z(`k)

k = xk

]

It is fairly straightforward and by now standard, but notationally intense to argue that the
SDP solution as constructed above is a feasible SDP solution for Ψ, with value at least
Completeness(DICT). Most of the ideas of the proof have been discussed in the proof of
Theorem 6.7. Hence, we omit the formal proof of the above claim from the thesis.

7.8 Implications

In this section, we will use the reductions between dictatorship tests, UG-hardness results
and SDP integrality gaps to derive the results stated in Section 7.1. First, we describe the
setting of parameters used in the reductions to derive the implications.

Parameters Set α = η/qk, ε = η/4k. Fix the value of τ = exp(−O( log2 η
η )), β =

η/100C such that the error C(β + τKε/ log(1/α)) in Corollary 7.4.3 is less than η/10. Fix
R = exp(O( 1

η3
)) to ensure that the quantitative version of UGC can have completeness
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1 − γ = 1 − η
10 and soundness δ = ηβε2τ3k2/1000. Let κ = η

8C0(q,k)qk where C0(q, k) is the

smoothness parameter of the payoffs P (Property II, 7.4.1).

Optimal UG-hardness (Proof of Theorem 7.1) To show the result we compose the
conversion from SDP integrality gaps to dictatorship tests (Theorem 7.5) and dictatorship
tests to UG-hardness results (Theorem 7.6). First, we state and prove the composed reduc-
tion from integrality gaps to UG-hardness result.

Theorem 7.9 (Integrality Gaps ⇒ UG-hardness). Let = be any instance of GCSP Λ. For
every η > 0, given an instance =′ of the GCSP Λ, it is UG hard to distinguish whether,

opt(=′) > LC(=) − η OR opt(=′) 6 opt(=) + η

Proof. Set α = η/qk, ε = η/2k. Let C,K be the constants in Theorem 7.5. Define β = η/10C

and τ = exp(−O( log2(1/η)
η )) such that CτKε/ log(1/α) 6 η/10.

Let (V ,µ) denote an optimal SDP solution to the LC relaxation of =. Hence we have
val(V ,µ) = LC(=). By Lemma 7.4.1, there exists an α-smooth SDP solution (V ∗,µ∗) with
val(V ∗,µ∗) > val(V ,µ) − η = LC(=) − η.

Let us denote DICT= = DICTεV ∗,µ∗ . By Theorem 7.5, the dictatorship test DICT=
satisfies the following properties,

Completeness(DICT=) > LC(=) − 2η Soundnessβ,τ,ε(DICT=) 6 opt(=) + η .

Using the dictatorship test DICT= into the UG hardness reduction (Theorem 7.6), we obtain
a UG-hardness for GCSP Λ of distinguishing between LC(=) − 4η vs opt(=) + 2η. Since η
can be made arbitrarily small, the result follows. �

Proof of Theorem 7.1. Let = be an instance of Λ-GCSP such that sdp(=) = c while opt(=) 6

GapΛ(c) + η
4 . Applying Theorem 7.9 on the instance = yields the required result. �

Optimal Rounding Scheme (Proof of Theorem 7.2)

Proof. Consider the Roundη rounding scheme presented in Section 7.6. Let RoundingCurve(c)
denote the curve associated with the rounding scheme Roundη. By Theorem 7.7, clearly we
have,

RoundingCurve(c) > UGhardΛ(c− η) − η .

By the conversion from UG-hardness results to SDP integrality gaps (Theorem 7.8), we
have

GapΛ(c− η) 6 UGhardΛ(c) + η ,

for all η > 0. The result follows from the above two inequalities.

A κ-net of functions over [q]R has about ( 1
κ)q

R
= exp(exp(exp(O(1/η3)))) different

functions. Hence, the running time of the algorithm is as stated.

�
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Computing Integrality Gaps (Proof of Theorem 7.3) In Theorem 7.5 and Theorem 7.8,
we have effectively established an equivalence between SDP integrality gaps and dictator-
ship tests for arbitrary GCSPs. The integrality gap curve GapΛ(c) is the worst case value
of the optimum over all instances with SDP value c. As there are infinitely many instances
of all sizes with SDP value c, it is unclear how GapΛ(c) can be computed in finite time.

The crucial observation is that the set of all dictatorship tests over [q]R is a compact
set, that can be easily discretized. Recall that a dictatorship test over [q]R is nothing but
an instance of Λ-GCSP over [q]R.

Define Soundnessβ,τ,ε(c) as follows:

Soundnessβ,τ,ε(c) = inf
DICT− a dictatorship test over [q]R

Completeness(DICT)=c

Soundnessβ,τ,ε(DICT)

By Theorem 7.8, there exists a Λ-GCSP instance =′ with sdp(=′) > (1 − γ)c − 2γ > c − η
and opt(=′) 6 Soundnessβ,τ,ε(c) + η. Therefore we have

Soundnessβ,τ,ε(c) > GapΛ(c− η) − η .

Furthermore by Theorem 7.5, we have

Soundnessβ,τ,ε(c) 6 GapΛ(c+ η) + η

Observe that for any η > 0, by iterating over a sufficiently fine κ-net over the space
of dictatorship tests, the value Soundnessβ,τ,ε(c) can be computed within an accuracy of η.
This completes the proof of Theorem 7.3.
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Chapter 8

METRIC LABELING PROBLEMS
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8.1 Introduction

The metric labeling problem falls under the class of edge deletion problems along with many
other classic optimization problems. In an edge deletion problem, given an undirected graph
G = (V,E) and a non-negative weight function w on E, the goal is to find a minimum weight
set of edges E′ such that G′ = (V,E−E′) satisfies certain properties. A special case is when
the set of deleted edges forms a cut. The simplest and probably most familiar problem in
this class is the minimum (s, t) cut problem. Given two terminals s and t, the goal is to
find a minimum weight cut that separates s and t. This problem can be solved precisely in
polynomial time following the classic work of Ford and Fulkerson.

The Multiway Cut problem is a natural generalization of the minimum (s, t) cut
problem when more than two terminals are involved. The input is a set of q terminals
L ⊆ V and the goal is to find a minimum weight set of edges that separates every pair of
terminals. The problem is NP-hard and the best known approximation algorithm uses a
geometric relaxation by Calinescu et.al [46].

The Zero-Extension problem [95, 96] is a generalization of the Multiway Cut
problem in which a metric d is defined on the terminal set L. The goal is to assign
to each vertex v ∈ V a terminal t(v) in L, while minimizing the total cost given by
∑

u,v∈E w(u, v)d(t(u), t(v)). Notice that in case the metric on the terminals L is the uniform
metric (all distances equal to 1), the problem reduces to the Multiway Cut problem.

Generalizing the Zero-Extension problem further, one defines the Metric Labeling
problem as follows: The input consists of a metric space (L, d) of labels and a non-negative
cost function c on vertex-label pairs. The objective is to find an assignment of labels to the
vertices minimizing

∑

v∈V c(v, t(v)) + E(u,v)∈E w(u, v) d(t(u), t(v)). The Zero-Extension
problem is the special case where the assignment costs are all zero.

Inspired by the geometric relaxation for the Multiway Cut problem, Chekuri et
al. [39] proposed an earthmover metric linear relaxation for the Metric Labeling and
Zero-Extension problems. The best known approximation ratios [46, 30, 53, 107, 71,
39, 6] for all the above labelling problems, are achieved using linear programs that are
either equivalent or strictly weaker than the earth-mover linear program. Nevertheless, the
hardness results [45, 92, 47] known for the above described problems do not match the
best known approximation algorithms. For instance, while Multiway Cut is known to
be approximable within a factor roughly 1.3438, nothing better than APX-hardness [47] is
known for the problem.

In the above discussion, an intriguing possibility that remains open is the use of semidef-
inite programming (SDP) to obtain better approximation factors for Metric Labeling .
Even for the case of Multiway Cut , obtaining a better approximation using semidefinite
programming has not been ruled out.

8.1.1 Results

In this chapter, we further develop the integrality gap to UG-hardness paradigm that has
been the subject of the previous two chapters by extending it to the class of Metric La-
beling problems. The main result of this chapter is a black-box reduction from integrality
gaps to UG-hardness result for Multiway Cut , Zero-Extension and the class of Met-
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ric Labeling problems. More precisely, starting from an integrality gap instance = with
ratio α for the so called earthmover linear program, the reduction shows that it is UG-hard
to approximate the problem to a factor better than α. Roughly speaking, this implies that
the earthmover linear program (EM-LP) yields the best approximation computable in poly-
nomial time for each of the problems Multiway Cut ,Zero-Extension and Metric
Labeling , assuming the Unique Games Conjecture.

The precise statement of the reduction from integrality gaps to UG hardness result is as
follows:

Theorem 8.1. For the Multiway Cut , the Zero-Extension , and the Metric La-
beling problems, the following holds: Given an instance = with integrality gap α for the
earthmover linear program (EM-LP), it is UG-hard to approximate the problem to a factor
better than α. Further, the instances produced by the UG-hardness reduction have the same
set of labels as =.

The UG-hardness reduction stated above produces instances whose size is at least doubly
exponential in the size of the integrality gap instance =. Therefore, the above theorem is
to be applied with an integrality gap instance = of fixed constant size, with a constant
integrality gap α.

As the reduction always produces an instance with the same set of labels, the following
stronger result holds:

Theorem 8.2. It is UG-hard to approximate the Metric Labeling and Zero-Extension
problems with any finite metric (L, d) to a factor better than the integrality gap of the earth-
mover linear program on (L, d).

Note that determining the exact value of the earthmover linear program integrality gap
for these problems is not always easy. The following table shows the earthmover linear
program gaps and the best known approximation factors.

Problem Integrality Gap App. Factor

3-way cut 12/11 [91] 12/11 [91]

Zero-Extension Ω
(

(log |L|) 1
2

)

[92] O
( log |L|

log log |L|
)

[53]

Metric Labeling Ω(log |L|) [92] O(log |L|) [107]
Uniform Metric Labeling 2 − 2

|L| [107] 2 [107]

Interestingly, the reductions in this paper would apply even if the distance function
between the labels does not satisfy triangle inequality. In particular, it is enough that
d(x, x) = 0 and d(x, y) 6= 0 for x 6= y.

Using the connection from the UG-hardness results to SDP integrality gaps (Section 6.7),
the above results imply that even certain strong semidefinite programming relaxations does
not yield better approximation factors than the earthmover linear program. Specifically,
the following theorem holds:

Theorem 8.3. For the Multiway Cut , the Zero-Extension , and the Metric La-
beling problems, the integrality gap of the following strong SDP relaxations is equal to the
integrality gap of the earthmover linear program.
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– LHr hierarchy up to r = 2O((log logn)
1
4 ) number of rounds.

– SAr hierarchy up to r = O((log log n)
1
4 ) number of rounds.

We refer the reader to Section 4.7 for formal definitions of the LHr and SAr hierarchies.

8.1.2 Labelling Problems : Prior Work

While the minimum (s, t)-cut problem is solvable in polynomial time, the Multiway Cut
- a close generalization turns out to be NP -hard. Using the (s, t)-cut algorithm as a subrou-
tine, a (2 − 2

k )-approximation algorithm was proposed in [47]. Based on a novel geometric
relaxation, Calinescu et al. [46] obtained a 3

2 − 1
k approximation for the problem. Roughly

speaking, the algorithm of Calinescu et al. [46] finds an embedding of the graph on the sim-
plex with the terminals on its corners. A Multiway Cut solution can be extracted out of
the embedding by randomly partitioning the simplex. Continuing this line of work, Karger
et al. [91] obtained tight integrality gaps for the case k = 3, and improved approximation
factors for general q (about 1.3438).

For the Zero-Extension problem, Calinescu et al. [30] obtained an O(log |L|) approx-
imation algorithm, where L is the set of terminals. The approximation factor was improved
to O(log |L|/ log log |L|) in [53] using a better analysis. The ideas from the Zero-Extension
problem [30, 53] have found further applications in metric embeddings [108] and in analysis
[113].

Motivated by applications in computer vision Kleinberg et al. [107] introduced the Met-
ric Labeling problem. Using an approximate representation of metrics as a combination
of dominating tree metrics [21], Kleinberg et al. [107] also gave an approximation algorithm
for Metric Labeling . Its approximation factor can be shown to be O(log |L|) using the
later improvement of [53] in embedding metrics into dominating tree metrics. A special case
of Metric Labeling that is of particular interest is the Uniform Metric Labeling
(UML) problem. Here the distance metric d on the labels L is just the uniform metric, i.e.,
d(`1, `2) = 1 for all labels `1 6= `2. For Uniform Metric Labeling a factor 2 approxi-
mation algorithm is known [107]. Constant factor approximation algorithms [107, 71, 39, 6]
are known for several other special cases of metrics.

Inspired by the geometric relaxation for the Multiway Cut problem, Chekuri et
al. [39] proposed an earthmover metric linear relaxation for the Metric Labeling and
Zero-Extension problems. They also showed that the integrality gap of the earthmover
relaxation is at least as good as the approximation factor of the Kleinberg-Tardos algorithm
[107] for general metrics. Archer et al. [6] gave an earthmover relaxation based Metric
Labeling algorithm whose performance depends on the decomposability of the metric d.
However, even the earthmover linear relaxation proved unsuccessful in obtaining approxi-
mation factors better than O(log |L|) for Metric Labeling . In fact, for the problems of

Metric Labeling and Zero-Extension , integrality gaps of Ω(log |L|) and Ω((log |L|) 1
2 ),

respectively, were shown for the earthmover relaxation [92].

On the hardness side, the Multiway Cut problem was shown to be APX-hard in [47].
A strong inapproximability result for the Metric Labeling problem was first proven
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by Chuzhoy and Naor [45]. Specifically, they showed that for any ε > 0, there is no
polynomial time algorithm that approximates the Metric Labeling problem within a
factor of O((log |L|) 1

2
−ε), unless NP ⊆ DTIME(npoly(logn)). Building on this work, Karloff

et al.[92] showed that there is no polynomial time algorithm that approximates Zero-

Extension within a factor of O((log |L|) 1
4
−ε), unless NP ⊆ DTIME(npoly(logn)).

We wish to point out that the general conversion from SDP gaps to UG-hardness in
[136] applies to the problems Metric Labeling , Zero-Extension and Multiway Cut
. However, the reduction in [136] makes crucial use of the SDP vectors, and thus would not
apply to linear programming integrality gaps. Although both [136] and our work proceed
by converting integrality gaps to hardness results, the soundness proofs are very different.
For all the problems in this work, the objective is to minimize the number of edges cut.
Hence, along the lines of many other UG-hardness results for cut problems [104, 102], the
proof uses noise stability of functions.

8.2 Proof Overview

To illustrate the main ideas, we outline the reduction for the 3-way cut problem. Let G =
(V,E) be a 3-way cut instance with terminals {t1, t2, t3}. Here we recall the simplex based
linear program (Simplex), which is equivalent to the earthmover linear program EM-LP for
Multiway Cut problems.

Minimize
1

2

∑

e=(u,v)∈E
‖Xu −Xv‖1 (8.1)

subject to: X(1)
u +X(2)

u +X(3)
u = 1 ∀u ∈ V (8.2)

X(i)
u > 0 (8.3)

Xt1 = (1, 0, 0),Xt2 = (0, 1, 0),Xt3 = (0, 0, 1) (8.4)

As seen in previous sections, a crucial ingredient in all UG-hardness reductions is a
dictatorship test. Recall that a function F : {1, 2, 3}R → {1, 2, 3} is said to be a dictator
if the function is given by F(x) = xi for some fixed i. The input to a dictatorship test
consists of a function F : {1, 2, 3}R → {1, 2, 3}. The objective is to query the function F at a
few locations, and distinguish whether the function is a dictator or far from every dictator.
Given a dictatorship test, the UG-hardness reduction usually follows by standard techniques.
Roughly speaking, one introduces a vertex for every point in {1, 2, 3}R and translates the
queries made by the dictatorship test in to constraints between these vertices. Therefore,
we shall now describe the long code gadget used as part of our reduction. Actually, we
convert an integrality gap instance for the Earthmover LP in to a long code gadget.

Let us suppose G = (V,E) is an integrality gap instance for the above linear program.
Let EM-LP(G) and opt(G) denote the optimal LP and integral values, respectively. The LP
solution associates each vertex v in V with a point Xv on the 3-dimensional simplex. The
coordinates of Xv can be thought of as probabilities of assigning the corresponding labels.

From G, we shall construct a 3-way cut instance G′ such that :
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– There exist special 3-way cuts in G′ whose cost equals the linear programming opti-
mum EM-LP(G). These cuts will be referred to as dictator cuts.

– A 3-way cut solution in G′ which is far from every dictator cut pays at least the
integral optimum opt(G).

The vertices of G′ are as follows : For each vertex v of G introduce a group ΩR
v of 3R

vertices. The vertices in ΩR
v are indexed by vectors {1, 2, 3}R . It is useful to think of ΩR

v as
having a product probability distribution XR

v on it.

For example, consider the terminal t1 of the 3-way cut instance G. The corresponding LP
assignment Xt1 is a corner of the simplex e1 = (1, 0, 0). Hence the probability distribution
XR
t1 is non-zero on a single vertex (1, 1, 1, . . . , 1). Similarly for each ti, the probability

distributionXR
ti on ΩR

ti is nonzero only at (i, i, . . . , i). These special vertices are the terminals
of G′. More precisely, the terminals of G′ are the vertices (i, i, . . . , i) ∈ ΩR

ti .

A 3-way cut solution assigns to each vertex a label from the set {1, 2, 3}. Thus a 3-way
cut solution to G′ consists of a set of functions Fv : ΩR

v → {1, 2, 3}, one for each vertex
v ∈ G. There are two special 3-way cut solutions that will be of interest:

– The set of functions Fv(x) = xi for some i. These functions form a feasible 3-cut
solution, since they assign different labels to all the terminals. We shall refer to these
solutions as dictator cuts.

– Each function Fv is a constant function. These solutions will be referred to as integral
cuts, since they assign a single label to all the 3R vertices corresponding to a vertex v.

For an edge e = (v,w) in the graph G, we will introduce edges between groups ΩR
v and ΩR

w.
The edges introduced are such that the dictator cuts have a cost close to EM-LP(G). We
illustrate the basic idea with an example. Let e = (v,w) be an edge in G, with Xv = (1

3 ,
1
2 ,

1
6)

Xw = (1
6 ,

1
2 ,

1
3). The edges between groups ΩR

v and ΩR
w are given by a joint distribution

over pairs x ∈ ΩR
v , y ∈ ΩR

w. Generate each coordinate of x according to the probability
distribution Xv. To generate y, we shall mimic the flow of probability mass required to
convert distribution Xv into Xw. Specifically, the ith coordinate yi is generated from xi
using the following distribution:

If xi = 1, then yi = 1 with probability 1
2 and yi = 3 with the remaining

probability. If xi = 2 or 3, then yi = xi.

It is easy to check that if xi is generated according to distribution Xv = (1
3 ,

1
2 ,

1
6), then

the distribution of yi is same as Xw = (1
6 ,

1
2 ,

1
3).

Consider a dictator cut given by functions Fv(x) = x1 and Fw(y) = y1. The cost of the
cut is equal to the probability that x1 6= y1 when x, y are generated as above. But this is
exactly equal to the total probability mass that flows so as to change distribution Xv to Xw.
In this case, the probability of x1 6= y1, is 1

6 = 1
2‖Xv − Xw‖1. Consequently, the dictator

cuts pay exactly the LP value EM-LP(G).
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In an integral cut, the group of [3]R vertices corresponding to a vertex v all have the
same label. Intuitively, an integral 3-way cut is assigning a label to the vertex v in the
original graph G. In fact, an integral 3-way cut of G′ corresponds to a 3-way cut of G.
Thus, if all the functions Fv were constant functions, then the cost of the cut is at least the
minimum cost opt(G) of a 3-way cut of G.

We need to ensure that the functions which are far from a dictator function have a cost
at least the integral optimum opt(G). Towards this end, we shall introduce noise sensitivity
edges. Inside each group ΩR

v we will introduce edges between pairs (x, y) where x is from the
distribution XR

v , and y is generated by perturbing the coordinates of x. By an appropriate
choice of parameters, the total cost of noise sensitivity edges overwhelms the remaining
edges. Using results on noise stability, if a function Fv : ΩR

v → {1, 2, 3} cuts a small fraction
of the noise sensitivity edges, then either:

– The function Fv is close to a dictator function (more precisely, it has an influential
variable).

– Function Fv is close to a constant function.

Hence, either we obtain a function Fv with an influential variable, or the cost of the cut is
opt(G). Using standard techniques, such a gadget can be used to obtain a UG-hardness
result.

Organization The formal definitions of Metric Labeling , Zero-Extension and Mul-
tiway Cut are presented in Section 8.3, followed by the definition of the earthmover linear
program. The UG-hardness reduction is described in its full entirety in Section 8.4

Mathematical Tools This chapter uses multilinear expansion of functions over product
spaces and associated notions of influences and noise operators (Section 3.4). It also crucially
uses noise stability bounds for low influence functions on product spaces (Section 3.7).

8.3 Preliminaries

For a positive integer q, Nq denotes the q dimensional simplex. The notation [q] refers to
the set {1, . . . , q}.

All graphs considered in this chapter are weighted graphs, whose edge-weights sum up
to 1. Thus a weighted graph is given by H = (V, E) where V denotes the set of vertices,
while E is a probability distribution over pairs in V × V. In particular, the notation Ee∈E
denotes expectation over a random edge chosen from the distribution E .

8.3.1 Problem Definitions

In general, an instance of the Metric Labeling problem is a weighted graph, = = (V, E),
a set of labels L and two cost functions,

– (Assignment Cost) For each vertex v ∈ V and a label ` there is a non-negative cost
C(v, `) of assigning ` to vertex v, i.e., the assignment costs are specified by a map
C : V × L → R

+.
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– (Separation Cost) The labels L have a metric d defined on them and the separation
cost of assigning labels `1, `2 to a pair of vertices u1, u2 is simply the distance d(`1, `2)
between the labels.

The total cost of a labeling L : V → L, val=(L), is given by

val=(L) =
∑

v∈V
C
(

v,L(v)
)

+ E
(u,v)=e∈E

d(L(u),L(v)) .

The objective is to minimize the total cost of the labelling.
In [39], the authors exhibit an approximation-preserving reduction from Metric La-

beling to the restricted Metric Labeling where all assignment costs are either zero or
infinity. Therefore, for the sake of constructing approximation algorithms and hardness re-
sults for Metric Labeling , it is enough to consider the special case of restricted Metric
Labeling . For the sake of simplicity, we will always use Metric Labeling to refer to
the restricted version of the problem.

Formally, define the Metric Labeling problem over a finite metric as follows.

Definition 8.3.1. A Metric Labeling problem is specified as Λ = (L, d) where d is a
metric over the set of labels L.

We will use q to denote the number of labels |L|

Definition 8.3.2 (Λ-Metric Labeling ). An instance = = (V, E , {L(v)}v∈V ) of the Λ-
Metric Labeling problem consists of a set of vertices V, a probability distribution E over
pairs from V ×V (equivalent to edges with weights) and a family of subsets {L(v)}v∈V of L.
A valid labeling is a mapping L : V → L such that for each vertex, v ∈ V, L(v) belongs to
L(v). The cost of a labeling L, val=(L), is

E
(u,v)=e∈E

d(L(u),L(v)).

The optimum value of the instance, opt(=), is the minimum cost labeling for the instance.

An important special case of the Λ-Metric Labeling problem is the Λ-Zero-Extension
problem defined below.

Definition 8.3.3 (Λ-Zero-Extension ). An instance = = (V, E ,L) of Λ-Zero-Extension
problem consists of a weighted graph (V, E), along with a set of terminals L ⊂ V with a
metric d on them. The objective is to assign each vertex v a terminal L(v) ∈ L such that
the following cost is minimized:

E
(u,v)=e∈E

d(L(u),L(v)).

The value of the instance, opt(=) is the minimum cost labeling for the instance.

Observe that a valid solution to the above problem consists of a labeling L : V → L such
that for each terminal t ∈ L, L(t) = t. This corresponds to Λ-Metric Labeling over the
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graph (V, E) with the family of sets {L(v)}v∈V defined as,

L(v) =

{

{v} if v ∈ L

L otherwise

Definition 8.3.4 (Multiway Cut ). An instance = = (V, E ,L) of Multiway Cut prob-
lem consists of a weighted graph (V, E), along with a set of terminals L ⊂ V. The objective
is to delete a set of edges of minimum weight so as to separate every pair of terminals.

The Multiway Cut problem can be formulated as a labeling problem (with a uniform
metric) as follows: A valid multiway cut corresponds to a labeling L : V → L such that
for each terminal t ∈ L, L(t) = t. The cost of such a labeling L, val=(L) is given by
E(u,v)∈E

[

1[L(u) 6= L(v)]
]

. The optimum value of the instance opt(=) is the minimum cost
labeling for the instance.

A special case of Multiway Cut problem is the q-WayCut for a positive integer q.

Definition 8.3.5 (q-WayCut). An instance = = (V, E ,L) of q-WayCut problem consists
of a weighted graph (V, E), along with a set of q terminals L ⊂ V. The objective is to delete
a set of edges of minimum weight so as to separate every pair of terminals.

8.3.2 Earthmover Linear Program for Metric Labeling

The Earthmover linear programming (EM-LP) relaxation for Metric Labeling was in-
troduced by [39]. Let = = (V, E , {L(v)}v∈V ) be an instance of metric labeling. Intuitively,
the EM-LP program finds an embedding of the vertices V on the q dimensional simplex Nq.
For every vertex v, there is a variable Xv = (Xv,`)`∈[q] which is a point on the q-ary simplex
Nq. The point Xv represents the probability distribution of each label being assigned to v.
For example, each corner of the simplex represents a particular label.

The labeling constraint L(v) ∈ L(v) is enforced by a linear constraint on the probability
distribution Xv . Specifically, one can include the following constraints,

Xv,` = 0 for all ` /∈ L(v) .

These labeling constraints force the point Xv to lie in the face containing the allowed labels
L(v), denoted by N(L(v)). The objective is to minimize the weighted sum of the earthmover
distance between adjacent vertices.

Definition 8.3.6 (Earthmover Distance). Given two points X,Y ∈ Nq, and a metric d(i, j)
on [q], the earthmover distance, d./(X,Y ) is given by the optimal value of the following LP:

Minimize
∑

i,j∈[q]
d(i, j)µij

s.t.
∑

i

µij = Yj
∑

j

µij = Xi ∀i, j ∈ [q]

µij > 0
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In other words, the earthmover distance is the minimum cost of moving the probability
mass from distribution X to Y , given the distance metric d on the labels. It is easy to see
that this defines a metric on the simplex Nq. Thus, the earthmover distance generalizes a
metric on q points to a metric on Nq such that the distance between corner points is the
same as the original metric. In this notation, the linear program of [39] is simply:

Minimize E
(u,v)∈E

d./(Xu,Xv) (EM-LP)

s.t. Xu ∈ N(L(u)) ∀u ∈ V

Definition 8.3.7. A feasible solution (X,µ) to the EM-LP relaxation is said to be α-
smooth if α = minv∈V ,Xv,i 6=0Xv,i

8.3.3 Analytic Notions

In this chapter, we will require notions of influence and noise stability for functions over
product spaces. We refer the reader to Section 3.4 for an introduction to these notions.
Furthermore, we will be using the following noise stability bound which is a consequence of
the invariance principle (Section 3.7).

We recall the noise stability bound (Theorem 3.6) for the convenience of the reader here.
The Gaussian noise stability Γρ is defined as follows:

Definition 8.3.8. Given µ ∈ [0, 1], let t = Φ−1(µ) where Φ denotes the distribution function
of the standard Gaussian. Then,

Γρ(µ) = Pr[X 6 t, Y 6 t],

where (X,Y ) is a two-dimensional Gaussian vector with covariance matrix

(

1 ρ
ρ 1

)

.

Theorem 8.4. Let Ω be a finite probability space with the least non-zero probability of an
atom at least α. For every µ, ε, γ, η > 0 there exists τ such that the following holds: For
every function F : ΩR → [0, 1] with µ = E[F ] and Inf`(T1−γF) < τ for all ` ∈ [R],

〈F ,T1−εF〉 = E
z∈ΩR

[F(z)T1−εF(z)] 6 Γ1−ε(µ) + η .

8.4 The Reduction

In this section, we shall describe the reduction from Unique Games to Metric Labeling
. The same reduction applies with minor changes for the Multiway Cut and Zero-
Extension problems.

Let = = (V, E , {L(v)}v∈V ) be an instance of a Λ-Metric Labeling problem for a
finite metric Λ = (L, d). Without loss of generality, we may assume that the set of labels
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L = [q]. Let (X,µ) denote an α-smooth feasible solution to EM-LP relaxation of =. For
each vertex v ∈ V, let Ωv denote the probability space over the set of atoms are [q] given
by, Pra∈Ωa [a = i] = Xa,i

Let Φ = (WΦ ∪ VΦ, E,Π, [R]) be a UG instance. We construct a Λ-Metric Labeling
instance =(Φ) as in Figure 8.1.

Proof. (of Theorem 8.1) For Metric Labeling the proof directly follows from Theorems
8.5 and 8.6. As stated, the instance produced by the reduction also has the same set of
labels L.

For Zero-Extension and Multiway Cut , the instances produced by the reduction
have too many terminals. Specifically, for every vertex v ∈ VΦ, terminal t ∈ L and x ∈ [q]R

there are qR vertices of the form (v, t,x) ∈ V (=(Φ)). For every vertex (v, t,x), the set
of allowed labels in =(Φ) is just {t}. Using standard techniques the graph =(Φ) can be
modified into =(Φ)′ with the correct set of terminals.

Introduce a new vertex in V (=(Φ)′) for each label in t ∈ L. These new vertices are
the terminals for =(Φ)′. For every vertex (w, t,x) with t ∈ L, introduce an edge of infi-
nite(sufficiently high) cost between t and (w, t,x). A solution to the instance =(Φ)′ will not
cut any of the edges of infinite cost. This simulates the constraint that (w, t,x) is assigned
label t. �

8.4.1 Completeness

Theorem 8.5. For every ε, δ > 0, given a UG instance Φ that is 1 − δ strongly satisfiable
and an integrality gap instance Ψ, the value of the metric labeling instance (=(Φ),L, d)
obtained from the reduction is at most (1 − δ)(ε7/8EM-LP(=) + ε) + δ.

Proof. Let A : WΦ → [R] denote an assignment to the UG instance Φ. Consider the labeling
L to =(Φ) that sets L(u, a,x) = xA(u). It is easy to check that L is a valid labeling for the
instance =(Φ). Then, the cost of the labeling L is:

E
w,v1,v2

[

ε
7/8 · E

(a,b)∈E
E
x,y

[

d(L(v1, a, π1(x)),L(v2, b, π2(y)))
]

+ (1 − ε
7/8) · E

a∈V
E

x∼1−εy

[

d(L(v1, a, π1(x)),L(v2, a, π2(y)))
]

]

= E
w,v1,v2

[

ε
7/8 · E

(a,b)∈E
E
x,y

[

d(xπ1(A(v1)), yπ2(A(v2)))
]

+ (1 − ε
7/8) · E

a∈V
E

x∼1−εy

[

d(xπ1(A(v1)), yπ2(A(v2)))
]

]

.

With probability 1 − δ over the choice of vertex w, the Unique Games assignment A
satisfies all the edges incident at w. Let us refer to these vertices w as good vertices. For a
good w, for all choices of v1, v2, π1(A(v1)) = π2(A(v2)) = A(w). Thus the expected cost for



157

The vertices of =(Φ) are V (=(Φ)) = VΦ × V × [q]R.
The set of allowed labels for a vertex (v, a,x) ∈ V (=(Φ)) is L(a).
The weight of an edge is the probability it is output by the following test:

– Pick w ∈ WΦ at random, and two of its neighbors v1, v2 independently at random.
Let us denote by π1, π2, the permutations πv1←w, πv2←w on edges (w, v1) and (w, v2)
respectively.

– With probability ε7/8 perform the edge test, otherwise (with probability 1 − ε7/8)
perform the vertex test.

Edge test: (with probability ε7/8)

– Sample an edge e = (a, b) ∈ V × V from the probability distribution E .

– Sample x,y ∈ [q]R, by generating each coordinate (x(i), y(i)) ∈ [q]2 from the distri-
bution µe. Clearly, we have x ∈ ΩR

a , y ∈ ΩR
b .

– Output the edge (v1, a, π1(x)) ↔ (v2, b, π2(y)).

Vertex test: (with probability 1 − ε7/8)

– Pick a uniformly random vertex a ∈ V.

– Sample x ∈ ΩR
a . Sample y ∈ [q]R as follows:

yi =

{

xi with probability 1 − ε ,

a new sample from Ωa with probability ε .
(8.5)

– Output the edge (v1, a, π1(x)) ↔ (v2, a, π2(y)).

Figure 8.1: The reduction.
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a good vertex is given by

δ · E
(a,b)∈E

E
x,y

[

d(xA(w), yA(w))
]

+ (1 − δ) · E
a∈V

E
x∼1−εy

[

d(xA(w), yA(w))
]

6 δ · EM-LP(=) + (1 − δ) · ε.

For an arbitrary vertex w ∈ WΦ, the expected cost is always bounded by 1 since all the
distances are bounded by 1. Thus, the total cost of the labeling L is at most (1 − δ) ·
(

ε7/8EM-LP(=) + ε
)

+ δ. �

Corollary 8.5.1. For every η > 0, there exists ε, δ > 0 such that, the value of the metric
labeling instance =(Φ) obtained as in Theorem 8.5 is at most ε7/8EM-LP(=)(1 + η).

Proof. Setting ε < (ηEM-LP(=)/2)8 and δ < ε7/8EM-LP(=)η/4 in Theorem 8.5 gives the
required result. �

8.4.2 Soundness

Let L be a labeling of the instance =(Φ). Let ε be as defined in the reduction. For each
v ∈ VΦ, a ∈ V, define q functions F i

v,a : [q]R → [0, 1] as follows,

F i
v,a(x) =

{

1 if L(v, a,x) = i ,

0 otherwise .

For each w ∈ WΦ, a ∈ V, define q functions Giw,a : [q]R → [0, 1] as follows

Giw,a(x) = E
v∈N(w)

[

F i
v,a(πv←w(x))

]

.

Observe that for any x ∈ [q]R and w ∈ WΦ,

q
∑

i=1

Giw,a(x) =

q
∑

i=1

E
v∈N(w)

[

F i
v,a(πv←w(x))

]

= E
v∈N(w)

[

q
∑

i=1

F i
v,a(πv←w(x))

]

= 1 .

Define θiw,a = Ex[Giw,a(x)] where x is distributed according to the probability distribution

of ΩR
a . Further, define θw,a = (θ1

w,a, . . . , θ
q
w,a). Hence, for all w, a we have

q
∑

i=1

θiw,a =

q
∑

i=1

E
x
[Giw,a(x)] = E

x

[

q
∑

i=1

Giw,a(x)

]

= 1.

Thus, θw,a ∈ Nq, i.e., it defines an embedding in the simplex. We will drop w and a when
they are clear from the context.

For a vertex w ∈ WΦ, let valEdge
w (L) and valVertex

w (L) denote the expected cost incurred
by the edge and vertex tests respectively when the verifier chooses vertex w. We can write
the cost of the labeling L as Ew

[

ε7/8 valEdge
w (L) + (1 − ε7/8)valVertex

w (L)
]

.



159

We will show that for most choices w ∈ WΦ, a ∈ V, either the functions Giw,a have an
influential variable or they are close to constant functions. More precisely, we show that if
the functions are neither constant nor have influential variables, then the cost of the vertex
test on w, a is overwhelmingly large.

Lemma 8.5.1. Fix w ∈ WΦ, a ∈ V and let {Gi}i∈[q] denote the family of functions associ-
ated with (w, a). For every ε > 0 we have

E
x∼(1−ε)y

[

∑

i,j∈L
d(i, j)Gi(x)Gj(y)

]

> β
∑

i

(

E
x
[Gi] − E

x
[GiT1−ε(Gi)]

)

,

where β = mini6=j d(i, j). Further, for all ε, ζ > 0, there exists γ, τ such that if Infj(T1−γGi) <
τ for all i ∈ [q], j ∈ [R], then

E
x∼1−εy

[

∑

i,j∈L
d(i, j)Gi(x)Gj(y)

]

> β
∑

i

(

θi − Γ1−ε(θi)
)

− ζ.

Proof. Since
∑

j 6=i Gj(x) = 1 − Gi(x), we get

E
x∼1−εy

[

∑

i,j∈L
d(i, j)Gi(x)Gj(y)

]

> β E
x∼1−εy

[

∑

i

Gi(x)
(

1 − Gi(y)
)

]

= β
∑

i

(

E
x
[Gi] − E

x
[GiT1−ε(Gi)]

)

.

To derive the second part of the lemma, apply Theorem 8.4 on each of the functions Gi with
the error term ζ/q instead of ζ:

E
x
[Gi] − E

x
[GiT1−ε(Gi)] >

(

θi − Γ1−ε(θi)
)

− ζ/q.

Summing up over all i, we obtain the desired result. �

The following lemma lower bounds the cost of the vertex test, when none of the functions
Gi are neither constant nor have an influential variable.

Lemma 8.5.2. There exists an ε0 such that for all ε < ε0, for all (θ1, θ2, . . . , θq) ∈ Nq such
that maxi θi < 1 − ε1/4,

∑

i

[θi − Γ1−ε(θi)] = Ω(ε3/4).

Proof. Let θ = maxi θi, then we have 1− ε1/4 > θ. By choosing ε < 1
q4

, one can ensure that

θ > ε1/6. Observe that Γ satisfies, Γ1−ε(x) 6 x for all x ∈ [0, 1]. Thus we can write,

∑

i

[θi − Γ1−ε(θi)] > θ − Γ1−ε(θ).
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Using known estimates, (see Corollary 10.4 in [99]), we have:

Γ1−ε(θ) 6 θ
[

1 −
√

Ω(ε log(1/θ))
]

+ o(θ).

Thus, setting θ > ε1/4, we have the required result:

∑

i

[θi − Γρ(θi)] > Ω(θ
√

ε log(1/θ) ) > Ω(ε3/4).

�

Lemma 8.5.3. For any vertex w ∈ WΦ,

valEdge
w (L) > E

e=(a,b)∈E
d./(θw,a, θw,b).

Proof. Fix an edge e = (a, b) ∈ E . Define a probability distribution µ′e ∈ [q]2 as follows,

µ′e(i, j) = E
x∼ey

[Giw,a(x)Gjw,b(y)].

Then,
∑

i µ
′
e(i, j) = θjw,b;

∑

j µ
′
e(i, j) = θiw,b. From Definition 8.3.6 we have

∑

i,j

d(i, j)µ′e(i, j) > d./(θw,a, θw,b).

Recall that valEdge
w (L) is given by

valEdge
w (L) = E

e=(a,b)∈E

∑

ij

d(i, j) E
x∼ey

[Giw,a(x)Gjw,b(y)]

= E
e=(a,b)∈E

∑

ij

d(i, j)µ′e(i, j) > E
e=(a,b)∈E

d./(θw,a, θw,b).

�

Lemma 8.5.4. There exists ε1 > 0, such that for every ε < ε1, there exist τ, γ, such that
for all w ∈ WΦ, if Infj(T1−γGiw,a) < τ for all i, j, a, then one of the following inequalities
holds:

valEdge
w (L) > opt(=)(1 − 4ε1/8)

or

valVertex
w (L) > (βε3/4 − ε)/m.

Proof. Let γ, τ be as obtained from Lemma 8.5.1 by setting ζ = ε. Since w is fixed we shall
denote Giw,a by Gia. Then, there are two possibilities:

Case 1: For all a, the functions Gia are near constant, i.e there is a labeling function

L : V → [q] such that θ
L(a)
w,a > 1 − ε1/4 for all a.
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Set θ = ε1/8. A simple averaging argument shows that for every a, GL(a)
a (x) > 1 − θ

for a 1 − θ fraction of x. By a union bound, if x,y are generated from x ∼e y, both

GL(a)
a (x),GL(b)

b (y) are greater than 1− θ with probability 1− 2θ. Thus the cost of the edge
test is:

valEdge
w (L) = E

(a,b)∈E
E
x,y

[

∑

i,j∈L
d(i, j)Giw,a(x)Gjw,b(y)

]

> (1 − 2θ)(1 − θ)2 E
(a,b)∈E

[d(L(a),L(b))] .

It is easy to check that the labeling L is a valid metric labeling solution for =. Hence we
have,

E
(a,b)∈E

[d(L(a),L(b))] > opt(=).

Substituting we get valEdge
w (L) > opt(=)(1 − 4θ).

Case 2: There exists b ∈ V such that for all i, θiw,b 6 1 − ε1/4. Then, the vertex cost is:

valVertex
w (L) = E

a∈V
E
x,y

∑

i,j∈L

[

d(i, j)Giw,a(x)Gjw,a(y)
]

>
1

m
E
x,y

∑

i,j∈L

[

d(i, j)Giw,b(x)Gjw,b(y)
]

>
1

m

(

β
∑

i

(θiw,b − Γ1−ε(θiw,b)) − ε

)

>
1

m

(

βε3/4 − ε
)

.

�

Theorem 8.6. For every η > 0, for sufficiently small ε, δ > 0, if the UG instance Φ is at
most δ-satisfiable, then the optimum assignment to =(Φ) has value at least ε7/8opt(=)(1−η),
i.e.,

opt(Φ) 6 δ ⇒ opt(=(Φ)) > ε7/8opt(=)(1 − η) .

Proof. Set ε 6 min{(η/12)8 , (β/4mopt(=))8, ε1}. Let γ, τ be as obtained from Lemma 8.5.4.
For every vertex w ∈ WΦ, one of the following is true:

– There exists a ∈ V, i ∈ [q], j ∈ [R] such that Infj(T1−γGiw,a) > τ .

– valEdge
w (L) > opt(=)(1 − 4ε1/8) > opt(=)(1 − η/3).

– valVertex
w (L) > (βε3/4 − ε)/m > ε7/8opt(=).
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Thus, if none of the functions {Giw,a}a∈V ,i∈[q] associated with a particular w ∈ WΦ have any
influential coordinate,

ε
7/8valEdge

w (L) + (1 − ε
7/8)valVertex

w (L) > ε
7/8opt(=)(1 − η/3).

Call a vertex w ∈ WΦ good if at least one of the functions associated with it has an
influential variable. More precisely, if there exists a, i, j such that Infj(T1−γGiw,a) > τ . If

valL(=(Φ)) 6 ε7/8opt(=)(1 − η), then at least η/2 fraction of the vertices are good.
We will define a labelling A for vertices of the UG instance as follows:

L(w) = {j ∈ [R] | ∃ i, a; Infj(T1−γGiw,a) > τ} (for every w ∈ WΦ),

L(v) = {j ∈ [R] | ∃ i, a; Infj(T1−γF i
v,a) > τ/2} (for every v ∈ VΦ).

For each u ∈ WΦ ∪ VΦ, assign a label uniformly at random from L(u).
We will analyze the fraction of edges in the UG instance satisfied in expectation by

the UG assignment A. Fix a good vertex w ∈ WΦ with the corresponding a, i, j satisfying
Infj(T1−γGiw,a) > τ . By convexity of influences (Fact 3.0.13), we have

E
v∈N(w)

[

Infπ−1
v←w(j)(T1−γF i

v,a)
]

> Infj(T1−γGiw,a) > τ

For a good vertex w and a label ` ∈ L(w), for at least τ/2 fraction of the neighbors v ∈ N(w),
we will have π−1

v←w(`) ∈ L(v). Thus, for a good vertex w, for at least τ/2 fraction of its
neighbors v ∈ N(w), A satisfies the edge (v,w) with probability at least 1

|L(v)||L(w)| . Using

Lemma 3.0.2, the sizes of the label sets L(u) are at most 2qm/γτ . Thus, such an edge (v,w)
is satisfied with probability at least γ2τ2/4q2m2. The expected weight of edges in Φ satisfied

by the assignment A is at least (η/2)(τ/2)(τ2γ2/4q2m2) > γ2ητ3

16m2q2 . Choosing δ < γ2ητ3

16m2q2

gives the required result.
�
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Chapter 9

ORDERING CONSTRAINT SATISFACTION PROBLEMS
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9.1 Introduction

Given a directed acyclic graph G, one can efficiently order (“topological sort”) its vertices
so that all edges go forward from a lower ranked vertex to a higher ranked vertex. But what
if a few, say fraction ε, of edges of G are reversed? Can we detect these “errors” and find
an ordering with few back edges? Formally, given a directed graph whose vertices admit an
ordering with many, i.e., 1 − ε fraction, forward edges, can we find a good ordering with
fraction α of forward edges (for some α → 1)? This is equivalent to finding a subgraph
of G that is acyclic and has many edges, and hence this problem is called the Maximum
Acyclic Subgraph (Maximum Acyclic Subgraph) problem.

It is trivial to find an ordering with fraction 1/2 of forward edges: take the better of
an arbitrary ordering and its reverse. This gives a factor 1/2 approximation algorithm for
Maximum Acyclic Subgraph. (This is also achieved by picking a random ordering of the
vertices.) Despite much effort, no efficient ρ-approximation algorithm for a constant ρ > 1/2
has been found for Maximum Acyclic Subgraph. The existence of such an algorithm has
been a long-standing and central open problem in the theory of approximation algorithms.
In this chapter, we prove a strong hardness result that rules out the existence of such an
approximation algorithm assuming the Unique Games Conjecture. Formally, we show the
following:

Theorem 9.1. For every constant γ > 0, given a directed graph G with m edges, it is
UG-hard to distinguish between the following two cases:

1. There is an ordering of the vertices of G with at least (1 − γ)m forward edges (or
equivalently, G has an acyclic subgraph with at least (1 − γ)m edges).

2. For every ordering of the vertices of G, there are at most (1/2+γ)m forward edges (or
equivalently, every subgraph of G with more than (1/2+γ)m edges contains a directed
cycle).

To the best of our knowledge, the above is the first tight hardness of approximation
result for an ordering/permutation problem. As an immediate consequence, we obtain the
following hardness result for the complementary problem of Min Feedback Arc Set,
where the objective is to minimize the number of back edges.

Corollary 9.1.1. For every C > 0, it is UG-hard to find a C-approximation to the Min
Feedback Arc Set problem.

Combining the unique game integrality gap instance of Khot-Vishnoi [104] along with
the UG reduction, we obtain SDP integrality gaps for Maximum Acyclic Subgraph
problem. Our integrality gap instances also apply to a related SDP relaxation studied by
Newman [130]. This SDP relaxation was shown to obtain an approximation better than
half on random graphs which were previously used to obtain integrality gaps for a natural
linear program [129].

Building on these techniques and the ideas from Chapter 7, we obtain UGC based hard-
ness results for the class of Ordering Constraint Satisfaction Problems (OCSP). An OCSP
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Λ with arity k is specified by a family of predicates over the set of permutations on k ele-
ments. An instance of the Λ-OCSP consists of a set of variables V and a set of ordering
constraints on them. Each ordering constraint consists of a predicate from the family Λ
applied to an ordered tuple of variables from V. The objective is to find an ordering of the
variables V that satisfies the maximum number of constraints. Our results hold in a more
general setting where the predicates are replaced by bounded payoff functions which could
take both positive and negative values.

In order to state the result for general OCSPs, we present the following definition.

Definition 9.1.1. For an Ordering Constraint Satisfaction problem Λ, define GapΛ(c),UGhardΛ(c)
as follows:

GapΛ(c)- The minimum value of the integral optimum over all instances = with SDP value
c.
UGhardΛ(c)- The minimum value it is UG-hard to distinguish between instances with ob-
jective value c from an instance with objective value UGhardΛ(c).

With these definitions in place, we can state our UG hardness result for OCSPs as
follows,

Theorem 9.2. (UGC Hardness) For every constant η > 0, and every Ordering CSP Λ:

UGhardΛ(c) 6 GapΛ(c+ η) + η ∀c ∈ (−1, 1)

9.1.1 Related work

Maximum Acyclic Subgraph is a classic optimization problem, figuring in Karp’s early
list of NP-hard problems [94]; the problem remains NP-hard on graphs with maximum
degree 3, when the in-degree plus out-degree of any vertex is at most 3. Maximum
Acyclic Subgraph is also complete for the class of permutation optimization problems,
MAX SNP[π], defined in [134], that can be approximated within a constant factor. It is
shown in [129] that Maximum Acyclic Subgraph is NP-hard to approximate within a
factor greater than 65

66 .

Turning to algorithmic results, the problem is known to be efficiently solvable on planar
graphs [119, 89] and reducible flow graphs [138]. Berger and Shor [24] gave a polynomial
time algorithm with approximation ratio 1/2 + Ω(1/

√
dmax) where dmax is the maximum

vertex degree in the graph. When dmax = 3, Newman [129] gave a factor 8/9 approximation
algorithm.

The complementary objective of minimizing the number of back edges, or equivalently
deleting the minimum number of edges in order to make the graph a DAG, leads to the
Min Feedback Arc Set (FAS) problem. This problem admits a factor O(log n log log n)
approximation algorithm [148] based on bounding the integrality gap of the natural covering
linear program for FAS; see also [52]. Using this algorithm, one can get an approximation
ratio of 1

2 + Ω(1/(log n log log n)) for Maximum Acyclic Subgraph.
Recently, Charikar, Makarychev, and Makarychev [33] gave a factor (1/2+ Ω(1/ log n))-

approximation algorithm for Maximum Acyclic Subgraph, where n is the number of
vertices. In fact, their algorithm is stronger: given a digraph with an acyclic subgraph
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consisting of a fraction (1/2 + δ) of edges, it finds a subgraph with at least a fraction
(1/2+Ω(δ/ log n)) of edges. This algorithm, and in particular an instance showing tightness
of its analysis from [33], plays a crucial role in our work.

Apart from Maximum Acyclic Subgraph, the other OCSP that has received some
attention is the Betweenness problem. Betweenness is an OCSP where all the con-
straints are of the form “X appears between Y and Z” for variables X,Y and Z. In [44], a
1
2 -approximation algorithm is presented for Betweenness on instances that are promised
to be perfectly satisfiable. Building on the techniques in this chapter, Charikar .et.al. [31]
show that for every OCSP of arity 3, it is UGC-hard to obtain an approximation better
than one attained by a random ordering.

9.1.2 Organization

We begin with an outline of the key ideas of the proof in Section 9.2. In Section 9.3, we
review the definitions of influences, noise operators and restate the unique games conjec-
ture. The groundwork for the reduction is laid in Section 9.4 and Section 9.5, where we
define influences for orderings, and multiscale gap instances respectively. We present the
dictatorship test in Section 9.6, and convert it to a UG hardness result in Section 9.7.

Towards generalizing these hardness results, we begin with formal definition of OCSP s
and the natural semidefinite program for OCSP s in Section Section 9.8. The construction
of dictatorship tests from SDP integrality gaps for an OCSP is presented in Section 9.9.
Finally, in Section 9.10, we sketch the component of the soundness analysis for Maximum
Acyclic Subgraph and OCSP hardness results, that is mostly borrowed from [136].

9.2 Proof Overview

At the heart of all UG-hardness results lies a dictatorship testing result for an appropriate
class of functions. For sake of brevity, let us denote [m] = {1, . . . ,m}. A function F :
[m]R → [m] is said to be a dictator if F(x) = xi for some fixed i. A dictatorship test
(DICT) is a randomized algorithm such that, given a function F : [m]R → [m], it makes
a few queries to the values of F and distinguishes between whether F is a dictator or far
from every dictator. While Completeness of the test refers to the probability of acceptance
of a dictator function, Soundness is the maximum probability of acceptance of a function far
from a dictator. The approximation problem one is showing UG hardness for determines
the nature of the dictatorship test needed for the purpose.

Unlike the case of functions, it is unclear as to what is the right notion of Dictators for
orderings. For every ordering O of [m]R, define m2R functions F [s,t] : [m]R → {0, 1} as
follows:

F [s,t](x) =

{

1 if s 6 O(x) 6 t

0 otherwise

The ith coordinate is said to be influential if it has a large influence (> τ) on any of the
functions F [s,t]. Here influence refers to the natural notion of influence for real valued
functions on [m]R (see Section 9.3). An ordering O is said to be τ -pseudorandom (far from
a dictator) if it has no influential coordinates (> τ). For this notion to be useful, it is
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necessary that a given ordering O does not have too many influential coordinates. Towards
this, in Lemma 9.4.3 we show that the number of influential coordinates is bounded (after
certain smoothening). Further this notion of influence is well suited to deal with orderings
of multiple long codes instead of one - a crucial requirement in translating dictatorship tests
to UG hardness.

Maximum Acyclic Subgraph Now we shall describe the proof strategy for the UG
hardness of Maximum Acyclic Subgraph. Given an ordering O of the vertices of a
directed graph G = (V,E), let Val(O) refer to the fraction of the edges E that are oriented
correctly in O.

Designing the appropriate dictatorship test for Maximum Acyclic Subgraph amounts
to the following: Construct a directed graph over the set of vertices V = [m]R such that:

– For a Dictator ordering O of V , Val(O) ≈ 1

– For any ordering O which is far from a dictator, Val(O) ≈ 1
2 .

Recall that our definition of influential coordinates for orderings can be used to formalize
the notion - “far from dictator”. Under this definition, we obtain a directed graph on [m]R

(a dictatorship test) for which the following holds:

Theorem 9.3. (Soundness) If O is any τ -pseudorandom ordering of [m]R, then Val(O) 6
1
2 + oτ (1).

This dictatorship test yields tight UG hardness for the Maximum Acyclic Subgraph
problem. Using the Khot-Vishnoi [104] SDP gap instance for unique games, we obtain an
SDP integrality gap for the same.

Now we describe the design of the dictatorship test in greater detail. At the outset,
the approach is similar to recent work on Constraint Satisfaction Problems(CSPs) [136].
Fix a constraint satisfaction problem Λ. Starting with an integrality gap instance = for
the natural semi-definite program for Λ, [136] constructs a dictatorship test DICT=. The
Completeness of DICT= is equal to the SDP value SDP(=), while the Soundness is close to
the integral value INT(=).

Since the result of [136] applies to arbitrary CSPs, a natural direction would be to pose
the Maximum Acyclic Subgraph as a CSP. Maximum Acyclic Subgraph is fairly
similar to a CSP, with each vertex being a variable taking values in domain [n] and each
directed edge a constraint between 2 variables. However, the domain, [n], of the CSP is not
fixed, but grows with input size. We stress here that this is not a superficial distinction but
an essential characteristic of the problem. For instance, if Maximum Acyclic Subgraph
was reducible to a 2-CSP over a domain of fixed size, then we could obtain a approximation
ratio better than a random assignment [81].

Towards using techniques from the CSP result, we define the following variant of Max-
imum Acyclic Subgraph:
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Definition 9.2.1. A q-ordering of a directed graph G = (V,E) consists of a map O : V →
[q]. The value of a q-ordering O is given by

valq(O) = Pr
(u,v)∈E

(

O(u) < O(v)
)

+
1

2
Pr

(u,v)∈E

(

O(u) = O(v)
)

In the q-Order problem, the objective is to find an q-ordering of the input graph G with
maximum value.

On the one hand, the q-Order problem is a CSP over a fixed domain that is similar to
Maximum Acyclic Subgraph. However, to the best of our knowledge, for the q-Order

problem, there are no known SDP gaps, which constitute the starting point for results
in [136]. For any fixed constant q, Charikar, Makarychev and Makarychev [33] construct
directed acyclic graphs (i.e., with value of the best ordering equal to 1), while the value of
any q-ordering of G is close to 1

2 . For the rest of the discussion, let us fix one such graph G
on m vertices. Notice that the graph G does not serve as SDP gap example for either the
Maximum Acyclic Subgraph or the q-Order problem.

As the graph G has only m vertices, and an ordering of value ≈ 1, it has a good q-
ordering for q = m. Viewing G as an instance of the m-Order CSP (corresponding to
predicate <), we obtain a directed graph, G, on [m]R. As a m-order CSP, the dictator
m-orderings yield value ≈ 1 on G. In turn, this implies that the Dictator orderings have
value ≈ 1 on G. Turning to the soundness proof, consider a τ -pseudorandom ordering O.
Obtain a q-ordering O∗ by the following coarsening process: Divide the ordering O into
q equal blocks, and map the vertices in the ith block to value i. The crucial observation
relating O and O∗ is as follows:

Coarsening Observation: “For a τ -pseudorandom ordering O, valq(O∗) ≈
val(O).”

Clearly, val(O)− valq(O∗) is bounded by the fraction of edges whose both endpoints fall in
the same block, during the coarsening. We use the Gaussian noise stability bounds of [124],
to bound the fraction of such edges. From the above observation, in order to prove that
val(O) ≈ 1

2 , it is enough to bound valq(O∗). Notice that O∗ is a solution to q-order problem
- a CSP over finite domain. Consequently, the soundness analysis of [136] can be used to
show that valq(O∗) is at most the value of the best q-ordering for G, which is close to 1

2 .
Summarizing the key ideas, we define the notion of influential coordinates for orderings,

and then use it to construct a dictatorship test for orderings. Using Gaussian noise stability
bounds, we relate the value of a pseudorandom ordering to a related CSP, and then apply
techniques from [136].

Ordering Constraint Satisfaction Problem The techniques developed in the case of
Maximum Acyclic Subgraph, along with ideas from Chapter 7, immediately yield UG
hardness results for general ordering CSPs.

First, as in the case of Maximum Acyclic Subgraph, for every OCSP Λ, it is possible
to define a related CSP Λq over the domain [q] for every positive integer q. Roughly speaking,
the CSP Λq consists of the problem of finding the q-Order that satisfies the maximum number
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of constraints. For a q-Order O of an instance = of a Λ-OCSP we will use valq(O) to denote
the number of objective value. Further, let valq(=) denote the optimum value of a q-Order

for the instance =.
The statement of Theorem 9.2 relates the Unique Games hardness threshold of a

OCSP Λ to the integrality gap of the natural SDP for the problem. However, constructing
integrality gap instances for OCSPs is in itself a challenging task. In this light, we will show
a stronger result than Theorem 9.2. Specifically, we will exhibit a black-box reduction to
UG hardness result starting from what we will refer to as a coarsening gap instance.

Definition 9.2.2. An instance = of a Λ-OCSP is a (q, c, s)-coarsening gap instance if
sdp(=) > c and valq(=) 6 s.

We will show that an integrality gap instance = with sdp(=) = c and opt(=) = s, is
a (q, c, s)-coarsening gap instance for all q (see Claim 9.8.1). Hence, clearly a coarsening
gap instance is a weaker notion than a integrality gap instance. Furthermore, constructing
coarsening gap instances has proved to be an easier task in the case of Maximum Acyclic
Subgraph and ordering 3-CSPs [31].

Theorem 9.4. Given a (q, c, s)-coarsening gap instance = of a OCSP Λ, for every constant
η > 0 we have

UGhardΛ(c) 6 GapΛ(c+ η) + η +O(q−η)

Fix an OCSP Λ. Let = be an instance of Λ with SDP value c + η and optimum value
SΛ(c + η). To show Theorem 9.2, we obtain a black box reduction that converts the in-
tegrality gap instance = with SDP solution (V ,µ) into a dictatorship test DICTεV ,µ with
completeness c and soundness at most SΛ(c+ η) + η. Further all the predicates checked by
the dictatorship test DICTεV ,µ belong to the family of predicates corresponding to Λ.

Let m denote the number of variables in the instance =. The dictatorship test DICTεV ,µ

is constructed by viewing the instance = as a CSP over a domain of size m. Specifically
DICTεV ,µ is an instance of Λ-OCSP over the set of variables indexed by [m]R for any integer

R. By virtue of the construction in [136], the m-Orders of [m]R given by the dictator
functions, have an objective value equal to the SDP value (c+ η in this case). To perform
the soundness analysis, we appeal to the coarsening observation above. By using this
observation, we can relate the value of an ordering O of =, to the value of the q-Order Oq

obtained by coarsening O. Finally, using a proof strategy along the lines of Section 7.4 we
relate the value valq(Oq) of the q-Order Oq of [m]R, to valq(=) - the optimum q-Order value
of the instance =!

While it is not trivial to obtain a UGC based hardness result for OCSP Λ starting from
the dictatorship test DICTεV ,µ, it follows entirely along the lines of Maximum Acyclic
Subgraph. Therefore, we omit the proof of the UG hardness result from this presentation.

9.3 Preliminaries

For a positive integer q, ∆q denotes the set of corners of the q dimensional simplex, i.e.,
∆q = {ei|i ∈ [q]}. Let Nq denote the convex hull of the set ∆q, in other words Nq is the
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q-dimensional simplex. We will use boldface letters z to denote vectors z = (z(1), . . . , z(R)).
Let oτ (1) denote a quantity that tends to zero as τ → 0, while keeping all other parameters
fixed. A q-ordering O of the graph G consists of a map O : V → [q]. Note that the map
O need not be injective or surjective. If the map O is a injection, then it corresponds to
an ordering of the vertices V . In a q-ordering O, an edge e = (u, v) is a forward edge if
O(u) < O(v).

Observation 9.3.1. For all directed graphs G, and integers q 6 q′, valq(G) 6 valq′(G) 6

val(G)

While the first part of the inequality is trivial, we will elaborate on the latter half. Given
a q′-ordering, construct a full ordering O∗ by using a random permutation of the elements
within each of the q′ blocks, while retaining the natural order between the blocks. The
expected value of the random ordering O∗ is exactly equal to the value of val(O), thus
proving the latter half of the inequality.

9.3.1 Noise Operators and Influences

Let Ω denote the finite probability space corresponding to the uniform distribution over
[m]. Let {χ0 = 1, χ1, χ2, . . . , χm−1} be an orthonormal basis for the space L2(Ω). For
σ ∈ [m]R, define χσ(z) =

∏

k∈[R] χσi(z
(k)). Every function F : ΩR → R can be expressed

as a multilinear polynomial as F(z) =
∑

σ F̂(σ)χσ(z). The L2 norm of F in terms of the

coefficients of the multilinear polynomial is ||F||22 =
∑

σ F̂2(σ)

Definition 9.3.1. For a function F : ΩR → R, define Infk(F) = Ez[Varz(k) [F ]] =
∑

σk 6=0 F̂2(σ).

Here Varz(k) [F ] denotes the variance of F(z) over the choice of the kth coordinate z(k).

Definition 9.3.2. For a function F : ΩR → R, define the function TρF as follows:

TρF(z) = E[F(z̃) | z] =
∑

σ∈[m]R

ρ|σ|F̂(σ)χσ(z)

where each coordinate z̃(k) of z̃ = (z̃(1), . . . , z̃(R)) is equal to z(k) with probability ρ and
with the remaining probability, z̃(k) is a random element from the distribution Ω.

Lemma 9.4.1. Consider two functions F ,G : [m]R → [0, 1] with E[F ] = E[G] = µ, and
Infk(T1−εF), Infk(T1−εG) 6 τ for all k. Let x,y be random vectors in [m]R whose marginal
distributions are uniform over [m]R but are arbitrarily correlated. For every ε > 0, there
exists a µ0 > 0 such that if µ < µ0 then

E
x,y

[T1−2εF(x)T1−2εG(y)] 6 µ1+ε/2 + oτ (1)

Proof. The lemma essentially follows from the Majority is Stablest theorem (see Theorem
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4.4 in [125]). We bound each factor individually as follows:

||T1−2εF||22 =
∑

σ∈[k]R
(1 − 2ε)2|σ|F̂2(σ) 6

∑

σ∈[k]R
(1 − ε)|σ|F̂(σ)(1 − ε)2|σ|F̂(σ)

6 E[(T1−εF)(x)T1−ε(T1−εF)(x)] .

Since the influences of T1−εF are low, we can apply Theorem 3.6 to bound the last expres-
sion by noise stability in Gaussian space Γ1−ε(µ).

E[(T1−εF)T1−ε(T1−εF)] 6 Γ1−ε(µ) + oτ (1)

Using Theorem 3.5, Γ1−ε(µ) is bounded by µ1+ε/2 for µ small enough compared to ε. Ap-
plying a similar bound for F ′ and applying Cauchy-Schwartz gives the result:

E
x
[T1−2εF(x)T1−2εF ′(y)] 6

√

||T1−2εF||22||T1−2εF ′||22 6 µ1+ε/2 + η

(for µ small enough)

�

Here we recall the following lemma bounding the sum of influences, for the sake of
convenience.

Lemma 9.4.2 (Sum of Influences Lemma). Given a function F : [m]R → [0, 1], if H =
T1−εF then

∑R
k=1 Infk(H) 6 1

2e ln 1/(1−ε) 6 1
ε

9.3.2 Semidefinite Program

For the sake of convenience, we recall the LC relaxation here. A solution the SDP consists
of a set of vectors V = {bu,i|u ∈ V, i ∈ [n]}, n-orthogonal vectors for each vertex, and a set
of distributions µ = {µe|e ∈ E} over [n]2 one for each edge. The formal statement of the
SDP relaxation is as follows.

LC Relaxation

maximize E
e=(u,v)∼E

[

Pr
(xu,xv)∈µe

{

xu < xv

}

+
1

2
Pr

(xu,xv)∈µe

{

xu = xv

}]

(LC)

subject to 〈bu,i, bv,j〉 = Pr
(xu,xv)∈µe

{

xu = i, xv = j
}

(e = (u, v) ∈ E, i, j ∈ [n]) .

µe ∈ N([n]2) ∀e ∈ E

9.4 Orderings

In this section, we develop the notions of influences for orderings and prove some basic
results about them.
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Definition 9.4.1. Given an ordering O of vertices V , its q-coarsening is a q-ordering O∗
obtained by dividing O into q-contiguous blocks, and assigning label i to vertices in the ith

block. Formally, if M = |V |/q then

O∗(u) =
⌊O(u)

M

⌋

+ 1

For an ordering O of points in [m]R, Define functions F [s,t]
O : [m]R → {0, 1} for integers

s, t as follows:

F [s,t]
O (x) =

{

1 if O(x) ∈ [s, t]

0 otherwise

We will omit the subscript and write F [s,t] instead of F [s,t]
O , when it is clear.

Definition 9.4.2. For an ordering O of [m]R, define the set of influential coordinates Lτ (O)
as follows:

Lτ (O) = {k | Infk(T1−εF [s,t]) > τ for some s, t ∈ Z}
An ordering O is said to be τ -pseudorandom if Lτ (O) is empty.

Lemma 9.4.3. (Few Influential Coordinates) For any ordering O of [m]R, we have |Lτ (O)| 6
400
ετ3

Proof. For integers s, t, δ1, δ2 such that |δi| < τ
8m

R, let f = T1−εF [s,t] and g = T1−εF [s+δ1,t+δ2].
Now,

Infk(f − g) 6 ||f − g||22 6 ||F [s,t] −F [s+δ1,t+δ2]||22 = Pr
z

[F [s,t](z) 6= F [s+δ1,t+δ2](z)] 6 τ/4

Hence, using a2 6 2(b2 + (a− b)2), we get:

Infk(f) =
∑

σk 6=0

f̂2(σ) 6 2





∑

σk 6=0

ĝ2(σ) +
∑

σk 6=0

(

f̂(σ) − ĝ(σ)
)2



 6 2Infk(g) + τ/2

Thus, if Infk(f) > τ , then Infk(g) > τ/4. It is easy to see that there is a set N =
{F [s,t]} of size at most 100/τ2 such that for every F [s,t] there is a F [s′,t′] ∈ N such that

max |s− s′|, |t− t′| < τmR

8 . Further, by Lemma 9.4.2, the functions T1−εF [s′,t′] have at most
4
ετ coordinates with influence more than τ/4. Hence, |Lτ (O)| 6 400

ετ3 . �

Claim 9.4.1. For any τ -pseudorandom ordering O of [m]R, its q-coarsening O∗ is also
τ -pseudorandom.

Proof. Since the functions {F [·,·]
O∗ } are a subset of the functions {F [·,·]

O }, Sτ (O∗) ⊆ Sτ (O). �

9.5 Multiscale Gap Instances

In this section, we will construct acyclic directed graphs with no good q-ordering. These
graphs will be crucial in designing the dictatorship test (Section 9.6).
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Definition 9.5.1. For η > 0 and a positive integer q, a (η, q)-Multiscale Gap instance is a
weighted directed graph G = (V,E) with the following properties:

– val(G) = 1 and valq(G) 6 1
2 + η

– There exists a solution {bu,i |u ∈ V, i ∈ [|V |]} to LC relaxation with objective value at
least 1 − η such that for all u ∈ V and 1 6 i 6 |V |, we have ‖bu,i‖2

2 = 1
|V | .

Clearly, if val(G) = 1, then the SDP value of G is at least 1. Hence, by definition we
have,

Observation 9.5.1. An (η, q)-multiscale gap instance is a (q, 1, 1
2 + η)-coarsening gap in-

stance for Maximum Acyclic Subgraph.

The cut norm of a directed graph, G, represented by a skew-symmetric matrix W is:
||G||C = maxxi,yj∈{0,1}

∑

ij xiyjwij
We will need the following theorem from [33] relating the cut norm of a directed graph

G to val(G).

Theorem 9.5 (Theorem 3.1, [33]). If a directed graph G on n vertices has a maximum

acyclic subgraph with at least a 1
2 + δ fraction of the edges, then, ||G||C > Ω

(

δ
logn

)

.

The following lemma and its corollary construct Multiscale Gap instances starting from
graphs that are the “tight cases” of the above theorem.

Lemma 9.5.1. Given η > 0 and a positive integer q, for every sufficiently large n, there
exists a directed graph G = (V,E) on n vertices such that val(G) = 1, valq(G) 6 1

2 + η .

Proof. Charikar et al (Section 4, [33]) construct a directed graph, G = (V,E), on n vertices
whose cut norm is bounded by O (1/ log n). The graph is represented by the skew-symmetric

matrix W , where wij =
∑n

k=1 sin π(j−i)k
n+1 . It is easy to verify that for every 0 < q < n,

∑n
k=1 sin

(

πqk
n+1

)

> 0. Thus, wij > 0 whenever i < j, implying that the graph is acyclic (in

other words, val(G) = 1).

We bound valq(G) as follows. Let valq(G) = 1
2 + δ and let O : V → [q] be the optimal

q-ordering. Construct a graph H on q vertices with a directed edge from O(u) to O(v) for
every edge (u, v) ∈ E with O(u) 6= O(v). Now, using Theorem 9.5, the cut norm of H is

bounded from below by Ω
(

δ
log q

)

. Moreover, since O is a partition of V , the cut norm of

G is at least the cut norm of H. Thus, Ω
(

δ
log q

)

6 ||H||C 6 ||G||C 6 O (1/ log n)Thus,

δ 6 O
(

log q
logn

)

implying that valq(G) 6 1
2 + O

(

log q
logn

)

. Choosing n to be a sufficiently gives

the required result. �

Corollary 9.5.1. For every η > 0 and positive integer q, there exists a (η, q)-Multiscale
Gap instance with a corresponding SDP solution {bu,i|u ∈ V, i ∈ [|V |]} and µ = {µe|e ∈ E}
satisfying ‖bu,i‖2

2 = 1/|V | for all u ∈ V, i ∈ [|V |].
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Proof. Let G = (V,E) be the graph obtained by taking d1/ηe disjoint copies of the graph
guaranteed by Lemma 9.5.1 and let m = |V |. Note that the graph still satisfies the required
properties: val(G) = 1, valq(G) 6 1

2 + η. Let O be the ordering of [m] that satisfies every
edge of G. Let D denote the distribution over labellings obtained by shifting O by a random
offset cyclically. For every u ∈ V, i ∈ [m], Pr[D(u) = i] = 1/m. Further, every directed edge
is satisfied with probability at least 1 − η. Being a distribution over integral labellings, D
gives raise to a set of vectors satisfying the constraints in Definition 9.5.1. G along with
these vectors form the required (η, q)-multiscale gap instance. �

9.6 Dictatorship Test

Let G = (V,E) be a (η, q)-multiscale gap instance on m vertices, where m is divisible by q.
Let (V ,µ) denote the corresponding SDP solution. Using the multiscale gap instance G,
construct a dictatorship test DICTεG on orderings O of [m]R as follows:

DICT
ε
G Test:

– Pick an edge e = (u, v) ∈ E at random from the Multiscale gap instance G.

– Sample ze = {zu, zv} from the product distribution µRe , i.e. For each 1 6 k 6 R,

z
(k)
e = {z(k)

u , z
(k)
v } is sampled using the distribution µe.

– Obtain z̃u, z̃v by perturbing each coordinate of zu and zv independently. Specifically,

sample the kth coordinates z̃
(k)
u , z̃

(k)
v as follows: With probability (1−2ε), z̃

(k)
u = z

(k)
u ,

and with the remaining probability z̃
(k)
u is a new sample from Ω.

– Introduce a directed edge z̃u → z̃v. (alternatively test if O(z̃u) < O(z̃v))

Theorem 9.6. (Soundness Analysis) For every ε > 0, there exists sufficiently large m, q
such that: For any τ -pseudorandom ordering O of [m]R,

val(O) 6 valq(G) +O(q−
ε
2 ) + oτ (1)

where oτ (1) → 0 as τ → 0 keeping all other parameters fixed.

Let F [s,t] : [m]R → {0, 1} denote the functions associated with the q-ordering O∗. For
the sake of brevity, we shall write F i for F [i,i]. The result follows from Lemma 9.6.2 and
Lemma 9.6.1 shown below.

Lemma 9.6.1. For every ε > 0, there exists sufficiently large m, q such that: For any
τ -pseudorandom ordering O of [m]R

val(O) 6 valq(O∗) +O(q−
ε
2 ) + oτ (1)

where O∗ is the q-coarsening of O.
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Proof. As O∗ is a coarsening of O, clearly val(O) > valq(O∗). Note that the loss due to
coarsening, is because for some edges e = (z, z′) which are oriented correctly in O, fall into
same block during coarsening, i.e. O∗(z) = O∗(z′). Thus we can write

val(O) 6 valq(O∗) +
1

2
Pr
(

O∗(z̃u) = O∗(z̃v)
)

Pr
(

O∗(z̃u) = O∗(z̃v)
)

=
∑

i∈[q]
E

e=(u,v)
E

zu,zv
E

z̃u,z̃v

[

F i(z̃u) · F i(z̃v)
]

=
∑

i∈[q]
E

e=(u,v)
E

zu,zv

[

T1−2εF i
u(zu) · T1−2εF i

v(zv)
]

As O is a q-coarsening of O, for each value i ∈ [q], there are exactly 1
q fraction of z for

which O∗(z) = i. Hence for each i ∈ [q], Ez[F i
u(z) = 1

q ]. Further, since the ordering

O∗ is τ -pseudorandom, for every k ∈ [R] and i ∈ [q], Infk(T1−εF i
a) 6 τ . Hence using

Lemma 9.4.1, for sufficiently large q, the above probability is bounded by q·q−1− ε
2 +q·oτ (1) =

O(q−
ε
2 ) + oτ (1) . �

Lemma 9.6.2. For every choice of m, q, ε, and any τ -pseudorandom q-ordering O∗ of [m]R,
valq(O∗) 6 valq(G) + oτ (1).

Proof. The q-ordering problem is a CSP over a finite domain, and is thus amenable to
techniques of [136]. Specifically, consider the payoff function P : [q]2 → [0, 1] defined by:
P (i, j) = 1 for i < j, P (i, j) = 0 for i > j and P (i, j) = 1

2 otherwise. The q-ordering
problem is a Generalized CSP(see Definition 2.4.1) with the payoff function P .

For the sake of exposition, let us pretend that q = m. In this case, the vectors {ui|u ∈
V, i ∈ [m]} form a feasible SDP solution for the q-ordering instance G. Let DICTεG denote
the dictatorship test obtained by running the reduction presented in Chapter 7 on this SDP
solution for q-ordering instance G. DICTεG is an instance of the q-ordering problem, over the
set of vertices [q]R. A q-ordering solution O∗ for DICTεG corresponds naturally to a function
F : [q]R → ∆q. Now we make the following observations:

– The q-ordering instance DICTεG is identical to the dictatorship test described in this
section when q = m.

– For a τ -pseudorandom q-ordering O∗, for every k ∈ [R] and i ∈ [q], the corre-
sponding function F satisfies Infk(T1−εF i) 6 τ . In the terminology of Chapter 7
(Definition 7.3.3), this is equivalent to the function F = (F1, . . . ,Fq) being “(β, τ)-
pseudorandom” with β = 0.

– By the soundness analysis of the dictatorship test from Chapter 7 ( Theorem 7.5 ), for
a (γ, τ)-pseudorandom function F , its probability of acceptance on the dictatorship
test is at most valq(G) + oβ,τ (1).

Hence the above lemma is just a restatement of Theorem 7.5 for the specific generalized
CSP: q-Ordering, albeit in the language of τ -pseudorandom orderings.



176

Recall that the actual case of interest here satisfies q < m. Unfortunately, in this case, a
black box application of the result from Theorem 7.5 does not suffice. However, the proof
of Theorem 7.5 can be easily adopted without any new technical ideas. In fact, many of the
technical difficulties encountered in proving Theorem 7.5 can be avoided here. For instance,
the SDP solution associates with each vertex u, the uniform probability distribution over
{1 . . . m}, unlike in Chapter 7 where there are several arbitrary probability distributions to
deal with. For the sake of completeness, we include a sketch of the above soundness analysis
in the more general setting of ordering constraint satisfaction problem in Section 9.10. �

Let F [s,t] : [m]R → {0, 1} denote the functions associated with the q-ordering O∗. For the
sake of brevity, we shall write F i for F [i,i], and F = (F1, . . . ,Fq). Arithmetizing valq(O∗)
in terms of functions F i we get:

valq(O∗) = E

[1

2

∑

i=j

F i(z̃u) · F j(z̃v) +
∑

i<j

F i(z̃u) · F j(z̃v)
]

where the expectation is over the edge e = (u, v), zu, zv , z̃u, and z̃v. Lemma 9.6.2 asserts
that the above expectation is bounded by valq(G)+oτ (1) for all functions F = (F1, . . . ,Fq)
that correspond to a q-ordering. Specifically, for each z ∈ [m]R, F(z) is a corner of the
simplex (F(z) ∈ ∆q).

For the Unique Games hardness reduction, we need the above lemma to hold for the
more general class of functions that take values in Nq - the q-dimensional simplex. The
following stronger claim also immediately follows from the proof of Lemma 9.6.2.

Claim 9.6.1. For a function F : [m]R → Nq satisfying Infk(T1−εF) 6 τ for all k ∈ [R],

E

[1

2

∑

i=j

F i(z̃u)F j(z̃u) +
∑

i<j

F i(z̃u)F j(z̃u)
]

6 valq(G) + oτ (1)

where the expectation is over the edge e = (u, v), zu, zv, z̃u, and z̃v.

We will sketch the proof of the above claim in the more general setting (see Lemma 9.9.3)
of OCSP’s in Section 9.10.

9.7 Hardness Reduction

Let G = (V,E) be a (η, q)-Multiscale gap instance, and let m = |V |. Further let V = {bv,i}
and µ = {µe|e ∈ E} denote the corresponding SDP solution. Let Φ = (WΦ ∪ VΦ, E,Π =
{πe : [R] → [R]|e ∈ E}, [R]) be a bipartite Unique Games instance. Towards constructing
a Maximum Acyclic Subgraph instance Ψ = (V, E) from Φ, we shall introduce a long
code for each vertex in VΦ. Specifically, the set of vertices V of the directed graph Ψ is
indexed by VΦ × [m]R.



177

Hardness Reduction:
Input: Unique Games instance Φ = (WΦ ∪ VΦ, E,Π = {πe : [R] → [R]|e ∈ E}, [R]) and a
(η, q) Multiscale gap instance G = (V,E).
Output : Directed graph Ψ = (V, E) with set of vertices : V = VΦ × [m]R and edges E
given by the following verifier:

– Pick a random vertex a ∈ WΦ. Choose two neighbours b, b′ ∈ VΦ independently at
random. Let π, π′ denote the permutations on the edges (a, b) and (a, b′).

– Pick an edge e = (u, v) ∈ E at random from the Multiscale gap instance G.

– Sample ze = {zu, zv} from the product distribution µRe , i.e. For each 1 6 k 6 R,

z
(k)
e = {z(k)

u , z
(k)
v } is sampled using the distribution µe(i, j) = ui · vj .

– Obtain z̃u, z̃v by perturbing each coordinate of zu and zv independently. Specifically,

sample the kth coordinates z̃
(k)
u , z̃

(k)
v as follows: With probability (1− 2ε), z̃

(k)
u = z

(k)
u ,

and with the remaining probability z̃
(k)
u is a new sample from Ω.

– Introduce a directed edge (b, π(z̃u)) → (b′, π′(z̃v)).

Theorem 9.7. For every η > 0, there exists choice of parameters ε, q, δ such that:

– Completeness: If Φ is a (1−δ)-strongly satisfiable instance of Unique Games, then
there is an ordering O for the graph Ψ with value at least (1−5η). i.e. val(Ψ) > 1−5η.

– Soundness: If Φ is not δ-satisfiable, then no ordering to Ψ has value more than
1
2 + 4η, i.e. val(Ψ) 6 1

2 + 4η.

In the rest of the section, we will present the proof of the above theorem. To begin with,
we fix the parameters of the reduction.

Parameters : Fix ε = η/100. Let τ, q be the constants obtained from Theorem 9.8.
Finally, let us choose δ = min{η/4, ηε2τ8/109}.

9.7.1 Completeness

In order to show that val(Ψ) > 1 − 5η, we will instead show that valm(Ψ) > 1 − 5η. From
Observation 9.3.1, this will imply the required result.

By assumption, there exists labellings to the Unique Game instance Φ such that for 1−δ
fraction of the vertices a ∈ WΦ all the edges (a, b) are satisfied. Let A : VΦ ∪ WΦ → [R]
denote one such labelling. Define an m-ordering of Ψ as follows:

O(a, z) = z(A(a)) ∀a ∈ WΦ, z ∈ [m]R

Clearly the mapping O : V → [m] defines an m-ordering of the vertices V = VΦ × [m]R. To
determine valm(O), let us compute the probability of acceptance of a verifier that follows
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the above procedure to generate an edge in E and then checks if the edge is satisfied.
Arithmetizing this probability, we can write

valm(O) =
1

2
Pr
(

O(b, π(z̃u)) = O(b′, π′(z̃v))
)

+ Pr
(

O(b, π(z̃u)) < O(b′, π′(z̃v))
)

With probability at least (1−δ), the verifier picks a vertex a ∈ WΦ such that the assignment
A satisfies all the edges (a, b). In this case, for all choices of b, b′ ∈ N(a), π(A(a)) = A(b)
and π′(A(a)) = A(b′). Let us denote A(a) = l. By definition of the m-ordering O, we get
O(b, π(z)) = (π(z))(A(b)) = z(π−1(A(b))) = z(l) for all z ∈ [m]R. Similarly for b′, O(b′, π′(z)) =
z(l) for all z ∈ [m]R. Thus we get

valm(O) > (1 − δ) ·
(1

2
Pr
(

z̃(l)
u = z̃(l)

v

)

+ Pr
(

z̃(l)
u < z̃(l)

v

)

)

With probability at least (1 − 2ε)2, for both z̃u and z̃v we have z̃
(l)
u = z

(l)
u and z̃

(l)
v = z

(l)
v .

Further, note that each coordinate z
(l)
u , z

(l)
v is generated according to the local distribution

µe for the edge e = (u, v). Substituting in the expression for valm(O) we get,

valm(O) > (1 − δ)(1 − 2ε)2 E
e=(u,v)

[

Pr
(xu,xv)∈µe

{

xu < xv

}

+
1

2
Pr

(xu,xv)∈µe

{

xu = xv

}]

Recall that the SDP solution (V ,µ) have an objective value at least (1−η). Thus for small
enough choice of δ and ε , we have valm(O) > 1 − 5η.

9.7.2 Soundness

Let O be an ordering of Ψ with val(O) > 1
2 + 4η. Using the ordering, we will obtain a

labelling A for the Unique Games instance Φ. Towards this, we shall build machinery to
deal with multiple long codes. For b ∈ VΦ, define Ob as the restriction of the map O to
vertices corresponding to the long code of b. Formally, Ob is a map Ob : [m]R → Z given by
Ob(z) = O(b, z). Similarly, for a vertex a ∈ WΦ, let Oa denote the restriction of the map O
to the vertices N(a) × [m]R, i.e. Oa(b, z) = O(b, z).

Multiple Long Codes

Throughout this section, we shall fix a vertex a ∈ WΦ and analyze the long codes cor-
responding to all neighbours of a. For a neighbour b ∈ N(a), we shall use πb to denote

the permutation along the edge (a, b). Let F [s,t]
b denote the functions associated with the

ordering Ob. Define functions F [s,t]
a : [m]R → R as follows:

F [s,t]
a (z) = Pr

b∈N(a)

(

Oa(b, πb(z)) ∈ [s, t]
)

= E
b∈N(a)

[F [s,t]
b (πb(z))]

Definition 9.7.1. Define the set of influential coordinates Lτ (Oa) as follows:

Lτ (Oa) = {k|Infk(T1−εF [s,t]
a ) > τ for some s, t ∈ Z}
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An ordering Oa is said to be τ -pseudorandom if Lτ (Oa) is empty.

Lemma 9.7.1. For any influential coordinate k ∈ Lτ (Oa), for at least τ
2 fraction of b ∈

N(a), πb(k) is influential on Ob. More precisely, πb(k) ∈ Lτ/2(Ob).

Proof. As the coordinate k is influential on Oa, there exists s, t such that Infk(F [s,t]
a ) >

τ . Recall that F [s,t]
a (z) = Eb∈N(a)[F [s,t]

b (πb(z))]. Using convexity of Inf this implies,

Eb∈N(a)[Infπb(k)(F
[s,t]
b )] > τ . All the influences Infπb(k)(F

[s,t]
b ) are bounded by 1, since each

of the functions F [s,t]
b take values in the range [0, 1]. Therefore for at least τ/2 fraction of

vertices b ∈ N(a), we have Infπb(k)(F
[s,t]
b ) > τ/2. This concludes the proof. �

Lemma 9.7.2. For any vertex a ∈ WΦ, |Lτ (Oa)| 6 800/ετ4.

Proof. From Lemma 9.7.1, for each coordinate k ∈ Lτ (Oa) there is a corresponding co-
ordinate πb(k) in Lτ/2(Ob) for at least τ/2 fraction of the neighbours b. Further from
Lemma 9.4.3, the size of each set Lτ/2(Ob) is at most 400/ετ3. By double counting, we get
that |Lτ (Oa)| is at most 800/ετ4. �

Theorem 9.8. For all ε, η > 0, there exists constants q, τ > 0 such that for any vertex
a ∈ WΦ, if Oa is τ -pseudorandom then val(Oa) 6 valq(G) + η/4.

Proof. The proof outline is similar to that of Theorem 9.6. Let O∗a denote the q-coarsening
of Oa. Then we can write,

val(Oa) 6 valq(O∗a) +
1

2
Pr
(

O∗a(b, πb(z̃u)) = O∗a(b′, πb′(z̃v))
)

The q-coarsening O∗a is obtained by dividing the order Oa into q-blocks. Let [p1+1, p2], [p2+
1, p3], . . . , [pq + 1, pq+1] denote the q blocks. For the sake of brevity, let us denote F i

a =

F [pi+1,pi+1]
a and F i

b = F [pi+1,pi+1]
b . In this notation, we can write:

Pr
(

O∗a(b, πb(z̃u)) = O∗a(b′, πb′(z̃v))
)

=
∑

i∈[q]
E

e=(u,v)
E
b,b′

E
zu,zv,z̃u,z̃v

[

F i
b(πb(z̃u)) · F i

b′(πb′(z̃v))
]

=
∑

i∈[q]
E

e=(u,v)
E

zu,zv

E
z̃u,z̃v

[

F i
a(z̃u) · F i

a(z̃v)
]

=
∑

i∈[q]
E

e=(u,v)
E

zu,zv

[

T1−2εF i
a(zu) · T1−2εF i

a(zv)
]

As the ordering Oa is τ -pseudorandom, for every k ∈ [R] and i ∈ [q], Infk(T1−εF i
a) 6 τ .

Hence by Lemma 9.4.1, the above value is less than O(q−
ε
2 ) + oτ (1).

Now we shall bound the value of valq(O∗a). In terms of the functions F i
b , the expression
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for valq(O∗a) is as follows:

valq(O∗a) = E

[1

2

∑

i=j

F i
b(πb(z̃u)) · F j

b′(πb′(z̃v)) +
∑

i<j

F i
b(πb(z̃u)) · F j

b′(πb′(z̃v))
]

= E

[1

2

∑

i=j

F i
a(z̃u) · F j

a(z̃v) +
∑

i<j

F i
a(z̃u) · F j

a(z̃v)
]

Again, since the ordering Oa is τ -pseudorandom, for every k ∈ [R] and i ∈ [q], Infk(T1−εF i
a) 6

τ . Hence by Claim 9.6.1, the above value is bounded by valq(G) + oτ (1). From the above
inequalities, we get val(Oa) 6 valq(G) +O(q−

ε
2 ) + oτ (1), which finishes the proof. �

Defining a Labelling

Define the labelling A for the Unique Games instance Φ as follows: For each a ∈ WΦ,
A(a) is a uniformly random element from Lτ (Oa) if it is non-empty, and a random label
otherwise. Similarly for each b ∈ VΦ, assign A(b) to be a random element of Lτ/2(Ob) if it
is nonempty, else an arbitrary label.

If val(O) = Ea∈WΦ
[val(Oa)] > 1

2 +4η, then for at least 2η fraction of vertices a ∈ WΦ, we
have val(Oa) > 1

2 + 2η. Let us refer to these vertices a as good vertices. From Theorem 9.8,
for every good vertex the order Oa is not τ -pseudorandom. In other words, for every good
vertex a, the set Lτ (Oa) is non-empty. Further by Lemma 9.7.1 for every label l ∈ Lτ (Oa),
for at least τ/2 fraction of the neighbours b ∈ N(a), πb(l) belongs to Lτ/2(Ob). For every
such b, the edge (a, b) is satisfied with probability at least 1/|Lτ (Oa)| × 1/|Lτ/2(Ob)|. By
Lemma 9.4.3 and Lemma 9.7.2, this probability is at least ετ4/800 × ετ3/3200. Summa-
rizing the argument, the expected fraction of edges satisfied by the labelling A is at least
ηε2τ8/10240000. By a small enough choice of δ, this yields the required result.

9.8 Ordering CSP

In this section, we will state a general UG hardness result for Ordering Constraint Satisfac-
tion Problems (OCSP) and outline the central ideas of the proof. To this end, we begin by
defining ordering constraint satisfaction problems.

Definition 9.8.1. An Ordering Constraint Satisfaction Problem (OCSP) Λ is specified by
a family of payoff functions P : Πk → [−1, 1] on the set Πk of permutations on k elements.
The integer k is referred to as the arity of the OCSP Λ.

Notice that every payoff P ∈ Λ is assumed to be on the set of permutations of exactly
k elements. However, there is no loss of generality since for every q 6 k, a payoff on set
Πq of permutations on q elements can be expressed as a payoff on Πk by including dummy
variables.

For m > k, let Πk→N denote the set of one to one maps from [k] → N. The domain of a
payoff function P can be extended naturally from the set of permutations Πk to Πk→N. In
particular, an injective map f ∈ Πk→N, along with the ordering on the range N induces a
permutation πf on [k]. To extend the payoff, just define P (f) = P (πf ) for all f ∈ Πk→N.
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Definition 9.8.2 (Λ-OrderingConstraintSatisfactionProblem (OCSP)). An instance
= of Ordering Constraint Satisfaction Problem Λ is given by = = (V,P) where

– V = {y1, . . . , ym} is the set of variables that need to be ordered. Thus an ordering O
is a one to one map from V to natural numbers N.

– P is a probability distribution over constraints/payoffs applied to subsets of at most
k variables from V. More precisely, a sample P ∼ P would be a payoff function from
Λ, applied on a sequence of variables yS = (ys1, . . . , ysk

). If O|S denotes the injective
map from yS → N obtained by restricting O to yS , then the payoff returned is P (O|S).

For a payoff P ∈ P, we define V(P ) ∈ V to denote the set of variables on which P is applied.
The objective is to find an ordering O of the variables that maximizes the total weighted
payoff/expected payoff, i.e.,

E
P∼P

[

P (O|P )
]

Here O|P denotes the ordering O restricted to the variables in V(P ). We define the value
opt(P) as

opt(=)
def
= max
O:ΠV→N

E
P∼P

P (O|P ) .

Observe that if the payoff functions P are predicates, then maximizing the payoff
amounts to maximizing the number of constraints satisfied.

We will use Λ to denote both the OCSP and the family of payoffs associated with it.
The notions “payoff function” and “constraint” will be used interchangeably.

9.8.1 Relation to CSPs

An ordering O can be thought of as an assignment of values from {1, . . . ,m} to each variable
yi such that yi 6= yj for all i 6= j. By suitably extending the payoff functions P ∈ Λ, it is
possible to eliminate the “one to one” condition (yi 6= yj whenever i 6= j). More precisely,
we shall extend the domain of payoff functions P ∈ Λ from Πk→[m] to N

[k] - the set of all
maps from [k] to N.

Given an arbitrary function f : [k] → N, define a probability distribution Pf on the set
of permutations Πk by the following random procedure: 1) For each j ∈ N with f−1(j) 6= φ,
pick a uniform random permutation πj of elements in f−1(j). 2) Concatenate the permu-
tations πj in the natural ordering on j ∈ N to obtain the permutation π ∈ Πk. For a payoff
P ∈ Λ, define

P (f) = E
π∼Pf

[P (π)]

With this extension of payoff functions, the following lemma shows that optimizing over
all orderings is equivalent to optimizing over all assignments of values in [m] to variables
{y1, . . . , ym}.
Lemma 9.8.1. For an instance = = (V,P) of a Λ-OCSP with |V| = m, we have

max
O∈ΠV→N

E
P∈P

P (O|P ) = max
f∈[m]V

E
P∈P

P (f|P )
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Here [m]V denotes the set of all functions from V to [m].

Proof. For every injective map O : V → N, there is an injective map O′ : V → [m]
corresponding to the permutation induced by O. Clearly, the objective value of O is the
same as O′. Since O′ ∈ [m]V , we have

max
O∈ΠV→N

E
P∈P

P (O|P ) 6 max
f∈[m]V

E
P∈P

P (f|P )

Given an arbitrary function f : V → [m], define a probability distribution Df on the
orderings O ∈ ΠV→[m] by the following random procedure: 1) For each j ∈ [m] with
f−1(j) 6= φ, pick a uniform random permutation πj of elements in f−1(j). 2) Concatenate
the permutations πj in the natural ordering on j ∈ N to obtain the ordering O ∈ ΠV→[m].
By our definition of extended payoffs P , it easily follows that,

E
P∈P

P (f|P ) = E
O∈Df

[

E
P∈P

P (O|P )
]

.

In turn, this implies that

max
O∈ΠV→N

E
P∈P

P (O|P ) > max
f∈[m]V

E
P∈P

P (f|P ) ,

thus finishing the proof. �

By virtue of Lemma 9.8.1, the Λ-OCSP instance = = (V,P) is transformed into a
constraint satisfaction problem over variables V, albeit over a domain [m] whose size is not
fixed. Specifically, the problem of finding an optimal ordering O for the Λ-OCSP instance
can be reformulated as computing

val(=) = max
y∈[m]m

E
P∈P

[

P (yV(P ))
]

(9.1)

Here we are slightly abusing notation to denote the payoff P to be a function over the
assignment yV(P ) itself. For the sake of convenience, we will use yP to denote yV(P ).

Taking the analogy with CSPs a step further, one can define a CSP Λq for every positive
integer q > 0. Given an instance = = (V,P) of Λ-OCSP, the corresponding Λq problem is
to find a q-ordering that maximizes the expected payoff. Formally, the goal of the Λq-CSP
instance = is to compute an assignment y ∈ [q]m that is the maximizes the following:

valq(=) = max
y∈[q]m

E
P∈P

[

P (yP )
]

(9.2)

The following claim is an easy consequence of the above definitions:

Claim 9.8.1. For every Λ-OCSP instance = = (V,P), and integers q 6 q′

valq(=) 6 valq′(=) 6 val(=) ,

Further, if |V| = m then valm(=) = val(=).
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9.8.2 SDP Relaxation

LC Relaxation (Equivalent Version)

maximize E
P∼P

E
x∼µP

P (x)

subject to 〈bs,a, bs′,b〉 = Pr
x∼µP

{

xs = a, xs′ = b
}

(P ∈ supp(P), s, s′ ∈ V(P ), a, b ∈ [m]) .

(9.3)

〈bs,a, b0〉 = ‖bs,a‖2
2 ∀s ∈ V, a ∈ [m] , (9.4)

‖b0‖2
2 = 1 (9.5)

µP ∈ N([q]V(P )) ∀P ∈ supp(P)

A coarsening gap instance has much weaker properties than a integrality gap instance,
thus making it easier to construct.

Definition 9.8.3. An instance = of a Λ-OCSP is a (q, c, s)-coarsening gap instance if
sdp(=) > c and valq(=) 6 s.

Smoothing Coarsening Gaps

Definition 9.8.4. For α > 0, a (q, c, s)-coarsening gap instance = = (V,P) over m variables
is said to be α-smooth if for every P ∈ P and x ∈ [m]k, µP,x > α.

Here we will outline a transformation on coarsening gap instance =∗, to another coars-
ening gap instance = with certain special properties including α-smoothness. Note that the
smoothness parameter of the resulting solutions is α = η

10mk .

Lemma 9.8.2. For all η > 0 the following holds, given a (q, c, s)-coarsening gap instance
=∗ = (V∗,P∗) of a Λ-OCSP, for large enough m, there exists a (q, c−η/5, s+η/5)-coarsening
gap instance = = (V,P) on m variables, an SDP solution {vi,a}i∈V ,a∈[M ], {µP }P∈supp(P) and
a vector b0 satisfying

〈bi,a, bi,a〉 =
1

m
∀i ∈ V, a ∈ [m] , (9.6)

µP,x >
η

10mk
∀P ∈ P, x ∈ [m]k , (9.7)

and

E
P∼P

E
x∼µP

P (x) > c− η

5
valq(=) 6 s+

η

5

Proof. Intuitively, the SDP solution corresponding to instance = assigns each of the variables
yi ∈ V each of the locations in [m] with equal probability. = is constructed by taking many
copies of =∗ and joining them side by side such that cyclic shifts of orderings obtain around
the same payoff.
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More formally, let L = d20
η e and set V = V∗× [L]. The distribution P is obtained by sim-

ply the product distribution of P∗ and the uniform distribution over [L]. That is, for every
p = (y1, y2, . . . yk) in the support of P∗ and for every l ∈ [L], PrP((y1, l), (y2, l), . . . , (yk, l)) =
PrP∗(p)/L.

Let O be an optimal ordering for =. Let m = |V| = L|V∗|. For every i ∈ [m], define
ordering O∗(i) : V → [m] to be O∗(v, k) = i+k|V|+O(v) (addition modulo m). Since except
for at most one copy of P∗, every other constraint is ordered as in O, the payoff of O∗(i) is

at least c− η/20.

Further, since the q-ordering value of P is simply the average of the q-ordering values of
the individual pieces, valq(P) 6 s.

To construct the vectors, we consider the distribution over assignments obtained by
taking, with probability 1−η/10, one of O∗(i) with equal probability and taking a completely

random assignment with probability η/10. It is easy to see that the probability y ∈ V is
assigned a ∈ [m] is exactly 1/m. Further, since we take a completely random assignment
with probability η/10, for any constraints p ∈ P and x ∈ [m]k, the distribution assigns x
to p with probability at least η

10mk . The payoff obtained by this distribution is at least
(1 − η/10)(c − η/20) > c − η/5. The distribution over assignments naturally gives vectors
satisfying the required constraints. �

Abusing notation, henceforth we shall use = to denote the smoothed coarsening gap
instance =∗.

9.9 Dictatorship Test for OCSP

In this section, we will construct a dictatorship test for an OCSP Λ starting with a coarsen-
ing gap instance = for the problem. Formally, let =∗ = (V∗,P∗) be a (q, c, s) coarsening gap
instance with |V| = m. Let = = (V,P) denote the (q, c− η

5 , s+ η
5 )-coarsening gap instance,

which is α = η/10mk-smooth, obtained from Lemma 9.8.2. Let (V ,µ) denote the SDP
solution associated with the instance =. Define a dictatorship test DICTεV ,µ on orderings O
of [m]R as follows:
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DICTεV ,µ Test
Let =∗ = (V∗,P∗) be a (q, c, s) coarsening gap instance with |V| = m. Let = = (V,P)
denote the (q, c− η

5 , s+ η
5 )-coarsening gap instance, which is α = η/10mk-smooth, obtained

from Lemma 9.8.2. Let (V ,µ) denote the SDP solution associated with the instance =.

– Sample a payoff P from the distribution P. Let V(P ) = S = {s1, s2, . . . , sk}.

– Sample zS = {zs1 , . . . , zsk
} from the product distribution µRP , i.e. For each 1 6 j 6 R,

z
(j)
S = {z(j)

s1 , . . . , z
(j)
sk } is sampled using the local distribution µP on [m]V(P ).

– For each si ∈ S and each 1 6 j 6 R, sample z̃jsi as follows: With probability (1 − ε),

z̃
(j)
si = z

(j)
si , and with the remaining probability z̃

(j)
si is a uniform random element from

[m].

– Query the ordering values O(z̃s1), . . . ,O(z̃sq ).

– Return the Pay-Off : P
(

O
(

z̃s1
)

, . . . ,O
(

z̃sk

)

)

Completeness It is fairly simple to check that the completeness of the dictatorship test
DICTεV ,µ is close to the SDP value of =. Specifically, we will now show,

Lemma 9.8.3.

Completeness(DICT
ε
V ,µ) > val(V ,µ) − 2εk = c− η

5
− 2εk

Proof. A dictator “m-ordering” O is given by O(z) = z(j). The expected payoff returned
by the verifier DICTεV ,µ on O is given by

E
P∈P

E
zS

E
z̃S

[

P
(

O
(

z̃s1
)

, . . . ,O
(

z̃sk

)

)]

= E
P∈P

E
zS

E
z̃S

[

PS

(

z̃(j)
s1 , . . . , z̃

(j)
sk

)]

With probability (1 − ε)k, z̃
(j)
si = z

(j)
si for each si ∈ S. Further the payoff functions P ∈ P

take values in [−1, 1]. Hence a lower bound for the expected payoff is given by

E
P∈P

E
zS

E
z̃S

[

P
(

O
(

z̃s1
)

, . . . ,O
(

z̃sq

)

)]

> (1 − ε)k E
P∈P

E
zS

[

P
(

z(j)
s1 , . . . , z

(j)
sq

)]

+ (1 − (1 − ε)k) · (−1)

The jth coordinates z
(j)
S = {z(j)

s1 , . . . , z
(j)
sq } are generated from the local probability distribu-

tion µP . Thus we get,

E
P∈P

E
zS

[

P
(

z(j)
s1 , . . . , z

(j)
sq

)]

= E
P∈P

E
x∈µP

[

P (x)
]

= val(V ,µ) (9.8)

The expected payoff is at least (1 − ε)k · val(V ,µ) − (1 − (1 − ε)k) > val(V ,µ) − 2εk. �
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Soundness The following soundness claim is an immediate consequence of Lemma 9.9.2
and Lemma 9.9.1.

Theorem 9.9. (Soundness Analysis) For every ε > 0, for any τ -pseudorandom ordering
O of [m]R,

val(O) 6 valq(=) +O(q−
ε
2 ) + oτ (1)

where oτ (1) → 0 as τ → 0 keeping all other parameters fixed.

Lemma 9.9.1. For every ε > 0, for any τ -pseudorandom ordering O of [m]R

val(O) 6 valq(O∗) +

(

k

2

)

q−
ε
2 + oτ (1)

where O∗ is the q-coarsening of O and k denotes the arity of the OCSP Λ.

Proof. Let F [s,t] : [m]R → {0, 1} denote the functions associated with the q-ordering O∗.
For the sake of brevity, we shall write F i for F [i,i].

Note that the loss due to coarsening, is because for some payoffs P the k variables in
V(P ) do not fall into distinct bins during coarsening. Let us upper bound the probability
that some two of the variables queried z̃si , z̃sj fall into same block during coarsening, i.e.
O∗(z̃si) = O∗(z̃sj ). Observe that,

Pr
(

O∗(z̃si) = O∗(z̃sj )
)

=
∑

i∈[q]
E

P∈P
E

zsi
,zsj

E
z̃si

,z̃sj

[

F i(z̃si) · F i(z̃sj )
]

=
∑

i∈[q]
E

P∈P
E

zsi ,zsj

[

T1−2εF i(zsi) · T1−2εF i(zsj )
]

As O is a q-coarsening of O, for each value i ∈ [q], there are exactly 1
q fraction of z for

which O∗(z) = i. Hence for each i ∈ [q], Ez[F i(z) = 1
q ]. Further, since the ordering O∗ is

τ -pseudorandom, for every j ∈ [R] and i ∈ [q], Infj(T1−εF i) 6 τ . Hence using Lemma 9.4.1,
for sufficiently large q, the above probability is bounded by q · q−1− ε

2 + q ·oτ (1). By a simple
union bound, the probability that two of the queried values fall in the same bin is at most
(

k
2

)

(

q ·q−1− ε
2 + q ·oτ (1)

)

As all the payoffs are bounded by 1 in absolute value, we can write

val(O) 6 valq(O∗) + Pr
(

∃i, j ∈ [k] such that O∗(z̃si) = O∗(z̃sj )
)

6 valq(O∗) +

(

k

2

)

q−
ε
2 + oτ (1)

�

Lemma 9.9.2. For every choice of m, q, ε, and any τ -pseudorandom q-ordering O∗ of [m]R,
valq(O∗) 6 valq(=) + oτ (1).

Proof. Let F [s,t] : [m]R → {0, 1} denote the functions associated with the q-ordering O∗.
For the sake of brevity, we shall write F i for F [i,i], and F = (F (1), . . . ,F (q)). The expected
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payoff returned by the verifier in the dictatorship test DICTεV ,µ is given by,

valq(O∗) = E
P∈P

E
zS

E
z̃S

[

P
(

F
(

z̃s1
)

, . . . ,F
(

z̃sk

)

)]

.

Further, since the ordering O∗ is τ -pseudorandom, for every j ∈ [R] we have Infj(T1−εF i) 6

τ . The proof follows from Lemma 9.9.3. �

9.10 Soundness Analysis for q-Orderings

In this section, we will sketch the proof of Lemma 9.9.2 and Lemma 9.6.2. As Lemma 9.6.2
is a special case of Lemma 9.9.2, we will restrict ourselves to the proof of Lemma 9.9.2.
The proof of Lemma 9.9.2 closely resembles the soundness analysis of dictatorship tests for
the case of GCSPs (Theorem 7.5) . However, the lemma is not an direct consequence of
Theorem 7.5. This is because, in the soundness analysis of Theorem 7.4 assumes that the
domain of the function is [q]R while the output is also in Nq for some q. For the sake of
completeness we include a sketch of the proof here.

9.10.1 Payoff Functions

For the sake of the proof, we will extend the payoff functions P corresponding to the CSP
Λq to smooth real valued functions on R

tk. The details of the extension are identical to the
case of GCSPs (Subsection 7.4.1).

9.10.2 Local and Global Distributions

Now, we shall describe two ensembles of random variables, namely the local integral ensem-
bles LP for each payoff P , and a global Gaussian ensemble G.

Definition 9.10.1. For every payoff P ∈ P of size at most k, the Local Distribution µP
is a distribution over [m]V(P ). In other words, the distribution µP is a distribution over
assignments to the CSP variables in set V(P ). The corresponding Local Integral Ensemble
is a set of random variables LP = {`s1 , . . . , `sk

} each taking values in ∆m.

Definition 9.10.2. The Global Ensemble G = {gs|s ∈ V, j ∈ [m]} are generated by setting
gs = {gs,1, . . . , gs,m} where

gs,j = 〈b0, bs,j〉 + 〈(bs,j − (〈b0, bs,j〉)b0), ζ〉

and ζ is a normal Gaussian random vector of appropriate dimension.

It is easy to see that the local and global integral ensembles have matching moments up
to degree two.

Observation 9.10.1. For any set P ∈ P, the global ensemble G matches the following
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moments of the local integral ensemble LP

E[gs,j ] = E[`s,j] = 〈b0, bs,j〉 E[g2
s,j] = E[`2s,j] = 〈b0, bs,j〉

E[gs,jgs,j′] = E[`s,j`s,j′] = 0 ∀j 6= j′, s ∈ V(P )

9.10.3 Putting It All Together

Finally, we will now show the following lemma which forms the core of the soundness
argument in Lemma 9.9.2 and is a generalization of the Claim 9.6.1.

Lemma 9.9.3. For a function F : [m]R → Nq satisfying Infj(T1−εF) 6 τ for all j ∈ [R],

E
P∈P

E
zS

E
z̃S

[

P
(

F
(

z̃s1
)

, . . . ,F
(

z̃sk

)

)]

6 valq(=) + oτ (1)

Here oτ (1) → 0 as τ → 0 while all other parameters are fixed.

Proof. Let us denote H = T1−εF . Let F(x),H(x) denote the multilinear polynomials
corresponding to functions F ,H respectively. Let us denote,

DICTεV ,µ(F) = E
P∈P

E
zS

E
z̃S

[

P
(

F
(

z̃s1
)

, . . . ,F
(

z̃sk

)

)]

Each vector zsi is independently perturbed to obtain z̃si . The payoff functions P are
multilinear when restricted to the domain Nq. Consequently, we can write

DICTεV ,µ(F) = E
P∈P

E
zS

[

P
(

E
z̃s1

[F
(

z̃s1
)

|zs1 ], . . . , E
z̃s1

[F
(

z̃sq |zsk
]
)

)]

= E
P∈P

E
zS

[

P
(

H
(

zs1
)

, . . . ,H
(

zsk

)

)]

The last equality is due to the fact Ez̃si
[F si(z̃si)|zsi ] = T1−εFsi(zsi) = Hsi(zsi). For each

s ∈ S, the coordinates of zs are generated by the distribution µP . Therefore the above
expectation can be written in terms of the polynomial H applied integral ensemble LP .
Specifically, we can write

DICTεV ,µ(F) = E
P∈P

E
zS

[

P
(

H
(

zs1
)

, . . . ,H
(

zsk

)

)]

= E
P∈P

E
LR

P

[

P
(

H
(

`Rs1
)

, . . . ,H
(

`Rsk

)

)]

(9.9)

The following procedure RoundF returns an ordering for the original Λ-OCSP instance =.
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RoundF Scheme

Input : A Λq-OCSP instance = = (V,P) with a SDP solution {bv,i}, {µP }.

Sample R vectors ζ(1), . . . , ζ(R) with each coordinate being i.i.d normal random variable.
For each s ∈ V do

– For all 1 6 j 6 R and c ∈ [m], compute the projection g
(j)
s,c of the vector bs,c as

follows:

g(j)
s,c = 〈b0, bs,c〉 +

[

〈(bs,c − (〈b0, bs,c〉)b0), ζ
(j)〉
]

– Evaluate the function H = T1−εF with g
(j)
s,c as inputs. In other words, compute

ps = (ps,1, . . . , ps,q) as follows:
ps = H(gs)

– Round ps to p∗s ∈ Nq using the following procedure.

f[0,1](x) =











0 if x < 0

x if 0 6 x 6 1

1 if x > 1

Scale(x1, x2, . . . , xq) =

{

1
∑

i xi

(

x1, . . . , xq
)

if
∑

i xi 6= 0

(1, 0, 0, . . . , 0) if
∑

i xi = 0

p∗s = Scale(f[0,1](ps,1), . . . , f[0,1](ps,q))

– Assign the Λ-OCSP variable ys ∈ V the value j ∈ [q] with probability p∗s,j.

Let RoundF(V ,µ) denote the expected payoff of the ordering returned by the rounding
scheme RoundF on the SDP solution (V ,µ). By definition, we have:

RoundF(V ,µ) 6 valq(=) (9.10)

In the remainder of the proof, we will show the following inequality:

RoundF(V ,µ) 6 DICTεV ,µ(F) + oτ (1)

Along with Equation 9.10, this would imply that DICTεV ,µ(F) is less than valq(=) + oτ (1),
thus showing the required claim. To this end, we will arithmetize the value of RoundF(V ,µ).
Notice that the gi are nothing but samples of the Global Ensemble G associated with =.
Further, let us denote by H∗(gs), the rounded value p∗s of ps = H(gs). By definition, the
expected payoff is given by

RoundF(V ,µ) = E
P∈P

E
GR

P

[

P
(

H∗(gRs1
)

, . . . ,H∗(gRsk

)

)]

(9.11)
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We will show that the quantities in Equation 9.9, 9.11 are roughly equal. Fix a payoff P ∈ P.
Apply the assertion 1 of the invariance principle (Theorem 3.2) with the ensembles LP , GP ,
smooth function PS and the vector of kt multilinear polynomials given by (H ,H , . . . ,H)
where H = (H1, . . . ,Hq). As a consequence, we get

E
LR

P

[

P
(

H
(

`Rs1
)

, . . . ,H
(

`Rsk

)

)]

= E
GR

P

[

P
(

H
(

gRs1
)

, . . . ,H
(

gRsk

)

)]

+ oτ (1) (9.12)

To show that the quantities in Equation 9.11 and 9.12 are roughly equal, we will appeal
again to the invariance principle (Theorem 3.2). �

9.10.4 Bounding the Rounding Error

The following claim bounds the loss incurred in the payoff due to rounding the assignment
from ps to p∗s.

Claim 9.9.1. Let F : [m]R → Nq be a function satisfying Infj(T1−εF) 6 τ for all j ∈ [R],
and let H = T1−εF . Let H denote the multilinear extension (a polynomial representing
H), and let H∗ denote the function H rounded to Nq.

∣

∣

∣ E
GR

P

[

P
(

H∗(gRs1
)

, . . . ,H∗(gRsq

)

)]

− E
GR

P

[

P
(

Hs1

(

gRs1
)

, . . . ,Hsq

(

gRsq

)

)]∣

∣

∣ 6 oτ (1)

Proof. Intuitively, the invariance principle (Theorem 3.2) asserts that the distribution of
the random variable H(gRs ) is roughly the same as that of H(`Rs ). Observe that on inputs
from the local distribution `Rs , the value H(`Rs ) is always contained in Nq. This suggests
that the random variables H(gRs ) is nearly always close to Nq. For a point p ∈ Nq, its
rounded value p∗ = p. Thus, the rounding of H(gRs ) only slightly changes its value, i.e.,
H(gRs ) ≈ H∗(gRs ). Recall that the payoff functions P are smooth in that they satisfy
Property II (Subsection 7.4.1). Therefore if H(gRs ) ≈ H∗(gRs ) for all s, the two quantities
in the above claim are approximately equal.

Without loss of generality, we may assume that S on which the payoff P applies is
{1, . . . , k} . From Property II that the payoff functions satisfy,

∣

∣

∣
E
GR

P

[

P
(

H∗(gR1
)

, . . . ,H∗(gRk
)

)]

− E
GR

P

[

P
(

H
(

gR1
)

, . . . ,H
(

gRk
)

)]∣

∣

∣

6 C0

k
∑

i=1

(

E
GR

P

[

‖H∗(gRi ) − H(gRi )‖2
2

])
1
2

(9.13)

Using the same argument as Claim 7.4.1, it is easy to observe that

∑

j∈[q]
Hj(g

R
s ) = 1 .
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Now apply Fact 7.4.2 to conclude,

E
GR

P

[

‖H∗(gRi ) − H(gRi )‖2
2

]

6 (2q + 2) E
GR

P

[

ξ(H(gRi ))
]

.

Since H(`Ri ) ∈ Nq we have EGR
P

[

ξ(H(`Ri ))
]

= 0. Rewriting the above inequality,

E
GR

P

[

‖H∗(gRi ) − H(gRi )‖2
2

]

6 (2q + 2)
∣

∣

∣
E
GR

P

[

ξ(H(gRi ))
]

− E
LR

P

[

ξ(H(`Ri ))
]∣

∣

∣

Using Assertion 2 of the invariance principle (Theorem 3.2) with the ensembles LP , GP and
the vector of qk multilinear polynomials given by (H ,H , . . . ,H) where H = (H1, . . . ,Hq).

∣

∣

∣ E
LR

P

[

ξ(H(`Ri ))
]

− E
GR

P

[

ξ(H(gRi ))
]∣

∣

∣ 6 oτ (1)

Consequently,

E
GR

P

[

‖H∗(gRi ) − H(gRi )‖2
2

]

6 (2q + 2)
∣

∣

∣ E
GR

P

[

ξ(H(gRi ))
]

− E
LR

P

[

ξ(H(`Ri ))
]∣

∣

∣ 6 oτ (1)

Substituting in 9.13 we get the required result. �
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Chapter 10

GROTHENDIECK INEQUALITY
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10.1 Introduction

The Grothendieck inequality states that for every n×mmatrix A = (aij) and every choice of
unit vectors u1, . . . ,un and v1, . . . ,vm, there exists a choice of signs x1, . . . , xn, y1, . . . , ym ∈
{±1} such that

n
∑

i=1

m
∑

j=1

aij〈ui,vj〉 6 KG

n
∑

i=1

m
∑

j=1

aijxiyj ,

where KG is a universal constant. The smallest value of KG for which the inequality holds,
is referred to as the Grothendieck constant. Since the inequality was first discovered [69],
the inequality has not only undergone various restatements under different frameworks of
analysis (see [115]), it has also found numerous applications in functional analysis.

In recent years, the Grothendieck’s inequality has found algorithmic applications in effi-
cient construction of Szemeredi partitions of graphs and estimation of cut norms of matri-
ces [4], in turn leading to efficient approximation algorithms for dense graph problems [63].
The inequality has also proved useful in certain lower bound techniques for communication
complexity [116]. Among its various applications, here we shall elaborate on the KN,N -
QuadraticProgramming problem. In this problem, the objective is to maximize the
following quadratic program given as input the matrix A = (aij).

Maximize
∑

i,j

aijxiyj Subject to: xi, yj ∈ {±1}

Alternatively, the problem amounts to computing the norm ‖A‖∞→1 of the matrix A. The
KN,N -QuadraticProgramming problem is a special case of the correlation clustering
problem with two clusters, where the underlying graph is bipartite. The following natural
SDP relaxation to the problem is obtained by relaxing the variables xi, yj to unit vectors.

Maximize
∑

i,j

aij〈ui,vj〉 Subject to: ‖ui‖ = ‖vj‖ = 1

The Grothendieck constant KG is precisely the integrality gap of this SDP relaxation for
the KN,N -QuadraticProgramming problem.

Despite several proofs and reformulations, the value of the Grothendieck constant KG

still remains unknown. In his original work, Grothendieck showed that π
2 6 KG 6 2.3. The

upper bound has been later improved to π/2 log(1+
√

2) ≈ 1.78 by Krivine [109], while the best
known lower bound is roughly 1.67 [142]. More importantly, very little seems to be known
about the matrices A for which the inequality is tight.

10.1.1 Results

In this chapter, we will apply the connections between SDP integrality gaps, dictatorship
tests and UG-hardness results to the KN,N -QuadraticProgramming problem. First, we
obtain the following UGC-based hardness result for KN,N -QuadraticProgramming.
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Theorem 10.1. It is Unique Games-hard to approximate KN,N -QuadraticProgramming
by any constant factor smaller than the Grothendieck constant KG.

Note that KN,N -QuadraticProgramming is a Generalized Constraint Satisfaction
Problem. However, the above result does not immediately follow from Theorem 7.1, since
the reduction does not preserve bipartiteness. The main technical hurdle in obtaining a
bipartiteness-preserving reduction, is to give a stronger analysis of the dictatorship test so
as to guarantee a common influential variable. This is achieved using a standard truncation
argument as outlined in [124].

On the other hand, neither the generic rounding scheme outlined in Chapter 5 nor the
rounding scheme in Chapter 7 directly translate in to an algorithm for
KN,N -QuadraticProgramming. The main issue is the constant additive error term in-
curred by both algorithms. For a CSP, the objective function is guaranteed to be at least a
fixed constant fraction (say 0.5), and hence the additive constant error is negligible. In case
of KN,N -QuadraticProgramming, the value of the optimum solution could be 1/logn, in
which case an additive constant error destroys the approximation ratio.

To obtain better bound on the error, we use a bootstrapping argument similar to the
Gaussian Hilbert space approach to Grothendieck inequality [29] (this approach is used for
algorithmic purposes in [4, 3, 105]). Using ideas from the proof of Grothendieck inequality,
we perform a tighter analysis of the reduction from integrality gaps to dictatorship tests
(outlined in Chapter 6) for the special case of KN,N -QuadraticProgramming. This
tighter analysis yields the following new results:

Theorem 10.2. For every ε > 0, there is an efficient algorithm that achieves an approxi-
mation ratio KG − ε for KN,N -QuadraticProgramming running in time F (ε) · poly(n)
where F (ε) = exp(exp(O(1/ε3))).

Theorem 10.3. For every ε > 0, the Grothendieck constant KG can be computed within
an error ε in time proportional to exp(exp(O(1/ε3))).

A tighter running time analysis could improve the O(1/ε3), but reducing the number of
exponentiations seems to require new ideas.

10.1.2 Prior Work

The general Grothendieck problem on a graph G amounts to maximizing a quadratic poly-
nomial

∑

ij aijxixj over {±1} values, where aij is non zero only for edges (i, j) in G. KN,N

Quadratic programming is the special case where the graph G is the complete bipartite
graph.

The Grothendieck problem on a complete graph admits a O(log n) approximation [126,
123, 36] and has applications in correlation clustering [36]. For the Grothendieck problem
on general graphs, [3] obtain an approximation that depends on the Lovasz θ number of the
graph.

In an alternate direction, the Grothendieck problem has been generalized to the Lp-
Grothendieck problem where the Lp norm of the assignment is bounded by 1. The traditional
Grothendieck corresponds to the case when p = ∞. In a recent work, [105] obtain UGC
hardness results and approximation algorithms for the Lp-Grothendieck problem.
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On the hardness side, [9] show a O(logc n)-NP hardness for the Grothendieck problem
on the complete graph for some fixed constant c < 1. Integrality gaps for the Grothendieck
problem on complete graphs were exhibited in [101, 3]. For the KN,N -Quadratic Pro-
gramming problem, a UGC-based hardness of roughly 1.67 was shown in [101]. The re-
duction uses the explicit operator constructed in the proof of 1.67 lower bound [142] for the
Grothendieck constant.

Organization The next section is devoted to formal definitions of the
KN,N -QuadraticProgramming problem, and certain analytic notions like common in-
fluences. This is followed by three sections that outline the three reductions between dicta-
torship tests, UG-hardness results and SDP integrality gaps. Among these, the reduction
in Section 10.3 is the central contribution of the chapter, while the other two reductions
follow easily from existing work. Finally, in Section 10.6 we use the reductions to obtain
the optimal algorithm for KN,N -QuadraticProgramming, and the algorithm to compute
the Grothendieck constant.

Mathematical Tools This chapter relies on the harmonic analysis of boolean functions
(Section 3.3), associated notions of influence and noise stability, Gaussian random variables
(Section 3.5) and the associated noise operator. The chapter also makes use of a simple
version of the invariance principle (Section 3.6), which is stated here for the sake of com-
pleteness.

10.2 Preliminaries

Problem 10 (KN,N -QuadraticProgramming). Given an m×n matrix A = (aij), com-
pute the optimal value of the following optimization problem,

opt(A)
def
= max

∑

ij

aijxiyj ,

where the maximum is over all x1, . . . , xm ∈ [−1, 1] and y1, . . . , yn ∈ [−1, 1]. Note that the
optimum value opt(A) is always attained for numbers with |xi| = |yj | = 1.

The following is the natural semidefinite relaxation ofKN,N -QuadraticProgramming.

Problem 11 (KN,N -SemidefiniteProgramming). Given an m × n matrix A = (aij),
compute the optimal value of the following optimization problem,

sdp(A)
def
= max

∑

ij

aij〈ui,vj〉 ,

where the maximum is over all vectors u1, . . . ,um ∈ B(d) and all vectors v1, . . . ,vn ∈ B(d).
Here B(d) denotes the unit ball in R

d and we choose d > m + n. Note that the optimum
value sdp(A) is always attained for vectors with ‖ui‖ = ‖vj‖ = 1.

Remark 10.2.1. Since KN,N -QuadraticProgramming is a GCSP, the LC relaxation
would be the canonical relaxation to consider. However, the LC relaxation is equivalent
to the above semidefinite program. The proof of equivalence follows along the lines of
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Lemma 4.1.3 that proves a similar equivalence for the case of Max Cut with the Goemans-
Williamson SDP.

Definition 10.2.1. The Grothendieck constant KG is the supremum of sdp(A)/opt(A) over
all matrices A.

For F ,G ∈ L2(Ω), we denote 〈F ,G〉 def
= EFG, ‖F‖ def

=
√

EF2, and ‖F‖∞ def
= supx∈Ω F(x).

We have ‖F‖ 6 ‖F‖∞.

Lemma 10.3.1. Given an operator A on L2(Ω
R), and functions F ,G,F ′,G′ ∈ L

(d)
2 (ΩR)

satisfying ‖F‖, ‖G‖, ‖F ′‖, ‖G′‖ 6 1, then

|〈F , AG〉 − 〈F ′, AG′〉| 6 ‖A‖(‖F − F ′‖ + ‖G − G′‖) .

Lemma 10.3.2 (Bootstrapping Lemma). Given an m × n matrix A = (aij), and vectors
u1, . . . ,um and v1, . . . ,vn, then

∑

ij

aij〈ui,vj〉 6
(

max
i

‖ui‖
)(

max
j

‖vj‖
)

· sdp(A) 6 2
(

max
i

‖ui‖
)(

max
j

‖vj‖
)

· opt(a)

Proof. On scaling the vectors ui, vi by (maxi‖ui‖) and (maxi‖vi‖) respectively, the resulting
vectors have lengths bounded by 1. Therefore, the scaled vectors form a feasible SDP
solution. Therefore we get,

∑

ij

aij〈
ui

maxi‖ui‖
,

vj

maxi‖vi‖
〉 6 sdp(A) .

�

Common Influences. For a function F ∈ L2({±1}R), we define InfiF =
∑

σ3i F̂2
σ , where

F̂ is the Fourier-transform of F . Let us denote MaxInf F def
= maxi∈[R] InfiF . For a pair of

functions F ,G ∈ L2({±1}R), we define MaxComInf(F ,G)
def
= maxi∈[R] min{InfiF , InfiG} to

be the maximum common influence.

Lemma 10.3.3. Let u,v ∈ R
d be two unit vectors, and F ,G ∈ L2({±1}R). Then,

E
Φ
F (Φu)G(Φv) = 〈F , T〈u,v〉G〉

where Φ is a R × d Gaussian matrix, that is, the entries of Φ are mutually independent
normal variables with standard deviation 1√

d
.

Proof. It suffices to show the lemma for the case that both F and G are the same multilinear
monomial. Since the variables are independent, one may assume that the monomial has
degree 1. For this case, it is trivial. �

Here we state a version of the invariance principle suited for the application at hand.
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Truncation of Low-influence Functions. For F : R
R → R, let truncF : R

R → [−1, 1]
denote the function

truncF(x)
def
=











1 if F(x) > 1 ,

F(x) if −1 < F(x) < 1 ,

−1 if F(x) < −1 .

Theorem 10.4 (Invariance Principle, [125]). There is a universal constant C such that,
for all ρ = 1 − ε ∈ (0, 1) the following holds: Let F ∈ L2({±1}R) with ‖F‖∞ 6 1 and
Infi(TρF) 6 τ for all i ∈ [R]. Then,

‖TρF − truncTρF‖ 6 τC·ε

where F ∈ L2(G
R) denotes the (unique) multilinear extension of F to R

R.

10.2.1 Dictatorship Tests

In the current context, a dictatorship test can be defined succinctly as follows.

Definition 10.2.2. A dictatorship test B is an operator on L2({±1}R) of the following
form:

B =
R
∑

d=0

λdPd

where Pd is the projection operator on to the degree d part, and |λ1| > |λd| for all d. We
define two parameter of B:

Completeness(B)
def
= inf

i
〈χi, Bχi〉 , where χi(x) = xi is the ith dictator function.

Soundnessε,τ (B)
def
= sup

F ,G:{±1}R→[−1,1],
MaxComInf(TρF ,TρG)6τ

〈F , BG〉 , where ρ = 1 − ε.

10.3 From Integrality Gaps to Dictatorship Tests

In the first step, we describe a reduction from a matrix A of arbitrary size, to a dictatorship
test DICTεA on L2({±1}R) for a constant R independent of the size of A.

Towards this, let us set up some notation. Let A = (aij) be an m× n matrix with SDP
value sdp(A). Let u1, . . . ,um ∈ B(d) and v1, . . . ,vn ∈ B(d) be an SDP solution such that

∑

ij

aij〈ui,vj〉 = sdp(A) .

In general, an optimal SDP solution u1, . . . ,um and v1, . . . ,vn might not be unique. In
the following, we will however assume that for every instance A we can uniquely associate
an optimal SDP solution, e.g., the one computed by a given implementation of the ellipsoid
method. With this notation, we are ready to define the dictatorship test DA.



198

Definition 10.3.1. For d ∈ N, let us define coefficients λd ∈ R,

λd
def
=
∑

ij

aij〈ui,vj〉d .

Define linear operator DA DICTεA on L2({±1}R) as follows:

DA
def
=

R
∑

d=0

λdPd , DICTεA
def
= TρDATρ =

R
∑

d=0

ρ2dλdPd ,

where ρ = 1 − ε.

By the definition of Completeness(DICTεA), we have:

Lemma 10.4.1. For all matrices A, Completeness(DICT
ε
A) = λ1ρ

2 > sdp(A)(1 − 2ε).

10.3.1 A Rounding Scheme

Towards bounding Soundnessε,τ (DICTεA), we define a rounding scheme Roundε,F ,G for every
pair of functions F ,G ∈ L2({±1}R) and ρ < 1. The rounding scheme Roundε,F ,G is an
efficient randomized procedure that takes as input the optimal SDP solution for A, and
outputs a solution x1, . . . , xm, y1, . . . , yn ∈ {±1}.

For functions F ,G ∈ L2({±1}R), define the rounding procedure RoundF ,G as follows:

Roundε,F ,G
Input : Anm×nmatrix A = (aij) with SDP solution {u1,u2, . . . ,um}, {v1,v2, . . . ,vn} ⊂
B(d)

– Let TρF, TρG denote the multilinear polynomials obtained by Fourier expansion of
functions TρF , TρG. Compute TρF and TρG explicitly.

– Generate R × d matrix Φ all of whose entries are mutually independent normal
variables of standard deviation 1/

√
d.

– Assign xi = truncTρF (Φui) and yj = truncTρG(Φvj) for all i ∈ [m], j ∈ [n].

The expected value of the solution returned Roundε,F ,G(A) is given by:

RoundF ,G(A) = E
Φ

∑

ijaijtruncTρF (Φui)truncTρG(Φvj)

Definition 10.3.2. Roundε,F ,G(A) is the expected value of the solution returned by the
randomized rounding procedure Roundε,F ,G on the input A.

In this section, we will show following relationship between performance of rounding
schemes and soundness of the dictatorship test [125].
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Theorem 10.5. Let A be a matrix. For functions F ,G ∈ L2({±1}R) satisfying ‖F‖∞, ‖G‖∞ 6

1 and MaxComInf(TρF , TρG) 6 τ for ρ = 1 − ε, there exists functions F ′,G′ ∈ L2({±1}R)
such that

〈F ,DICT
ε
AG〉 6 Roundε,F ′,G′(A) +

(

10τCε/8/
√
ε
)

· sdp(A) .

Further the functions F ′,G′ satisfy min InfiTρF ′, InfiTρG′ 6 τ for all i.

By taking the supremum on both sides of the above inequality over all low influence
functions, one obtains the following corollary:

Corollary 10.5.1. For every matrix A and ε > 0,

Soundnessε,τ (DICT
ε
A) 6

(

sup
F ,G∈L2({±1}R),

MaxComInf(TρF ,TρG)6τ

Roundε,F ,G(A)

)

+
(

10τCε/8/
√
ε
)

· sdp(A) ,

where ρ = 1 − ε.

As Roundε,F ,G is the expected value of a {±1} solution, it is necessarily smaller than
opt(A). Further by Grothendieck’s inequality, sdp(A) and opt(A) are within constant factor
of each other. Together, these facts immediately imply the following corollary:

Corollary 10.5.2. For a fixed ε > 0, if τ 6 2−100 log ε/Cε then, then for all matrices A,

Soundnessε,τ (DICT
ε
A) 6 opt(A)(1 + ε)

10.3.2 Relaxed Influence Condition

The following lemma shows that we could replace the condition MaxComInf(TρF , TρG) 6 τ
in Definition 10.2.2 by the condition MaxInf TρF ,MaxInf TρG 6

√
τ with a small loss in the

soundness.

Lemma 10.5.1. Let A be a dictatorship test on L2({±1}k), and let F ,G be a pair of
functions in L2({±1}R) with ‖F‖∞, ‖G‖∞ 6 1 and MaxComInf(TρF , TρG) 6 τ for ρ = 1−ε.
Then for every τ ′ > 0, there are functions F ′,G′ ∈ L2({±1}R) with ‖F ′‖∞, ‖G′‖∞ 6 1 and
MaxInf TρF ′,MaxInf TρG′ 6 τ ′ such that

〈TρF ′, ATρG′〉 > 〈TρF , ATρG〉 − 2‖A‖
√

τ/τ ′ε .

Proof. Let J denote the set of variables i with InfiTρF > τ ′. Since the total influence of
TρF is bounded by 1/ε (see Lemma 3.0.2), the set J has cardinality at most 1/ετ ′. Let MJ

be the orthogonal projector on the space of functions that do not depend on any variable
in J . We define F ′ = MJF and G′ = MJG. We still have ‖F ′‖∞, ‖G′‖ 6 1. Note that
InfiTρG 6 τ for every i ∈ J . Hence, ‖TρG − TρG′‖2 6 |J |τ . Now,

〈TρF , ATρG〉 − 〈TρF , ATρG′〉 = 〈TρF , ATρ(G − G′)〉
6 ‖A‖‖TρF‖ · ‖Tρ(G − G′)‖
6
√

|J |τ .
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On the other hand, 〈TρF , ATρG′〉 = 〈TρF ′, ATρG′〉, because

〈Tρ(F − F ′), ATρG′〉 = 〈TρF , (I −MJ)AMJTρG〉 = 〈TρF , A(I −MJ)MJTρG〉 = 0 ,

where we used the fact that the operators A and MJ commute (as both are diagonalized
by the Fourier transform), and that (I −MJ)MJ = 0.

We repeat the same argument with the set K of variables i with InfiTρG > τ ′. Again,
projecting on MK changes the value of 〈TρF ′, ATρG′〉 by at most

√

|J |τ . �

With this background, we now present the soundness analysis.

10.3.3 Proof of Theorem 10.5

Proof. By Lemma 10.5.1, there exists function F ′,G′ ∈ L2({±1}R) with ‖F ′‖∞, ‖G′‖∞ 6 1
and MaxInf TρF ′,MaxInf TρG′ 6

√
τ such that

〈F ′,DICTεAG′〉 > 〈F ,DICTεAG〉 − 2‖DA‖ · τ1/4/
√
ε > 〈F ,DICTεAG〉 − 4opt(A) · τ1/4/

√
ε .

On the other hand, we have

〈F ′,DICTεAG′〉 =
∑

ij

R
∑

d=0

〈TρF ′, aij〈ui,vj〉dPd(TρG′)〉 =
∑

ij

aij〈TρF ′, T〈ui,vj〉(TρG′)〉 (10.1)

We can assume that all vectors ui and vj have unit norm. By Lemma 10.3.3, we have

E
Φ

∑

ij

aijTρF
′(Φui)TρG

′(Φvj) =
∑

ij

aij〈TρF ′, T〈ui,vj〉(TρG′)〉 (10.2)

From the above equations we have

〈F ,DICTεAG〉 = E
Φ

∑

ij

aijTρF
′(Φui)TρG

′(Φvj) (10.3)

By the invariance principle (Theorem 10.4), we have

‖TρF ′ − truncTρF
′‖ 6 τCε/2 and ‖TρG′ − truncTρG

′‖ 6 τCε/2 . (10.4)

Now we shall apply the simple yet powerful bootstrapping trick. Let us define new vectors
in L2(G

R×d),

u′i = TρF
′(Φui) v′j = TρG

′(Φvj)

and

u′′i = truncTρF
′(Φui) v′′j = truncTρG

′(Φvj)
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Equation (10.4) implies that ‖u′i − u′′i ‖ 6 τCε/2 and ‖v′j − v′′j ‖ 6 τCε/2. Using the boot-
strapping argument (Lemma 10.3.2), we finish the proof

Roundε,F ′,G′(A) =
∑

ij

aij〈u′′i ,v′′j 〉 =
∑

ij

aij〈u′i,v′j〉−
∑

ij

aij〈u′i−u′′i ,v
′
j〉−
∑

ij

aij〈u′′i ,v′j−v′′j 〉

(10.4)

>
∑

ij

aij〈u′i,v′j〉 − 2τCεopt(A) − 2τCεopt(A)

> 〈F ,DICTεAG〉 − 4τCε/2opt(A) − 4τ1/4opt(A)/
√
ε . (10.5)

�

10.4 From Dictatorship Tests to UG-hardness

Although, KN,N -QuadraticProgramming is a GCSP, the generic UG-hardness reduc-
tion in Chapter 7 does not apply directly, since the resulting instance is required to be
bipartite. Towards achieving bipartiteness, the soundness analysis of the dictatorship test
(Theorem 10.5) has been strengthened in that it yields common influential coordinates be-
tween the functions involved. Armed with this stronger soundness condition, the Unique
Games-hardness reduction for GCSP (Theorem 7.1) can be modified easily to yield bi-
partite instances. For the sake of completeness, we include a sketch of the UG-hardness
reduction below.

Lemma 10.5.2. Given a dictatorship test A with completeness c and soundness s, and a
Unique Games instance Φ, it is possible to efficiently construct an operator Φ⊗ρA satisfies
the following to two conditions:

1. if val(Φ) > 1 − γ, then opt(Φ ⊗ρ A) > c(1 − oε,γ→0(1)),

2. if val(Φ) < δ, then opt(Φ ⊗ρ A) < s(1 + oε,δ→0(1)),

The UGC asserts that for every ε > 0, there is a R such that for a unique game Φ on
alphabet [R] it is hard to distinguish between val(Φ) > 1 − ε and val(Φ) < ε.

Formally, we will represent a unique game Φ on alphabet [R] as a distribution over triples
(v,w, π), where v ∈ VΦ and w ∈ WΦ are vertices, and π is a permutation of [R]. Here we
can and will assume that the game is bipartite, i.e., VΦ and WΦ are disjoint.

Let A =
∑

d∈[R] λdPd be a dictatorship test on L2({±1}R). For ρ = 1 − ε, we define a

linear operator Φ ⊗ε A on
(

L2({±1}R)
)|VΦ|+|WΦ| as follows:

〈F , (Φ ⊗ε A)G〉 def
= E

(v,w,π)∼Φ
〈Tρ(π.Fv), ATρGw〉 ,

where F = (Fv)v∈VΦ
, G = (Gw)w∈WΦ

, and π.Fv denotes the function Fv(xπ(1), . . . , xπ(R)).

We claim the following properties of the reduction Φ 7→ Φ ⊗ε A. This claim implies
Lemma 10.5.2.



202

Claim 10.5.1. For τ, ε ∈ [0, 1], ρ = 1 − ε, and every unique game Φ, we have

1. If val(Φ) > 1 − ε then opt(A⊗ε Φ) > Completeness(A)(1 −O(ε+ ε).

2. If val(Φ) < (τε)3 then opt(A⊗ε Φ) 6 Soundnessε,τ (TρATρ) +O(τε)Completeness(A).

Proof. By scaling1, we may assume λ1 = 1 and λd ∈ [−1, 1] for all d ∈ [R], where A =
∑

d λdPd. Note that Completeness(A) = λ1 = 1.

Suppose that val(Φ) > 1 − ε. Then there exists a labeling ` : VΦ ∪WΦ → [R] such that

Pr
(v,w,π)∼Φ

{

π(`(v)) = `(w)
}

> 1 − ε .

We choose F and G such that Fv(x) = x`(v) and Gw(x) = x`(w) are dictator functions. If
π(`(v)) = `(w), then π.Fv = Gw. Hence, 〈Tρπ.Fv , ATρGw〉 = ρ2λ1 = ρ2. On the other hand,
if π(`(v)) 6= `(w), then clearly |〈Tρπ.Fv , ATρGw〉| 6 1. Thus,

E
(v,w,π)∼Φ

〈Tρ(π.Fv), ATρGw〉 > (1 − ε) · ρ2 − ε > 1 − 2ε− 2ε .

It follows that opt(Φ ⊗ε A) > c− oε→0(1) for any game Φ with val(Φ) > 1 − ε.

Now suppose that opt(Φ ⊗ε A) > Soundnessε,τ (A) + δ, where δ = τε. In this case, we
want to show that val(Φ) > ε for ε = τε3. Let F = (Fv) and G = (Gw) be vectors with
‖Fv‖∞, ‖Gw‖∞ 6 1 that achieve

E
(v,w,π)∼Φ

〈Tρ(π.Fv), ATρGw〉 > Soundnessε,τ (A) + δ . (10.6)

In hindsight, let us define a set of candidate labels for vertices v ∈ VΦ and w ∈ WΦ,

L(v) = {i | InfiTρ(Fv) > τ} and L(w) = {i | InfiTρ(Gw) > τ} .

Since ρ = 1− ε, we have |L(v)|, |L(w)| 6 1/ετ (see Lemma 3.0.2). Since A is contracting, we
get from equation (10.6) that

Pr
(v,w,π)∼Φ

{

〈Tρπ.Fv, ATρGw〉 > Soundnessε,τ (A)
}

> δ .

The situation 〈Tρπ.Fv , ATρGw〉 > Soundnessε,τ (A) implies that InfiTρ(π.Fv) > τ and InfiTρGw >
τ for some i ∈ [R]. Of course, InfiTρ(π.Fv) > τ just means that variable π−1(i) has influence
Infπ−1(i)Tρ(Fv) > τ . It follows that i ∈ L(w) and π(i) ∈ L(v). Thus,

Pr
(v,w,π)∼Φ

{

∃i ∈ [R]. i ∈ L(v) and π(i) ∈ L(w)
}

> δ .

1Note that scaling A by a factor α, scales opt(Φ ⊗ε A), Completeness(A), and Soundnessε,τ (A) by the
same factor α
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Hence, if we choose a random element of L(v) as the label `(v) and a random element of
L(w) as the label `(w), we have

Pr
(v,w,π)∼Φ

{

∃i ∈ [R]. `(v) = i and `(w) = π(i)
}

> δ · (τε)2 ,

where we use the fact that |L(v)||L(w)| 6 1/τ2ε2. We can conclude that val(Φ) > δτ2ε2 for
every unique game Φ with opt(Φ ⊗ε A) > Soundnessε,τ (A) + δ. By our choice of τ and
δ, we have δτ2ε2 = ε. Hence, we get val(Φ) > (τε)3 for every Φ with opt(Φ ⊗ε A) >

Soundnessε,τ (A) + δ = Soundnessε,τ (A) + τε.

�

10.4.1 Proof of Theorem 10.1

Let A be a finite matrix for which the ratio of sdp(A)/opt(A) > KΦ − ε. Consider the
dictatorship test DICTεA obtained from the matrix A. By Lemma 10.4.1, the completeness of
DICTεA is sdp(A)(1−ε). Further by Corollary 10.5.2, the soundness is at most opt(A)(1+ε)
for sufficiently small choice of τ . Plugging this dictatorship test DICTεA in to the above
lemma, we obtain a UG-hardness of (KΦ − ε)(1 − ε)/(1 + ε) > KΦ − 5ε. Since ε can be
made arbitrarily small, the proof is complete.

10.5 From UG-hardness to Integrality Gaps

Completing the cycle of reductions, here we show that a dictatorship test can be used to
construct an integrality gap, such that the ratio between the completeness and soundness
of the dictatorship translates in to the integrality gap ratio. More precisely, we will show

Theorem 10.6. For all ε > 0, there exists R, τ such that following holds: For any dictator-
ship test B on L2({±1}R), there exists an instance B′ of KN,N -QuadraticProgramming
such that,

sdp(B′) > Completeness(B) (1 − 5ε) (10.7)

opt(B′) 6 Soundnessε,τ (B) (1 + ε) + εCompleteness(B) (10.8)

In particular, the choices τ = O(2−100/ε3) and R = Ω(2200/ε3) suffice.

Proof Sketch: As in the case of Max Cut Section 6.7 and other GCSPs Section 7.7,
the idea is to execute the UG-hardness reductions starting with an SDP integrality gap for
Unique Games. More precisely, if Red denotes the hardness reduction that maps instances
of Unique Games to an instance of KN,N -QuadraticProgramming. Starting with an
SDP integrality gap Φ as input to Red, the resulting instance can be shown to be an SDP
integrality gap for KN,N -QuadraticProgramming.

For each vertex u ∈ VΦ ∪ WΦ, there are R vectors {bu,`} in the Unique Games SDP
solution. As in the case of Max Cut, the SDP vector corresponding to a vertex (u,x) ∈
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(VΦ ∪WΦ) × {±1}R is given by,

Vu,x =
∑

`∈[R]

x` bu,`

It is easy to check that the vectors Vv,x are unit vectors, and their objective value is at
least Completeness(B) (1 − 5ε). In particular, the proof follows almost along the lines of the
corresponding reduction for Max Cut (presented in Section 6.7). We omit the details of
the proof from the thesis.

By definition, the Grothendieck constant KG is the maximum possible integrality gap
for KN,N -QuadraticProgramming. Therefore, we have the following corollary of the
above theorem.

Corollary 10.6.1. Fix R = Ω(2200/ε3) and τ = O(2−100/ε3). Then for any dictatorship test
over {±1}R we have

Soundnessε,τ (B) >

(

1

KG
− 6ε

)

Completeness(B)

10.6 Implications

In this section, we follow the implications of the reductions between dictatorship tests,
integrality gaps and UG-hardness results in order to prove the main theorems of this chapter.

10.6.1 Proof of Theorem 10.2

Consider the following idealized algorithm for the KN,N -Quadratic Programming prob-
lem

– Find the optimal SDP solution ui,vj

– Fix R = 2200/ε3 and τ = 2−100/ε3 . For every function F ,G ∈ L2({±1}R) with
‖F‖, ‖G‖ 6 1, run the rounding scheme Roundε,F ,G(A) to obtain a {±1} solution.
Output the solution with the largest value.

The value of the solution obtained is given by supF ,G∈L2({±1}R) Roundε,F ,G(A). From Corol-
lary 10.5.1 we have

sup
F ,G∈L2({±1}R),‖F‖,‖G‖61

Roundε,F ,G(A) > sup
F ,G∈L2({±1}R),

MaxComInf(TρF ,TρG)6τ

Roundε,F ,G(A)

> Soundnessε,τ (DICTεA) −
(

10τCε/8/
√
ε
)

· sdp(A)(10.9)

From Lemma 10.4.1, we know Completeness(DICTεA) = sdp(A)(1−ε). By the choice of R, τ ,
we can apply Corollary 10.6.1 on DICTεA to conclude

Soundnessε,τ (DICTεA) > Completeness(DICTεA)
( 1

KG
− ε
)

> sdp(A)
( 1

KG
− ε
)

(1 − ε)(10.10)
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From Equations 10.9 and 10.10, we conclude that the value returned by the algorithm is at
least

sdp(A)

(

( 1

KG
− ε
)

(1 − ε) − 10τCε/8/
√
ε

)

,

which by the choice of τ is at least sdp(A)(1/KG − 4ε).
In order to implement the idealized algorithm, we discretize the unit ball in space

L2({±1}R) using a κ-net in the L2 norm. As R is a fixed constant depending on ε, there is
a finite κ-net that would serve the purpose. To finish the argument, one needs to show that
the value of the solution returned is not affected by the discretization. This follows from
the following lemma:

Lemma 10.6.1. For F ,G,F ′,G′ ∈ L2({±1}R) with ‖F‖ , ‖G‖ , ‖F ′‖ , ‖G′‖ 6 1,

|RoundF ,G(A) − RoundF ′,G′(A)| 6 sdp(A)(‖F − F ′‖ + ‖G − G′‖)

Proof. Define u′i = truncTρF (Φui) ,v
′
j = truncTρG(Φvj) and u′′i = truncTρF

′(Φui) ,v
′′
j =

truncG′(Φvj). Substituting we get,

RoundF ,G(A) − RoundF ′,G′ =
∑

ij

aij〈u′i − u′′i ,v
′
j〉 +

∑

ij

aij〈u′′i ,v′j − v′′j 〉

As trunc and Tρ are contractive operators, ‖u′i‖, ‖u′′i ‖, ‖v′j‖, ‖v′′j ‖ 6 1. Further, observe that
‖u′i−u′′i ‖ 6 ‖F − F ′‖ and ‖v′j−v′′j ‖ 6 ‖G − G′‖, since for all x, |truncF(x)−truncF ′(x)| 6

|F(x) −F ′(x)|. Substituting in the above equation, we get the required result. �

10.6.2 Proof of Theorem 10.3

A naive approach to compute the Grothendieck constant, is to iterate over all matrices A
and compute the largest possible value of sdp(A)/opt(A). However, the set of all matrices
is an infinite set, and there is no guarantee on when to terminate.

As there is a conversion from integrality gaps to dictatorship tests and vice versa, instead
of searching for the matrix with the worst integrality gap, we shall find the dictatorship
test with the worst possible ratio between completeness and soundness. Recall that a
dictatorship test is an operator on L2({±1}R) for a finite R depending only on ε the error
incurred in the reductions. In principle, this already shows that the Grothendieck constant
is computable up to an error ε in time depending only on ε.

Define K as follows

1

K
= inf

λ1=1,
λd∈[−1,1]∀06d6R

sup
F ,G∈L2({±1}R),

MaxComInf(TρF ,TρG)6τ
‖F‖,‖G‖61

〈F ,
R
∑

d=0

ρ2dλdQdG〉 , where ρ = 1 − ε.

Let P denote the space of all pairs of functions F ,G ∈ L2({±1}R) with
MaxComInf(TρF , TρG) 6 τ and ‖F‖, ‖G‖ 6 1.. Since P is a compact set, there exists
an ε-net of pairs of functions F = {(F1,G1), . . . , (FN ,GN )} such that : For every point
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(F ,G) ∈ P, there exists Fi,Gi ∈ F satisfying ‖F −F ′‖+‖G −G′‖ 6 ε. The size of the ε-net
is a constant depending only on R and ε (note: R depends only on ε).

The constant K can be expressed using the following finite linear program:

Minimize
1

K
= µ

Subject to µ >

R
∑

d=0

λd · 〈F ,
R
∑

d=0

ρ2dQdG〉 for all functions F ,G ∈ F

λi ∈ [−1, 1] for all 0 6 i 6 R

λ1 = 1
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Chapter 11

HARDEST CSP TO APPROXIMATE?
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11.1 Introduction

In the MAX k-CSP problem, the input consists of a set of variables taking values over
a domain(say {0, 1}), and a set of constraints with each acting on k of the variables. The
objective is to find an assignment of values to the variables that maximizes the number of
constraints satisfied. Several classic optimization problems like Max-3SAT, MaxCut fall
in to the general framework of CSPs.

Apart from its natural appeal, the study of approximability of MAX k-CSP problem
is interesting for yet another reason. The best approximation ratio achievable for MAX
k-CSP equals the optimal soundness of a PCP verifier making at most k queries. In fact,
inapproximability results for MAX k-CSP have often been accompanied by corresponding
developments in analysis of linearity testing.

Over the boolean domain, the problem of MAX k-CSP has been studied extensively.
For a boolean predicate P : {0, 1}k → {0, 1}, the MAX k-CSP (P) problem is the special
case of MAX k-CSP where all the constraints are of the form P (l1, l2, . . . , lk) with each
literal li being either a variable or its negation. For many natural boolean predicates P ,
approximation algorithms and matching NP-hardness results are known for MAX k-CSP
(P)[86]. For the general MAX k-CSP problem over boolean domain, the best known

algorithm yields a ratio of Ω( k
2k ) [32], while any ratio better than 2

√
2k/2k is known to be

NP-hard to achieve [51]. Further it is UG-hard to approximate MAX k-CSP problem to
a factor better than 2k

2k [144].

In this chapter, we study the approximability of the MAX k-CSP problem over non-
boolean domains, more specifically over {0, 1, . . . , q − 1} for some integer q, obtaining a
near-tight hardness result under the UGC. Specifically, we extend the techniques of [144]
to obtain a UGC hardness result when q is a prime. More precisely, assuming the Unique
Games Conjecture, we show that it is NP-hard to approximate the problem to a ratio
greater than q2k/qk. Except for constant factors depending on q, the algorithm and the
UG-hardness result have the same dependence on of the arity k. Independent of this work,
Austrin and Mossel [19] obtain a more general UG-hardness result using entirely different
techniques. Technically, the proof presented here extends the Gowers Uniformity based
approach of Samorodnitsky and Trevisan [144] to correlations on q-ary cubes instead of the
binary cube. This is related to the detection of multidimensional arithmetic progressions
by a Gowers norm of appropriately large degree.

11.1.1 Related Work

The simplest algorithm for MAX k-CSP over boolean domain is to output a random
assignment to the variables, thus achieving an approximation ratio of 1

2k . The first improve-

ment over this trivial algorithm, a ratio of 2
2k was obtained by Trevisan [154]. Hast [79]

proposed an approximation algorithm with a ratio of Ω( k
log k2k ), which was later improved

to the current best known algorithm achieving an approximation factor of Ω( k
2k ) [32].

On the hardness side, MAX k-CSP over the boolean domain was shown to be NP-hard

to approximate to a ratio greater than Ω(22
√
k/2k) by Samorodnitsky and Trevisan [143].

The result involved an analysis of a graph-linearity test which was simplified subsequently
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by H̊astad and Wigderson [84]. Later, using the machinery of multi-layered PCP developed

in [49], the inapproximability factor was improved to O(2
√

2k/2k) in [51].

A predicate P is approximation resistant if the best optimal approximation ratio for
MAX k-CSP (P) is given by the random assignment. While no predicate over 2 variables
is approximation resistant, a predicate over 3 variables is approximation resistant if and
only if it is implied by the XOR of 3 variables [86, 163]. Almost all predicates on 4 variables
were classified with respect to approximation resistance in [80].

Assuming the Unique Games Conjecture, a tight inapproximability of Θ
(

k
2k

)

for the
MAX k-CSP problem over the boolean domain was shown in [144]. The proof relies on
the analysis of a hypergraph linearity test using the Gowers uniformity norms. Building on
this work, Hastad showed that if UGC is true, then as k increases, nearly every predicate
P on k variables is approximation resistant [83].

Subsequently, it was shown in [136] that for every CSP over an arbitrary finite do-
main, the best possible approximation ratio is equal to the integrality gap of a well known
Semidefinite program. Further the same work also obtains an algorithm that achieves the
best possible approximation ratio assuming UGC. Although the results of [136] apply to
non-boolean domains, they do not determine the value of the approximation factor explic-
itly, but only show that it is equal to the integrality gap of an SDP. Further the algorithm
proposed in [136] does not yield any approximation guarantee for MAX k-CSP uncon-
ditionally. Thus neither the inapproximability nor the algorithmic results of this work are
subsumed by [136].

Austrin and Mossel [19] obtain a sufficient condition for a predicate P to be approxima-
tion resistant. Through this sufficiency condition, they obtain strong UG-hardness results
for MAX k-CSP problem over the domain {1, . . . , q} for arbitrary k and q. For the case
when q is a prime power, their results imply a UG-hardness of kq(q − 1)/qk. The hard-
ness results in this work and [19] were obtained independently and use entirely different
techniques.

11.1.2 Organization of the Chapter

We begin with background on the Gowers norm and influence of variables in Section 11.2. In
Section 11.3, we present a linearity test that forms the core of the UG-hardness reduction.
We prove our inapproximability result (for the case when q is a prime) by a reduction
from Unique Games in Section 11.4. The proof uses a technical step bounding a certain
expectation by an appropriate Gowers norm; this step is proved in Section 11.5.

11.2 Preliminaries

For a positive integer n, we use the notation [n] for the ring Z/(n) = {0, 1, . . . , n− 1}.

11.2.1 Gowers uniformity norm and influence of variables

We now recall the definition of the Gowers uniformity norm. For an integer d > 1 and a
complex-valued function f : G→ C defined on an abelian group G (whose group operation
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we denote by +), the d’th uniformity norm Ud(f) is defined as

Ud(F) := E
x,y1,y2,...,yd









∏

S⊆{1,2,...,d}
|S| even

F
(

x+
∑

i∈S
yi

)

∏

S⊆{1,2,...,d}
|S| odd

F
(

x+
∑

i∈S
yi

)









. (11.1)

where the expectation is taken over uniform and independent choices of x, y0, . . . , yd−1 from

the group G. Note that U1(F) =
(

Ex[F(x)]
)2

.

We will be interested in the case when the group G is [q]n for positive integers q, n, with
group addition being coordinate-wise addition modulo q. G is also closed under coordinate-
wise multiplication modulo q by scalars in [q], and thus has a [q]-module structure. For
technical reasons, we will restrict attention to the case when q is prime and thus our groups
will be vector spaces over the field Fq of q elements. For a vector a ∈ [q]k, we denote by
a1, a2, . . . , ak its k coordinates. We will use 1,0 to denote the all 1’s and all 0’s vectors
respectively (the dimension will be clear from the context). Further denote by ei the ith
basis vector with 1 in the ith coordinate and 0 in the remaining coordinates. As we shall
mainly be interested in functions over [q]n for a prime q, we make our further definitions in
this setting. Firstly, every function F : [q]n → C has a Fourier expansion given by:

F(x) =
∑

σ∈[q]n
F̂σχσ(x)

where F̂σ = Ex∈[q]n[F(x)χσ(x)] and χσ(x) =
∏n
i=1 ω

σixi for a qth root of unity ω.

The central lemma in the hardness reduction relates a large Gowers norm for a function
f , to the existence of an influential coordinate.

The following well known result relates influences to the Fourier spectrum of the function.

Fact. For a function f : [q]n → C and a coordinate i ∈ {1, 2, . . . , R},

Infi(f) =
∑

σi 6=0,σ∈[q]n
|F̂σ |2 .

The following lemma is a restatement of Theorem 12 in [144].

Lemma 11.0.2. There exists an absolute constant C such that, if F : [q]m → C is a
function satisfying |F(x)| 6 1 for every x then for every d > 1,

Ud(F) 6 U1(F) + 2Cd max
i

Infi(F)

11.2.2 Noise Operator

Like many other UG-hardness results, one of the crucial ingredients of our reduction will be
a noise operator on functions over [q]n. We define the noise operator T1−ε formally below.
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Definition 11.2.1. For 0 6 ε 6 1, define the operator T1−ε on functions f : [q]n → C as :

T1−εf(x) = E
η
[F(x + η)]

where each coordinate ηi of η is 0 with probability 1 − ε and a random element from [q]
with probability ε. The Fourier expansion of T1−εf is given by

T1−εF(x) =
∑

σ∈[q]n
(1 − ε)|σ|F̂σχσ(x)

11.3 Linearity Tests and MAX k-CSP Hardness

The best approximation ratio possible for MAX k-CSP is identical to the best soundness
of a PCP verifier for NP that makes k queries. This follows easily by associating the proof
locations to CSP variables, and the tests of the verifier to k-ary constraints on the locations.
In this light, it is natural that the hardness results of [143, 51, 144] are all associated with
a linearity test with a strong soundness. The hardness result in this work is obtained by
extending the techniques of [144] from binary to q-ary domains. In this section, we describe
the test of [144] and outline the extension to it.

For the sake of simplicity, let us consider the case when k = 2d − 1 for some d. In [144],
the authors propose the following linearity test for functions F : {0, 1}n → {0, 1}.

Complete Hypergraph Test (F, d)

– Pick x1, x2, . . . , xd ∈ {0, 1}n uniformly at random.

– Accept if for each S ⊆ [r],

F(
∑

i∈S
xi) =

∑

i∈S
F(xi)

The test reads the value of the function F at k = 2d − 1 points of a random sub-
space(spanned by x1, . . . , xd) and checks that F agrees with a linear function on the sub-
space. Note that a random function F would pass the test with probability 2d/2k, since
there are 2d different satisfying assignments to the k binary values queried by the veri-
fier. The following result is a special case of a more general result by Samorodnitsky and
Trevisan [144].

Theorem 11.1. [144] If a function F : {0, 1}n → {0, 1} passes the Complete Hypergraph
Test with probability greater than 2d/2k + γ, then the function F(x) = (−1)F(x) has a large
dth Gowers norm. Formally, Ud(F) > C(γ, k) for some fixed function C of γ, k.

Towards extending the result to the domain [q], we propose a somewhat similar linearity
test. Again for convenience, let us assume k = qd for some d. Given a function F : [q]n → [q],
the test proceeds as follows:
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Affine Subspace Test (F, d)

– Pick x,y1,y2, . . . ,yd ∈ [q]n uniformly at random.

– Accept if for each a ⊆ [q]d,

F
(

x +
d
∑

i=1

aiyi

)

=
(

1 −
d
∑

i=1

ai

)

F(x) +
d
∑

i=1

aiF
(

x + yi

)

Essentially, the test queries the values along a randomly chosen affine subspace, and
tests if the function F agrees with an affine function on the subspace. Let ω denote a q′th
root of unity. From Theorem 11.4 presented in Section 11.5, the following result can be
shown:

Theorem 11.2. If a function F : [q]n → [q] passes the Affine Subspace Test with probability
greater than qd+1/qk + γ, then for some q’th root of unity ω 6= 1, the function F(x) = ωF(x)

has a large dq’th Gowers norm. Formally, Udq(F) > C(γ, k) for some fixed function C of
γ, k.

The above result follows easily from Theorem 11.4 using techniques of [144], and the
proof is ommited here. The Affine Subspace Test forms the core of the UG-hardness reduc-
tion presented in Section 11.4.

11.4 Hardness reduction from Unique Games

In this section, we will prove a hardness result for approximating MAX k-CSP over a
domain of size q when q is prime for every k > 2. Let d be such that qd−1 +1 6 k 6 qd. Let
us consider the elements of [q] to have a natural order defined by 0 < 1 < . . . < q− 1. This
extends to a lexicographic ordering on vectors in [q]d. Denote by [q]d<k the set consisting of
the k lexicographically smallest vectors in [q]d. We shall identify the set {1, . . . , k} with set
of vectors in [q]d<k. Specifically, we shall use {1, . . . , k} and vectors in [q]d<k interchangeably
as indices to the same set of variables. For a vector x ∈ [q]n and a permutation π of [n],
define π(x) ∈ [q]n defined by (π(x))i = xπ(i).

Let Φ = (WΦ ∪ VΦ, E,Π = {πe : [n] → [n]|e ∈ E}, [n]) be a bipartite Unique Games
instance. Towards constructing a k-CSP instance = from Φ, we shall introduce a long
code for each vertex in VΦ. Specifically, the set of variables for the k-CSP = is indexed by
VΦ × [q]n. Thus a solution to = consists of a set of functions Fw : [q]n → [q], one for each
w ∈ VΦ.

Similar to several other long code based hardness results, we shall assume that the long
codes are folded. More precisely, we shall use folding to force the functions Fw to satisfy
Fw(x + 1) = F(x) + 1 for all x ∈ [q]n. The k-ary constraints in the instance = are specified
by the following verifier. The verifier uses an additional parameter ε that governs the level
of noise in the noise operator.



213

– Pick a random vertex w ∈ WΦ. Pick k vertices {va|a ∈ [q]d<k} from N(w) ⊂ VΦ

uniformly at random independently. Let πa denote the permutation πva←w on the
edge (w, va).

– Sample x,y1,y2, . . . ,yd ∈ [q]n uniformly at random. Sample vectors ηa ∈ [q]n for
each a ∈ [q]d<k from the following distribution: With probability 1− ε, (ηa)j = 0 and
with the remaining probability, (ηa)j is a uniformly random element from [q].

– Query Fva

(

πa(x+
∑

j ajyj +ηa)
)

for each a ∈ [q]d<k. Accept if the following equality

holds for each a ∈ [q]d<k.

Fva

(

πa(x+

d
∑

j=1

ajyj+ηa)
)

=
(

1−
d
∑

j=1

aj

)

Fv0

(

π0(x+η0)
)

+

d
∑

j=1

ajFvej

(

πej
(x + yj + ηej

)
)

.

Theorem 11.3. For all primes q, positive integers d, k satisfying qd−1 < k 6 qd, and every
γ > 0, there exists small enough δ, ε > 0 such that

– Completeness: If Φ is a (1 − δ)-perfectly satisfiable instance of Unique Games,
then opt(=) > (1 − γ)

– Soundness: opt(Φ) 6 δ ⇒ opt(=) 6 qd+1

qk + γ.

Proof. We begin with the completeness claim, which is straightforward.

Completeness: There exists labellings to the Unique Game instance Φ such that for 1− δ
fraction of the vertices w ∈ WΦ all the edges (v,w) are satisfied. Let A : WΦ ∪ VΦ → [n]
denote one such labelling. Define an assignment to the k-CSP instance by Fw(x) = xA(w)

for all w ∈ VΦ.

With probability at least (1 − δ), the verifier picks a vertex w ∈ WΦ such that the
assignment A satisfies all the edges (w, va). In this case for each a, πa(A(v)) = A(va). Let
us denote A(v) = `. By definition of the functions Fw, we get Fva(πa(x)) = (πa(x))A(va) =

xπ−1
a (A(va)) = x` for all x ∈ [q]n. With probability at least (1 − ε)k, each of the vectors

ηa have their `th component equal to zero, i.e (ηa)` = 0. In this case, it is easy to check
that all the constraints are satisfied. In conclusion, the verifier accepts the assignment with
probability at least (1 − δ)(1 − ε)k. For small enough δ, ε, this quantity is at least (1 − γ).

Soundness: Suppose there is an assignment given by functions Fv for v ∈ VΦ that the

verifier accepts with probability greater than qd+1

qk + γ.

Let z1, z2, . . . , zk be random variables denoting the k values read by the verifier. Thus
z1, . . . , zk take values in [q]. Let P : [q]k → {0, 1} denote the predicate on k variables that
represents the acceptance criterion of the verifier. Essentially, the value of the predicate
P (z1, . . . , zk) is 1 if and only if z1, . . . , zk values are consistent with some affine function.
By definition,
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Pr[ Verifier Accepts ] = E
w∈WΦ

E
va∈N(w)

E
x,y1,...,yd

E
ηa

[

P (z1, . . . , zk)
]

>
qd+1

qk
+ γ

Let ω denote a qth root of unity. The Fourier expansion of the function P : [q]k → C is
given by

P (z1, . . . , zk) =
∑

σ∈[q]k
P̂σχσ(z1, . . . , zk)

where χσ(z1, . . . , zk) =
∏k
i=1 ω

σizi and P̂σ = Ez1,...,zk
[P (z1, . . . , zk)χσ(z1, . . . , zk)]. Notice

that for σ = 0, we get χσ(z1, . . . , zk) = 1. Further,

P̂0 = E
z1,...,zk

[P (z1, . . . , zk)] = Pr[ random assignment to z1, z2, . . . , zk satisfies P ] =
qd+1

qk

Substituting the Fourier expansion of P , we get

Pr[ Verifier Accepts ] =
qd+1

qk
+
∑

σ 6=0

P̂σ E
w∈WΦ

E
va∈N(w)

E
x,y1,...,yd

E
ηa

[

χσ(z1, . . . , zk)
]

Recall that the probability of acceptance is greater than qd+1

qk + γ. Further |P̂σ| 6 1 for all

σ ∈ [q]k. Thus there exists σ 6= 0 such that,

∣

∣

∣
E

w∈WΦ

E
va∈N(w)

E
x,y1,...,yd

E
ηa

[

χσ(z1, . . . , zk)
]∣

∣

∣
>

γ

qk

For each w ∈ VΦ, t ∈ [q], define the function F (t)
w : [q]d → C as F (t)

w (x) = ωtFw(x). For
convenience we shall index the vector σ with the set [q]d<k instead of {1, . . . , k}. In this
notation,

∣

∣

∣
E

w∈WΦ

E
va∈N(w)

E
x,y1,...,yd

E
ηa

[

∏

a∈[q]d<k

F (σa)
va

(

πa(x +
d
∑

i=1

aiyi + ηa)
)

]∣

∣

∣
>

γ

qk

Let G(t)
w : [q]d → C denote the smoothened version of function F (t)

w . Specifically, let

G(t)
w (x) = T1−εF (t)

w (x) = Eη[F (t)
w (x + η)] where η is generated from ε-noise distribution.

Since each ηa is independently chosen, we can rewrite the above expression,

∣

∣

∣
E

w∈WΦ

E
va∈N(w)

E
x,y1,...,yd

[

∏

a∈[q]d<k

G(σa)
va

(

πa(x +
d
∑

i=1

aiyi)
)

]∣

∣

∣
>

γ

qk
.

For each w ∈ WΦ, t ∈ [q], define the function G(t)
v : [q]d → C as G(t)

v (x) = Ew∈N(w)[G(t)
w (πv←w(x))].
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As the vertices va are chosen independent of each other,

∣

∣

∣ E
w∈WΦ

E
x,y1,...,yd

[

∏

a∈[q]d<k

G(σa)
v

(

x +

d
∑

i=1

aiyi

)

]∣

∣

∣ >
γ

qk
.

As σ 6= 0, there exists an index b ∈ [q]d<k such that σb 6= 0. For convenience let us
denote c = σb. Define

κ = 2−Cdq
(

γ

2qk

)2dq

where C is the absolute constant defined in Lemma 11.0.2.

For each w ∈ WΦ, define the set of labels L(w) = {` ∈ [n] : Inf`(Gcw) > κ}. Similarly
for each v ∈ VΦ, let L(v) = {` ∈ [n] : Inf`(Gcv) > κ/2}. Obtain a labelling A to the Unique
Games instance Φ as follows : For each vertex u ∈ WΦ ∪ VΦ, if L(u) 6= φ then assign a
randomly chosen label from L(u), else assign a uniformly random label from [n].

The functions G(c)
w are given by G(c)

w = T1−εF (c)
w where F (c)

w is bounded in absolute value
by 1. By Lemma 3.0.2, the sum of its influences is bounded by 1

ε . Consequently, for all
v ∈ VΦ the size of the label set L(v) is bounded by 2

κε . Applying a similar argument to
w ∈ WΦ, |L(w)| 6 1

κε .

For at least γ/2qk fraction of vertices w ∈ WΦ we have,

∣

∣

∣ E
x,y1,...,yd

[

∏

a∈[q]d<k

G(σa)
v

(

x +

d
∑

i=1

aiyi

)

]∣

∣

∣ >
γ

2qk

We shall refer to these vertices as good vertices. Fix a good vertex w.

Observe that for each u ∈ WΦ ∪ VΦ the functions G(t)
u satisfy |G(t)

u (x)| 6 1 for all x.

Now we shall apply Theorem 11.4 to conclude that the functions G(t)
w have a large Gowers

norm. Specifically, consider the collection of functions given by Fa = G(σa)
w for a ∈ [q]d<k,

and Fa = 1 for all a /∈ [q]d<k. From Theorem 11.4, we get

min
a
Udq(G(σa)

w ) >
( γ

2qk

)2dq

In particular, this implies Udq(G(c)
w ) >

(

γ
2qk

)2dq

. Now we shall use Lemma 11.0.2 to

conclude that the function Gw has influential coordinates. Towards this, observe that the

functions F (t)
v satisfy F (t)

v (x + 1) = F (t)
v (x) · ωt due to folding. Thus for all t 6= 0 and all

v ∈ VΦ, Ex[F (t)
v (x)] = 0. Specifically for c 6= 0,

U1(G(c)
w ) =

(

E
x
[G(c)
w (x)]

)2
=
(

E
v∈N(w)

E
η

E
x
[F (c)
v (x+ η)]

)2
= 0

Hence it follows from Lemma 11.0.2 that there exists influential coordinates i with

Infi(G(c)
w ) > 2−Cdq

(

γ
2qk

)2dq

= κ. In other words, L(w) is non-empty. Observe that, due
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to convexity of influences,

Inf`(G(c)
w ) = Inf`( E

v∈N(w)
[G(c)
v ]) 6 E

v∈N(w)
Infπv←w(`)([G(c)

v (x)])

If the coordinate ` has influence at least κ on G(c)
w , then the coordinate πv←w(`) has an

influence of at least κ/2 for at least κ/2 fraction of neighbors v ∈ N(w). The edge πv←w
is satisfied if ` is assigned to w, and πv←w(`) is assigned to v. This event happens with
probability at least 1

|L(u)||L(v)| > κ2ε2/2 for at least κ/2 fraction of the neighbors v ∈ N(w).

As there are at least (γ/2qk) fraction of good vertices w, the assignment satisfies at least
(γ/2qk) · κ2ε2 · κ/4 fraction of the Unique Games constraints. By choosing δ smaller than
this fraction, the proof is complete. �

Since each test performed by the verifier involve k variables, by the standard connection
between hardness of MAX k-CSP and k-query PCP verifiers, we get the following
hardness result conditioned on the UGC.

Corollary 11.3.1. For every prime q, it is UG-hard to approximate MAX k-CSP over
domain size q within a factor that is greater than q2k/qk.

Using the reduction of [120], the above UG-hardness result can be extended from primes
to arbitrary composite number q.

Corollary 11.3.2. [120] For every positive integer q, it is UG-hard to approximate MAX
k-CSP over domain size q within a factor that is greater than q2k(1 + o(1))/qk.

11.5 Gowers Norm and Multidimensional Arithmetic Progressions

The following theorem forms a crucial ingredient in the soundness analysis in the proof of
Theorem 11.3.

Theorem 11.4. Let q > 2 be a prime and G be a Fq-vector space. Then for all positive
integers ` 6 q and d, and all collections {Fa : G → C}a∈[`]d of `d functions satisfying

|Fa(x)| 6 1 for every x ∈ G and a ∈ [`]d, the following holds:

∣

∣

∣

∣

∣

∣

E
x,y1,y2,...,yd





∏

a∈[`]d
Fa(x+ a1y1 + a2y2 + · · · + adyd)





∣

∣

∣

∣

∣

∣

6 min
a∈[`]d

(

Ud`(Fa)
)1/2d`

(11.2)

The proof of the above theorem is via double induction on d, `. We first prove the
theorem for the one-dimensional case, i.e., d = 1 and every `, 1 6 ` < q (Lemma 11.4.1).
This will be done through induction on `. We will then prove the result for arbitrary d by
induction on d.

Remark 11.5.1. Green and Tao, in their work [68] on configurations in the primes, isolate
and define a property of a system of linear forms that ensures that the degree t Gowers
norm is sufficient to analyze patterns corresponding to those linear forms, and called this
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property complexity (see Definition 1.5 in [68]). Gowers and Wolf [67] later coined the term
Cauchy-Schwartz (CS) complexity to refer to this notion of complexity. For example, the
CS-complexity of the q linear forms x, x + y, x + 2y, . . . , x + (q − 1)y corresponding to a
q-term arithmetic progression equals q − 2, and the U q−1 norm suffices to analyze them. It
can similarly be shown that the CS-complexity of the d-dimensional arithmetic progression
(with qd linear forms as in (11.2)) is at most d(q − 1) − 1. In our application, we need a
”multi-function” version of these statements, since we have a different function Fa for each
linear form x+ a · y. We therefore work out a self-contained proof of Theorem 11.4 in this
setting.

Lemma 11.4.1. Let q > 2 be prime and `, 1 6 ` 6 q, be an integer, and G be a Fq-vector
space. Let {Hσ : G → C}σ∈[`] be a collection of ` functions such that |Hσ(x)| 6 1 for all
σ ∈ [`] and x ∈ G. Then

∣

∣

∣

∣

∣

∣

E
x,y1





∏

σ∈[`]
Hσ(x+ σy1)





∣

∣

∣

∣

∣

∣

6 min
σ∈[`]

(

U `(Hσ)
)

1

2`
. (11.3)

Proof. The proof is by induction on `. For ` = 1, the LHS of (11.3) equals |Ex[H0(x)]|, and
the RHS equals

√

U1(H0). By definition U1(H0) = Ex,y1[H0(x)H0(x+ y1)] = |Ex[H0(x)]|2.

Now consider ` satisfying 1 < ` 6 q. By a change of variables it suffices to upper bound

the LHS of (11.3) by
(

U `(H`−1)
)1/2`

. We have

∣

∣

∣

∣

∣

∣

E
x,y1





∏

σ∈[`]
Hσ(x+ σy1)





∣

∣

∣

∣

∣

∣

2

6 E
x
[|H0(x)|2] · E

x





∣

∣

∣

∣

∣

∣

E
y′1

[

∏

σ∈{1,...,`−1}
Hσ(x+ σy′1)

]

∣

∣

∣

∣

∣

∣

2



6 E
x,y′1,z

′
1

[

∏

σ∈{1,...,`−1}
Hσ(x+ σy′1)Hσ(x+ σz′1)

]

= E
x,y1,z1

[

∏

σ∈{0,1,...,`−2}
Hσ+1(x+ σy1)Hσ+1(x+ σy1 + (σ + 1)z1)

]

= E
z1



 E
x,y1

[

∏

σ∈[`−1]

h̃z1σ (x+ σy1)

]



 (11.4)

where we define h̃z1σ (t) := Hσ+1(t)Hσ+1(t+ (σ + 1)z1). By induction hypothesis, the inner
expectation in (11.4) satisfies

E
x,y1

[

∏

σ∈[`−1]

h̃z1σ (x+ σy1)

]

6
(

U `−1(h̃z1`−2)
) 1

2`−1
. (11.5)
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Now,

(

E
z1

[

U `−1(h̃z1`−2)
1

2`−1

]

)2`−1

6 E
z1

[

U `−1(h̃z1`−2)
]

= E
z1

E
x,z2,...,z`

[

∏

S⊆{2,3,...,d}
|S| even

H`−1(x+
∑

i∈S
zi)H`−1(x+ (`− 1)z1 +

∑

i∈S
zi)

∏

S⊆{2,3,...,d}
|S| odd

H`−1(x+
∑

i∈S
zi)H`−1(x+ (`− 1)z1 +

∑

i∈S
zi)

]

= U `(H`−1) , (11.6)

where the last step uses the fact that for a random choice of z1, (` − 1)z1 is distributed
uniformly in G (this is why we need q to be a prime). Combining (11.4), (11.5), and (11.6),

we obtain our desired conclusion
∣

∣

∣Ex,y1

[

∏

σ∈[`] Hσ(x+ σy1)
]∣

∣

∣ 6
(

U `(H`−1)
)1/2`

. �

Proof of Theorem 11.4: Fix an arbitrary `, 1 6 ` 6 q. We will prove the result by
induction on d. The base case d = 1 is the content of Lemma 11.4.1, so it remains to
consider the case d > 1.

By a change of variables, it suffices to upper bound the LHS of (11.2) by
(

Ud`(F(`−1)1)
)1/2d`

,

and this is what we will prove.

For σ ∈ [`], and y2, y3, . . . , yd ∈ G, define the function

Gy2,...,yd
α (x) =

∏

b=(b2,b3,...,bd)∈[`]d−1

F(α,b)(x+ b2y2 + · · · + bdyd) . (11.7)

The LHS of (11.2), raised to the power 2d`, equals

∣

∣

∣

∣

∣

∣

E
y2,...,yd

E
x,y1

[

∏

α∈[`]
Gy2,...,yd
α (x+ αy1)

]

∣

∣

∣

∣

∣

∣

2d`

6



 E
y2,...,yd

[ ∣

∣

∣

∣

E
x,y1

∏

α∈[`]
Gy2,...,yd
α (x+ αy1)

∣

∣

∣

∣

2`]




2(d−1)`

6

∣

∣

∣

∣

E
y2,...,yd

U `(Gy2,...,yd
`−1 )

∣

∣

∣

∣

2(d−1)`

(using Lemma 11.4.1)

=

∣

∣

∣

∣

E
y2,...,yd

E
x,z1,...,z`

[

∏

S⊆{1,2,...,`}
Gy2,...,yd
`−1

(

x+
∑

i∈S
zi

)

] ∣

∣

∣

∣

2(d−1)`

Defining the function

Pz1,...,z`
b

(t) :=
∏

S⊆{1,2,...,`}
F(`−1,b)

(

t+
∑

i∈S
zi

)

(11.8)
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for every b ∈ [`]d−1 and z1, . . . , z` ∈ G, the last expression equals

∣

∣

∣

∣

E
z1,...,z`

E
x,y2,...,yd

[

∏

b=(b2,...,bd)∈[`]d−1

Pz1,...,z`
b

(

x+ b2y2 + · · · + bdyd

)

] ∣

∣

∣

∣

2(d−1)`

which is at most

E
z1,...,z`





∣

∣

∣

∣

E
x,y2,...,yd

[

∏

b=(b2,...,bd)∈[`]d−1

Pz1,...,z`
b

(

x+ b2y2 + · · · + bdyd

)

] ∣

∣

∣

∣

2(d−1)`


 . (11.9)

By the induction hypothesis, (11.9) is at most

E
z1,...,z`

[

U (d−1)`
(

Pz1,...,z`

(`−1)1

)

]

Recalling the definition of Pz1,...,z`
b from (11.8), the above expectation equals

E
z1,...,z`

E
x,{z′

j
}

16j6(d−1)`







∏

S⊆{1,2,...,`}
T⊆{1,2,...,(d−1)`}

F(`−1)1

(

x+
∑

i∈S
zi +

∑

j∈T
z′j
)







which clearly equals Ud`(F(`−1)1).

11.6 Extending the CMM Algorithm for Non-Boolean CSPs

In this section, we outline a reduction from Non-boolean CSPs to boolean CSPs which in
conjunction with CMM algorithm yields another algorithm for MAX k-CSP .

Consider the case when q = 2t for an integer t. Given a CSP instance = = (V,P), for each
variable x ∈ V in the q-ary CSP, introduce t boolean variables corresponding to the encoding
of the value x in to binary. Every constraint on k variables in V, translate in to a constraint
on kt of the boolean variables. Using the algorithm from [32] on the boolean CSP instance,
it is possible to obtain an assignment of value at least 0.44 kt

2kt opt(=) > 0.44 k
qk opt(=).

Set r = 2blog qc. Then we have q > r > q/2. We will reduce the q-ary CSP instance
= = (V,P) to a CSP =′ = (V ′,P ′) over a domain of size r. The variables of =′ are the same
as that of =, i.e V = V ′. For each variable x ∈ V ′, its domain(set of allowed values) is a
randomly chosen subset of size r of the set [q]. Thus the domain of each variable in V ′ is
a set of size r. The constraints in P ′ are the same as the constraints in P in the following
sense: For any constraint c ∈ P, there is a corresponding constraint c′ ∈ P ′ whose satisfying
assignments are the same as that of c.

Consider the optimal assignment A to the instance =. We will obtain an assignment to
the instance =′ as follows: For a variable x ∈ V, if the assignment A(x), is not an allowed
value for x in =′, just reassign a random allowed value to x. For any given k-tuple of variables
(x1, . . . , xk), with probability at least (r/q)k over the choice of the random restriction, all
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the values A(x1),A(x2), . . . ,A(xk) are allowed. Thus the expected number of constraints P ′

satisfied by the optimal assignment A is at least
(

r
q

)k
·opt(=). Running the CMM algorithm

on the instance =′ produces an assignment that satisfies at least 0.44 k
rk ·

(

r
q

)k
· opt(=) >

0.44 k
qk · opt(=).
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Part III

UNCONDITIONAL LOWER BOUNDS
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Chapter 12

LIMITS OF SEMIDEFINITE PROGRAMMING
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12.1 Introduction

Irrespective of the truth of UGC, it is now clear that UGC precisely identifies an algorithmic
barrier reached by existing work on approximation algorithms. In particular, the results of
Chapters 7, 8, 9 and 10 demonstrate this for many large classes of problems. A natural
question that arises is whether stronger semidefinite programming relaxations are sufficient
to breach this barrier and disprove the UGC? or does disproving UGC warrant the use of a
new technique different from semidefinite programming?

Unfortunately, progress towards answering this compelling question has been slow and
difficult. In the influential paper of Khot–Vishnoi [104], the authors construct an integrality
gap instance for a simple SDP relaxation of Unique Games. To the best of our knowledge,
this is the sole SDP gap construction for Unique Games that appears in literature. On
one hand, this leaves out the possibility that strong SDPs disprove UGC. More alarmingly,
except in a few cases, most UG-hardness results could possibly be falsified using a strong
SDP relaxation. Except for Vertex Cover [64], and k-CSPs [145, 157], in all other cases,
there are no strong SDP gaps supporting a UG-hardness result.

Obtaining strong SDP gap that support a UG-hardness result has been a difficult exer-
cise. In fact, the work of [104] stemmed out of an effort in this direction for the Sparsest
Cut problem. Specifically, the Goemans-Linial conjecture regarding embeddability of L2

2

metrics into L1 was refuted in [104] by constructing a SDP gap supporting the UGC based
hardness for sparsest cut.

The following possibility is entirely consistent with the existing literature: Even for the
Max Cut problem which is fairly well studied [99, 132], including an extra inequality on
every set of 5 variables into the Goemans-Williamson semidefinite program (GW) yields a
better approximation, thus disproving UGC.

12.1.1 Results

In this chapter, we exhibit an integrality gap for certain strong SDP relaxations of Unique
Games. More precisely, we consider two strong hierarchies of SDP relaxations {LHr}r∈N

and {SAr}r∈N defined in Chapter 4. We recall the rough definition of these relaxations
here for the convenience of the reader. Formal definitions are reproduced in Section 12.3.
The rth level relaxation LHr consists of the following: 1) SDP vectors for every vertex of
the unique game, 2) All valid constraints on vectors corresponding to at most r vertices.
Equivalently, the LHr relaxation consists of SDP vectors and local distributions µS over
integral assignments to sets S of at most r variables, such that the second moments of local
distributions µS match the corresponding inner products of SDP vectors.

The SAr relaxation is a strengthening of LHr with the additional constraint that for two
sets S, T of size at most r, the corresponding local distribution over integral assignments
µS, µT must have the same marginal distribution over S∩T . The SAr relaxation corresponds
to simple SDP relaxation strengthened by rth round of Sherali-Adams hierarchy [150]. Let
LHr(Φ) and SAr(Φ) denote the optimum value of the corresponding SDP relaxations on the
instance Φ. Further, let opt(Φ) denote the value of the optimum labeling for Φ. For the LH

and SA hierarchies, we show:
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Theorem 12.1. For all constants η > 0, there exists a Unique Games instance Φ on N

vertices such that LHr(Φ) > 1 − η and opt(Φ) 6 η for r = O(2(log logN)
1
4 )

Theorem 12.2. For all constants η > 0, there exists a Unique Games instance Φ on N
vertices such that SAr(Φ) > 1 − η and opt(Φ) 6 η for r = O((log logN)

1
4 )

Demonstrated for the first time in [104], and used in numerous later works [34, 146, 157,
136, 73, 121], it is by now well known that integrality gaps can be composed with hardness
reductions. A reduction from UG-hardness results to SDP integrality gaps was presented
in great detail in Section 6.7. Such a reduction were also utilized in Chapters 7 and 10.

In particular, given a reduction Red from Unique Games to a certain problem Λ, on
starting the reduction with a integrality gap instance Φ for Unique Games, the resulting
instance Red(Φ) is a corresponding integrality gap for Λ. Composing the integrality gap
instance for LHr or SAr relaxation of Unique Games, along with UG reductions in [99,
17, 136, 73, 121, 137], one can obtain integrality gaps for LHr and SAr relaxations for
several important problems. For the sake of succinctness, we will state the following general
theorem:

Theorem 12.3. Let Λ denote a problem in one of the following classes:

– A Generalized Constraint Satisfaction Problem (Definition 2.4.1).

– An Ordering Constraint Satisfaction Problem (Definition 9.8.2).

Let LC denote the SDP relaxation that yields the optimal approximation ratio for Λ under
UGC. Then the following holds: Given an instance = of the problem Λ, with LC(=) > c and
opt(=) 6 s, for every constant η > 0, there exists an instance Ψη over N variables such
that:

– LHr(Ψη) > c− η and opt(Ψη) 6 s+ η with r = O(2(log logN)1/4
).

– SAr(Ψη) > c− η and opt(Ψη) 6 s+ η with r = O((log logN)1/4).

The O notation in the number of rounds hides a constant depending on η.
The classes of problems for which the above result holds include Max Cut [99], Max

2-Sat [17], Grothendieck Problem(also called KN,N -QuadraticProgramming) [137]
k-way Cut [121] and Maximum Acyclic Subgraph [73]. Notable exceptions that do not
directly fall under this framework are Vertex Cover and Sparsest Cut.

Reductions from Unique Games to Sparsest Cut have been exhibited in [104] and
[38]. With the integrality gap for LHr relaxation of Unique Games (Theorem 12.1), these
reductions imply a corresponding LHr integrality gap for Sparsest Cut. Integrality gaps
for Sparsest Cut are directly related to lower bounds for distortion required to embed
a given metric into L1 metric. Here the L1 metric consists of points in R

d for arbitrarily
large d, and the distance between two points (x,y) is ‖x− y‖1. An L2

2 metric consists of a
set of points in R

d such that the squares of the distances between them also form a metric
(satisfy triangle inequality). Restated in this language, the SDP vectors of the Sparsest
Cut integrality gap that we construct, yield the following result:
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Theorem 12.4. For some absolute constants γ, δ > 0, there exists an N -point L2
2 metric

that requires distortion at least Ω(log logN)δ to embedd into L1, while every set of size at
most O(2(log logN)γ

) embedds isometrically into L1.

The Uniform Sparsest Cut problem is among the many important problems for which
no Unique Games reduction is known. In [48], the techniques of [104] were extended to
obtain an integrality gap for Uniform Sparsest Cut for the SDP with triangle inequali-
ties. Roughly speaking, the SDP gap construction in [48] consists of the hypercube with its
vertices identified by certain symmetries such as cyclic shift of the coordinates. Using the
techniques from this chapter, the following SDP integrality gap for the Balanced Sepa-
rator problem can be exhibited. The details of the proof of this theorem are omitted from
the thesis.

Theorem 12.5. For some absolute constants γ, δ > 0, there exists an instance G on N
vertices of Balanced Separator such that the ratio opt(G)/LHr(G) > Ω(log logN)δ for
r = O(log logN)γ.

12.1.2 Related Work

In a breakthrough result, Arora et al. [16] used a strong semidefinite program with triangle
inequalities to obtain O(

√
log n) approximation for the Sparsest Cut problem. Inspired by

this work, stronger semidefinite programs have been utilized to obtain better approximation
algorithms for certain graph coloring problems [40, 12, 42]. We wish to point out that the
work of Chlamtac and Singh [42] uses the SAr hierarchy to obtain approximation algorithms
for the hypergraph coloring problem.

In this light, hierarchies of stronger SDP relaxations such as Lovász–Schriver [118],
Lasserre [110], and Sherali–Adams hierarchies [150] (See [112] for a comparison) have
emerged as possible avenues to obtain better approximation ratios.

Considerable progress has been made in understanding the limits of linear programming
hierarchies. Building on a sequence of works [10, 11, 152, 153], Schoenebeck et al. [147]
obtained a 2 − ε-factor integrality gap for Ω(n) rounds of Lovász–Schriver LS hierarchy.
More recently, Charikar et al. [34] constructed integrality gaps for Ω(nδ) rounds of Sherali–
Adams hierarchy for several problems like Max Cut, Minimum Vertex Cover, Sparsest
Cut and Maximum Acyclic Subgraph. Furthermore, the same work also exhibits Ω(nδ)-
round Sherali–Adams integrality gap for Unique Games, in turn obtaining a corresponding
gap for every problem to which Unique Games is reduced to.

Lower bound results of this nature are fewer in the case of semidefinite programs. A Ω(n)
LS+ round lower bound for proving unsatisfiability of random 3-SAT formulae was obtained
in [28, 1]. In turn, this leads to Ω(n)-round LS+ integrality gaps for problems like Set
Cover, Hypergraph Vertex Cover where a matching NP-hardness result is known.
Similarly, the 7

6 -integrality gap for Ω(n) rounds of LS+ in [146] falls in a regime where a
matching NP-hardness result has been shown to hold. A significant exception is the result

of Georgiou et al. [64] that exhibited a 2−ε-integrality gap for Ω
(√

logn
log logn

)

rounds of LS+

hierarchy. More recently, building on the beautiful work of [145] on Lasserre integrality gaps
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for Random 3-SAT, Tulsiani [157] obtained a Ω(n)-round Lasserre integrality gap matching
the corresponding UG-hardness for k-CSP [144].

12.1.3 Overview of the Technique

In this section, we will present a brief overview of the techniques and a roadmap for the
rest of the chapter.

The overall strategy in this work to construct SDP integrality gaps is along the lines
of Khot–Vishnoi [104]. Let us suppose we wish to construct a SDP integrality gap for
a problem Λ (say Max Cut). Let RedΛ be a reduction from Unique Games to the
problem Λ. The idea is to construct a SDP integrality gap Φ for Unique Games, and then
execute the reduction RedΛ on the instance Φ, to obtain the SDP gap construction RedΛ(Φ).
Surprisingly, as demonstrated in [104], the SDP vector solution for Φ can be transformed
through the reduction to obtain the SDP solution for RedΛ(Φ).

Although this technique has been used extensively in numerous works [34, 147, 157, 136,
73, 121] since [104], there is a crucial distinction between [104] and later works. In all other
works, starting with an SDP gap Φ for Unique Games, one obtains an integrality gap
for an SDP relaxation that is no stronger. For instance, starting with a integrality gap for
10-rounds of a SDP hierarchy, the resulting SDP gap instance satisfies at most 10 rounds
of the same hierarchy.

The surprising aspect of [104], is that it harnesses the UG reduction RedΛ to obtain
an integrality gap for a “stronger” SDP relaxation than the one which it stared with.
Specifically, starting with an integrality gap Φ for a simple SDP relaxation of Unique
Games, [104] exhibit an SDP gap for Max Cut which obeys all valid constraints on 3
variables. The proof of this fact (the triangle inequality) is perhaps the most technical and
least understood aspect about [104]. One of the main contributions of this chapter is to
conceptualize and simplify this aspect of [104]. Armed with the understanding of [104],
we then develop the requisite machinery to extend it to a strong SDP integrality gap for
Unique Games.

To obtain strong SDP gaps for Unique Games, we will apply the above strategy on the
reduction from Unique Games to E2Linq obtained in [99]. Note that E2Linq is a special case
of Unique Games. Formally, we show the following reduction from a weak gap instance
for Unique Games over a large alphabet to a integrality gap for a strong SDP relaxation
of E2Linq.

Theorem 12.6. (Weak Gaps for Unique Games =⇒ Strong gaps for E2Linq)
For a positive integer q, let RedE2Linq denote the reduction from Unique Games to E2Linq.
Given a (1−η, δ)-weak gap instance Φ for Unique Games, the E2Linq instance RedE2Linq(Φ)

is a (1 − 2γ, 1/qγ/2 + oδ(1)) SDP gap for the relaxation LHr for r = 2O(1/η1/4). Further,
RedE2Linq(Φ) is a (1 − γ, δ) SDP gap for the relaxation SAr for r = O(1/η1/4).

Using the weak gap for Unique Games constructed in [104], along with the above
theorem, implies Theorems 12.1 and 12.2. As already pointed out, by now it is fairly
straightforward to compose an r-round integrality gap for Unique Games, with reductions
to obtain a r round integrality gaps for other problems. Hence, Theorem 12.3 is a fairly
straightforward consequence of Theorems 12.1 and 12.2.
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12.1.4 Organization

In the next section, we present a detailed proof overview that describes the entire integrality
gap construction restricted to the case of Max Cut. The formal definitions of the SDP
hierarchies LHr,SAr and their robustness are presented in Section 12.3. We formally define
weak gap instances for Unique Games in Section 12.4. We also outline an alternate inte-
grality gap for a very minimal SDP relaxation of Unique Games in the same section. This
section is followed by the description of the integrality gap instance for E2Linq obtained by
reduction of Khot et al. [99]. In the rest of the chapter, we construct SDP vectors and local
distributions to show that this is an integrality gap for the strong SDP relaxations – LHr
and SAr. The two subsequent sections are devoted to developing the requisite machinery of
integral vectors, their tensor products and local distributions for Unique Games. The SDP
vectors and local distributions for the integrality gap instance described in Section 12.5 are
exhibited in Sections Section 12.8 and Section 12.8.2.

12.2 Proof Overview

For the sake of exposition, we will describe the construction of an SDP integrality gap for
Max Cut. To further simplify matters, we will exhibit an integrality gap for the basic
Goemans-Williamson relaxation, augmented with the triangle inequalities on every three
vectors. While an integrality gap of this nature is already part of the work of Khot–Vishnoi
[104], our proof will be conceptual and amenable to generalization.

Let Φ be a SDP integrality gap for Unique Games on an alphabet [R]. For each vertex
B in Φ, the SDP solution associates R orthogonal unit vectors B = {b1, · · · , bR}. For the
sake of clarity, we will refer to a vertex B in Φ and the set of vectors B = {b1, . . . , bR}
associated with it as a “cloud”. The clouds satisfy the following properties:

– (Matching Property) For every two clouds A,B, there is a unique matching πB←A
along which the inner product of vectors between A and B is maximized. Specifically,
if ρ(A,B) = maxa∈A,b∈B〈a, b〉, then for each vector a in A, we have 〈a, πB←A(a)〉 =
ρ(A,B).

– (High objective value) For most edges e = (A,B) in the Unique Games instance Φ,
the maximal matching πA←B is the same as the permutation πe corresponding to the
edge, and ρ(A,B) ≈ 1.

Let RedMax Cut(Φ) be the Max Cut instance obtained by executing the reduction in
[99] on Φ. The reduction RedMax Cut in [99] introduces a long code (2R vertices indexed
by {−1, 1}R) for every cloud in Φ. Hence the vertices of RedMax Cut(Φ) are given by pairs
(B,x) where B is a cloud in Φ and x ∈ {−1, 1}R.

The SDP vectors we construct for the integrality gap instance resemble (somewhat sim-
pler in this work) the vectors in [104]. Roughly speaking, for a vertex (B,x), we associate
an SDP vector V B,x defined as follows:

V B,x =
1√
R

∑

i∈[R]

xib
⊗t
i
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The point of departure from [104] is the proof that the vectors form a feasible solu-
tion for the stronger SDP. Instead of directly showing that the inequalities hold for the
vectors, we exhibit a distribution over integral assignments whose second moments match
the inner products. Specifically, to show that triangle inequality holds for three vertices
S = {(A,x), (B, y), (C, z)}, we will exhibit a µS distribution over {±1} assignments to the
three vertices, such that

E
{Y A,x,Y B,y ,Y C,z}∼µS

[Y A,xY B,y] = 〈V A,x,V B,y〉

The existence of an integral distribution matching the inner products shows that the
vectors satisfy all valid inequalities on the three variables, including the triangle inequality.
We shall construct the distribution µS over local assignments in three steps,

Local Distributions over Labelings for Unique Games For a subset of clouds S
within the Unique Games instance Φ, we will construct a distribution µS over labelings
to the set S. The distribution µS over [R]S will be “consistent” with the SDP solution to
Φ. More precisely, if two clouds A and B are highly correlated (ρ(A,B) ≈ 1), then when
the distribution µS assigns label ` to A, with high probability it assigns the corresponding
label πB←A(`) to B. Recall that ρ(A,B) was defined as maxa∈A,b∈B〈a, b〉.

Consider a set S where every pair of clouds A,B are highly correlated (ρ(A,B) > 0.9).
We will refer to such a set of clouds as Consistent. For a Consistent set S,assigning a label
` for a cloud A in S, forces the label of every other cloud B to πB←A(`). Furthermore,
it is easy to check that the resulting labeling satisfies consistency for every pair of clouds
in S. (see Lemma 12.9.2 for details) Hence, in this case, the distribution µS could be
simply obtained by picking the label ` for an arbitrary cloud in S uniformly at random, and
assigning every other cloud the induced label.

Now consider a set S which is not consistent. Here the idea is to decompose the set of
clouds S into clusters, such that each cluster is consistent. Given a decomposition, for each
cluster the labeling can be independently generated as described earlier. In this chapter,
we will use a geometric decomposition to decompose the set of clouds S into clusters. The
crucial observation is that the correlations ρ(A,B) for clouds A,B ∈ S, can be approximated
well by a certain L2

2 metric. More precisely, for each cloud A, we can associate a unit vector
vA =

∑

a∈A a
⊗s such that the L2

2 distance between vA,vB is a good approximation of the
quantity 1 − ρ(A,B).

By using t random halfspace cuts on this geometric representation, we obtain a partition
into 2t clusters. A pair of clouds A,B that are not highly correlated (ρ(A,B) < 1 − 1/16),
are separated by the halfspaces with probability at least 1− (3/4)t. Hence for a large enough
t, all resulting clusters are consistent with high probability. (see Lemma 12.9.3).

A useful feature of the geometric clustering is that for two subsets T ⊂ S, the distribution
over labelings µT is equal to the marginal of the distribution µS on T . To see this, observe
that the distribution over clusterings depends solely on the geometry of the associated
vectors. On the downside, the geometric clustering produces inconsistent clusters with a
very small but non-zero probability. (see Corollary 12.9.2).

The details of the construction of local distributions to Unique Games are presented
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in 12.7.

Constructing Approximate Distributions Fix a set S ⊆ S × {±1}R of vertices in
the Max Cut instance RedMax Cut(Φ). We will now describe the construction of the local
integral distribution µS .

In the reduction RedMax Cut, the labeling ` to a cloud B in the Unique Games in-
stance is encoded as choosing the `th dictator cut in the long code corresponding to cloud
B. Specifically, assigning the label ` to a cloud B should translate into assigning x` for
every vertex (B,x) in the long code of B. Hence, a straightforward approach to define the
distribution µS would be the following:

– Sample a labeling ` : S → [R] from the distribution µS ,

– For every vertex (B,x) ∈ S, assign x`(B).

Although inspired by this, our actual construction of µS is slightly more involved. First, we
make the following additional assumption regarding the Unique Games instance Φ:

Assumption: All the SDP vectors for the integrality gap instance Φ are {±1}-
vectors (have all their coordinates from {±1}).

The SDP gap instance for Unique Games constructed in [104] satisfies this additional
requirement. Furthermore, we outline a generic transformation to convert an arbitrary
Unique Games SDP gap into one that satisfies the above property (see Observation 12.6.1).
A {±1}-vector is to be thought of as a distribution over {±1} assignments. It is easy to
see that tensored powers of {±1}-vectors yield {±1}-vectors. Let T denote the number of
coordinates in the vectors V B,x. The distribution µS is defined as follows,

– Sample a labeling ` : S → [R] from the distribution µS , and a coordinate i ∈ [T ]
uniformly at random.

– For every vertex (B,x) ∈ S, assign Y B,x to be the ith coordinate of the vector
x`(B)b

⊗t
`(B).

We will now argue that the first two moments of the local distributions µS defined above,
approximately match the corresponding inner products between SDP vectors.

Consider the inner product 〈V A,x,V B,y〉 of the SDP vectors corresponding to some
pair of vertices (A,x) and (B, y) in S. The inner product consists of R2 terms of the form
〈xia⊗ti , yjb⊗tj 〉. The crucial observation we will utilize is that the inner product 〈V A,x,V B,y〉
is approximately determined by the R terms corresponding to the matching πB←A. In other
words, we have

〈V A,x,V B,y〉 ≈ 1
n

∑

`∈[R]

x`yπB←A(`)〈a⊗t` , b⊗tπB←A(`)〉 6 ρ(A,B)t

(see Section 12.4.2 for details)
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If ρ(A,B) < 0.9, then with high probability the clustering would place the clouds
A,B in different clusters. Hence the labels assigned to A,B would be completely inde-
pendent of each other, and so would the assignments to (A,x) and (B, y). Hence, we would
have E[Y A,xY B,y] = 0. On the other hand, by the above inequality the inner product
〈V A,x,V B,y〉 6 0.9t ≈ 0. Therefore, for clouds A,B that are not highly correlated, the
inner product of vectors V A,x,V B,y agree approximately with the distribution over local
assignments.

At the other extreme, if ρ(A,B) ≈ 1, then with high probability the clustering would
not separate A from B. If A,B are not separated, then the distribution µS over labelings
will respect the matching between A and B. Specifically, whenever A is assigned label ` by
µS , with high probability B is assigned the label πB←A(`). Consequently, in this case we
have

E
µS

[Y A,xY B,y] = 1
n

∑

`∈[R]

〈x`a⊗t` , yπB←A(`)b
⊗t
πB←A(`)〉 ≈ 〈V A,x,V B,y〉

Smoothing In Chapter 4, we showed a robustness property for the LHr and SAr re-
laxations by which approximately feasible solutions to these hierarchies can be converted
(smoothed) into perfectly feasible solutions with a small loss in the objective value.

To illustrate the idea behind the robustness, consider a set of unit vectors {vi}Ri=1 that
satisfy all triangle inequalities up to an additive error of ε, i.e.,

‖vi − vj‖2 + ‖vj − vk‖2 − ‖vi − vk‖2 > −ε

For the sake of completeness, we include the statements of the claims about the robust-
ness of solutions to LHr and SAr (Theorems 12.8, 12.7) in Section 12.3. We refer the reader
to Section 4.8 for the proofs of these claims.

Extending to E2Linq The above argument for Max Cut can be made precise. How-
ever, to obtain an SDP gap for larger number of rounds, we use a slightly more involved
construction of SDP vectors.

{±1}-vectors were natural in the above discussion, since Max Cut is a CSP over {0, 1}.
For E2Linq, it is necessary to work with vectors whose coordinates are from Fq, as opposed
to {±1}. The tensoring operation for Fq-integral vectors is to be appropriately defined to
ensure that while the behaviour of the inner products resemble traditional tensoring, the
tensored vectors are Fq-integral themselves (see Section 12.6 for details).

For the case of Max Cut, we used a gap instance Φ for Unique Games all of whose
SDP vectors where {±1}-vectors. In case of E2Linq, the SDP vectors corresponding to the
Unique Games instance Φ would have to be Fq-integral vectors. We outline a generic
transformation to convert an arbitrary Unique Games SDP gap into one that satisfies this
property (see Observation 12.6.4).
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12.3 Preliminaries

Here we recall the definitions of the LHr and SAr hierarchies. We refer the reader to
Section 4.7 for more details. Let = be a GCSP (say Unique Games) instance over a set of
variables V, alphabet size q and arity k. A feasible solution to the LHr relaxation consists
of the following:

1. A collection of (local) distributions {µS}S⊆V ,|S|6r, where µS : [q]S → R+ is a distribu-

tion over [q]-assignments to S, that is, µS ∈ N([q]S).

2. A (global) vector solution {bi,a}i∈V ,a∈[q], where bi,a ∈ R
d for every i ∈ V and a ∈ [q].

LHr-Relaxation.

maximize E
P∼P

E
x∼µP

P (x) (LHr)

subject to 〈bi,a, bj,b〉 = Pr
x∼µS

{

xi = a, xj = b
}

S ⊆ V, |S| 6 r, i, j ∈ S, a, b ∈ [q] ,

(12.1)

µS ∈ N
(

[q]S
)

(12.2)

Here, N
(

[q]S
)

denotes probability distributions over [q]S . As usual, we denote by LHr(=)
the value of an optimal solution to this relaxation.

The above relaxation succinctly encodes all possible inequalities on up to r vectors. The
next remark makes this observation precise.

Remark 12.3.1. A linear inequality on the inner products of a subset of vectors {bi,a}i∈S,a∈[q]
for S ⊆ V is valid if it inequality if it holds for all distributions over [q]-assignments to the
variables S. A feasible solution to the LHr-relaxation satisfies all valid inequalities on sets
of up to r vectors.

12.3.1 SAr-Relaxation

Enforcing consistency between the marginals of the local distributions yields the SAr-
relaxation.

SAr-Relaxation:

maximize E
P∼P

E
x∼µP

P (x) (SAr)

subject to 〈bi,a, bj,b〉 = Pr
x∼µS

{

xi = a, xj = b
}

S ⊆ V, |S| 6 r, i, j ∈ S, a, b ∈ [q] ,

(12.3)

‖marginA∩B µA − marginA∩B µB‖1 = 0 A,B ⊆ V, |A|, |B| 6 r . (12.4)

µS ∈ N
(

[q]S
)

(12.5)
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Remark 12.3.2. The SAr relaxation is closely related to the rth level of the Sherali–Adams
hierarchy. In fact, SAr is obtained from the basic SDP relaxation by r-rounds Sherali–Adams
lift-and-project.

12.3.2 Robustness

In Section 4.9, we showed that the LHr and SAr are robust in that approximately feasible
solutions to these relaxations can be converted into a completely feasible relaxation with
a small loss in objective value. Here we restate the claims regarding robustness for the
convenience of the reader.

Definition 12.3.1. An SDP solution {vi,a}i∈V ,a∈Fq , {µS}S⊆V ,|S|6r is said to be ε-infeasible
for LHr (or SAr) if it satisfies all the constraints of the program up to an additive error of
ε.

Theorem 12.7. Given an ε-infeasible solution {bi,a}i∈V ,a∈Fq , {µS}S⊆V ,|S|6r to the LHr
relaxation, there exists a feasible solution {b′i,a}, {µ′S}S⊂V ,|S|6r for LHr such that for all

subsets S ⊆ V, |S| 6 r, ‖µS − µ′S‖1 6 poly(q) · r2ε.

Theorem 12.8. Given an ε-infeasible solution {bi,a}i∈V ,a∈Fq , {µS}S⊆V ,|S|6r to the SAr
relaxation, there exists a feasible solution {b′i,a}, {µ′S}S⊆V ,|S|6r for SAr such that for all
subsets S ⊆ V, |S| 6 r, ‖µS − µ′S‖1 6 poly(q) · ε · qr.

12.4 Weak Gaps for Unique Games

We refer to an integrality gap instance for a fairly simple SDP relaxation of Unique Games
as a weak gap instance. Formally, a weak gap instance for Unique games is defined as follows.

Definition 12.4.1. (Weak SDP solutions and weak gap instances) Let Υ = (V,E, {πe : [n] →
[n]}e∈E). We say a collection B = {Bu}u∈V is a weak SDP solution of value 1 − η for Υ if
the following conditions hold:

1. (Orthonormality) For every vertex u ∈ V , the collection B contains an ordered set
Bu = {bu,1, . . . , bu,n} of n orthonormal vectors in R

d.

2. (`22-triangle inequality) Any two vectors in
⋃B have non-negative inner product

and any three vectors in
⋃

B satisfy the `22-triangle inequality (‖x− y‖2 6 ‖x− z‖2 +
‖z − y‖2).

3. (Strong Matching Property) For every pair of vertices u, v ∈ V , the sets Bu and
Bv satisfy the following strong matching property : There exists n disjoint matchings
between Bu, Bv given by bijections π(1), . . . , π(n) : Bu → Bv such that for all i ∈
[n], b, b′ ∈ Bu, we have 〈b, π(i)(b)〉 = 〈b′, π(i)(b′)〉 .

4. (High SDP value) For every edge e = (u, v) ∈ E, the vector sets Bu and Bv have
significant correlation under the permutation π = πe. Specifically, 〈bu,`, bv,π(`)〉2 > 0.99
for all ` ∈ [n].
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5. The collection B of orthonormal sets is a good SDP solution for Υ, in the sense that

E
v∈V

E
w,w′∈N(v)

π=πw,v, π′=πw′,v

1
n

∑

`∈[n]

〈bw,π(`), bw′,π′(`)〉 > 1 − η.

We say that Υ is a weak (1 − η, δ)-gap instance of Unique Games if Υ has a weak SDP
solution of value 1−η and no labeling for Υ satisfies more than a δ fraction of the constraints.

Remark 12.4.1. The weak gap instances defined here are fairly natural objects. In fact,
if = is an instance of Γ-Max-2Lin(R) with sdp(=) > 1 − η and opt(=) 6 δ, it is easy to
construct a corresponding weak gap instance =′. The idea is to start with an optimal SDP
solution for =, symmetrize it (with respect to the group Φ), and delete all edges of = that
contribute less than

√

3/4 to the SDP objective.

We observe the following consequence of Fact 12.4.1 and item 4 of Definition 12.4.1.

Observation 12.4.1. If B = {Bu}u∈V is a weak SDP solution for Φ = (V,E, {πe}e∈E),
then for any two edges (w, v), (w′ , v) ∈ E, the two bijections π = π−1

(w′,v)◦π(w,v) and πBw′←Bw

(see Def. 12.4.2) give rise to the same matching between the vector sets Bw and Bw′,

π(i) = j ⇐⇒ πBw′←Bw(bw,i) = bw′,j .

The previous observation implies that in a weak gap instance Φ the collection of per-
mutations {πe}e∈E is already determined by the geometry of the vector sets in a weak SDP
solution B.

12.4.1 Constructing Weak Gap Instances

There are a few explicit constructions of weak gap instances of Unique Games, most
prominently the Khot–Vishnoi instance [104]. In particular, the following observation is a
restatement of Theorem 9.2 and Theorem 9.3 in [104].

Observation 12.4.2. For all η, δ > 0, there exists a weak (1 − η, δ)-gap instance with

22O(log (1/δ)/η)
vertices.

Here we sketch the construction of an integrality gap for a simple SDP relaxation of
Unique Games. The instance we present does not have all the properties required in
Definition 12.4.1. However, the construction is extremely simple and intuitive, and with a
little more effort modified into a weak gap instance.

To begin with, we describe a UG instance with infinitely many vertices. Using standard
techniques, it can be discretized to obtain finite instances with the same SDP integrality
gap. Recall that Gd denotes the d-dimensional Gaussian space. It is most natural to describe
our UG instance as a 2-player game. The details of the game are described in Figure 12.1.
Recall that NR denote the R-dimensional simplex. Let F : (Gd)R → NR corresponding to
the strategy F1 as follows:

F(Q) = eA(Q)
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A Simple Unique Games Integrality Gap

– The verifier samples g = (g1,g2, . . . ,gR) where each gi = 1√
d
g′i for a sample g′i drawn

independently from Gd. Define h = (h1,h2, . . . ,hR) as follows:

hi = (1 − ε)gi +
√
εζi

where ζi = 1√
d
ζ ′i for an i.i.d sample ζ ′i from Gd.

– Generate two random permutations πA, πB : [R] → [R]. The questions QA,QB ∈
(Gd)R to the two provers A,B are defined by:

QA = (gπA(1),gπA(2), . . . ,gπA(R))

QB = (hπB(1),hπB(2), . . . ,hπB(R))

– The provers choose one of the R vectors in Gd presented to them. The provers win, if
they choose the corresponding vectors gi,hi for some i. Formally, let A,B : (Gd)R →
[R] denote the strategies of the two provers. Provers win if,

π−1
A (A(QA)) = π−1

B (B(QB))

Figure 12.1: A Simple Unique Games Integrality Gap
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Similarly, define the function F ′ corresponding to the strategy B. Note that each of the
functions F ,F ′ consist of R real valued functions. Specifically, let F = (F1,F2, . . . ,FR)
and F ′ = (F ′1,F ′2, . . . ,F ′R).

Arithmetizing the probability of success, we get:

Pr[Success] = Pr
g,h,πA,πB

[

π−1
A (A(QA)) = π−1

B (B(QB))
]

= E
g,h,
πA,πB

[

R
∑

i=1

FπA(i)(QA)F ′πB(i)(QB)

]

(12.6)

For a permutation π : [R] → [R], and a vector g = (g1, . . . ,gR) in (Gd)R, define π(g) =
(gπ(1), . . . ,gπ(R)). With this notation, we can rewrite

Pr[Success] =
R
∑

i=1

E
g,h,πA,πB

[

FπA(i)(πA(g))F ′πB(i)(πB(h))
]

(12.7)

Define functions ai, bi : (Gd)R → [0, 1] for i ∈ [R] as follows:

ai(g) = E
π

[

Fπ(i)(π(g))
]

bi(h) = E
π

[

F ′π(i)(π(h))
]

where the expectation is over a uniform choice of the permutation π. Further, observe that

E
g

[ai(g)] = E
π

[

E
g

[

Fπ(i)(π(g))
]

]

= E
π

[

E
g

[

Fπ(i)(g)
]

]

= E
g

[

E
π

[

Fπ(i)(g)
]

]

= E
g

[

1

R

]

=
1

R
(12.8)

In the above computation, we used the fact that for a fixed permutation π, g and π(g) are
identically distributed. Now we rewrite equation 12.7 in terms of functions ai, bi to get:

Pr[Success] =
R
∑

i=1

E
g,h

[ai(g)bi(h)] (12.9)

By construction, the vectors g,h are 1−ε correlated random Gaussian vectors of dimension
dR. Hence the above expression is equal to

∑R
i=1〈ai, U1−εbi〉 where U1−ε is the Ornstein-

Uhlenbeck operator (see Section 3.7). Using the Gaussian isoperimetric theorem of Borell
(Theorem 3.4) we obtain an upper bound of Γ1−ε(1/R) on the probability of success for
any strategy of the provers. Using estimates for Gaussian noise stability Γ1−ε [125], this

quantity is roughly equal to O
(

1/R
ε

2−ε

)

.

Now we shall construct an SDP vector solution with value 1 − O(ε). Firstly, ob-
serve that the inner product of two random Gaussian vectors is concentrated at around
O(1/

√
d). In particular, for large enough d, with very probability close to 1, the vectors
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{g1,g2, . . . ,gR,h1,h2, . . . ,hR} satisfy:

|〈gi,gj〉| 6 ε/R3 |〈hi,hj〉| 6 ε/R3 ∀i 6= j ∈ [R]

1 − ε/R3 6 〈gi,gi〉, 〈hi,hi〉 6 1 + ε/R3 6 ε/R3 ∀i ∈ [R]
∑

i

〈gi,hi〉 > R(1 − ε)

Thus for most questions QA,QB to the two provers, the R vectors part of the question form
a good candidate for SDP vectors. The SDP solution we will use is obtained by performing
a surgery operation on these candidate solutions. In fact, all we need to do is to perform
a Gram-Schmidt orthogonalization and normalization for the set of vectors (g1,g2, . . . ,gR)
to obtain an orthonormal set of R vectors. Formally, the vectors {bQA,i} associated with
the question QA are:

bQA,i =
1√
R

GπA(i)

where the vectors (G1,G2, . . . ,GR) are obtained by orthonormalizing the set of vectors
(g1,g2, . . . ,gR). Similarly, the vectors for QB are obtained starting from vectors (h1, . . . ,hR).
As the vectors are nearly orthonormal to begin with, this surgery does not affect the inner
products between {gi} and {hj} by more than ε. Thus the objective value of the SDP is at
least 1 −O(ε).

We stress here that the SDP gap instance obtained is for the simplest semidefinite
program for Unique Games. To make the instance satisfy additional constraints, it could
be necessary to perform more complex operations like tensoring of the vectors.

12.4.2 Properties of Weak Gap Instances

Observation 12.6.4 implies that without much loss we can assume that a weak SDP solution
is Fq-integral, that is, all vectors are Fq-integral. Here we use again 〈·, ·〉ψ := 〈ψ(·), ψ(·)〉 as
inner product for Fq-integral vectors.

Lemma 12.8.1. Let Φ = (V,E, {πe}e∈E) be a weak (1−η, δ)-gap instance. Then, for every
q ∈ N, we can find a weak Fq-integral SDP solution of value 1 −O(

√
η log q) for a Unique

Games instance Φ′ which is obtained from Φ by deleting O(
√
η log q) edges.

Proof. Let B be a weak SDP solution for Φ of value 1− η. By applying the transformation
from Observation 12.6.4 to the vectors in B, we obtain a collection B′ = {B′u}u∈V of sets of
Fq-integral vectors. For every u ∈ V , the vectors in B′u are orthonormal. Furthermore, any
two sets B′u, B

′
v in B′ satisfy the strong matching property (using the facts that the original

sets Bu, Bv satisfy this property and that 〈b′u,i, b′v,j〉ψ is a function of 〈bu,i, bv,j〉).
Let ηv,w,w′,` = 1 − 〈bw,π(`), bw′,π′(`)〉. Using Jensen’s inequality, we can verify that the
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value of the SDP solution B′ is high,

E
v∈V

E
w,w′∈N(v)

π=πw,v, π′=πw′,v

1
R

∑

`∈[R]

〈b′w,π(`), b
′
w′,π′(`)〉ψ

> E
v∈V

E
w,w′∈N(v)

π=πw,v, π′=πw′,v

1
R

∑

`∈[R]

1 −O
(

√

ηv,w,w′,` log q
)

(by Obs. 12.6.4)

> 1 −O(
√

η log q) (using Jensen’s inequality) .

So far, we verified that B′ satisfies all requirements of a weak SDP solution besides item 4
of Definition 12.4.1. We can ensure that this condition is also satisfied by deleting all edges
from E where the condition is violated. Using standard averaging arguments, it is easy to
see that the matching property and the high SDP value imply that this condition is satisfied
for all but at most an O(

√
η log q) fraction of edges. �

We will refer to the set of orthonormal vectors associated with a vertex B as a cloud.
In what follows, we identify the vertices B in a weak gap instance with their corresponding
clouds, and thus refer to vertices/clouds interchangeably.

Definition 12.4.2. For A,B ∈ B, we denote

ρ(A,B)
def
= max

a∈A,b∈B
|〈a, b〉| .

We define πB←A : A → B to be any1 bijection from A to B such that |〈a, πB←A(a)〉| =
ρ(A,B) for all a ∈ A.

As a direct consequence of the orthogonality of the clouds in B, we have the following
fact about the uniqueness of πB←A for highly correlated clouds A,B ∈ B.

Fact 12.4.1. Let A,B ∈ B. If ρ(A,B)2 > 3/4, then there exists exactly one bijection
π : A→ B such that |〈a, π(a)〉| = ρ(A,B) for all a ∈ A.

Remark 12.4.2. The collection B succinctly encodes a Unique Games instance. For a
graph G = (B, E) on B, the goal is to find a labeling {`A ∈ A}A∈B (a labeling can be seen
as a system of representatives for the clouds in B) so as to maximize the probability

Pr
(A,B)∈E

{

`A = πA←B(`B)
}

.

Tensoring

Lemma 12.8.2. For t ∈ N and every pair of clouds A,B ∈ B,

1
n

∑

a∈A,b∈B
a6=πA←B(b)

|〈a, b〉|t 6 2 · (3/4)t/2 .

1The matching property asserts that such a matching exists. If it is not unique, we pick an arbitrary one.
We will assume πA→B = π

−1
B→A.
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Proof. By near-orthogonality,
∑

a∈B〈a, b〉2 6 3/2 for every b ∈ B. Hence, 〈a, b〉2 6 3/4 for all
a 6= πA←B(b). Thus,

1
n

∑

a∈A,b∈B
a6=πA←B(b)

|〈a, b〉|t 6 (3/4)
t−2
2 · 1

n

∑

a∈A,b∈B
|〈a, b〉|2 6 (3/4)

t−2
2 · 3/2 .

�

The notation X = Y ± Z means that |X − Y | 6 Z.

Corollary 12.8.1. For t ∈ N and every pair of clouds A,B ∈ B,

1
n

∑

a∈A,b∈B
〈a, b〉t = 1

n

∑

a∈A
〈a, πB←A(a)〉t ± 2 · (3/4)t/2 .

Remark 12.4.3. The left-hand side in the corollary is the inner product of the vectors
1/
√
R
∑

u∈A u
⊗t and 1/

√
R
∑

v∈B v
⊗t. If t is even, then we can replace the right-hand side by

ρ(A,B)t. This fact that the functional ρ(A,B)t is closely approximated by inner products
averaged-tensored vectors has implicitly been used in [104] and was explicitly noted in [14,
Lemma 2.2].

12.5 Integrality Gap Instance for Unique Games

In this section, we will exhibit the construction strong SDP integrality gap for the E2Linq
problem. Recall that the E2Linq problem is a special case of Unique Games. To this end,
we follow the approach of Khot–Vishnoi [104] to construct the gap instance.

Khot et al. [99] show a UGC-based hardness result for the E2Linq problem. Specifically,
they exhibit a reduction Φγ,q that maps a Unique Games instance Φ to an E2Linq instance
Φγ,q(Φ) such that the following holds: For every γ > 0 and all q > q0(γ),

– Completeness: If Φ is 1 − η-satisfiable then Φγ,q(Φ) is 1 − γ − oη,δ(1) satisfiable.

– Soundness: If Φ has no labeling satisfying more than δ-fraction of the constraints, then
no assignment satisfies more than q−η/2 + oη,δ(1)-fraction of equations in Φγ,q(Φ).

Here the notation oη,δ(1) refers to any function that tends to 0 whenever η and δ go to
naught. The details of the Φγ,q reduction are included in Figure 12.2 for the sake of com-
pleteness.

The rest of the chapter is devoted to the proof of the following theorem.

Theorem 12.9. Let Φ be a weak (1 − η, δ)-gap instance of Unique Games. Then, for
every q of order unity, there exists an SDP solution for the E2Linq instance Φγ,q(Φ) such
that

– the SDP solution is feasible for LHr with r = 2Ω(1/η1/4),
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E2Linq Hardness Reduction [99]

Input A Unique Games instance Φ with vertex set V , edge set E ⊆ V × V (we assume
the graph (V,E) to be regular), and permutations {πe : [R] → [R]}e∈E .

Output An E2Linq instance Φγ,q(Φ) with vertex set V = V ×F
R
q . Let {Fv : F

R
q → Fq}v∈V

denote an Fq-assignment to V. The constraints of Φγ,q(Φ) are given by the tests
performed by the following probabilistic verifier:

– Pick a random vertex v ∈ V . Choose two random neighbours w,w′ ∈ N(v) ⊆ V .
Let π, π′ denote the permutations on the edges (w, v) and (w′, v).

– Sample x ∈ F
R
q uniformly at random. Generate y ∈ F

R
q as follows:

yi =

{

xi with probability 1 − γ

uniform random element from Fq with probability γ

– Generate a uniform random element c ∈ Fq.

– Test if Fw(y ◦ π + c · 1) = Fw′(x ◦ π′) + c. (Here, x ◦ π denotes the vector
(xπ(i))i∈[R].)

Figure 12.2: Reduction from Unique Games to E2Linq
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– the SDP solution is feasible for SAr with r = Ω(η1/4),

– the SDP solution has value 1 − γ − oη,δ(1) for Φγ,q(Φ).

In particular, the E2Linq instance Φγ,q(Φ) is a (1 − γ − oη,δ(1), q
−η/2 + oη,δ(1))) integrality

gap instance for the relaxation LHr for r = 2Ω(1/η1/4). Further, Φγ,q(Φ) is a (1 − γ −
oη,δ(1), q

−η/2 + oη,δ(1)) integrality gap instance for the relaxation SAr for r = Ω(1/η1/4).

12.6 Integral Vectors

In this section, we will develop tools to create and manipulate vectors all of whose coordi-
nates are “integral”.

{±1}-integral vectors We begin by defining our notion of a {±1}-integral vector.

Definition 12.6.1. Let R = (Ω, µ) be a probability space. A function u : R → {±1} is
called an {±1}-integral vector. In other words, u is a {±1}-valued random variable defined
on the probability space R. We define an inner product of functions u, v : R → {±1} by

〈u, v〉 = E
r∼R

u(r)v(r) .

In our construction, we often start with {±1}-integral vectors given by the hypercube
{±1}R. In the terminology of {±1}-integral vectors, we can think of the hypercube {±1}R
as the set of {±1}-integral vectors where R is the uniform distribution over {1, . . . , R}.

The following lemma shows how the Goemans–Williamson [65] rounding scheme can be
thought of as a procedure to “round” arbitrary real vectors to {±1}-integral vectors.

Observation 12.6.1. Given a family of unit vectors {v1, . . . , vR} ∈ R
d, define the set

of {±1}-valued functions v∗1 , . . . , v
∗
R : R → {±1} with R = Gd - the Gaussian space of

appropriate dimension as follows:

v∗i (g) = sign(〈vi, g〉)

for g ∈ Gd. The {±1}-valued functions {v∗i } satisfy 〈v∗1 , v∗2〉 = 2arccos(〈v1, v2〉)/π. Specifi-
cally, this operation obeys the following properties:

〈u, v〉 = 0 ⇐⇒ 〈u∗, v∗〉 = 0 〈u, v〉 = 1 − ε =⇒ 〈u∗, v∗〉 > 1 −O(
√
ε)

The tensor product operation on {±1}-integral vectors, yields a {±1}-integral vector.

Definition 12.6.2. Given two {±1}-valued functions u : R1 → {±1} and v : R2 → {±1},
the tensor product u⊗ v : R1 ×R2 → {±1} is defined as u⊗ v(r1, r2) = u(r1)v(r2).

Observation 12.6.2. For u, u′ : R1 → {±1} and v, v′ : R2 → {±1}, we have

〈u⊗ v, u′ ⊗ v′〉 = E
r1,r2

[u⊗ v(r1, r2)u
′ ⊗ v′(r1, r2)]

= E
r1

[u(r1)u
′(r1)] E

r2
[v(r2)v

′(r2)] = 〈u, u′〉〈v, v′〉
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Fq-integral vectors Let q be a prime. Now, we will define Fq-integral vectors and their
tensor products.

Definition 12.6.3. A Fq-integral vector v : R → Fq is a function from a measure space R
to Fq. For a Fq-integral vector v : R → Fq, its symmetrization ṽ : R × F

∗
q → Fq is defined

by ṽ(r, t) = t · v(r).

Given a map f : Fq → C
d, we denote by f(v) := f ◦ v the composition of functions f

and v. Here are few examples of functions that will be relevant to us:

1. The function χ : Fq → C
q−1 given by

χ(i)
def
= 1√

q−1
(ω1·i, . . . , ωj·i, . . . , ω(q−1)i) ,

where ω is a primitive qth root of unity. The vector χ(i) ∈ C
q−1 is the restriction of

the ith character function of the group Zq to the set F
∗
q. It is easy to see that

〈χ(a), χ(b)〉 = E
t∈F∗q

[

ωta · ω−tb
]

=

{

1 if a = b ,

− 1
q−1 if a 6= b .

2. Let ψ0, ψ1, . . . , ψq−1 denote the corners of the q-ary simplex in R
q−1, translated so that

the origin is its geometric center. Define the function ψ : Fq → R
q−1 as ψ(i) := ψi.

Again, the vectors satisfy

〈ψ(a), ψ(b)〉 =

{

1 if a = b ,

− 1
q−1 if a 6= b .

Remark 12.6.1. A Fq-integral vector v ∈ F
N
q can be thought of as a Fq-valued function

over the measure space ([N ], µ) where µ is the uniform distribution over [N ].

Remark 12.6.2. The following notions are equivalent: Collection of Fq-valued functions
on some measure space R ⇐⇒ Collection of jointly-distributed, Fq-valued random variables
⇐⇒ Distribution over Fq-assignments.

For the case of Fq-integral vector, the tensor product operation is to be defined carefully, in
order to mimic the properties of the traditional tensor product. We will use the following
definition for the tensor operation ⊗q.

Definition 12.6.4. Given two Fq-valued functions u : R → Fq and u′ : R′ → Fq, define the
symmetrized tensor product u⊗q u

′ : (R× F
∗
q) × (R′ × F

∗
q) → Fq as

(u⊗q u
′)
(

r, t, r′, t′
) def

= t · u(r) + t′ · u′(r′) .

Lemma 12.9.1. For any Fq-valued functions u, v : R → Fq and u′, v′ : R′ → Fq,

〈ψ(u⊗q u
′), ψ(v ⊗q v

′)〉 = 〈ψ(u), ψ(v)〉〈ψ(u′), ψ(v′)〉 .
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Proof.

〈ψ(u ⊗q u
′), ψ(v′ ⊗q v

′)〉
= 〈χ(u⊗q u

′), χ(v′ ⊗q v
′)〉 (using 〈ψa, ψb〉 = 〈χ(a), χ(b)〉)

= E
(r,t)

E
(r′,t′)

E
`∈F∗q

ω`tu(r)+`t′u′(r′) · ω−`tv(r)−`t′v′(r′) (by definitions of ⊗q and χ)

= E
`∈F∗q

(

E
(r,t)

ω`tu(r)−`tv(r)
)

·
(

E
(r′,t′)

ω`t
′u′(r′)−`t′v′(r′)

)

= E
`∈F∗q

(

E
r
〈χ(`u(r)), χ(`v(r))〉

)

·
(

E
r′
〈χ(`u′(r′)), χ(`v′(r′))〉

)

= E
`∈F∗q

〈χ(`u), χ(`v)〉〈χ(`u′), χ(`v′)〉

= 〈χ(u), χ(v)〉〈χ(u′), χ(v′)〉 (using 〈χ(`a), χ(`b)〉 = 〈χ(a), χ(b)〉 for ` ∈ F
∗
q)

= 〈ψ(u), ψ(v)〉〈ψ(u′), ψ(v′)〉 (using 〈ψa, ψb〉 = 〈χ(a), χ(b)〉)

�

Remark 12.6.3. Unlike the ordinary tensor operation, the q-ary tensor operation we de-
fined is not associative. Formally, we define the tensoring operation to be right-associative

u1 ⊗q u2 ⊗q . . . ⊗q uk−1 ⊗q uk
def
= u1 ⊗q

(

u2 ⊗q

(

. . . (uk−1 ⊗q uk) · · ·
)

)

.

The lack of associativity will never be an issue in our constructions.

We need the following simple technical observation in one of our proofs.

Observation 12.6.3. Let u, v : R → Fq be two “symmetric” Fq-integral vectors. that is,
Prr{u(r) − v(r) = a} = Prr{u(r) − v(r) = b} for all a, b ∈ F

∗
q. Then, for all a, b ∈ Fq, we

have Er〈ψ(a + u(r)), ψ(b + v(r))〉 = 〈a⊗ u, b⊗ v〉.

We wish to point out that in our applications, the vectors u and v will be tensor powers.
In this case, the symmetry condition is always satisfied.

Proof. Using the symmetry assumption, we see that

Pr
r∼R,t,t′∈F∗q

{

ta+ t′u(r) = tb+ t′v(r)
}

= Pr
r∼R,t∈F∗q

{

a− b = t ·
(

v(r) − u(r)
)}

= Pr
r∼R

{

a− b = v(r) − u(r)
}

(12.10)

If we let ρ denote this probability, then we have 〈a⊗ u, b⊗ v〉 = ρ− (1 − ρ)/(q − 1) (using
the left-hand side of Eq. (12.10) as well as Er〈ψ(a+u(r)), ψ(b+ v(r))〉 = ρ− (1− ρ)/(q− 1)
(using the right-hand side of Eq. (12.10)). �
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The following procedure yields a way to generate Fq-integral vectors from arbitrary
vectors. The transformation is inspired by the rounding scheme for Unique Games in
Charikar et al. [35].

Observation 12.6.4. Define the function ζ : Gq → Fq on the Gaussian domain as follows:

ζ(x1, . . . , xq) = argmaxi∈[q]xi (12.11)

Given a family of unit vectors {v1, . . . , vR} ∈ R
d, define the set of Fq-valued functions

v∗1, . . . , v
∗
R : R → Fq with R = (Gd)q —the Gaussian space of appropriate dimension— as

follows:

v∗i (g1, . . . , gq) = ζ(〈vi, g1〉, . . . , 〈vi, gq〉)

for g1, . . . , gq ∈ (Gd)q. The Fq-valued functions {v∗i } satisfy,

1. 〈u, v〉 = 0 =⇒ 〈ψ(u∗), ψ(v∗)〉 = 0,

2. 〈u, v〉 = 1 − ε =⇒ 〈ψ(u∗), ψ(v∗)〉 = 1 − f(ε, q) = 1 −O(
√
ε log q).

Proof. To see (1), observe that if 〈u, v〉 = 0, then the sets of random variables
{〈u, g1〉, . . . , 〈u, gq〉} and {〈v, g1〉, . . . , 〈v, gq〉} are completely independent of each other.
Therefore,

〈ψ(u∗), ψ(v∗)〉 = E
r∈Gdq

[

ψ(u∗(r))
]

· E
r∈Gdq

[

ψ(u∗(r))
]

= 0 .

Assertion 2 follows from Lemma C.8 in [35]. �

12.7 Local Distributions for Unique Games

In this section, we will construct local distribution over labelings to a Unique Games
instance.

The following facts are direct consequences of the (symmetrized) `22-triangle inequality.

Fact 12.7.1. Let a, b, c ∈ ⋃B with |〈a, b〉| = 1 − ηab and |〈b, c〉| = 1 − ηbc. Then, |〈a, c〉| >

1 − ηab − ηbc.

Fact 12.7.2. Let A,B,C ∈ B with ρ(A,B) = 1 − ηAB and ρ(B,C) = 1 − ηBC . Then,
ρ(A,C) > 1 − ηAB − ηBC .

The construction in the proof of the next lemma is closely related to propagation-style
UG algorithms [155, 14].

Definition 12.7.1. A set S ⊆ B is consistent if

∀A,B ∈ S. ρ(A,B) > 1 − 1/16 .

Lemma 12.9.2. If S ⊆ B is consistent, there exists bijections {πA : [R] → A}A∈S such that

∀A,B ∈ S. πB = πB←A ◦ πA .
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Proof. We can construct the bijections in a greedy fashion: Start with an arbitrary cloud
C ∈ S and choose an arbitrary bijection πC : [R] → C. For all other clouds B ∈ S, choose
πB := πB←C ◦ πC .

Let A,B be two arbitrary clouds in S. Let σA←B := πA ◦ π−1
B . To prove the lemma, we

have to verify that σA←B = πA←B. By construction, σA←B = πA←C ◦ πC←B. Let η = 1/16.
Since ρ(A,C) > 1 − η and ρ(B,C) > 1 − η, we have |〈b, σA←B(b)〉| > 1 − 2η for all b ∈ B
(using Fact 12.7.1). Since (1 − 2η)2 > 1 − 4η = 3/4, Fact 12.4.1 (uniqueness of bijection)
implies that σA←B = πA←B. �

Hence, for a consistent set of clouds S, the distribution over local Unique Games
labelings µS can be defined easily as follows:

Sample ` ∈ [R] uniformly at random, and for every cloud A ∈ S, assign πA(`)
as label.

To construct a local distribution for a set S which is not consistent, we partition the set S
into consistent clusters. To this end, we make the following definition:

Definition 12.7.2. A set S ⊆ B is consistent with respect to a partition P of B (denoted
Consistent(S, P )) if

∀C ∈ P. ∀A,B ∈ C ∩ S. ρ(A,B) > 1 − 1/16 .

We use Inconsistent(S, P ) to denote the event that S is not consistent with P . The
following is a corollary of Lemma 12.9.2.

Corollary 12.9.1. Let P be a partition of B and let S ⊆ B. If Consistent(S, P ), then there
exists bijections {πA : [R] → A | A ∈ S} such that

∀C ∈ P. ∀A,B ∈ C ∩ S. πB = πB←A ◦ πA .

The following lemma relies on the fact that the correlations ρ(A,B) behave up to a small
errors like inner products of real vectors. In other words, there is a geometric representation
of the correlations ρ(A,B) that can be used for the decomposition. This insight has also
been used in UG algorithms[14].

Lemma 12.9.3. For every t ∈ N, there exists a distribution over partitions P of B such
that

– if ρ(A,B) > 1 − ε, then

Pr {P (A) = P (B)} > 1 −O(t
√
ε) .

– if ρ(A,B) 6 1 − 1/16, then

Pr {P (A) = P (B)} 6 (3/4)t .
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Proof. Let s ∈ N be even and large enough (we will determine the value of s later). For
every set B ∈ B, define a vector vB ∈ RD with D := ds as

vB := 1√
R

∑

v∈B
v⊗s .

We consider the following distribution over partitions P of B: Choose t random hyperplanes
H1, . . . ,Ht through the origin in R

D. Consider the partition of R
D formed by these hyper-

planes. Output the induced partition P of B (two sets A,B ∈ B are in the same cluster of
P if and only if vA and vB are not separated by any of the hyperplanes H1, . . . ,Ht).

Since s is even, Corollary 12.8.1 shows that for any two sets A,B ∈ B,

〈vA,vB〉 = ρ(A,B)s ± 2 · (3/4)−s/2 .

Furthermore, if ρ(A,B) = 1 − ε, then

〈vA,vB〉 > (1 − ε)s > 1 − sε .

Let η = 1/16. We choose s minimally such that (1−η)s+2 · (3/4)−s/2 6 1/
√

2. (So s is an
absolute constant.) Then for any two sets A,B ∈ B with ρ(A,B) 6 1−η, their vectors have
inner product 〈vA,vB〉 6 1/

√
2. Thus, a random hyperplane through the origin separates

vA and vB with probability at least 1/4. Therefore,

Pr {P (A) = P (B)} 6 (3/4)t .

On the other hand, if ρ(A,B) = 1 − ε, then the vectors of A and B have inner product
〈vA,vB〉 > 1 − sε. Thus, a random hyperplane through the origins separates the vectors
with probability at most O(

√
ε). Hence,

Pr {P (A) = P (B)} >
(

1 −O(
√
ε)
)t

> 1 −O(t
√
ε) .

�

Remark 12.7.1. Using a more sophisticated construction, we can improve the bound
1 −O(t

√
ε) to 1 −O(

√
tε).

The previous lemma together with a simple union bound imply the next corollary.

Corollary 12.9.2. The distribution over partitions from Lemma 12.9.3 satisfies the follow-
ing property: For every set S ⊆ B,

Pr
{

Inconsistent(S, P )
}

6 |S|2 · (3/4)t

Remark 12.7.2. Using a slightly more refined argument (triangle inequality), we could
improve the bound r2 · (3/4)t to r · (3/4)t.
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12.8 Construction of SDP Solutions for E2LIN(q)

In this section, we construct SDP vectors and local distributions for B × F
R
q that form the

variables in the Φγ,q(Φ) instance described in Section 12.5. The set B × F
R
q correspond to

the set of vertices in the instance obtained by applying a q-ary long code based reduction
on the Unique Games instance encoded by B. For a vertex (B,x) ∈ B × F

R
q , we index the

coordinates of x by the elements of B. Specifically, we have x = (xb)b∈B ∈ F
B
q .

Geometric Partitioning Apply Lemma 12.9.3 to the collection of sets of vectors B. We
obtain a distribution P over partitions P of B into T disjoint subsets {Pα}Tα=1. For a subset
S ⊂ B, let S = {Sα}Tα=1 denote the partition induced on the set S, that is, Sα := Pα ∩ S.
For a family B ∈ B, let αB denote the index of the set PαB

in the partition P that contains
B.

12.8.1 Vector Solution

For a vertex (B,x) ∈ B × F
R
q , the corresponding SDP vectors are given by functions

V
B,x
j : P × [T ] ×R → R

q defined as follows:

W
B,x
j (r) = 1√

R

∑

b∈B
ψ
(

xb − j + b⊗t(r)
)

(12.12)

U
B,x
j (P,α, r) = Pα(B) · WB,x

j (r) (12.13)

V
B,x
j = 1

qV0 +
√
q−1
q U

B,x
j (12.14)

Here R is the measure space over which the tensored vectors b⊗t are defined. The nota-
tion Pα(B) denotes the 0/1-indicator for the event B ∈ Pα. Further, V0 is a unit vector
orthogonal to all the vectors U

B,x
j .

Let us evaluate the inner product between two vectors V
A,x
i and V

B,y
j , (in this way, we

also clarify the intended measure on the coordinate set)

〈V A,x
i ,V B,y

j 〉 = 1
q2

+ q−1
q2

〈UA,x
i ,UB,y

j 〉
= 1

q2
+ q−1

q2
E

P∼P
∑T

α=1Pα(A)Pα(B)〈WA,x
i ,WB,y

j 〉

= 1
q2

+ q−1
q2

Pr
P∼P

{P (A) = P (B)} 〈WA,x
i ,WB,y

j 〉 (12.15)

Let us also compute the inner product of W
A,x
i and W

B,y
j . Recall the notation 〈u, v〉ψ :=
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〈ψ(u), ψ(v)〉.

〈WA,x
i ,WB,y

j 〉 = 1
n

∑

a∈A,b∈B
E
r∼R

〈xa − i+ a⊗t(r), yb − j + b⊗t(r)〉ψ

= 1
n

∑

a∈A,b∈B
〈(xa − i) ⊗ a⊗t, (yb − j) ⊗ b⊗t〉ψ (by Observation 12.6.3)

= 1
n

∑

a∈A,b∈B
〈ψ(xa − i), ψ(yb − j)〉〈a, b〉tψ (by Lemma 12.9.1) (12.16)

12.8.2 Local Distributions

Fix a subset S ⊂ B of size at most r. In this section, we will construct a local distribution
over Fq-assignments for the vertex set S = S × F

R
q (see Figure 12.3). Clearly, the same

construction also yields a distribution for a general set of vertices S′ ⊂ B × F
R
q of size at

most r.

Remark 12.8.1. In the construction in Figure 12.3, the steps 6–7 are not strictly necessary,
but they simplify some of the following calculations. Specifically, we could use the Fq-
assignment {FB,x}(B,x)∈S to define the local distribution for the vertex set S. The resulting
collection of local distributions could be extended to an approximately feasible SDP solution
(albeit using a slightly different vector solution).

We need the following two simple observations.

Observation 12.8.1. For all a, b ∈ Fq, we have

Pr
κ∈Fq

[a+ κ = i ∧ b+ κ = j] = 1
q2 + q−1

q2 〈ψ(a− i), ψ(b − j)〉 .

Proof. If a − i = b − j then both LHS and RHS are equal to 1/q, otherwise both are equal
to 0. �

Observation 12.8.2. Fix a, b ∈ Fq, over a random choice of h1, h2 ∈ Fq,

E
h1,h2∈Fq

[〈ψ(a+ h1), ψ(b + h2)〉] = 0 .

Proof. Follows easily from the fact that 〈ψ(i), ψ(j)〉 = 1 if i = j and −1/q−1 otherwise. �

The next lemma shows that the second-order correlations of the distribution µS approx-
imately match the inner products of the vector solution {V A,x

i }.

Lemma 12.9.4. For any two vertices (A,x), (B, y) ∈ S,

Pr
Z∼µS

[

ZA,x = i ∧ ZB,y = j
]

= 〈V A,x
i ,V B,y

j 〉 ± 10|S|2(3/4)t/2 .
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For S = S × FRq , the local distribution µS over assignments FSq is defined by the following
sampling procedure:
Partitioning:

1. Sample a partition P = {Pα}Tα=1 of B from the distribution P obtained by
Lemma 12.9.3. Let αA, αB denote the indices of sets in the partition P that contain
A,B ∈ S respectively.

2. If Inconsistent(S, P ) then output a uniform random Fq-assignment to S = S × F
R
q .

Specifically, set

Z(B,x) = uniform random element from Fq ∀B ∈ S, x ∈ F
R
q .

Choosing Consistent Representatives:

4. If Consistent(S, P ) then by Corollary 12.9.1, for every part Sα = Pα ∩S, there exists
bijections ΠSα = {πB : [R] → B | B ∈ Sα} such that for every A,B ∈ Sα,

πA = πA←B ◦ πB .

5. Sample L = {`α}Tα=1 by choosing each `α uniformly at random from [R]. For every
cloud B ∈ S, define `B = `αB

. The choice of L determines a set of representatives
for each B ∈ S. Specifically, the representative of B is fixed to be πB(`B).

Sampling Assignments:

5. Sample r ∈ R from the corresponding probability measure and assign

FB,x(P,L, r) = xπB(`B) + πB(`B)⊗t(r) .

6. Sample H = {hα}Tα=1 by choosing each hα uniformly at random from [q]. For every
cloud B ∈ B, define hB = hαB

.

7. Sample κ uniformly at random from [q].

8. For each B ∈ Sα and x ∈ F
R
q , set

ZB,x(P,L, r,H, κ) = FB,x(P,L, r) + hB + κ .

9. Output the Fq-assignment {ZB,x}(B,x)∈S .

Figure 12.3: Local distribution over Fq-assignments
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Proof. Firstly, since Pr[Consistent(S, P )] > 1 − |S|2(3/4)t (by Corollary 12.9.2),

Pr
µS

[

ZA,x = i ∧ ZB,y = j
]

= Pr
µS

[

ZA,x = i ∧ ZB,y = j
∣

∣ Consistent(S, P )
]

± |S|2(3/4)t .
(12.17)

Using Observation 12.8.1, and the definition of ZA,x and ZB,y we can write

Pr
µS

[

ZA,x = i ∧ ZB,y = j
∣

∣ Consistent(S, P )
]

= 1
q2

+ q−1
q2

E
P,H,L,r

[

〈ψ(FA,x + hA − i), ψ(FB,y + hB − j)〉
∣

∣ Consistent(S, P )
]

. (12.18)

If A,B fall in the same set in the partition P (that is αA = αB), then we have hA = hB . If
A,B fall in different sets (that is αA 6= αB), then hA, hB are independent random variables
uniformly distributed over Fq. Using Observation 12.8.2, we can write

E
P,H,L,r

[

〈ψ(FA,x + hA − i), ψ(FB,y + hB − j)〉
∣

∣

∣
Consistent(S, P )

]

= E
P,L,r

[

1(αA = αB)〈ψ(FA,x − i), ψ(FB,y − j)〉
∣

∣

∣ Consistent(S, P )
]

. (12.19)

Let P be a partition such that Consistent(S, P ) and αA = αB = α. The bijections πA, πB
(see step 4 Figure 12.3) satisfy πA = πA←B ◦πB . Note that therefore a = πA←B(b) whenever
a = πA(`) and b = πB(`) for some ` ∈ [R]. Hence,

E
L

E
r

[

〈ψ(FA,x(P,L, r) − i), ψ(FB,y(P,L, r) − j)〉
]

= E
`α

E
r

[

〈ψ(xπA(`α) − i+ πA(`α)⊗t(r)), ψ(yπB(`α) − j + πB(`α)
⊗t(r))〉

]

= 1
R

∑

a∈A,b∈B
a=πA←B(b)

E
r
〈ψ(xa − i+ a⊗t(r)), ψ(yb − j + b⊗t(r))〉 (using πA = πA←B ◦ πB)

= 1
R

∑

a∈A,b∈B
a=πA←B(b)

〈ψ(xa − i), ψ(yb − j)〉 · 〈a, b〉tψ (using Observation 12.6.3 and Lemma 12.9.1)

= 〈WA,x
i ,WB,y

j 〉 ± 2 · (3/4)t/2 (using Eq. (12.16) and Lemma 12.8.2) .

Combining the last equation with the previous equations (12.17)–(12.19), we can finish the
proof

Pr
µS

[

ZA,x = i ∧ ZB,y = j
]

= 1
q2 + q−1

q2 E
P

[

1(αA = αB)
∣

∣

∣ Consistent(S, P )
]

〈WA,x
i ,WB,y

j 〉 ± (|S|2(3/4)t + 2 · (3/4)t/2)

= 1
q2

+ q−1
q2

Pr
P

[

P (A) = P (B)
]

· 〈WA,x
i ,WB,y

j 〉 ± 10|S|2(3/4)t/2

(using Pr {Consistent(S, P )} > 1 − |S|2(3/4)t and |〈WA,x
i ,WB,y

j 〉| 6 1)

= 〈V A,x
i ,V B,y

j 〉 ± 10|S|2(3/4)t/2 (using Eq. (12.15)) .
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�

Lemma 12.9.5. Let S ′ ⊂ S be two subsets of B and let S′ = S ′ × F
R
q and S = S × F

R
q .

Then,
‖µS′ − marginS′ S‖1 6 2|S|2(3/4)t .

Proof. For a partition P ∈ P, let µS|P denote the distribution µS conditioned on the choice
of partition P . Firstly, we will show the following claim:

Claim 12.9.1. If Consistent(S ′, P ) and Consistent(S, P ), then µS′|P = marginS′ µS|P .

Proof. Let {Sα} and {S ′α} denote the partitions induced by P on the sets S and S ′ respec-
tively. Since S ′ ⊆ S, we have S ′α ⊆ Sα for all α ∈ [T ]. By our assumption, each of the sets
S ′α are consistent in that ρ(A,B) > 1− 1/16 for all A,B ∈ S ′α. Similarly, the sets Sα are also
consistent.

Let us consider the pair of sets S ′α ⊂ Sα for some α ∈ [T ]. Intuitively, the vectors within
these sets fall into R distinct clusters. Thus the distribution over the choice of consistent
representatives are the same in µS′|P and marginS′ µS|P . Formally, we have two sets of
bijections ΠS′α = {π′A | A ∈ S ′α} and ΠSα = {πA | A ∈ Sα} satisfying the following property:

πA→B ◦ π′A(`) = π′B(`) πA→B ◦ πA(`) = πB(`) ∀A,B ∈ S ′α, ` ∈ [R] .

Fix a collection A ∈ S ′α. Let ∼ denote that two sets of random variables are identically
distributed.

{π′B(`α) | B ∈ S ′α} ∼ {πA→B ◦ π′A(`α) | B ∈ S ′α}
∼ {πA→B(a) | B ∈ S ′α, a is uniformly random in A}
∼ {πA→B ◦ πA(`α) | B ∈ S ′α} ∼ {πB(`α) | B ∈ S ′α} .

The variables L = {`α} are independent of each other. Therefore,

{π′B(`B) | B ∈ S ′} ∼ {πB(`B) | B ∈ S ′} .

Notice that the choice of r ∈ R, H and κ are independent of the set S. Hence, the final
assignments {ZB,x | B ∈ S ′, x ∈ F

R
q } are identically distributed in both cases. �

Returning to the proof of Lemma 12.9.5, we can write

‖µS′ − marginS′ µS‖1 =

∥

∥

∥

∥

E
P
µS′|P − E

P
marginS′ µS|P

∥

∥

∥

∥

1

6 E
P

[

‖µS′|P − marginS′ µS|P‖1

]

(using Jensen’s inequality)

= Pr[Inconsistent(S, P )] · E
P

[

‖µS′|P − marginS′ µS|P‖1

∣

∣ Inconsistent(S, P )
]

.

The first step uses that the operator marginS′ is linear. The final step in the above calculation
makes use of Claim 12.9.1. The lemma follows by observing that Pr[Inconsistent(S, P )] 6

|S|2(3/4)t and ‖µS′|P − marginS′ µS|P‖1 6 2. �
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The next corollary follows from the previous lemma (Lemma 12.9.5) and the triangle
inequality.

Corollary 12.9.3. Let S,S ′ be two subsets of B and let S′ = S ′ × F
R
q and S = S × F

R
q .

Then,
‖marginS∩S′ µS − marginS∩S′ µS′‖1 6 4max

(

|S|2, |S ′|2
)

(3/4)t .

Proof. Suppose Φ is given by the vertex set V , the edge set E ⊆ V × V , and the collection
of permutations {πe}e∈E . Using Lemma 12.8.1, we obtain a weak Fq-integral SDP solution
B = {Bu}u∈V of value 1 −O(

√
η log q) for Φ.

We construct a vector solution {V B,x
i | i ∈ Fq, B ∈ B, x ∈ F

R
q } and local distributions

{µS | S ⊆ B × F
R
q } as defined in Section (Section 12.8).

Note that since each set B ∈ B correspond to a vertices in u ∈ V , we can view these
vectors and local distributions as an SDP solution for the E2Linq instance Φγ,q(Φ). Specif-

ically, we make the identifications V
u,x
i := V

Bu,x
i and µS := µ{(Bu,x)|(u,x)∈S} for all u ∈ V ,

x ∈ F
R
q , and sets S ⊆ V × F

R
q .

Lemma 12.9.4 and Corollary 12.9.3 show that this SDP solution is ε-infeasible for SAr
and LHr, where ε = O(r2 ·(3/4)t/2). The value of the SDP solution for Φγ,q(Φ) (see Fig. 12.2)
is given by

E
v∈V

E
w,w′∈N(v)

π=πw,v, π′=πw′,v

E
{x,y}

E
c∈Fq

q
∑

i=1

〈V w,(x◦π+c·1)
i ,V w′, y◦π′

i−c 〉 .

Using Eq. (12.15)–(12.16),

〈V w,(x◦π+c·1)
i ,V w′, y◦π′

i−c 〉
= 1

q2
+ q−1

q2
Pr
P∼P

[P (Bw) = P (Bw′)] · 1
n

∑

`,`′∈[R]

〈ψ(xπ(`) + c− i), ψ(yπ′(`′) − (i− c))〉〈bw,`, bw′,`′〉tψ .

Note that 〈ψ(xπ(`)+c−i), ψ(yπ′(`′)−(i−c))〉 = 〈ψ(xπ(`), ψ(yπ′(`′))〉. Using Observation 12.4.1,
we have π(w,v)(`) = π(w′,v)(`

′) if and only if ` = πBw←Bw′ (`
′). Hence, by Lemma 12.8.2,

1
n

∑

`,`′∈[R]

〈ψ(xπ(`)), ψ(yπ′(`′))〉〈bw,`, bw′,`′〉tψ

= 1
n

∑

`

〈ψ(xπ(`)), ψ(yπ(`))〉〈bw,π(`), bw′,π(`)〉tψ ± 2 · r2(3/4)t/2

= 1
n

∑

`

〈ψ(x`), ψ(y`)〉ρ(Bw, Bw′)t ±O(ε) .

Note that the distribution of {x, y} is independent of the vertices v,w,w′, and

E
{x,y}

1
R

∑

`∈[R]

〈ψ(x`), ψ(y`)〉 = 1 − γ .

Therefore, if we let ηw,w′ = ρ(Bw, Bw′), we can lower bound the value of the SDP solution
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as follows

E
v∈V

E
w,w′∈N(v)

π=πw,v, π′=πw′,v

E
{x,y}

E
c∈Fq

q
∑

i=1

〈V w,(x◦π+c·1)
i ,V w′, y◦π′

i−c 〉

= E
v∈V

E
w,w′∈N(v)

[

1
q2

+ q−1
q2

Pr
P∼P

[P (Bw) = P (Bw′)] · q · ρ(Bw, Bw′)t(1 − γ)

]

±O(ε)

> (1 − γ) E
v∈V

E
w,w′∈N(v)

Pr
P∼P

[P (Bw) = P (Bw′)] ρ(Bw, Bw′)
t ±O(ε)

> (1 − γ) E
v∈V

E
w,w′∈N(v)

(1 −O(t
√
ηw,w′)) ±O(ε) (using Lemma 12.9.3)

Using Jensen’s inequality and the fact that Ev,w,w′ ηv,w,w′ = O(
√
η log q) (Lemma 12.8.1),

we see that the the value of our SDP solution is at least 1 − γ − O(ε + tη1/4) (recall that
we assume q to be constant).

On smoothing the SDP solution using Theorem 12.7, we lose O(r2ε) = O(r4(3/4)t) in
the SDP value. Thus we can set t = o(η−1/4) and r = (3/4)t/10 in order to get a feasible
SDP solution for LHr with value 1 − γ − oη,δ(1).

On smoothing the SDP solution using Theorem 12.8, we lose O(qrε) = O(qr(3/4)t) in
the SDP value. Thus we can set, t = o(η−1/4) and r = t/ log2 q, we would get a feasible
SDP solution for SAr with value 1 − γ − oη,δ(1). �

Proof of Theorems 12.1–12.2. Using Theorem 12.9 with the Khot–Vishnoi integral-
ity gap instance (Lemma 12.4.2), we have N = 22log(1/δ)/η

and thus r = 2O((log logN)1/4).
Similarly for SAr, we get r = O((log logN)1/4).
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Chapter 13

3-QUERY PCP OVER INTEGERS
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13.1 Introduction

Solving a system of linear equations over the rationals or reals is a fundamental algorithmic
task arising in numerous applications. It is possible to tell in polynomial time, by Gaussian
elimination, if a given system admits a solution, and if so to find one. However, Gaussian
elimination is not robust against noise, and given an over-determined system of equations, of
which say only 99% of the equations are simultaneously satisfiable, no efficient algorithm for
finding a good solution satisfying a good fraction (say 50%) of equations is known. Indeed,
it was recently shown that, for any constant ε > 0, given a (1 − ε)-satisfiable linear system
over the rationals, it is NP-hard to find an assignment to the variables that satisfies even
a fraction ε of the equations [74, 61]. A similar hardness result over large finite fields was
established in a classic paper by H̊astad [86].

A celebrated hardness result due to H̊astad [86] shows that for every constant ε > 0,
given a (1−ε)-satisfiable system of linear equations over a finite field Fq where each equation

depends on at most 3 variables, it is NP-hard to satisfy more than a fraction
(

1
q + ε

)

of

the equations. Underlying this result is a 3-query PCP verifier that queries 3 symbols from
purported codewords of the “long code” (a code first defined and considered in [22]) and
checks a linear constraint on them, and a tight estimate of the soundness of such a verifier
using Fourier analysis. The method of designing long-code based PCP verifiers with tests
that closely parallel the underlying constraint in the optimization problem of interest (3-
variable linear equations in the above case), and analyzing their performance using Fourier
analysis has been highly influential since (for instance, see Khot’s survey [98]).

In this chapter, we prove the analog of H̊astad’s 3-variable linear equations result for
equations over the integers (as well as the reals). Formally, we prove that for every ε, δ > 0,
given a system of linear equations with integer coefficients where each equation is on 3
variables, it is NP-hard to distinguish between the following two cases: (i) There is an
assignment of integer values to the variables that satisfies at least a fraction (1 − ε) of the
equations, and (ii) No assignment even of real values to the variables satisfies more than a
fraction δ of the equations.

We stress that there seems to be no easy reduction from the problem of solving linear
equations over finite fields to solving equations over the real numbers. It is straightforward
to obtain a hardness result over integers from the hardness result of H̊astad [86] over finite
fields. Specifically, for every mod p equation of the form x+ y − z = c mod p, introduce
an auxiliary variable w and an equation x + y − z − pw = c over integers. However this
reduction yields hardness of linear systems with 4 variables per equation instead of 3. More
importantly, this reduction does not yield any hardness for linear systems over real numbers.

Obtaining a hardness of approximation result for linear systems with very few variables
per constraint was mentioned as an open question in [61]. The result for general linear
equations was obtained via a simple reduction from Label Cover in [74], and via a natural
tensoring based approach to amplify the gap in [61].

Moreover, the problem of sparse linear systems is closely related to Unique Games.
Γ-Max-2Lin which is a special case of Unique Games is exactly the problem of satisfying
the maximum number of linear equations in a system where the sparsity is 2 (exactly two
variables per equation) over a finite field. Moreover, by the work of Khot et al. [99],
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the unique games conjecture is equivalent to the following hardness for solving sparse linear
systems: for every ε, δ > 0, given a system of sparse linear equations of the form xi−xj = cij(
mod p), modulo a number p such that 1−ε of the equations can be simultaneously satisfied,
it is NP-hard to find an assignment satisfying more than δ-fraction of the equations. It is
natural to ask whether the UGC is equivalent to a similar hardness of solving sparse linear
systems of integers or real numbers. This question still remains open.

In Section 13.2, we present an overview of our proof technique highlighting some of
the key challenges in the integers case, our technical contributions to address them, and
connections to derandomized linearity testing.

13.1.1 Previous related results

For sparse linear equations over integers, in fact with at most 2 variables per equation, it
is shown in [7] (via a reduction from vertex cover on bounded degree graphs) that for some
absolute constants ρ2 < ρ1 < 1, it is NP-hard to tell if such a system is at least ρ1-satisfiable
or at most ρ2-satisfiable. By boosting this gap using a natural “product” construction,
strong hardness results have been shown for the problem (called MAX-SATISFY in the
literature) of approximating the number of satisfied equations in an over-determined system
of (not necessarily sparse) linear equations over the rationals [7, 60]. In [60], it is shown
that unless NP ⊂ BPP, for every ε > 0, MAX-SATISFY cannot be approximated within
a ratio of n1−ε where n is the number of equations in the system. (On the algorithmic side,
the best approximation algorithm for the problem, due to Halldorsson [76], achieves ratio
O(n/ log n).)

However, the product construction destroys the sparsity of the original system, and also
reduces the completeness to about ρk1 for a k-fold product. Consequently, even without the
sparsity requirement, these results do not yield any hardness for near-satisfiable instances
where an assignment satisfying a (1 − ε) fraction of the equations is promised to exist (for
an arbitrarily small parameter ε > 0). For such near-satisfiable instances, a result showing
NP-hardness of satisfying even an ε fraction of the equations was obtained only recently in
[74, 61].

For the complementary objective of minimizing the number of unsatisfied equations,
a problem called MIN-UNSATISFY, hardness of approximation within ratio 2log0.99 n is
shown in [7] (see also [5]).

13.2 Proof Overview

Our proof follows along the lines of H̊astad’s result for 3-variable linear equations over
prime fields Fq. We give a 3-query PCP verifier that reads 3 appropriately chosen locations
of the proof (each of whose entry holds an integer in some finite range) and checks a linear
equation on them. The starting point is an instance of Label Cover over a fixed alphabet
[R] consisting of a bipartite graph and projection constraints πe : [R] → [R] on the edges
e; the projection constraint on edge (u, v) imposes the condition πu←v(`(v)) = `(u) where
`(w) is the label assigned to vertex w. The verifier checks satisfiability of the Label Cover
instance by picking a random edge (u, v) of the Label Cover graph and then checking
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that the labels assigned to the endpoints of that edge satisfy the projection constraint. To
aid the verifier to perform the latter check in a query-efficient way, the prover is expected
to write down the integer long code encodings (in some large finite range) of all the vertex
labels. The verifier picks one location x, with probability P (x) for some distribution P ,
from the supposed long code F of u’s label, and two locations y, y′ with probability P ′(y)
according to distribution P ′, from the suppose long code H of v’s label. (Here y′ = y+ x is
determined once x, y are picked — in the actual test, as in H̊astad’s test [86], a small noise
according to some distribution is added to y + x to get y′, and this is crucial. However,
for the following description let us pretend that y′ is determined once x, y are picked.) The
verifier then checks that the values F(x),H(y) and H(y′) obey a linear constraint.

Let M be a large enough integer such that the total mass of distributions P and P ′

outside a cube of dimensionM is tiny. Now any test of the above form that works for integers
must also work modulo all large enough primes (that are much bigger than the range in
which we allow the long code values to lie). In particular, picking q large enough compared
to M , we will have a 3-query long code test modulo q that only queries a negligible fraction

of the domain F
[R]
q of the long code. Therefore, our results imply a highly derandomized

version of H̊astad’s test (though our target soundness ε is necessarily much larger than 1/p).
In particular, we obtain a test whose total randomness used depends only on the soundness
and the dimension, and is independent of the domain size.

Technically, the difficulty imposed by this manifests itself in trying to extend the “de-
coding” procedure where the tables F and H are used to produce a small list of candidate
labels for u and v. H̊astad’s decoding procedure uses the large Fourier coefficients of F
to decode a small list of labels for u. The Fourier transform F̂P of F with respect to the
distribution P can have many large coefficients since P is very far from uniform. In fact,
the sum of squares of the Fourier coefficients grows exponentially in the dimension (size of
the alphabet). A key technical lemma we show (Lemma 13.2.2) implies that the Fourier
spectrum F̂P cannot have many large coefficients that are “far-off” from each other. Here
the notion of two Fourier coefficients being “far-off” refers to the natural l∞ metric between
the corresponding linear functions being large. We then show how this can be exploited to
decode a small set of labels for u from F (Claim 13.2.1). A “folding” property of the long
code ensures that the set of decoded labels is in fact nonempty (Lemma 13.2.4). The prop-
erty of the distribution P needed to show that F has few large pairwise far-off coefficients
is an (ε, δ)-concentration property, namely

∑

x P (x)e−iω·x 6 ε for all ‖ω‖∞ > 2πδ. Essen-
tially for an (ε, δ)-concentrated distribution P , most of its weight is concentrated around
the origin in the Fourier domain.

We are certainly not the first to attempt a derandomization of PCP tests. In particular,
we want to point out the work of Ben-Sasson, Sudan, Vadhan, and Wigderson [23] who
studied derandomized versions of the BLR linearity test [25] and the low-degree tests un-
derlying PCP constructions. Their derandomized BLR test (for the field F2) picks a triple
(x, y, y′ = y+x) of locations to query where y is uniformly distributed on the whole domain
F
R
2 , but x is distributed uniformly on a much smaller subset S of the domain — the only

requirement is that S is ε-biased, which means that for all nonzero ω ∈ {0, π}R, the Fourier
coefficient 1

|S| ·
∑

x∈S e
−iω·x 6 ε. In our terminology, this means that the distribution on x

is (ε, 1/2)-concentrated. However this derandomization is inadequate for our case, since y
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ranges over the entire domain.
It is our hope that ideas from this work might perhaps be useful to reduce the size of

long code based PCPs. This could enable giving such PCP constructions for much larger
values of parameters, and in turn lead to some improved hardness of approximation results.

13.3 Results

We begin with formal definitions of the problems for which we obtain hardness results. The
problem MAX3LINZ consists of finding an assignment that satisfies maximum number of a
set of linear equations over integers, each of which has 3 variables. Formally

Definition 13.3.1. For constants c, s satisfying 0 6 s < c 6 1, define MAX3LINZ(c, s) to
be the following Promise problem: The input consists of a multiset of linear equations over
variables {x1, x2 . . . , xn} with each equation consisting of at most 3 variables. The problem
is to distinguish between the following two cases:

– There is an integer assignment that satisfies at least a fraction c of the equations.

– Every integer assignment satisfies less than a fraction s of the equations.

MAX3LINR(c, s) is the corresponding problem over real numbers instead of integers.

In this chapter, we prove the following hardness result for MAX3LINZ,

Theorem 13.1 (Main). For all constants ε, δ > 0 the problem MAX3LINZ(1− ε, δ) is NP -
hard. Further it is NP -hard even when all the equations are of the form xi + xj = xk + c
for some integer constants c.

It is easy to see that the above result implies a similar hardness result for MAX3LINR.
The details of the reduction from MAX3LINZ are as follows:

Theorem 13.2. For all constants ε, δ > 0, the problem MAX3LINR(1 − ε, δ) is NP -hard.

Proof. Let I be an instance of MAX3LINZ(1 − ε, δ8) with the additional restriction that all
equations are of the form xi + xj = xk + c for some integer constants c. View this system
of equations, as equations over R to obtain a MAX3LINR(1 − ε, δ) instance.

In the completeness case, there is an integer assignment that satisfies at least (1 − ε)
fraction of the equations. Clearly the same assignment is also a real assignment that satisfies
at least (1 − ε) fraction of the equations.

Suppose there is a real assignment FR that satisfies more than δ fraction of the equations.
Obtain an integer assignment FZ as follows: For each variable xi, FZ(xi) is randomly
assigned either dFR(xi)e or bFR(xi)c. For every equation xi + xj = xk + c that is satisfied
by FR we have

FR(xi) + FR(xj) −FR(xk) = c

Since c is an integer, there exists at least one rounding (either ceiling or floor) of
FR(xi),FR(xj),FR(xk) such that the above equation continues to hold after rounding. With
two choices for each FR(xi), there are 8 possible ways to round the 3 variables. Hence with
probability at least 1

8 the equation still holds after rounding. So the expected number of

equations satisfied by the rounded solution FZ is at least δ
8 . �
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13.4 Analytic Machinery

13.4.1 Fourier Preliminaries

Let Fq denote the prime field with q elements. Here we recall the definition of Fourier
transform and a few useful identities. For a function F : F

R
q → C, define the function F̂(ω)

as follows:

F̂(ω) =
1

qR

∑

x∈FR
q

F(x)e−iω·x

Hence F̂(ω) is a function defined over [0, 2π]R. Let Sp = {0, 2π
p , . . . ,

2πj
p , . . . ,

2π(p−1)
p }. The

values of F̂(ω) on the finite set SRp is the Fourier transform of the function F on F
R
q .

Throughout the analysis, we will only be using these Fourier coefficients, i.e., the values of
F̂(ω) on SRp . The Fourier coefficients satisfy the following identities:

Inverse Transform:

F(x) =
∑

ω∈SR
p

F̂(ω)eiω·x

Parseval’s identity:

1

qR

∑

x∈FR
q

|F(x)|2 =
∑

ω∈SR
p

|F̂(ω)|2

Although we will be applying Fourier Transform over a large prime field Fp, it is instructive
to think of the Fourier transform F̂(ω) as a function over the continuous domain [0, 2π]R.
Operations like addition, subtraction, multiplication by scalars, of elements in [0, 2π]R are
all done modulo 2π. For instance, if ω′ = 3ω then the ith coordinate of ω′ is given by
ω′i = 3ωi mod 2π. For θ ∈ [0, 2π] we will use ‖θ‖2π to denote min(θ, 2π − θ). For any
ω ∈ [0, 2π]R define ‖ω‖∞ = maxi∈{1,...,R} ‖ωi‖2π This defines a metric on [0, 2π]R given by
d(ω, ω′) = ‖ω − ω′‖∞ for any two ω, ω′.

We shall denote by Z+ the set of non negative integers. For a general probability
distribution P on Z

R
+, and a function F : Z

R
+ → C, we define

F̂P (ω) = E
x∈P

[F(x)e−iω·x] (13.1)

The numbers F̂P (ω) can be thought of as the Fourier coefficients of F with respect to the
distribution P . Notice that, if F were a function on F

R
q , and P was the uniform distribution

over F
R
q , FP (ω) would reduce to the traditional definition of Fourier coefficient of F .

13.4.2 (ε, δ)-concentrated distributions

Let 1̂ denote the constant function on Z
R
+ which is always equal to 1. The notion of an

(ε, δ)-concentrated distribution is defined as follows:
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Definition 13.4.1. For ε, δ > 0, a probability distribution P on Z
R
+ is said to be (ε, δ)-

concentrated if |1̂P (ω)| 6 ε for all ‖ω‖∞ > 2πδ.

Intuitively a probability distribution is (ε, δ)-concentrated if its Fourier transform is con-
centrated around the origin. In what follows, we will derive some results on the distribution
of large Fourier coefficients F̂P (ω) in [0, 2π]R if an arbitrary function F , and an (ε, δ)-
concentrated distributions P . Let `2(Z

R
+) denote the vector space of all functions from Z

R
+

to C such that
∑

x∈ZR
+
|F(x)|2 < ∞ . Let 〈v1, v2〉 =

∑

x∈ZR
+
v1(x)v2(x) denote the natural

inner product for two functions v1, v2 in `2(Z
R
+).

Lemma 13.2.1. Let P be a (ε, δ)-concentrated probability distribution. For any ω1, ω2 ∈
[0, 2π]R such that ‖ω1 − ω2‖∞ > 2πδ the functions v1(x) =

√

P (x)eiω1·x and v2(x) =
√

P (x)eiω2·x are nearly orthogonal, i.e., 〈v1, v2〉 6 ε.

Proof. We have

v1 · v2 =
∑

x∈ZR
+

√

P (x)eiω1·x
√

P (x)eiω2·x

= 1̂P (ω2 − ω1) 6 ε

where the last inequality follows from ‖ω1 − ω2‖∞ > 2πδ and the fact that P is (ε, δ)-
concentrated. �

Let F : F
R
q → C be a function that is bounded, say |F(x)| = 1 for all x. By Parseval’s

identity, the sum of squares of Fourier coefficients F̂(ω) is 1. In particular, this implies
that not more than 1

ε2
of the Fourier coefficients can be more than ε. Now, consider a

function F : Z
R
+ → C satisfying |F(x)| = 1 for all x. The Fourier coefficients F̂P (ω) do

not satisfy the Parseval’s identity. In fact, the sum of the squares of Fourier coefficients
could be exponentially large in R, thus giving us no bound on the number of large Fourier
coefficients.

However, the following lemma asserts that there cannot be many large Fourier coefficients
that are all far from each other. Specifically, although there could be exponentially many
ω for which F̂P (ω) is large, they are all clustered together into very few clusters.

Lemma 13.2.2 (Few far-off Fourier coefficients). For 0 6 ε < 1
9 , δ > 0, let P be a (ε5, δ)-

concentrated probability distribution. Let F : Z
R
+ → C be a function such that |F(x)| = 1 for

all x ∈ Z
R
+. Let Ω = {ω(1), ω(2), . . . , ω(k)} ⊂ [0, 2π]R be a set such that ‖ω(j)−ω(j′)‖∞ > 2πδ

and |F̂P (ω(j))| > ε for all j, j′. Then |Ω| < 3
ε2

.

Proof. On the contrary, let us say there exists a set Ω such that |Ω| > 3
ε2

. By deleting some

elements from the set, we can assume k = |Ω| = 3
ε2

. Consider functions v(x) =
√

P (x)F(x),

vj(x) =
√

P (x)eiω
(j)·x for all 1 6 j 6 |Ω|. Observe that all of them are unit vectors in

`2(Z
R
+). Since v · vj = F̂P (ω(j)) we have |v · vj| > ε . Further using lemma 13.2.1, we know
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|vj · vj′ | 6 ε5. Now consider

|v −
k
∑

i=j

(v · vj)vj|2 = |v|2 +
k
∑

j=1

(v · vj)2|vj |2 − 2
k
∑

j=1

(v · vj)2

+2
∑

16j′<j6k

(v · vj′)(v · vj)(vj′ · vj)

6 1 − kε2 + 2

(

k

2

)

ε5

Substituting k = 3
ε2 , |v −∑k

j=1(v · vj)vj |2 < 1 − 3 + 18ε < 0, a contradiction. Hence we

must have |Ω| < 3
ε2

. �

13.4.3 An explicit (ε, δ)-concentrated distribution

It can be shown that the uniform distribution over the cube [M ]R is (ε, δ)-concentrated for
a sufficiently large integer M . However we will use the exponential probability distribution
to simplify some of the calculations. Formally, define a probability distribution P on Z

R
+ as

:
P (x) = γe−c

∑R
i=1 xi for some c > 0 and γ = (1 − e−c)R (13.2)

The constant γ in the above definition is the correct normalization constant to ensure that
P is a distribution. In showing that P has the desired properties, we will use the following
fact:

Fact 13.4.1. For c > 0 and ω ∈ [0, 2π] the following inequality holds |1 − e−c−iω| >
2e−c

π ‖ω‖2π.

Proof. We have |1 − e−c−iω| > |e−c − e−c−iω| > e−c|1 − e−iω| > e−c|2 sin ω
2 |. Using the fact

that | sin θ| > 2θ
π for θ ∈ [0, π2 ], we conclude

|1 − e−c−iω| >
2e−c

π
|min(ω, 2π − ω)| =

2e−c

π
‖ω‖2π

�

Lemma 13.2.3. For all constants ε, δ > 0 and 0 < c < ln (1 + 4δε), the distribution P
defined in Equation (13.2) is (ε, δ)-concentrated.

Proof. Let ω ∈ [0, 2π]R be such that ‖ω‖∞ > 2πδ. In particular, let j0 be an index such
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that min(ωj0, 2π − ωj0) > 2πδ.

1̂P (ω) =
∑

x∈ZR
+

P (x)e−iω·x

= (1 − e−c)R
R
∏

j=1

∞
∑

xj=0

e−cxje−iωjxj

=

R
∏

j=1

(1 − e−c)
(1 − e−c−iωj )

However from Fact 13.4.1 we know

|1 − e−c−iωj0 | >
2e−c

π
‖ωj0‖2π

> 4e−cδ

Substituting in the expression for 1̂P (ω) we get

|1̂P (ω)| =

(

R
∏

j=1,j 6=j0

|(1 − e−c)|
|(1 − e−c−iωj )|

)

|(1 − e−c)|
|(1 − e−c−iωj0 )| 6

|(1 − e−c)|
4e−cδ

=
ec − 1

4δ

which is less than ε for c < ln (1 + 4δε). �

13.5 Label Cover Test

The reduction from Label Cover proceeds along the lines of [86]. We will present the
reduction as a PCP system for Label Cover which makes linear tests on three proof
locations. The connection to MAX3LINZ will be immediate. Towards this, we define a long
code over integers as follows:

Definition 13.5.1. The long code for label i ∈ {1, . . . , R} consists of the function Fi :
Z
R
+ → Z defined by Fi(x) = xi for all x ∈ Z

R
+.

13.5.1 Folding

Denote by Z
R
0 ⊂ Z

R
+ the set of all points in Z

R
+ with the one of its coordinates equal to zero.

Definition 13.5.2. A 1-folded long code is a function F′i : Z
R
0 → Z defined by F′i(x) = xi.

More generally, a function a : Z
R
+ → Z is a 1-folded function if a(x+ 1) = a(x) + 1.

Given a 1-folded long code F′i, it is possible to retrieve the value of the full long code
at any location x. This is achieved by expressing x ∈ Z

R
+ as x = x0 + t1 where x0 ∈ Z

R
0 ,

and then using F(x) = F′(x0) + t. By using 1-folded long codes, the reduction ensures that
all functions under consideration are 1-folded functions.
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If a 1-folded function a is linear, then clearly it must be of the form a(x) =
∑R

i=1 aixi
where

∑R
i=1 ai = 1. The following lemma asserts that the significant Fourier coefficients ω

corresponding to an arbitrary 1-folded function a also approximately satisfy
∑R

i=1 ωi = 1.

Lemma 13.2.4 (Folding lemma). Let a : Z
R
+ → Z be a function such that a(x+1) = a(x)+1

for all x ∈ Z
R
+. Let F(x) = e

i 2πka(x)
p . For all δ > 0 and c < 1

R ln
(

1 + 4δ2
)

the following

holds: for all ω ∈ [0, 2π]R with ‖ω · 1 − 2πk
p ‖2π > 2πδ:

|F̂P (ω)| 6 δ

Proof. Recall that Z
R
0 ⊂ Z

R
+ denotes the set of all points in Z

R
+ with the one of its coordinates

equal to zero. For every x ∈ Z
R
+, there exists unique x0 ∈ Z

R
0 , t ∈ Z such that x = x0 + t1.

By definition of P we have P (x) = P (x0)e
−cRt. Hence picking x with probability P (x) is

the same as:

– Pick x0 ∈ Z
R
0 with probability P̃ (x0) =

∑∞
t=0 P (x0 + t1)

– Pick t with probability p(t) = (1 − e−cR)e−cRt

Decompose the expression for F̂P (ω) as follows:

F̂P (ω) = E
x∈P

[F(x)e−iω·x]

= E
x0∈P̃

E
t∈p

[F(x0 + t1)e−iω·(x0+t1)]

However since a(x0 +1) = a(x)+1, we know F(x0 + t1) = F(x0)e
2πkt

p . Substituting we get

F̂P (ω) = E
x0∈P̃

[F(x0)e
−iω·x0 ] E

t∈p
[e

2πkt
p e−iω·t1]

Now to compute

∣

∣

∣
E
t∈p

[e
2πkt

p e−iω·t1]
∣

∣

∣
=

∣

∣(1 − e−cR)

∞
∑

t=0

e−cRteit(
2πk

p
−ω·1)∣

∣

=
|(1 − e−cR)|
|1 − e−cR+i∆|

where ∆ = 2πk
p − ω · 1. By our assumption ‖∆‖2π > 2πδ, hence using fact 13.4.1, we get

| E
t∈p

[e
2πkt

p e−iω·t1]| 6
|(1 − e−cR)|

4e−cR|δ| 6 δ

for all c < 1
R ln

(

1 + 4δ2
)

. Since |F(x)| = 1 for all x, we know |Ex0∈P̃ [F(x0)e
−iω·x0 ]| 6 1.

Together with the bound on |Et∈p[e
2πkt

p e−iω·t1]|, this implies the required result. �
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13.5.2 Verifier

As defined above, long codes are infinite objects that cannot be written down. Throughout
this article, we will be dealing with long codes that are truncated by restricting the domain
from Z

R
+ to [M ]R for some large M . However for the purposes of analysis, it is convenient

to ignore the truncation and assume that the entire long code is available. As we shall
see later, this truncation can be carried out since the verifier queries the values outside a
sufficiently large box [M ]R with very low probability.

Let Φ = (WΦ ∪VΦ, E, [R],Π) be an instance of Label Cover. Given an assignment F
to the instance Φ, the corresponding PCP proof consists of the 1-folded long codes of the
labels assigned to each of the vertices in WΦ ∪ VΦ. For instance if F is an assignment then
for every vertex w ∈ WΦ ∪ VΦ the proof contains the 1-folded long code F′F(w).

Recall that given a 1-folded long code F′i, it is possible to retrieve the value of the full
long code at any location x. Henceforth, we shall describe the verifier as having access to
the full long code of the labels. Clearly the linear tests of the verifier on the full long code
can be converted to linear tests on the 1-folded long code.

Given a function π : [R] → [R] and a vector x ∈ Z
R
+ define x ◦π ∈ Z

R
+ as (x ◦π)i = xπ(i).

Let P and P ′ be exponential decay probability distributions over Z
R
+ whose parameters will

be chosen later. Intuitively, the distribution P will be chosen to be a sufficiently slowly
decaying exponential distribution, while the distribution P ′ decays at a much slower rate
than P . The verifier is described below:

3-Query PCP Verifier

1. Pick a random edge e = (w, v) ∈ E. Let a : Z
R
+ → Z,b : Z

R
+ → Z be the long codes

corresponding to vertices w, v respectively.

2. Pick a random x ∈ Z
R
+ with the distribution P , a random y ∈ Z

R
+ with the distribution

P ′

3. Generate a noise vector µ ∈ Z
R
+ from the following distribution : Each coordinate µi

is chosen

– 0 with probability (1 − ε).

– Chosen uniformly at random from {1, . . . ,m} with probability ε.

4. Accept if the following equation holds

a(x) = b(x ◦ π + y + µ) − b(y)

For technical reasons, we will need the following simple lemmas in the soundness analysis.

Lemma 13.2.5. The total weight of the distribution P outside the set [N ]R (on the set
Z
R
+ − [N ]R) is less than δ for N > 1

c ln R
δ(1−e−c)R
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Proof. We have

∑

x∈ZR
+−[N ]R

P (x) 6

R
∑

i=1

∑

xi>N

P (x)

6
Re−cN

(1 − e−c)R

which is less than δ for N > 1
c ln R

δ(1−e−c)R . �

Lemma 13.2.6. For all M > 0, c 6 ln 4
RM , for all x ∈ [M ]R, y ∈ Z

R
+ the following is true:

P (x+ y) > P (y)/4

Proof. Clearly we have

P (x+ y)

P (y)
= e−c

∑

i xi > e−cRM >
1

4

�

13.5.3 Noise Stability

Notice that in Step (3), the 3-query PCP verifier generates a noise vector µ. Finally,
instead of querying the location b(x ◦ π + y), the verifier queries the value of a nearby
location b(x ◦ π + y + µ).

Introducing noise into the locations queried by the verifier is a powerful recurring theme
in dictatorship (long code) tests and PCP constructions ever since its use in H̊astad [86].
Roughly speaking, using this technique, the verifier can ensure that the function being
queried does not depend on too many coordinates. Specifically, if the function b was a long
code then b(x ◦ π + y + µ) = b(x ◦ π + y) with high probability over the choice of the noise
vector µ. On the other hand, if b is a linear function depending on too many coordinates,
then the noise µ would affect the value, thus reducing the probability of success.

Denote by Q the distribution on Z
R
+ of the noise vector µ. That is each coordinate

of µ is chosen independently to be 0 with probability (1 − ε) and a uniformly random
element in {1, . . . ,m} with probability ε. Along the lines of H̊astad [86], we need to bound
the contribution of the Fourier coefficients of b corresponding to linear forms depending
on many coordinates. However, in our setting, the coefficients of the linear forms are not
discrete. Thus, we say a linear function depends on many coordinates if it has more than C
(defined below in Lemma 13.2.7) large enough coefficients. The following lemma will be used
in the soundness analysis to bound the contribution of the Fourier coefficients corresponding
to these linear functions:

Lemma 13.2.7. For all ε1 > 0, 0 < δ1 6 1
4 and constants m = d 1

δ1
e, C = dlog1− ε

2
ε1e

the following is true: For all ω ∈ [0, 2π]R with more than C coordinates ωi satisfying
‖ωi‖2π > 2πδ1,

|1̂Q(ω)| 6 ε1
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Proof. Let S denote the set of indices j ∈ {1, . . . , R} such that ‖ωj‖2π > 2πδ1. Then by
definition |S| > C

|1̂Q(ω)| =

∣

∣

∣

∣

∑

x∈ZR
+

Q(x)e−iω·x
∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

R
∏

j=1

[

(1 − ε)eiωj ·0 +
ε

m

m
∑

t=1

eiωjt

]

∣

∣

∣

∣

∣

∣

6

R
∏

j=1

[

1 − ε+
ε

m

∣

∣

∣

∣

∣

eiωj(m+1) − eiωj

eiωj − 1

∣

∣

∣

∣

∣

]

6
∏

j∈S

[

1 − ε+
ε

m

2

|eiωj − 1|

]

By definition of S, ‖ωj‖2π > 2πδ1 for j ∈ S. Hence using Fact 13.4.1 with c = 0 we get

|1̂Q(ω)| 6
∏

j∈S

(

1 − ε+
ε

2mδ1

)

which for m > 1/δ1 and C > log1−ε/2 ε1 is at most

∏

j∈S

(

1 − ε+
ε

2

)

=
(

1 − ε

2

)C
6 ε1 .

�

13.6 Proof of Main Theorem

In this section, we will present the proof of Theorem 13.1. Towards this, we first describe
the parameters for the verifier in section 13.5.

Choose an integer m > R2

δ . Choose a c less than both 1
R ln(1 + 4δ2) and ln(1+4( δ4 )5 δ

2R ).
Denote by P the exponential decay probability distribution with parameter c. In particular,
P is (( δ4 )5, δ

2R )-concentrated. Let N be the integer obtained from Lemma 13.2.5, such that

weight of P outside [N ]R is less than δ. Let c′ be a real number less than ln 4
R(N+m) . Let P ′

denote the exponential probability distribution with parameter c′.

Completeness: Suppose F is an assignment that satisfies all the edge constraints Π. The
corresponding long code assignment is accepted by the verifier with probability at least 1−ε.
For an edge e = (w, v) ∈ E, the verifier rejects the long code assignment only if µF(v) 6= 0.
It is clear from the choice of µ that this happens with probability exactly 1 − ε.

Soundness: Suppose the verifier accepts with probability greater than 19δ. Let χuv(x, y, µ)
be the indicator variable that is 1 if the test on edge e = (w, v) succeeds with random choices
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x, y, µ. Then we can write the probability of acceptance of the test as follows:

Pr[test accepts] = E
w,v

[

∑

x,y,
µ∈ZR

+

P (x)P ′(y)Q(µ)χuv(x, y, µ)

]

> 19δ

Notice that the support of the distribution µ is {0, 1, . . . m}R. Further from Lemma 13.2.5
the total weight of the distribution P outside [N ]R is less than δ. Hence we can truncate
the summation over x and conclude

E
w,v

[

∑

x∈[N ]R, µ∈[m]R

y∈Z
R
+

P (x)P ′(y)Q(µ)χuv(x, y, µ)

]

> 18δ

where [N ]R ⊂ Z
R
+ defined as [N ]R = {0, 1, . . . , N}R. Clearly for x ∈ [N ]R, µ ∈ [m]R the

vector x ◦ π + µ ∈ [N + m]R. Recall that the distribution P ′ is chosen to be sufficiently
slowly decaying in comparison to P (x) and Q(µ). That is by Lemma 13.2.6 for all y ∈
Z
R
+, z ∈ [N +m]R we have P ′(y + z) >

P ′(y)
4 . In particular, P ′(y + x ◦ πv←w + µ) >

P ′(y)
4 ,

or equivalently 2
√

P ′(y + x ◦ πv←w + µ)P ′(y) > P ′(y). Henceforth we will use y′ to denote
y + x ◦ πv←w + µ.

Using this inequality in the expression for probability of acceptance we get:

E
w,v

[

∑

x∈[N ]R,µ∈[m]R

y∈ZR
+

P (x)
√

P ′(y)P ′(y′)Q(µ)χuv(x, y, µ)

]

> 9δ

For a prime q define χuvp (x, y, µ) to be 1 if a(x) + b(y) − b(x ◦ π + y + µ) = 0 mod p and
zero otherwise. Clearly χuvp (x, y, µ) > χuv(x, y, µ) for all integers x, y, µ. Replacing χuv by
χuvp we get:

E
w,v

[

∑

x∈[N ]R,µ∈[m]R

y∈Z
R
+

P (x)
√

P ′(y)P ′(y′)Q(µ)χuvp (x, y, µ)

]

> 9δ

The prime q can be chosen to be sufficiently large so that truncating the summation over y
to [q]R does not alter the probability value significantly. Further, by picking q sufficiently
large, it is possible to ensure that the total weight of the distributions P,P ′, Q outside [p3 ]R

is less than δ. Hence computing y′ = y + x ◦ πv←w + µ modulo q is same as computing y′

over integers for all but a δ fraction of (x, y, µ). In particular, we can conclude

E
w,v

[

∑

x,µ,
y∈[q]R

P (x)
√

P ′(y)P ′(y′)Q(µ)χuvp (x, y, µ)

]

> 8δ (13.3)
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where y′ = y+x ◦πuv +µ is computed modulo q. Notice that the parameter q is an artifact
in the analysis, and is chosen to be sufficiently large compared to all other parameters. It
is instructive to think of q as tending to infinity while all other parameters are fixed.

Now we fix an edge e = (w, v) and analyze the probability that the test succeeds. Let π
denote the projection constraint on the edge e. The following is an arithmetization for χuvp :

χuvp (x, y, µ) =
1

p

p−1
∑

k=0

βk[a(x)+b(y)−b(x◦π+y+µ)]

where β = e
2πi
p . Now we define the following notation:

F(x) = βa(x) H(x) = βb(x)

Fk(x) = P (x)βka(x) H(x) =
√

P ′(x)βkb(x)

Substituting the above expressions in (13.3) we get:

E
w,v

[

1

p

p−1
∑

k=0

∑

x,µ,
y∈[q]R

Q(µ)Fk(x)Hk(y)Hk(y′)

]

> 8δ . (13.4)

Given an ω ∈ [0, 2π]R and a function π : [R] → [R], the vector π(ω) ∈ [0, 2π]R is defined
by (π(ω))i =

∑

j∈π−1(i) ωj. The expression inside the expectation in (13.4) is similar to the
one obtained in [86], and using a standard computation over Fq it can be written in terms
of the Fourier coefficients. For the sake of completeness, we include the details below. The
expression within the expectation in (13.4) is equal to

1

p

p−1
∑

k=0

∑

x,µ,
y∈[q]R

Q(µ)
∑

ω1∈SR
p

F̂k(ω1)e
iω1·x

∑

ω2∈SR
p

Ĥk(ω2)e
iω2·y

∑

ω3∈SR
p

Ĥk(ω3)eiω3·(x◦π+y+µ)

=
1

p

p−1
∑

k=0

∑

ω1,ω2,ω3∈SR
p

F̂k(ω1)Ĥk(ω2)Ĥk(ω3)
∑

µ∈[q]R
Q(µ)e−iω3·µ

∑

x∈[q]R
ei(ω1−π(ω3))·x

∑

y∈[q]R
ei(ω2−ω3)·y

Since ω1, ω2, ω3 ∈ SRp , we have

∑

x∈[q]R
ei(ω1−π(ω3))·x = 0 unless ω1 = π(ω3)

∑

y∈[q]R
ei(ω2−ω3)·y = 0 unless ω2 = ω3

Using these relations in the expression, and renaming ω3 to be ω we get
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1

p

p−1
∑

k=0

∑

ω∈SR
p

(

qRF̂k(π(ω))
)

(

qR
∣

∣

∣Ĥk(ω)
∣

∣

∣

2
)





∑

µ∈[q]R
Q(µ)e−iω·µ





Recall that for Q(µ) = 0 for all µ /∈ [m]R, hence for p > m we have
∑

µ∈[q]R Q(µ)e−iω·µ =

1̂Q(ω). Therefore we have

1

p

p−1
∑

k=0

E
w,v





∑

ω∈SR
p

(

qR|Ĥk(ω)|2
) ∣

∣

∣qRF̂k(π(ω))1̂Q(ω)
∣

∣

∣



 > 8δ (13.5)

From Parseval’s identity we have,

qR
∑

ω∈SR
p

|Ĥk(ω)|2 =
∑

x∈[q]R
|
√

P ′(x)βkb(y)|2 6 1 (13.6)

Further we have |qRF̂k(ω)|, |1̂Q(ω)| 6 1 for all ω. Hence for all k

∑

ω∈SR
p

(

qR|Ĥk(ω)|2
) ∣

∣

∣
qRF̂k(π(ω))1̂Q(ω)

∣

∣

∣
6 1

The inequality (13.5) asserts that the average of q such terms is larger than 8δ. By an
averaging argument, there exists 2δp 6 k 6 p(1 − 2δ) such that

E
w,v





∑

ω∈SR
p

(

qR|Ĥk(ω)|2
) ∣

∣

∣
qRF̂k(π(ω))1̂Q(ω)

∣

∣

∣



 > 4δ

Fix some such k for the rest of the argument. Observe that

qRF̂k(π(ω)) =
∑

x∈[q]R
P (x)Fk(x)e−iπ(ω)·x

By Definition 13.1, the Fourier coefficient F̂k
P (π(ω)) with respect to distribution P is given

by

F̂k
P (π(ω)) =

∑

x∈ZR
+

P (x)Fk(x)e−iπ(ω)·x .

For sufficiently large choice of the prime q, we have

|qRF̂k(π(ω)) − F̂k
P (π(ω))| 6 δ .
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Substituting qRF̂k(π(ω)) by F̂k
P (π(ω)) and using equation 13.6 we get

E
w,v





∑

ω∈SR
p

(

qR|Ĥk(ω)|2
) ∣

∣

∣
F̂k
P (π(ω))1̂Q(ω)

∣

∣

∣



 > 3δ (13.7)

13.6.1 Restricting to “sparse” Fourier coefficients

The expectation (13.7) above looks similar to the expression that is used to derive labels in
H̊astad’s work on 3-variable linear equations modulo 2. This latter expression is of the form
∑

β |Ĥ(β)|2|F̂π2(β)| summed over all β of small size — see [86] for details. Along the lines
of [86], we will use the Fourier coefficients in the above expression to obtain a decoding of
labels to the vertices w, v. Roughly speaking, H̊astad’s decoding proceeds as follows:

For each vertex v ∈ WΦ ∪ VΦ, sample a sparse Fourier coefficient ω from an
appropriate distribution, and sample uniformly random non-zero coordinate of
ω. Assign to vertex v the label corresponding to the coordinate.

The Fourier coefficients ω in our case do not take discrete values. Although for the
purposes of analysis we have used ω in a discrete set SRq , recall that q is chosen to be
sufficiently large compared to every other parameter including R. In fact, it is instructive
to think of p→ ∞ while all other parameters stay fixed.

In the continuous setting, the notion of a sparse Fourier coefficient ω needs to be re-
defined. Specifically, a sparse Fourier coefficient ω would have a few large coordinates ωi,
while the remaining coordinates are small in absolute value. To this end, we define two
subsets Ω1,Ω2 ⊂ SRp as follows:

– Ω1: set of ω such that ‖ω · 1‖2π > 2πδ. In other words, for every ω ∈ Ω1 there is at
least one large coordinate, i.e, a coordinate ωi with ‖ωi‖2π > 2πδ

R .

– Ω2: subset of ω which have very few large coordinates. In particular, for all ω ∈ Ω2

at most C of its coordinates satisfy ‖ωi‖2π > 2πδ
R2 . (Here C is the constant from

Lemma 13.2.7.)

Here Ω1 ∩ Ω2 would be the set of sparse Fourier coefficients for our purpose.

Firstly, we will bound the contribution of Fourier coefficients with no large coordinate
using Lemma 13.2.4. This corresponds to bounding the contribution of trivial Fourier
coefficient in [86]. Notice that ω · 1 = π(ω) · 1. Hence for ω /∈ Ω1, ‖π(ω) · 1 − 2πk

p ‖2π >

‖2πδ − 2π(2δp)
p ‖2π > 2πδ. From Lemma 13.2.4 and choice of distribution P , |F̂k

P (π(ω))| < δ

when ‖π(ω) · 1− 2πk
p ‖2π > 2πδ. This implies that |F̂k

P (π(ω))| < δ for all ω /∈ Ω1.

E
w,v





∑

ω∈Ω1

(

qR|Ĥk(ω)|2
) ∣

∣

∣
F̂k
P (π(ω))1̂Q(ω)

∣

∣

∣



 > 2δ
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To bound the contribution of Fourier coefficients with too many large coordinates, we will
use the noise µ introduced by the verifier. More precisely, we have |1̂Q(ω)| 6 δ for all ω /∈ Ω2

from Lemma 13.2.7. Therefore,

E
w,v





∑

ω∈Ω1∩Ω2

(

qR|Ĥk(ω)|2
) ∣

∣

∣
F̂k
P (π(ω))

∣

∣

∣



 > δ (13.8)

We will next see how one can decode labels satisfying many Label Cover constraints
based on (13.8).

13.6.2 Decoding Label Sets

For ω ∈ [0, 2π]R and δ > 0, let Lδ(ω) ⊆ [R] denote the subset of indices ωi such that
‖ωi‖2π > 2πδ.

For every vertex v ∈ VΦ with the corresponding Fourier transform Ĥk, define Pv to

be the distribution obtained by normalizing qR|Ĥk(ω)|2. Since
∑

ω∈SR
p
qR|Ĥk(ω)|2 6 1,

Pv = γqR|Ĥk(ω)|2 for some γ > 1. For a vertex w ∈ WΦ with the corresponding Fourier
transform F̂k

P , define the set ΩF of significant frequencies as follows:

ΩF =
{

ω ∈ Ω1 ∩ Ω2 : |F̂k
P (ω)| >

δ

4

}

. (13.9)

Define the set L(w) as follows:

L(w) =
⋃

ω∈ΩF
L δ

R
(ω) . (13.10)

Intuitively L(w) is the set of all large coordinates of those ω for which the Fourier coefficient
|F̂k
P (ω)| is large. The decoding algorithm proceeds as follows:

– For v ∈ VΦ, pick a ω ∈ SRp with probability Pv . Assign a label uniformly at random
from L δ

R2
(ω) if it is nonempty, else assign a random label.

– For every vertex w ∈ WΦ, assign a label uniformly at random from L(w) if it is
nonempty, else assign a random label.

Every Fourier coefficient ω ∈ ΩF is sparse in that it at most C large coordinates. A trivial
bound on the size of L(w) is given by C · |ΩF |. In H̊astad’s work [86], this bound suffices
since the size of ΩF is bounded using Parseval’s identity. The main technical challenge in

our setting is that
∑

α |F̂k
P (α)|2, the sum of squared Fourier coefficients with respect to the

distribution P , could be very large. In particular, bounding this sum by Parseval’s we get

∑

α

(

qR|F̂k(α))|
)2

6 qR
∑

x

P (x)2 .
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When P (x) is uniform, i.e., P (x) = 1/qR for every x, this bound equals 1, but the bound
could be exponentially larger in R for distributions P that are very non-uniform (as in our
case). Thus the obvious extension of H̊astad’s argument will lead to a list size bound that
is too large to be useful as a decoding strategy.

Although the size of ΩF could be exponentially large, Lemma 13.2.2 shows that the large
Fourier coefficients are all clustered into a few clusters. Using this property, we obtain the
following bound on the size of L(w).

Claim 13.2.1. For every vertex w ∈ WΦ, the cardinality of the set L(w) is at most 48C
δ2

.

Proof. Recall that by definition, every ω ∈ Ω2 has at most C coordinates ωi satisfying
‖ωi‖2π > 2πδ

R2 . Hence for all ω ∈ Ω1 ∩ Ω2 each of the sets L δ
R
(ω) and L δ

2R
(ω) have a

cardinality of at most C.

Suppose the assertion of the claim is false. We will inductively produce a large set of
distant ω, for all of which F̂k

P (ω) is large. This will contradict the Lemma 13.2.2 since the
distribution P is concentrated.

Construct the set Ω′ ⊂ ΩF iteratively as follows: To start with pick an ω(1) ∈ ΩF . After
t > 1 steps, let Lt = ∪ti=1L δ

2R
(ω(i)). Since each L δ

2R
has at most C elements, the cardinality

of Lt is at most C · t. Since L(w) > 48C
δ2

, when t 6 48
δ2

we have |L(w)| > |Lt|. In particular,

there exists some ω(t+1) ∈ ΩF such that the set L δ
R
(ω(t+1))−Lt is nonempty. Let us assume

j ∈ L δ
R
(ω(t+1)) − Lt. For any 1 6 i 6 t, the distance ‖ω(i) − ω(t+1)‖∞ > ‖ω(t+1)

j − ω
(i)
j ‖2π.

Since j ∈ L δ
R
(ω(t+1))−Lt, we have ‖ω(t+1)

j ‖2π > 2πδ
R and ‖ω(i)

j ‖2π 6 2πδ
2R . Hence the distance

‖ω(i) − ω(t+1)‖∞ is at least 2πδ
2R .

By iterating the above process, it is possible to construct a set Ω′ ⊆ ΩF with cardinality
at least 48

δ2 such that for all ω(i), ω(j) ∈ Ω′, ‖ω(i) − ω(j)‖∞ > 2πδ
2R . This will contradict

Lemma 13.2.2, since P is a (
(

δ
4

)5
, δ

2R )-concentrated. �

13.6.3 Soundness analysis wrap-up using the label sets

By an averaging argument applied to (13.8), at least for a fraction δ
2 of the edges the

following inequality holds:

∑

ω∈Ω1∩Ω2

(

qR|Ĥk(ω)|2
) ∣

∣

∣F̂k
P (π(ω))

∣

∣

∣ >
δ

2

We refer to these edges (w, v) as good edges. Consider a good edge e = (w, v). On choosing ω

over the probability distribution Pv(ω) with probability at least δ
4 we have |F̂k

P (πv←w(ω))| >
δ
4 and ω ∈ Ω1 ∩ Ω2. Since ω ∈ Ω1 we have ‖π(ω) · 1‖2π > 2πδ. Consequently, there have

to be large coordinates of π(ω), i.e., there must exist i ∈ [R] such that ‖[π(ω)]i‖2π > 2πδ
R .

Suppose i ∈ L δ
R
(π(ω)) is a large coordinate of π(ω) then there must be a large coordinate

of ω in π−1(i), i.e., a j ∈ π−1(i) such that ‖ωj‖2π > 2πδ
R2 . Recall that ω ∈ Ω2 has at most

C large coordinates. Therefore with probability at least 1
C , the vertex v is assigned label j.

Further using Claim 13.2.1, we conclude that vertex w is assigned label i with probability
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at least δ2

48C . The edge (w, v) is satisfied when w is assigned i and v is assigned j. Hence

the edge e is satisfied with probability at least δ
4 · 1

C · δ2

48C = δ3

192C2 . As there are at least a

fraction δ
2 of good edges, the expected fraction of edges satisfied is at least δ4

384C2 which is
greater than 1

Rγ for large enough R.

We have thus shown that the 3-query PCP has completeness (1 − ε) and soundness at
most 19δ. The tests it makes are linear equations. Therefore, we immediately get that the
promise problem MAX3LIN1−ε,19δ is NP-hard. Since ε, δ > 0 are arbitrary, the proof of
Theorem 13.1 is complete.
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Chapter 14

CONCLUSIONS AND FUTURE WORK
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In this thesis, we exhibited a black-box reduction from SDP integrality gaps to UG-
hardness results. Not only has this work formalized the widely suspected connection, it has
led to new insights in terms of optimal rounding schemes, and algorithms for computing
integrality gaps [136]. At the outset, this dissertation following fact:

“For large classes of combinatorial optimization problems such as constraint sat-
isfaction problems, metric Labeling problems and ordering constraint satisfaction
problems, a fairly minimal semidefinite programming relaxation (LC) give the
best approximation computable in polynomial time assuming the Unique Games
Conjecture.”

Going further, the thesis demonstrates a single generic algorithm for every constraint sat-
isfaction problems (CSP) which yields the optimal approximation under the UGC. Inde-
pendent of the truth of the UGC, this algorithm is guaranteed to be at least as good all
known approximation algorithms for specific CSPs. Finally, independent of the truth of

the UGC, including all valid constraints on at most 2(log logN)
1/4

vectors does not improve
upon the approximation given by the LC SDP relaxation. Among other corollaries that hold
irrespective of the truth of UGC, is an algorithm to compute the Grothendieck constant -
a fundamental mathematical constant whose value is unknown.

Overall, the thesis demonstrates that Unique Games is a common barrier that all
existing techniques seem to have reached, for a surprisingly wide variety of combinatorial
optimization problems which were seemingly unconnected earlier. Thus, the study of ap-
proximability is at an exciting juncture. An affirmation of the unique games conjecture
would resolve long standing open questions and demonstrate an underlying unity in com-
binatorial optimization problems, while a disproof would hopefully lead to new algorithmic
techniques.

14.1 Directions for Future Work

14.1.1 Understanding Unique Games

The Unique Games Conjecture (UGC) remains a notorious open problem today. Not
only is the conjecture unresolved, but there is no consensus among theorists about its truth.
In fact, attempts at disproving the conjecture [155, 72, 41, 35] have failed by a close margin.

There are three different scenarios that seem equally likely as of now:

– Scenario I Unique Games Conjecture is True, and so are the hardness results shown
assuming the conjecture.

– Scenario II Unique Games Conjecture is False, but showing this needs new algo-
rithmic techniques other than Linear/Semidefinite Programming

– Scenario III Unique Games Conjecture is False, and can be efficiently solved using
existing algorithmic techniques



275

There are many questions of independent interest, answers to which should shed more
light on the conjecture. By their very nature, answers to these questions would yield insights
into limitations of techniques like Linear and Semidefinite programming (SDP). This section
outlines the specific research directions that could be pursued.

Perhaps the most pressing open problem to pursue is to show strong SDP integrality gaps
for Unique Games. Specifically, this would show that SDPs cannot be used to disprove
the UGC, thus lending some credibility to the conjecture. While preliminary results in
this direction were presented in Chapter 12, the question remains essentially open. Except
for k-CSP [157], for any problem whose hardness is shown under UGC, no integrality
gap is known for Ω(log n) rounds of a SDP hierarchy. In particular, it is entirely possible
that log n rounds of a SDP hierarchy not only disproves the UGC but also yields better
approximations for Max Cut and Minimum Vertex Cover.

Question. Obtain strong SDP gaps for Unique Games, specifically against Lovasz-Schriver,
Sherali-Adams or Lasserre hierarchies.

The interplay between Unique Games and Graph Expansion needs to be understood
with greater clarity. One of the biggest applications of UG-hardness reductions was the SDP
integrality gap for graph expansion obtained by Khot Vishnoi [104]. Recently, Arora .et .al
[14] showed that Unique Games problem is easy when the constraint graph is an expander.
On a different note, all the hard instances of Unique Games that are constructed so far (
[104, 99]) rely on expansion of small sets in graphs.

More specifically, let us define a computational problem related to expansion of small
sets in graphs. For a subset of vertices S in a graph G = (V,E) let V ol(S) denote the
number of edges with at least one endpoint in S.

Definition 14.1.1. An instance of the problem GEX(β, 1 − ε, δ) consists of a graph G =
(V,E) and the objective is to distinguish between the following two cases:

– There exists a subset of vertices S ⊂ V satisfying |S| 6 βn and

E(S, S̄)

V ol(S)
6 ε

In other words, 1 − ε fraction of edges incident on S stay inside the set.

– For every subset S of size at most βn, we have

E(S, S̄)

V ol(S)
> 1 − δ

That is, at most δ fraction of the edges incident on S stay inside S for every small set
S.

There is evidence suggesting that the GEX problem is closely related to Unique Games.
Specifically, we wish to make two observations here:
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– Given an instance of Unique Games, construct the label extended graph by replacing
each vertex v by R different vertices (v, 1), (v, 2), . . . , (v,R) for the R different labels.
Then connect (v, i) to (u, πu←v(i)) for an edge e = (u, v) in the Unique Games
instance. A UG solution satisfying (1 − ε) fraction of the constraints corresponds to
a subset of 1/R fraction of vertices in the label-extended graph, with (1 − ε) fraction
of edges staying inside.

– All hard instances of Unique Games stem from expansion of small sets. For instance,
in integrality gap from Khot and Vishnoi [104], there is no good integral solution
because every small set of the hypercube (with ε-perturbation edges) expands. The
hardest instances of UG are those produced by Khot .et .al [99], in the sense that for
a given alphabet size R, these instances have the best possible soundness 1/Rε/2−ε.
Even this number 1/Rε/2−ε is arrived at from the expansion of small sets in Gaussian
space.

More formally, let us define the GEX conjecture as follows:

Conjecture 14.1.1. For every 1 > ε, δ > 0, there exists β such that the problem GEX(β, 1−
ε, δ) is NP -hard.

Question. Explore the relation between the GEX conjecture and the Unique Games con-
jecture. Specifically, show a reduction from either problem to the other.

Like the Unique Games, a 2− to− 1 game is a special case of Label Cover wherein
the projections πv→w involved map two labels to w to a single label for v. The 2-to-1
conjecture of Khot [97] asserts that for every δ, for a large enough choice of alphabet size
R, it is NP-hard to determine whether the value of a 2-to-1 game is equal to 1 or at
most δ. Although the Unique Games conjecture is seemingly closely related to the 2-to-1
conjecture, no formal reduction is known in either direction.

Question. Find a reduction from 2-to-1 conjecture to Unique Games conjecture.

Recent work of O’Donnell and Wu [133] on showing hardness using 2-to-1 conjecture
could shed some light in this direction.

14.1.2 Algorithmic Issues

In this work, we obtained rounding schemes for the optimal SDP for CSPs. Unfortunately,
the running time of the algorithm is doubly exponential in the accuracy required. Specif-
ically, to obtain an approximation that is within η of the optimal ratio, the running time
required is 221/poly(η) ×poly(n). For the most part, we are interested in the regime where η is
a constant. Hence the doubly exponential running time in η does not matter for theoretical
purposes. Yet, to make the rounding schemes applicable practically, it would be great to
improve the running time. In fact, a drastic reduction in the running time would have very
interesting consequences to determining the value of the Grothendieck constant [137].

Question. Can the running time of the rounding scheme for CSPs be made efficient?
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Unlike the case of CSPs, for minimization problems like Multiway Cut and Metric
Labeling we did not obtain a rounding scheme for the SDP. For any CSP, the number
of constraints satisfied by the optimal assignment is always at least a constant fraction of
the set of all constraints. To see this, observe that a random assignment satisfies a constant
fraction of the constraints of the CSP. Thus, for a CSP, a constant additive error of η in
the reductions does not alter the approximation ratio. However, for minimization problems
or GCSP s with negative payoffs, there is no lower bound on the value of the optimum
solution. For instance, the value of the optimal Multiway Cut could be 1

logn . Clearly, a
constant additive error of η would completely alter the approximation ratio.

Question. Obtain optimal rounding schemes for minimization problems like Multiway
Cut and Metric Labeling .

14.1.3 More Hardness Results?

It would be very interesting to obtain UG-hardness results for problems like Metric TSP
whose approximability has been a long standing open question. Most of the problems
considered in this work are either constraint satisfaction problems or are similar to them.
Problems like Metric TSP and Steiner Tree are of a completely different flavor, making
it a challenge to obtain such reductions from gaps to UG-hardness results.

Question. Can linear programming gaps for Metric Traveling Salesman Problem,
Steiner tree, Asymmetric Traveling Salesman Problem, Steiner network de-
sign be converted in to UG-hardness results?

In this work, we considered CSPs in which no given constraint is obligatory, but we wish
to maximize the number of constraint satisfied. It is interesting to consider mixed CSPs
with both hard and soft constraints. Here the objective would be to maximize the number
of soft constraints satisfied, while satisfying all the hard constraints. Perhaps, the most
important example of such a mixed CSP is the Minimum Vertex Cover problem.

Question. Extend the gap to hardness paradigm to CSPs with a hard constraints all of
which are required to be satisfied.

Yet another interesting direction to extend the CSP result is to consider the hardness of
CSPs under perfect completeness. Specifically, given a CSP instance all of whose constraints
can be satisfied simultaneously, how good a solution can a polynomial time algorithm find?
For instance, by the classic result of Hastad [86], given a satisfiable 3-CNF formula, it is
NP-hard to find an assignment satisfying more than 7/8-fraction of the clauses. However,
UG-hardness reductions have are inherently limited to not have perfect completeness.

Question. Extend the gap to hardness paradigm to CSPs with perfect completeness, as-
suming the 2-to-1 conjecture.

The 2-to-1 conjecture by Khot [97] is a related conjecture to UGC. Recently, O’Donnell
and Wu used the 2-to-1 conjecture to obtain optimal hardness for boolean 3-CSPs with
perfect completeness. Their techniques could shed some light on how a general reduction
must proceed.
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In Chapter 13, we presented NP-hardness of satisfying maximum number of equations
in a sparse system over reals. Over finite fields, UGC yields hardness of maximally sparse
(2 variables in an equation) linear equations [99]. The problem remains open over integers.

Question. Are two variable linear equations over integers easy to solve even with noise?
Is it possible to design a 2-query dictatorship over integers that yields a hardness for two
variable linear equations?

14.1.4 Reductions

UGC implies tight hardness results for classic problems like Minimum Vertex Cover
and Max Cut. In other words, UGC being true is a sufficient condition to show these
hardness results. The natural question is whether it also a necessary condition? Hence a
very interesting research direction would be the following:

Question. Show UGC assuming a hardness result for a well-known problem like Minimum
Vertex Cover, Max Cut, Sparsest Cut or Multicut.

The most natural candidate to reduce to UGC is Max Cut. Max Cut is already a
Unique Games problem over a much smaller alphabet (2). Thus a natural approach would
be to use Parallel Repetition Theorem [140] on Max Cut to obtain a Unique Games. In
recent years, this problem has sparked a lot of interest, leading to interesting work on
the Parallel Repetition Theorem itself [87, 139, 58, 20, 106]. Unfortunately, the Parallel
Repetition Theorem necessary for such a reduction was shown to not hold [141, 20].



279

BIBLIOGRAPHY

[1] Michael Alekhnovich, Sanjeev Arora, and Iannis Tourlakis. Towards strong nonap-
proximability results in the Lovász–Schrijver hierarchy. In STOC, pages 294–303,
2005. 225

[2] F. Alizadeh. Interior point methods in semidefinite programming with applications
to combinatorial optimization. SIAM Journal on Optimization, 5(1):13–51, 1995. 6

[3] Noga Alon, Konstantin Makarychev, Yury Makarychev, and Assaf Naor. Quadratic
forms on graphs. In STOC, pages 486–493, 2005. 194, 195

[4] Noga Alon and Assaf Naor. Approximating the cut-norm via grothendieck’s inequality.
SIAM J. Comput, 35(4):787–803, 2006. 7, 193, 194

[5] E. Amaldi and Viggo Kann. On the approximability of minimizing nonzero variables
or unsatisfied relations in linear systems. Theoretical Computer Science, 109:237–260,
1998. 255

[6] Aaron Archer, Jittat Fakcharoenphol, Chris Harrelson, Robert Krauthgamer, Kunal
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Appendix A

PROBLEM DEFINITIONS

Problem 12 (Label Cover). An instance of Label Cover (c, s) is given by Φ = (WΦ ∪
VΦ, E, [R],Π) consists of a bipartite graph over node sets VΦ,WΦ with the edges E between
them, such that all nodes in VΦ are of the same degree. Also part of the instance is a set of
labels [R], and a set of mappings Π = {πv←w : [R] → [R]} for each edge e = (w, v) ∈ E. An
assignment A of labels to vertices is said to satisfy an edge e = (w, v), if πv←w(A(w)) = A(v).
The problem is to distinguish between the following two cases:

– There exists an assignment A that satisfies at least a fraction c of the edge constraints
Π.

– Every assignment satisfies less than a fraction s of the constraints in Π.

Problem 13 (E2Linq). Given a variable set V and a system of linear equations over the
finite field Fq, with equation of the form xi − xj = cij for variables i, j ∈ V, the goal is to
find an Fq-assignment x to V that satisfies the maximum number of equations.

Note that Max Cut is a slight generalization of E2Lin2.

Problem 14 (Γ-Max-2Lin). Given a variable set V and a list of constraints of the form
xix
−1
j = cij over the group Φ for variables i, j ∈ V, i, j, the goal is to find a Φ-assignment

to V so as to maximize the number of satisfied constraints.

Note that E2Linq is the same problem as Γ-Max-2Lin for Φ = Fq. We sometimes use the
notation Γ-Max-2Lin(k) to refer to the more general problem where a group Φ of order k is
given as part of the input.

Problem 15 (Unique Games (R)). Given a variable set V and a list of constraints of the
form xu = πu←v(xv) where u, v ∈ V are two variables and πu←v is a permutation of [R], the
goal is to find a [R]-assignment to V so as to maximize the number of satisfied constraints.

Problem 16 (Unique Games (R, 1 − γ, δ)). Given a bipartite unique games instance
Φ = (WΦ ∪ VΦ, E,Π = {πv←w : [R] → [R] | e = (w, v) ∈ E}, [R]) with number of labels R,
distinguish between the following two cases:

– (1 − γ)-strongly satisfiable instances: There exists an assignment A of labels such that
for 1 − δ fraction of vertices w ∈ WΦ are strongly satisfied, i.e., all the edges (w, v)
are satisfied.

– Instances that are not δ-satisfiable: No assignment satisfies more than a δ-fraction of
the edges E.
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Problem 17. A Metric Labeling problem is specified as Λ = (L, d) where d is a metric
over the set of labels L.

We will use q to denote the number of labels |L|
Problem 18 (Λ-Metric Labeling ). An instance = = (V, E , {L(v)}v∈V ) of the Λ-Metric
Labeling problem consists of a set of vertices V, a probability distribution E over pairs
from V × V (equivalent to edges with weights) and a family of subsets {L(v)}v∈V of L. A
valid labeling is a mapping L : V → L such that for each vertex, v ∈ V, L(v) belongs to
L(v). The cost of a labeling L, val=(L), is

E
(u,v)=e∈E

d(L(u),L(v)).

The optimum value of the instance, opt(=), is the minimum cost labeling for the instance.

An important special case of the Λ-Metric Labeling problem is the Λ-Zero-
Extension problem defined below.

Problem 19 (Λ-Zero-Extension ). An instance = = (V, E ,L) of Λ-Zero-Extension
problem consists of a weighted graph (V, E), along with a set of terminals L ⊂ V with a
metric d on them. The objective is to assign each vertex v a terminal L(v) ∈ L such that
the following cost is minimized:

E
(u,v)=e∈E

d(L(u),L(v)).

The value of the instance, opt(=) is the minimum cost labeling for the instance.

Observe that a valid solution to the above problem consists of a labeling L : V → L such
that for each terminal t ∈ L, L(t) = t. This corresponds to Λ-Metric Labeling over the
graph (V, E) with the family of sets {L(v)}v∈V defined as,

L(v) =

{

{v} if v ∈ L

L otherwise

Problem 20 (Multiway Cut ). An instance = = (V, E ,L) of Multiway Cut problem
consists of a weighted graph (V, E), along with a set of terminals L ⊂ V. The objective is
to delete a set of edges of minimum weight so as to separate every pair of terminals.

The Multiway Cut problem can be formulated as a labeling problem (with a uniform
metric) as follows: A valid multiway cut corresponds to a labeling L : V → L such that
for each terminal t ∈ L, L(t) = t. The cost of such a labeling L, val=(L) is given by
E(u,v)∈E

[

1[L(u) 6= L(v)]
]

. The optimum value of the instance opt(=) is the minimum cost
labeling for the instance.

A special case of Multiway Cut problem is the q-WayCut for a positive integer q.

Problem 21 (q-WayCut). An instance = = (V, E ,L) of q-WayCut problem consists of a
weighted graph (V, E), along with a set of q terminals L ⊂ V. The objective is to delete a
set of edges of minimum weight so as to separate every pair of terminals.
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Problem 22 (KN,N -QuadraticProgramming). Given an m×n matrix A = (aij), com-
pute the optimal value of the following optimization problem,

opt(A)
def
= max

∑

ij

aijxiyj ,

where the maximum is over all x1, . . . , xm ∈ [−1, 1] and y1, . . . , yn ∈ [−1, 1]. Note that the
optimum value opt(A) is always attained for numbers with |xi| = |yj | = 1.

Problem 23 (Max Cut). Given a graph G = (V,E) with vertices V = {v1, · · · , vn} and
edges E, find a partition S ∪ S̄ = V of the set of vertices that maximizes the number of
edges cut by the partition. An edge e = (vi, vj) is cut, if vi ∈ S and vj ∈ S̄ or vice versa.

Problem 24 (Minimum Vertex Cover). An instance of Minimum Vertex Cover
problem consists of a graph G = (V,E) over a set of vertices V and edges E. A vertex cover
is a set of vertices S, such that every edge in the graph, has one of its endpoints in the set
S. The goal is to find a vertex cover S with the minimum number of vertices.

Problem 25 (b-Balanced Separator). Given a graph G on vertex set V , the goal is to find
a set S ⊆ V with b 6 |S|/|V | 6 1/2 so as to minimize the fraction of edges cut by S.

Problem 26 (Sparsest Cut). Given a weighted graph G = (V,E) with weight {wij}i,j∈V
and a set of demands {dij}i,j∈V , compute the cut (S, S̄) of the vertices, that minimizes the
ratio of the total weight of edges cut to total demands that are separated. Formally, the
goal is to

Minimize

∑

i∈S,j∈S̄ wij
∑

i∈S,j∈S̄ dij

Problem 27 (Max 2-Sat). Given a set of 2-CNF clauses of the form `i ∨ `j where `i, `j
are literals (variables or their negations) over a set of variables V , find an assignment to the
variables that satisfies the maximum number of clauses.

Max 3-Sat, and Max− k − SAT are the corresponding problems on 3-CNF and k-CNF
clauses respectively.

Problem 28 (Maximum Acyclic Subgraph). Given a weighted directed graph G =
(V,E) with weights {wij}i,j∈V , find an ordering of the vertices such that the maximum
weight of edges are in the forward direction. Formally, find an ordering O : V → [n] of the
n vertices V that maximizes the following:

∑

O(i)<O(j)

wij
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