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Abstract

We show that the multi-commodity max-flow/min-cut gap for series-parallel graphs can be as
bad as 2, matching a recent upper bound [8] for this class, and resolving one side of a conjecture of
Gupta, Newman, Rabinovich, and Sinclair.

This also improves the largest known gap for planar graphs from 3
2 to 2, yielding the first lower

bound that doesn’t follow from elementary calculations. Our approach uses the coarse differentiation
method of Eskin, Fischer, and Whyte in order to lower bound the distortion for embedding a
particular family of shortest-path metrics into L1.

1 Introduction

Since the appearance of [24] and [4], low-distortion metric embeddings have become an increasingly
powerful tool in studying the relationship between cuts and multicommodity flows in graphs. For
background on the field of metric embeddings and their applications in theoretical computer science,
we refer to Matoušek’s book [26, Ch. 15], the surveys [19, 23], and the compendium of open problems
[25].

One of the central connections lies in the correspondence between low-distortion L1 embeddings,
on the one hand, and the Sparsest Cut problem (see, e.g. [24, 4, 3, 2]) and concurrent multi-commodity
flows (see, e.g. [17, 12]) on the other. This relationship allows one to bring sophisticated geometric and
analytic techniques to bear on classical problems in graph partitioning and in the theory of network
flows. In the present paper, we show how techniques developed initially in geometric group theory can
be used to shed new light on the connections between sparse cuts and multi-commodity flows in planar
graphs.

Multi-commodity flows and sparse cuts. Let G = (V, E) be an undirected graph, with a ca-
pacity C(e) ≥ 0 associated to every edge e ∈ E. Assume that we are given k pairs of vertices
(s1, t1), ..., (sk, tk) ∈ V × V and D1, . . . , Dk ≥ 1. We think of the si as sources, the ti as targets,
and the value Di as the demand of the terminal pair (si, ti) for commodity i.

In the MaxFlow problem the objective is to maximize the fraction λ of the demand that can
be shipped simultaneously for all the commodities, subject to the capacity constraints. Denote this
maximum by λ∗. A straightforward upper bound on λ∗ is the sparsest cut ratio. Given any subset
S ⊆ V , we write

Φ(S) =
∑

uv∈E C(uv) · |1S(u)− 1S(v)|∑k
i=1 Di · |1S(si)− 1S(ti)|

,

where 1S is the characteristic function of S. The value Φ∗ = minS⊆V Φ(S) is the minimum over all
cuts (partitions) of V , of the ratio between the total capacity crossing the cut and the total demand
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crossing the cut. In the case of a single commodity (i.e. k = 1) the classical MaxFlow-MinCut theorem
states that λ∗ = Φ∗, but in general this is no longer the case. It is known [24, 4] that Φ∗ = O(log k)λ∗.
This result is perhaps the first striking application of metric embeddings in combinatorial optimization
(specifically, it uses Bourgain’s embedding theorem [6]).

Indeed, the connection between L1 embeddings and multi-commodity flow/cut gaps can be made
quite precise. For a graph G, let c1(G) represent the largest distortion necessary to embed any shortest-
path metric on G into L1 (i.e. the maximum over all possible assignments of non-negative lengths to
the edges of G). Then c1(G) gives an upper bound on the ratio between the sparsest cut ratio and
the maximum flow for any multi-commodity flow instance on G (i.e. with any choices of capacities
and demands) [24, 4]. Furthermore, this connection is tight in the sense that there is always a multi-
commodity flow instance on G that achieves a gap of c1(G) [17].

Despite significant progress [28, 17, 12, 8, 7], some fundamental questions are still left unanswered.
As a prime example, consider the well-known planar embedding conjecture [17, 19, 23, 25]:

There exists a constant C such that every planar graph metric embeds into L1 with distortion
at most C.

In initiating a systematic study of L1 embeddings [17] for minor-closed families, Gupta, Newman,
Rabinovich, and Sinclair put forth the following vast generalization of this conjecture (we refer to [14]
for the relevant graph theory).

Conjecture 1 (Minor-closed embedding conjecture). If F is any non-trivial minor-closed family,
then supG∈F c1(G) < ∞.

Lower bounds on the multi-commodity max-flow/min-cut ratio in planar graphs. While
techniques for proving upper bounds on the L1-distortion required to embed such families has steadily
improved, progress on lower bounds has been significantly slower, and recent breakthroughs in lower
bounds for L1 embeddings of discrete metric spaces that rely on discrete Fourier analysis [21, 20] do
not apply to excluded-minor families.

The best previous lower bound on c1(G) when G is a planar graph occurred for G = K2,n, i.e. the
complete 2 × n bipartite graph. By a straightforward generalization of the lower bound of Okamura
and Seymour [28], it is possible to show that c1(K2,n) → 3

2 as n → ∞ (see also [1] for a simple proof
of this fact in the dual setting).

We show that, in fact there is an infinite family of series-parallel (and hence, planar) graphs {Gn}
such that limn→∞ c1(Gn) = 2; this is not only a new lower bound for planar graphs, but yields an
optimal lower bound on the L1-distortion (and hence the flow/cut gap) for series-parallel graphs. The
matching upper bound was recently proved in [8].

1.1 Results and techniques

Our lower bound approach is based on exhibiting local rigidity for pieces of metric spaces under low-
distortion embeddings into L1 (which we take to mean L1([0, 1]) throughout). This circle of ideas, and
the relationship to theory of metric differentiation are a long-studied phenomena in geometric analysis
(see e.g. [18, 29, 5, 9]). More recently, they have been applied to the study of L1 embeddings [10, 11]
based on local rigidity results for sets of finite perimeter in the Heisenberg group [16]; see [22] for the
relevance to integrality gaps for the Sparsest Cut problem.

Our basic approach is simple; we know that c1(K2,n) ≤ 3
2 for every n ≥ 1. But consider s, t ∈

V (K2,n) which constitute the partition of size 2. Say that a cut S ⊆ V (K2,n) is monotone with respect
to s and t if every simple s-t path in K2,n has at most one edge crossing the cut (S, S̄). It is not difficult
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Figure 1: A single edge H, H ®K2,3, and H ®K2,3 ®K2,2.

to show that if an L1 embedding is composed entirely of cuts which are monotone with respect to s
and t, then that embedding must have distortion at least 2− 2

n .
Consider now the recursively defined family of graphs K®k

2,n, where K®1
2,n = K2,n and K®k

2,n arises by
replacing every edge of K®k−1

2,n with a copy of K2,n. The family {K®k
2,2 }k≥1 are the well-known diamond

graphs of [27, 17]. We show that in any low-distortion embedding of K®k
2,n into L1, for k ≥ 1 large

enough, it is possible to find a (metric) copy of K2,n for which the induced embedding is composed
almost entirely of monotone cuts. The claimed distortion bound follows, i.e. limn,k→∞ c1(K®k

2,n) = 2.
In Section 5, we exhibit embeddings which show that for every fixed n, limk→∞ c1(K®k

2,n) < 2, thus it
is necessary to have the base graphs grow in size.

The ability to find these monotone copies of K2,n inside a low-distortion L1 embedding of K®k
2,n

arises from two sources. The first is the coarse differentiation technique of Eskin, Fischer, and Whyte
[15] which gives a discrete approach to finding local regularity in distorted paths; this is carried out in
Section 3. The second aspect is the relationship between regularity and monotonicity for L1 embeddings
which is expounded upon in Section 3.2, and relies on the well-known fact that every L1 embedding
decomposes in a certain way into a distribution over cuts.

2 Preliminaries

For a graph G, we will use V (G), E(G) to denote the sets of vertices and edges of G, respectively.
Sometimes we will equip G with a non-negative length function len : E(G) → R+, and we let dlen

denote the shortest-path (semi-)metric on G. We say that len is a reduced length if dlen(u, v) = len(u, v)
for every (u, v) ∈ E(G). All length functions considered in the present paper will be reduced. We will
write dG for the path metric on G if the length function is implicit. For an integer n, let K2,n denote
the complete bipartite graph with 2 vertices on one side, and n on the other.

2.1 s-t graphs and ®-products

An s-t graph G is a graph which has two distinguished vertices s, t ∈ V (G). For an s-t graph, we use
s(G) and t(G) to denote the vertices labeled s and t, respectively. Throughout this article, the graphs
K2,n are considered s-t graphs in the natural way (the two vertices forming one side of the partition
are labeled s and t).

Definition 2.1 (Composition of s-t graphs). Given two s-t graphs H and G, define H ®G to be
the s-t graph obtained by replacing each edge (u, v) ∈ E(H) by a copy of G (see Figure 1). Formally,

• V (H ®G) = V (H) ∪ (E(H)× V (G) \ {s(G), t(G)}) .
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• For every edge e = (u, v) ∈ E(H), there are |E(G)| edges,
{(

(e, v1), (e, v2)
)
| (v1, v2) ∈ E(G) and v1, v2 /∈ {s(G), t(G)}

}
∪

{(
u, (e, w)

)
| (s(G), w) ∈ E(G)

}
∪

{(
(e, w), v

)
| (w, t(G)) ∈ E(G)

}

• s(H ®G) = s(H) and t(H ®G) = t(H).

If H and G are equipped with length functions lenH , lenG, respectively, we define lenH®G as follows.
Using the preceding notation, for every edge e = (u, v) ∈ E(H),

len ((e, v1), (e, v2)) =
lenH(e)

dlenG
(s(G), t(G))

lenG(v1, v2)

len (u, (e, w)) =
lenH(e)

dlenG
(s(G), t(G))

lenG(s(G), w)

len ((e, w), v) =
lenH(e)

dlenG
(s(G), t(G))

lenG(w, t(G)).

This choice implies that H ®G contains an isometric copy of (V (H), dlenH
).

Observe that there is some ambiguity in the definition above, as there are two ways to substitute
an edge of H with a copy of G, thus we assume that there exists some arbitrary orientation of the
edges of H. However, for our purposes the graph G will be symmetric, and thus the orientations are
irrelevant.

Definition 2.2 (Recursive composition). For an s-t graph G and a number k ∈ N, we define G®k

inductively by letting G®0 be a single edge of unit length, and setting G®k = G®k−1 ®G.

The following result is straightforward.

Lemma 2.3 (Associativity of ®). For any three graphs A,B,C, we have (A®B)®C = A®(B®C),
both graph-theoretically and as metric spaces.

Definition 2.4. For two graphs G, H, a subset of vertices X ⊆ V (H) is said to be a copy of G if there
exists a bijection f : V (G) → X with distortion 1, i.e. dH(f(u), f(v)) = C · dG(u, v) for some constant
C > 0.

Now we make the following two simple observations about copies of H and G in H ®G.

Observation 2.5. The graph H ® G contains |E(H)| distinguished copies of the graph G, one copy
corresponding to each edge in H.

Observation 2.6. The subset of vertices V (H) ⊆ V (H ®G) form an isometric copy of H.

For any graph G, we can write G®N = G®k−1 ® G ® GN−k. By observation 2.5, there are
|E(G®k−1)| = |E(G)|k−1 copies of G in G®k−1 ® G. Now using observation 2.6, we obtain |E(G)|k−1

copies of G in G®N . We refer to these as the level-k copies of G, and their vertices as level-k vertices.
In the case of K®N

2,n , we will use a compact notation to refer to the copies of K2,n. For two level-k

vertices x, y ∈ V (KN
2,n), we will use K

(x,y)
2,n to denote the copy of K2,n for which x and y are the s-t

points. Note that such a copy does not exist between all pairs of level-k vertices.
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2.2 Cuts and L1 embeddings

Cuts. A cut of a graph is a partition of V into (S, S̄)—we sometimes refer to a subset S ⊆ V as a cut
as well. A cut gives rise to a semi-metric; using indicator functions, we can write the cut semi-metric
as ρS(x, y) = |1S(x) − 1S(y)|. A fact central to our proof is that embeddings of finite metric spaces
into L1 are equivalent to sums of positively weighted cut metrics over that set (for a simple proof of
this see [13]).

A cut measure on G is a function µ : 2V → R+ for which µ(S) = µ(S̄) for every S ⊆ V . Every cut
measure gives rise to an embedding f : V → L1 for which

‖f(u)− f(v)‖1 =
∫
|1S(u)− 1S(v)| dµ(S), (1)

where the integral is over all cuts (S, S̄). Conversely, to every embedding f : V → L1, we can associate
a cut measure µ such that (1) holds. We will use this correspondence freely in what follows. When V
is a finite set (as it will be throughout), for A ⊆ 2V , we define µ(A) =

∑
S∈A µ(S).

Embeddings and distortion. If (X, dX), (Y, dY ) are metric spaces, and f : X → Y , then we write

‖f‖Lip = sup
x 6=y∈X

dY (f(x), f(y))
dX(x, y)

.

If f is injective, then the distortion of f is defined by dist(f) = ‖f‖Lip ·‖f−1‖Lip. A map with distortion
D will sometimes be referred to as D-bi-lipschitz. If dY (f(x), f(y)) ≤ dX(x, y) for every x, y ∈ X, we
say that f is non-expansive. For a metric space X, we use c1(X) to denote the least distortion required
to embed X into L1.

3 Coarse differentiation

In the present section, we study the regularity of paths under bi-lipschitz mappings into L1. Our main
tool is based on differentiation [15]. First, we need a discrete analog of bounded variation.

Definition 3.1. A sequence {x1, x2, . . . , xk} ⊆ X in a metric space (X, d) is said to ε-efficient if

d(x1, xk) ≤
k−1∑

i=1

d(xi, xi+1) ≤ (1 + ε) d(x1, xk)

Of course the left inequality follows trivially from the triangle inequality.

Definition 3.2. A function f : Y → X between two metric spaces (X, d) and (Y, d′), is said to be
ε-efficient on P = {y1, y2, . . . , yk} ⊆ Y if the sequence f(P ) = {f(y1), f(y2), . . . f(yk)} is ε-efficient in
X.

For the sake of simplicity, we first present the coarse differentiation argument for a function
on [0, 1]. Let f : [0, 1] → X be a non-expansive map into a metric space (X, d). Let M ∈ N
be given, and for each k ∈ N, let Lk = {jM−k}Mk

j=0 ⊆ [0, 1] be the set of level-k points, and let
Sk =

{
(jM−k, (j + 1)M−k) : j ∈ {1, . . . , Mk − 1}} be the set of level-k pairs.

For an interval I = [a, b], f |I denotes the restriction of f to the interval I. Now we say that f |I is
ε-efficient at granularity M if

M−1∑

j=0

d

(
f

(
a +

(b− a)j
M

)
, f

(
a +

(b− a)(j + 1)
M

))
≤ (1 + ε) d(f(a), f(b)).
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Further, we say that a function f is (ε, δ)-inefficient at level k if
∣∣{(a, b) ∈ Sk : f |[a,b] is not ε-efficient at granularity M

}∣∣ ≥ δMk.

In other words, the probability that a randomly chosen level k restriction f |[a,b] is not ε-efficient is at
least δ. Otherwise, we say that f is (ε, δ)-efficient at level k. The main theorem of this section follows.

Theorem 3.3 (Coarse differentiation). If a non-expansive map f : [0, 1] → X is (ε, δ)-inefficient
at an α-fraction of levels k = 1, 2, . . . , N , then dist(f |LN+1

) ≥ 1
2εαδN .

Proof. Let D = dist(f |LN+1
), and let 1 ≤ k1 < · · · < kh ≤ N be the h ≥ bαNc levels at which f is

(ε, δ)-inefficient.
Let us consider the first level k1. Let S′k1

⊆ Sk1 be a subset of size |S′k1
| ≥ bδ|Sk1 |c for which

(a, b) ∈ S′k1
=⇒ f |[a,b] is not ε-efficient at granularity M

For any such (a, b) ∈ S′k1
, we know that

M−1∑

j=0

d
(
f

(
a + jM−k1−1

)
, f

(
a + (j + 1)M−k1−1

))
> (1 + ε)d(f(a), f(b))

≥ d(f(a), f(b)) + ε
M−k1

D
.

by the definition of (not being) ε-efficient, and the fact that d(f(a), f(b)) ≥ |a− b|/D. For all segments
(a, b) ∈ Sk1 − S′k1

, the triangle inequality yields

M−1∑

j=0

d
(
f

(
a + jM−k1−1

)
, f

(
a + (j + 1)M−k1−1

))
≥ d(f(a), f(b))

By summing the above inequalities over all the segments in Sk1 , we get

∑

(u,v)∈Sk1+1

d (f(u), f(v)) ≥
∑

(a,b)∈Sk1

d(f(a), f(b)) +
εδ

2D
,

where the extra factor 2 in the denominator on the RHS just comes from removing the floor from
|S′k1

| ≥ bδ|Sk1 |c. Similarly, for each of the levels k2, . . . , kh, we will pick up an excess term of εδ/(2D).
We conclude that

1 ≥
∑

(u,v)∈SN+1

d (f(u), f(v)) ≥ εδh

2D
,

where the LHS comes from the fact that f is non-expansive. Simplifying achieves the desired conclusion.

3.1 Differentiation for families of geodesics

Let G = (V, E) be an unweighted graph, and let P denote a family of geodesics (i.e. shortest-paths) in
G. Furthermore, assume that every γ ∈ P has length M r for some M, r ∈ N. Let f : (V, dG) → X be
a non-expansive map into some metric space (X, d).
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For the sake of convenience, we will index the vertices along the paths using numbers from [0, 1].
Specifically, we will refer to the ith vertex along the path γ ∈ P by γ

(
i

Mr

)
. For indices a, b, we will use

γ[a, b] to denote the sub path starting at γ(a) and ending at γ(b). We will also use f |γ[a,b] to denote the
restriction of f to the path γ[a, b]. As earlier, the function f |γ[a,b] is said to be ε-efficient at granularity
M if

M−1∑

j=0

d
(
f

(
γ

(
a + M−1(b− a)j

))
, f

(
γ

(
a + M−1(b− a)(j + 1)

)))
≤ (1 + ε) d(f(a), f(b)).

Let the sets Lk and Sk be defined as before. Thus a level-k segment of a path γ ∈ P is γ[a, b] for
some (a, b) ∈ Sk. We say that f is (ε, δ) inefficient at level k for the family of paths P if the following
holds:

∣∣{(a, b) ∈ Sk, γ ∈ P : f |γ[a,b] is not ε-efficient at granularity M
}∣∣ ≥ δMk|P|.

A straightforward variation of the proof of Theorem 3.3 yields the following.

Theorem 3.4. If a non-expansive map f : V → X is (ε, δ)-inefficient at an α-fraction of levels
k = 1, 2, . . . , N , then dist(f) ≥ 1

2εαδN .

Proof. Let D = dist(f), and let 1 ≤ k1 < · · · < kh ≤ N be the h ≥ bαNc levels for which f is
(ε, δ)-inefficient at level ki.

Let us consider the first level k1. Let S′k1
⊆ P×Sk1 be a subset of size |S′k1

| ≥ bδ|Sk1 ||P|c for which

(
γ, (a, b)

) ∈ S′k1
=⇒ f |γ[a,b] is not ε-efficient at granularity M.

For any such
(
γ, (a, b)

) ∈ S′k1
, we know that

M−1∑

j=0

d
(
f

(
γ(a + jM−k1−1)

)
, f

(
γ(a + (j + 1)M−k1−1)

))
> (1 + ε) d(f(γ(a)), f(γ(b)))

≥ d (f(γ(a)), f(γ(b))) + ε
M r−k1

D
.

by the definition of (not being) ε-efficient, and the fact that d(f(γ(a)), f(γ(b))) ≥ M r|a − b|/D. In
particular, summing both sides over all the segments γ[a, b] over all paths γ and segments [a, b] ∈ Sk1

(and replacing the preceding inequality by the triangle inequality if (a, b) /∈ S′k1
), we get

∑

γ∈P

∑

(u,v)∈Sk1+1

d (f(γ(u)), f(γ(v))) ≥
∑

γ∈P

∑

(a,b)∈Sk1

d(f(γ(a)), f(γ(b))) +
εδM r|P|

2D
,

Similarly, for each of the levels k2, . . . , kh, we will pick up an excess term of εδM r|P|/(2D). We conclude
that

M r|P| ≥
∑

γ∈P

∑

(u,v)∈SN+1

d (f(γ(u)), f(γ(v))) ≥ εδhM r|P|
2D

,

The desired conclusion follows.
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3.2 Efficient L1-valued maps and monotone cuts

Finally, we relate monotonicity of L1-valued mappings to properties of their cut decompositions.

Definition 3.5. A sequence P = {x1, x2, . . . , xk} ⊆ X is said to be monotone with respect to a cut
(S, S) (where X = S ] S̄) if S ∩ P = {x1, x2, . . . , xi} or S̄ ∩ P = {x1, x2, . . . , xi} for some 1 ≤ i ≤ k.

If µ is a cut measure on a finite set X and x, y ∈ X, we define the separation measure µx|y as
follows: For every S ⊆ X, let µx|y(S) = µ(S)|1S(x)− 1S(y)|.
Lemma 3.6. Let (X, d) be a finite metric space, and let P = {x1, x2, . . . , xk} ⊆ X be a finite sequence.
Given a mapping f : X → L1, let µ be the corresponding cut measure (see (1)). If f is ε-efficient on
P , then

µx1|xk
({

S : P is monotone with respect to (S, S̄)
}) ≥ (1− ε)‖f(x1)− f(xk)‖1.

Proof. If the sequence P is not monotone with respect to a cut (S, S), then

k−1∑

i=1

|1S(xi)− 1S(xi+1)| ≥ 2|1S(x1)− 1S(xk)|.

Now, let E = {S : P is not monotone with respect to (S, S̄)}, and for the sake of contradiction, assume
that µx1|xk(E) > ε‖f(x1)− f(xk)‖1, then

k−1∑

i=1

‖f(xi)− f(xi+1)‖1 =
k−1∑

i=1

[∫

E
|1S(xi)− 1S(xi+1)| dµ(S) +

∫

Ē
|1S(xi)− 1S(xi+1)| dµ(S)

]

≥ 2
∫

E
|1S(x1)− 1S(xk)| dµ(S) +

∫

Ē
|1S(x1)− 1S(xk)| dµ(S)

= 2µx1|xk(E) + µx1|xk(Ē)
> (1 + ε)‖f(x1)− f(xk)‖1,

where we observe that ‖f(x1) − f(xk)‖1 = µx1|xk(E) + µx1|xk(Ē). This is a contradiction, since f is
assumed to be ε-efficient on P .

4 The distortion lower bound

Our lower bound examples are the recursively defined family of graphs {K®k
2,n}∞k=1. We recall that the

graphs K®k
2,2 are known as diamond graphs [17, 27].

Lemma 4.1. Let G be an s-t graph with a uniform length function, i.e. len(e) = 1 for every e ∈ E(G).
Then for every ε,D > 0, there exists an integer N = N(G, ε, D) such that the following holds: For any
non-expansive map f : G®N → X with dist(f) ≤ D, there exists a copy G′ of G in G®N such that f is
ε-efficient on all s-t geodesics in G′.

Proof. Let M = dG(s, t), and let PG denote the family of s-t geodesics in G. Fix δ = 1
|PG| , α = 1

2 and

N = 8D
εδ .

Let P denote the family of all s-t geodesics in G®N . Each path in P is of length M and consists
of MN edges. From the choice of parameters, observe that 1

2εαδN > D. Applying Theorem 3.4 to the
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family P, any non-expansive map f with dist(f) ≤ D is (ε, δ)-efficient at an α = 1
2 -fraction of levels

k = 1, 2, . . . N . Specifically, there exists a level k such that f is (ε, δ)-efficient at level k.
For a uniformly random choice of path γ ∈ P, and level-k segment (a, b) of γ, f |γ[a,b] is not ε-efficient

at granularity M with probability at most δ. In case of the family P, each of the level-k segments is
nothing more than an s-t geodesic in a level-k copy of G.

If, for at least one of the level-k copies of G, f is ε-efficient on all the s-t geodesics in that copy, the
proof is complete. On the contrary, suppose each level-k copy has an s-t geodesic on which f is not
ε-efficient. Then in each level-k copy at least a δ = 1

PG
-fraction of the s-t geodesics are ε-inefficient. As

the level-k copies partition the set of all level-k segments, this implies that at least a δ-fraction of the
segments are ε-inefficient. This contradicts the fact that f is (ε, δ)-efficient at level k.

Although we will not need it, the same type of argument proves the following generalization to
weighted graphs G. The idea is that in G®N for N large enough, there exists a copy of a subdivision of
G with each edge finitely subdivided. Paying small distortion, we can approximate G (up to uniform
scaling) by this subdivided copy, where the latter is equipped with uniform edge lengths.

Lemma 4.2. Let G be an s-t graph with with arbitrary non-negative edge lengths len : E(G) → R+.
Then for every ε,D > 0, there exists an integer N = N(G, ε, D, len) such that the following holds: For
any non-expansive map f : G®N → X with dist(f) ≤ D, there exists a copy G′ of G in G®N such that
f is ε-efficient on all s-t geodesics in G′.

In the graph K2,n, we will refer to the n vertices other than s, t by M = {mi}n
i=1.

Lemma 4.3. For ε < 1
2 and any function f : V (K2,n) → L1 that is ε/n-efficient with respect to each

of the geodesics s-mi-t, for 1 ≤ i ≤ n, we have dist(f) ≥ 2− 2
n − 2ε.

Proof. Let µ be the cut measure corresponding to f . By scaling, we may assume that

‖f(s)− f(t)‖1 = µ {S : 1S(s) 6= 1S(t)} = 1.

Let V = V (K2,n). Without loss of generality, we assume that µ is supported on 2V \ {∅, V }. Let γi be
the geodesic s-mi-ti for i ∈ {1, 2, . . . , n}. Define

E =
{
S : (S, S̄) is not monotone with respect to γi for some i ∈ [n]

}
.

Applying Lemma 3.6, by a union bound and the fact that f is ε/n efficient on every γi, we see that
µ(E) ≤ ε.

Consider a cut (S, S) that is monotone with respect to all the γi geodesics, and such that µ(S) > 0.
Let us refer to these cuts as good cuts. By monotonicity, and the fact that S /∈ {0, V }, we know that
|1S(s)− 1S(t)| = 1. Thus for a good cut (S, S), we have

∑

i,j∈[n]

|1S(mi)− 1S(mj)| = 2(|S| − 1)(n− |S| − 1) ≤ n2

2
. (2)

It follows that,
∑

i,j∈[n]

‖f(mi)− f(mj)‖1 =
∫

E

∑

i,j∈[n]

|1S(mi)− 1S(mj)| dµ(S) +
∫

Ē

∑

i,j∈[n]

|1S(mi)− 1S(mj)| dµ(S)

≤ µ(Ē)
n2

2
+ µ(E)n2

≤ (1− ε)
n2

2
+ εn2

≤ (1 + ε)n2

2
‖f(s)− f(t)‖1.
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where in the first inequality, we have used (2), and we recall that ‖f(s)− f(t)‖1 = 1.
Contrasting this with the fact that

∑

i,j∈[n]

dK2,n(mi,mj) = n(n− 1) dK2,n(s, t)

yields

dist(f) ≥ n(n− 1)
(1+ε)n2

2

=
2

1 + ε

(
1− 1

n

)
≥ 2− 2

n
− 2ε.

Theorem 4.4. For any n ≥ 2, limk→∞ c1(K®k
2,n) ≥ 2− 2

n .

Proof. For any ε′ > 0, let N be the integer obtained by applying Lemma 4.1 to K2,n with ε = ε′/n,D = 2
and G = K2,n. We will show that for any map f : K®N

2,n → L1, dist(f) ≥ 2− 2
n − 2ε′. Without loss of

generality, assume that f is non-expansive. If dist(f) ≤ 2, then from Lemma 4.1 there exists a copy of
K2,n in which f is ε′

n on all the s-t geodesics. Using Lemma 4.3, wee that on this copy of K2,n we get
dist(f |K2,n) ≥ 2− 2

n − 2ε′. The result follows by taking ε′ → 0.

5 Embeddings of K®k
2,n

In this section, we show that for every fixed n, limk→∞ c1(K®k
2,n) < 2.

A next-embedding operator. Let T be a random variable ranging over subsets of V (K®k
2,n), and let S

be a random variable ranging over subsets of V (K2,n). We define a random subset PS(T ) ⊆ V (K®k+1
2,n )

as follows. One moves from K®k
2,n to K®k+1

2,n by replacing every edge (x, y) ∈ E(K®k
2,n) with a copy of

K2,n which we will call K
(x,y)
2,n . For every edge (x, y) ∈ K®k

2,n, let S(x,y) be an independent copy of the
cut S (which ranges over subsets of V (K2,n)). We form the cut PS(T ) ⊆ V (K®k+1

2,n ) as follows. If

(x, y) ∈ E(K®k
2,n), then for v ∈ V (K(x,y)

2,n ), we put

1PS(T )(v) =





1PS(T )

(
s(K(x,y)

2,n )
)

if 1S(x,y)(v) = 1S(x,y)

(
s(K(x,y)

2,n )
)

1PS(T )

(
t(K(x,y)

2,n )
)

otherwise

We note that, strictly speaking, the operator PS depends on n and k, but we allow these to be implicit
parameters.

5.1 Embeddings for small n

Consider the graph K2,n with vertex set V = {s, t} ∪ M . An embedding in the style of [17] would
define a random subset S ⊆ V by selecting M ′ ⊆ M to contain each vertex from M independently
with probability 1

2 , and then setting S = {s} ∪M ′. The resulting embedding has distortion 2 since,
for every pair x, y ∈ M , we have Pr[1S(x) 6= 1S(y)] = 1

2 . To do slightly better, we choose a uniformly
random subset M ′ ⊆ M of size bn

2 c and set S = {s} ∪M ′ or S = {s} ∪ (M \M ′) each with probability
half. In this case, we have

Pr[1S(x) 6= 1S(y)] =
bn

2 c · bn+1
2 c(

n
2

) >
1
2
,
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Figure 2: The two cases of Theorem 5.1

resulting in a distortion slightly better than 2. A recursive application of these ideas results in
limk→∞ c1(K®k

2,n) < 2 for every n ≥ 1, though the calculation is complicated by the fact that the
worst distortion is incurred for a pair {x, y} with x ∈ M(H) and y ∈ M(G) where H is a copy of
K®k1

2,n and G is a copy of K®k2
2,n , and the relationship between k1 and k2 depends on n. (For instance,

c1(K2,2) = 1 while limk→∞(K®k
2,2 ) = 4

3 .)

Theorem 5.1. For any n, k ∈ N, we have c1(K®k
2,n) ≤ 2− 2

2dn
2
e+1 .

Proof. For simplicity, we prove the bound for K®k
2,2n. A similar analysis holds for K®k

2,2n+1. We define a
random cut Sk ⊆ V (K®k

2,2n) inductively. For k = 1, choose a uniformly random partition M(K®1
2,2n) =

Ms ∪ Mt with |Ms| = |Mt| = n, and let S1 = {s(K®1
2,2n)} ∪ {Ms}. The key fact which causes the

distortion to be less than 2 is the following: For any x, y ∈ M(K®1
2,2n), we have

Pr[1S1(x) 6= 1S1(y)] =
n2

(
2n
2

) =
n

2n− 1
>

1
2
. (3)

This follows because there are
(
2n
2

)
pairs {x, y} ∈ M(K®1

2,2n) and n2 are separated by S1.
Assume now that we have a random subset Sk ⊆ V (K®k

2,2n). We set Sk+1 = PS1(Sk) where PS1 is
the operator defined above, which maps random subsets of V (K®k

2,2n) to random subsets of V (K®k+1
2,2n ).

In other words Sk = P k−1
S1

(S1).
Let s0 = s(K®k

2,2n) and t0 = t(K®k
2,2n). It is easy to see that the cut S = Sk defined above is always

monotone with respect to every s0-t0 shortest path in K®k
2,2n, thus every such path has exactly one edge

cut by Sk, and furthermore the cut edge is uniformly chosen from along the path, i.e. Pr[1S(x) 6=
1S(y)] = 2−k for every (x, y) ∈ E(K®k

2,2n). In particular, it follows that if u, v ∈ V (K®k
2,2n) lie along the

same simple s0-t0 path, then Pr[1S(u) 6= 1S(v)] = 2−kd(u, v).
Now consider any u, v ∈ V (K®k

2,2n). Fix some shortest path P from u to v. By symmetry, we may
assume that P goes left (toward s0) and then right (toward t0). Let s be the left-most point of P .
In this case, s = s(H) for some subgraph H which is a copy of K®k′

2,2n with k′ ≤ k, and such that
u, v ∈ V (H); we let t = t(H). We also have d(u, v) = d(u, s) + d(s, v). Let M = M(H), and fix
x, y ∈ M which lie along the s-u-t and s-v-t shortest-paths, respectively. Without loss of generality,
we may assume that d(s, v) ≤ d(s, y). We need to consider two cases (see Figure 5.1).

Case I: d(u, s) ≤ d(x, s).

For any pair a, b ∈ V (K®k
2,2n), we let Ea,b be the event {1S(a) 6= 1S(b)}. In this case, we have

Pr[Eu,v] = Pr[Es,t] · Pr[Eu,v | Es,t]. Since s, t clearly lie on a shortest s0-t0 path, we have Pr[Es,t] =

11



2−kd(s, t). For any event E , we let µ[E ] = Pr[E | Es,t]. Now we calculate using (3),

µ[Eu,v] ≥ µ[Ex,y] (µ[Ex,s | Ex,y]µ[Eu,s | Ex,s, Ex,y] + µ[Ex,t | Ex,y]µ[Ev,s | Ex,t, Ex,y])

=
n

2n− 1

(
1
2
· d(u, s)
d(x, s)

+
1
2
· d(v, s)
d(y, s)

)

=
n

2n− 1
d(u, v)
d(s, t)

.

Hence in this case, Pr[1S(u) 6= 1S(v)] ≥ n
2n−1 · 2−kd(u, v).

Case II: d(u, s) ≥ d(x, s).

Here, we need to be more careful about bounding µ[Eu,v]. It will be helpful to introduce the notation
a 7→ b to represent the event {1S(a) = 1S(b)}. We have,

µ[Eu,v] = µ[x 7→ t, y 7→ s] + µ[x 7→ t, y 7→ t, v 7→ s] + µ[x 7→ s, y 7→ s, u 7→ t]
+ µ[x 7→ s, y 7→ t, u 7→ t, v 7→ s] + µ[x 7→ s, y 7→ t, u 7→ s, v 7→ t]

=
1
2

n

2n− 1
+

n− 1
2n− 1

d(v, y) + d(u, x)
d(s, t)

+
1
2

n

2n− 1

(
d(u, x)d(v, y) + d(u, t)d(v, s)

d(x, t)d(y, s)

)

If we set A = d(v,s)
d(s,t) and B = d(u,x)

d(s,t) , then d(u,v)
d(s,t) = 1

2 + A + B and simplifying the expression above, we
have

µ[Eu,v] =
1
2

+ B +
A

2n− 1
− 4n

2n− 1
AB

Since the shortest path from u to v goes through s by assumption, we must have A + B ≤ 1
2 . Thus we

are interested in the minimum of µ[Eu,v]/(1
2 + A + B) subject to the constraint A + B ≤ 1

2 . It is easy
to see that the minimum is achieved at A + B = 1

2 , thus setting B = 1
2 −A, we are left to find

min
0≤A≤ 1

2

{
1− 2A +

4nA2

2n− 1

}
=

2n + 1
4n

.

(The minimum occurs at A = 1
2 − 1

4n .) So in this case, Pr[1S(u) 6= 1S(v)] ≥ 2n+1
4n 2−kd(u, v).

Combining the above two cases, we conclude that the distribution S = Sk induces an L1 embedding
of K®k

2,2n with distortion at most max{2n−1
n , 4n

2n+1} = 2− 2
2n+1 . A similar calculation yields

c1(K®k
2,2n+1) ≤

(
min

0≤A≤ 1
2

{
1− 2A +

4(n + 1)A2

2n + 1

})−1

= 2− 2
2n + 3

.
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