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Abstract
As sensors penetrate into deeply embedded settings such
as implantables, wearables, and textiles, they present
new challenges due to their tiny energy buffers and ex-
tremely low harvesting conditions under which they need
to operate. However, existing low-power operating sys-
tems are not designed with the goal of scaling down
to such severely constrained environments. We address
these challenges with QuarkOS, an OS that scales down
by carefully dividing every communication, sensing, and
computation task into tiny fragments (e.g. half-bit, one
pixel) and introduces sleeps between such fragments to
re-charge. In addition QuarkOS is designed to have min-
imal run-time overhead, while still adapting performance
to harvesting conditions. Our results are promising and
show continuous communication from an RF-powered
CRFID can occur at a third of the harvesting levels of
prior approaches, and continuous image sensing to be
performed with a tiny solar panel under natural indoor
light.

1 Introduction
Technology trends in self-powered sensors are enabling
them to be deployed in more deeply embedded settings
than before, including miniaturized wearable and im-
plantable bio-sensors that continuously measure phys-
ical and physiological parameters [14] [15], perpetual
deployments of sensors embedded within buildings and
pipes [11], miniature robotic insect swarms [6], and oth-
ers. In addition, emerging 3D nano-fabrication tech-
niques [5] promise cheaper sensors that can be printed
in a cost-effective manner at high volumes, enabling ap-
plications such as smart textiles and smart surfaces. In
most of these scenarios, large energy buffers are infea-
sible due to form-factor and cost considerations, and are
instead replaced by a tiny rechargeable energy storage
and a micro-harvester that scavenges energy from light,
electro-magnetic, vibrations, and/or temperature [3]. By
combining such tiny harvesters with low-power electron-

ics and manufacturing, the aim is to achieve affordable,
perpetual, and miniature form-factor sensor systems.

System design for micro-power based sensors is ex-
traordinarily challenging for two reasons — small energy
buffer size and tiny harvesting rate. The small form-
factor demands of deeply embedded sensors mean that
micro-powered sensors rely more on continuous harvest-
ing and less on energy storage. In turn, this places sub-
stantial burden on a programmer to carefully construct
tasks such that they can be executed within the stringent
energy constraints. In addition, micro-harvesters provide
energy in tiny trickles and in a time-varying manner. This
results in several idiosyncrasies that the system needs to
handle: a) the harvesting rate is often considerably lower
than the active mode power draw, hence outages can oc-
cur, b) voltage regulation is expensive, hence harvesting
systems need to adapt to variable power from the har-
vester, and c) even a simple operation such as analog-
to-digital conversion (ADC) to measure the current en-
ergy level is expensive at the micro-scale, and needs to
be avoided.

In this paper, we look at design abstractions that can
enable an operating system for micro-powered systems
to scale down to the most extreme harvesting conditions
and the most stringent energy buffer limitations. Tra-
ditional sensor operating systems such as TinyOS [9]
and Contiki [7] are designed for battery-powered sys-
tems, and use larger tasks that simply do not scale down
to these regimes. More recently, MementOS [13] and
Dewdrop [4] address some of the challenges in micro-
powered environments. MementOS introduces check-
points within computation tasks such that it can recover
from outage and continue execution. Dewdrop is a sys-
tem that adapts task execution to harvesting conditions
such that the efficiency of execution is optimized. While
these are important steps to deal with the constraints in
micro-powered systems, they do not scale down with the
energy buffer size and available energy. For example,
both of these systems execute on a light-powered Intel
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WISP placed in the presence of strong light (2000 lux),
but placing it under natural indoor light that is a factor of
ten smaller (200 lux) makes these systems inoperable.

In this paper, we argue for a simple but powerful ab-
straction — we deconstruct every task within the oper-
ating system and look for opportunities to insert sleep
gaps to allow for the buffer to replenish before contin-
uing execution of the task. We look at packet trans-
fer, and identify opportunities between bits as well as
within a single bit where sleeps can be inserted. We
look at complex sensors such as imagers, and identify
how sleeps can be inserted between and within individual
pixel sensing operations. Similarly, processing tasks can
be broken down into smaller segments that may be only
a few instructions in size. The ability to breakdown ev-
ery possible task into the smallest contiguous execution
unit allows QuarkOS to scale down to extremely power-
deprived regimes where existing systems cannot operate.

Optimizing systems for resource-impoverished condi-
tions can limit performance when scaling up to regimes
where there is more available energy. This is because
active to sleep transition overheads can dominate when
each execution unit is extremely small. To avoid this,
QuarkOS continually adapts to harvesting conditions,
and adjusts the size of each execution unit to ensure
that transition overhead is minimized. Importantly, such
adaptation is performed by avoiding power-hungry oper-
ations such as ADC reads, which can limit the conditions
under which QuarkOS can operate.

Our preliminary results show that QuarkOS can scale-
down to the most extreme of conditions: a) QuarkOS
runs on a UMass Moo CRFID equipped with a capacitor
that is two orders of magnitude smaller than its default
configuration, b) QuarkOS establishes continuous com-
munication with a reader at a third of the harvested power
that is required for existing CRFIDs, and c) QuarkOS
enables continuous image capture while harvesting from
natural indoor light despite a small solar harvester, and a
limited energy buffer.

2 Case for QuarkOS
At the heart of QuarkOS is a simple hypothesis —
by breaking down every component of a task (com-
munication, sensing and computation) into its smallest
atomic units, we can enable the system to scale down to
extremely resource-impoverished regimes and stringent
platform constraints. We discuss some of the considera-
tions that influence our design, as well as the limitations
of prior work.

2.1 Why fragment tasks?

The need to break down every task in a system into its
smallest units arises from two considerations — limi-
tations of the platform and limitations of the harvest-

ing source. The limitations enforced by the sensor plat-
form are often driven by form-factor, cost, and fabri-
cation capabilities. Many emerging sensor applications
such as implantable and wearable sensors require ex-
tremely small form factor devices, and one of the sac-
rifices that platform designers are increasingly making
is reducing the size of the energy buffer and substitut-
ing it with a micro-harvester. Table 1 shows that the
buffer size shrinks by more than six orders of magni-
tude between a Mote sensor and its “smart dust”-sized
counterpart, a Michigan Micro-Mote (M3). Even across
micro-harvesting platforms, there are differences — for
example, the Intel WISP has a buffer that is an order of
magnitude larger than the M3 mote.

Table 1: Shrinking buffer size.
Buffer size

Mica Mote [12] 2850mAh
CRFID (WISP/Moo)[2][16] 5.44uAh
Michigan Micro Mote (M3)[10] 0.6uAh

The limitations imposed by the harvesting source
arises due to the fact that energy in available in small
trickles that varies over time. For example, the M3 mote
is attached to a small single-cell solar panel that har-
vests about 10 uW of power and a CRFID (WISP) har-
vests about 400 uW at a distance of 1m from a reader.
While trickle charging can be addressed by filling up the
buffer and executing a task, it is often not possible to
charge a buffer to its maximum capacity under extremely
low harvesting conditions. To fully charge a buffer, the
voltage/current has to be boosted up via analog circuits,
which are too power hungry to operate under such condi-
tions. Therefore, many platforms (e.g. WISP, Moo) put
the burden on the run-time system to adapt to varying
levels of available energy.

The design of an OS for devices with tiny buffers and
variable amounts of available energy is extraordinarily
complex — even tasks as simple as transmitting a single
packet may not be feasible on the energy available per
charge cycle, rather communication may need to be bro-
ken down to a few bits or perhaps even a fraction of a bit
at a time. Similarly, sensing tasks such as capturing an
image or obtaining samples from an accelerometer may
need to be broken down further in-order to operate.

2.2 Limitations of prior work

A wide range of operating systems have been proposed
for Mote-class devices over the last decade including
TinyOS [9], Contiki [7], Nano-RK [8], and others. These
OSs are designed to operate on a finite buffer that can
last several days, weeks, or months, and the core empha-
sis is on maximizing lifetime given such a buffer rather
than optimizing the size of a task. For example, while
programmers are encouraged to use small task sizes in
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TinyOS, this is only because there is no pre-emption
across tasks, hence a large task can starve a smaller one
which may have timing requirements. But while these
tasks are relatively small compared to larger platforms,
they are, in fact, orders of magnitude larger than what can
be executed with buffers on micro-powered platforms.

More related to our regime is MementOS and Dew-
drop, which have addressed challenges in RF-harvesting
based Computational RFIDs (CRFIDs). MementOS [13]
is an operating system for CRFIDs that introduces check-
points within a task such that the it can continue execu-
tion after an outage. While MementOS fragments tasks
across outages, it is limited in three ways: a) tasks that
have timing requirements, for example communication
and sensing, are difficult to split across outages due to
the non-determinism of boot-up and shut-down opera-
tions, b) checkpointing using flash is expensive energy-
wise compared to sleep, and c) flash requires relatively
high voltage, and therefore this is not appropriate under
extremely low harvesting conditions.

Dewdrop [4] is an energy-aware runtime system for
CRFIDs where the system adapts to available energy and
wakes up to run a task only when it believes that there is
sufficient energy for the task to execute. While Dewdrop
does not address task splitting, the harvesting-awareness
capability is important to QuarkOS as well. However,
Dewdrop uses ADC sampling for tracking harvesting
rates, which is an energy-hog and renders the system in-
operable under severely constrained settings.

2.3 QuarkOS Abstraction

QuarkOS addresses the above challenges by breaking
down all tasks in the system into the smallest units that
need to be contiguously executed — fraction of a bit,
fraction of a sensing unit (e.g a part of a pixel), single
byte of storage, and single instruction execution. This
allows QuarkOS to operate under extreme scenarios —
for example, on a device that only has enough energy
to transmit one bit at a time, a packet can be transmit-
ted over several tiny re-charge cycles of one bit duration.
In between these execution units, QuarkOS introduces
sleeps where the platform operates in sleep mode while
it waits for the energy buffer to re-charge.

3 QuarkOS Design
In this section, we describe the key components of
QuarkOS. We first describe how we can breakdown
the communication and sensing stacks to operate un-
der extremely constrained conditions, and then how the
QuarkOS controller adapts to harvesting conditions in a
lightweight manner.

3.1 Fragmenting the network stack

One of the key innovations in QuarkOS is the capabil-
ity to break-down packet transmission such that it can
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Figure 1: QuarkOS based bit-level networking.

operate one-bit at a time (more precisely, a fragment of
a bit at a time). We focus on passive backscatter com-
munication in this section since it is considerably lower
power than active radios and therefore more appropri-
ate for harvesting-based devices. We start by introduc-
ing relevant information about passive communication,
and describe how it can be broken into one bit or half-bit
fragment, and then discuss the challenges in designing a
complete network stack over such an abstraction.
Communication in passive radios A passive radio is
designed to both provide power to a passive device as
well as to enable communication. As shown in Figure 1,
the reader provides a carrier wave, which can be reflected
by a passive device back to the reader with its own in-
formation bits. The Intel WISP [2] and UMass Moo
[16] are examples of sensor platforms that rely on pas-
sive radio. A unique difference between active and pas-
sive radios is that while active radios need an oscillator
to clock the bits, the clock for passive communication
is obtained from reader’s carrier wave. The implication
is that fragmenting passive communication into smaller
fragments does not incur significant transition overheads
since the oscillator is often the component that takes the
most time/energy to stabilize.
Inter-bit and intra-bit sleeps QuarkOS exploits two
opportunities to insert sleep gaps into a packet transmis-
sion (Figure 1): between bits and within bit. First, since
hardware timers on the micro-controller are responsible
for generating the OOK pulses on the passive radio, sleep
gaps can be inserted between bits by clearing the hard-
ware timers and putting micro-controller into low power
mode. Second, sleep gaps can even be inserted within
a single bit by setting the transmission unit as half bit.
The conjunction of two half bits is carefully designed to
maintain the timing information within each bit.
QuarkOS network stack While we have discussed
the building blocks of a bit-by-bit network stack, several
challenges remain. A fundamental challenge imposed
by QuarkOS is variable delays between fragments com-
prising a packet, which impacts every component of the
wireless network stack that implicitly or explicitly relies
on timing. Such variability has implications on pream-
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ble design, signal decoding, MAC and transport layer
timeouts, ACK mechanisms, and so on. Variable delays
also have implications on the design of a reliable pro-
tocol stack. In a traditional stack, packet losses could
result either from channel losses or collisions, but in our
scenario, it could also be because of energy losses where
a device suddenly stops transmitting because its energy
buffer is depleted. Finally, variable delays also have
implications on the design of a many-to-one communi-
cation protocol — in a network where several micro-
powered sensors running QuarkOS are communicating
with a reader, how should communication be scheduled
for maximal concurrency while taking into account the
differences in harvesting rates on nodes? We are explor-
ing these challenges in our ongoing work.

3.2 Fragmenting the sensing stack

Having described how communication tasks can be bro-
ken down into tiny fragments, we turn to sensing tasks.
Micro-powered platforms are almost always designed
with the ability to sense, hence the ability to break-
down complex sensing tasks is crucial to the design of
QuarkOS. Our key insight is that opening up the inner
workings of the sensing pipeline allows us to break it
down into smaller fragments that can execute given en-
ergy limitations, with sleeps between fragments to re-
plenish energy. We focus on one such sensing task - im-
age capture - because it represents a particularly complex
sensing task that would normally be considered far too
power-hungry for micro-powered platforms. The mech-
anism by which we break down image sensing parallels
our approach for the network stack. We breakdown the
individual components of an imager and look for oppor-
tunities to insert sleeps between small fragments such
that the overall image sensing task can still be performed
despite harvesting and buffer limitations.

Breaking down an imager A photo image sensor is a
device that converts an optical image into electronic sig-
nals. To capture a whole optical image, the electronic
signal at each pixel needs to be sampled. While most
commercial imagers are designed to capture an entire
image and transfer it to a processor, some recent low-
power imagers allow greater control over pixel acquisi-
tion [1]. In addition, the sampling of a single pixel in
such imagers can be broken down into several steps as
shown in Figure 2: 1) configure corresponding sensor
registers, 2) turn on the analog circuit to perform photon
to electronic signal conversion, 3) perform ADC read-
ings to digitize the electronic signal, and 4) turn off the
analog circuit and the ADC. The decomposed pixel sens-
ing operations provide several potential opportunities to
insert sleep gaps.

Inter-pixel and intra-pixel sleeps QuarkOS exploits
two opportunities to insert sleep gaps into an image sens-

Images

control signal amplifier ADCsleep sleep

1 pixel ……sleep 1 pixel 1 pixel 1 pixelsleep1 pixel

Figure 2: QuarkOS based pixel-level image sensing.

ing: a) sleeps can be introduced between pixel acquisi-
tions during which the power-consuming units such as
amplifiers and ADCs can be switched off, and b) sleeps
can be inserted at an intra-pixel granularity before turn-
ing on the amplifier or after the ADC readings to restore
energy in the buffer. Thus, the minimum energy required
for making progress with image sensing is smaller than
even a single pixel capture.

QuarkOS image processing stack While we have dis-
cussed the building blocks of a pixel-level image sens-
ing stack, several challenges remain in designing a ro-
bust and useful sensing stack over this abstraction. For
example, when capturing a dynamic scene, the reduced
sampling rate will result in motion blur. Handling mo-
tion blur is particularly complex if the sleep gaps vary
over time due to harvesting source variations. One ap-
proach to address this problem might be to exploit a re-
gression model to learn the time series patterns of in-
serted sleep gaps and compensate the corresponding blur
according to the model prediction. Another might be to
limit the scenarios under which images are captured to
those where harvesting conditions are relatively stable.

3.3 QuarkOS interface and OS scheduler

Fragmentation of tasks in QuarkOS has implications
both on application design as well as the OS scheduler.

Application Interface At a high level, QuarkOS seeks
to abstract the idiosyncrasies of harvesting energy dy-
namics from the application developer. Thus, an applica-
tion developer can use QuarkOS to execute a variety of
sensing, processing, and communication tasks while re-
maining agnostic of how the tasks are fragmented. How-
ever, QuarkOS can introduce variable-sized gaps de-
pending on harvesting conditions, which impacts timing-
sensitive tasks. For example, when capturing an image
under dynamic conditions, sleep gaps result in motion
blur and variable gaps can make the image difficult to
interpret. To address this, tasks can specify the max-
imum sleep gap, and maximum jitter in sleep gap, as
well as the number of fragments that need to be executed
back-to-back within a wakeup cycle, which are used by
QuarkOS to determine whether or not the task can be ex-
ecuted given current conditions.

OS scheduler The QuarkOS scheduler is responsible
for dynamically selecting how many fragments of a task
to execute in a single wakeup interval, as well as the

4



duration of sleep gap, while taking into consideration
task requirements in terms of execution rate and jitter.
The QuarkOS scheduler builds on Dewdrop [4] to adapt
to harvesting conditions, but addresses two limitations
to enable it to scale-down to more constrained settings.
First, QuarkOS takes the sleep-wakeup transition into
account to minimize the overall overhead of transitions
— this is not a problem for Dewdrop, which does not
fragment tasks, but becomes an issue when each task is
divided into hundreds of fragments. Second, QuarkOS
avoids ADC costs and only uses information from a
threshold detector that detects when the voltage drops
below a threshold that is considered high risk for out-
age. Instead of tracking operating voltage, it tracks the
time after a voltage threshold interrupt that it needs to
wait before executing a fragment. Finally, the QuarkOS
scheduler also continually tracks gap sizes and jitter, and
uses this to decide under what conditions to execute a
task.

4 Preliminary results
We now present some initial results of our fragmentation-
based network and image sensing stacks.
Bit-by-bit data transfer Figure 3 compares the bit-by-
bit transfer capability of QuarkOS against a packet-based
transfer scheme (4 byte packets) on the UMass Moo plat-
form. We power the CRFID with an RFID reader and
increase the transmit power levels. We constrain the de-
vice by replacing the default 10uF capacitor with a 0.1uF
capacitor. Note that even though the buffer has less en-
ergy than required to transmit an entire packet, packet
transfer can still work under sufficiently high harvesting
conditions.

There are two interesting observations from the re-
sults. First, QuarkOS can operate at harvesting power
levels that are a third of the minimum operating condi-
tions for the packet-based transfer. In fact, QuarkOS’s
bit-by-bit transfer only fails when harvested energy is
smaller than the system’s lowest sleep power require-
ment. Second, it shows the adaptive capability of the
QuarkOS controller, which increases the number of frag-
ments per wakeup cycle as harvesting rates increase,
thereby amortizing sleep overhead. Even under high
harvesting conditions, the adaptive approach achieves
close to the performance of the non-adaptive packet-
based transfer mechanism.
Pixel-by-pixel image capture We implemented and
evaluated the pixel-level image sensing using a low
power camera (Stonyman [1]) and a CRFID platform
(Moo) as the sensor controller. The whole image sensing
platform is powered by a 3cm×3cm array of 9 solar cells
under natural indoor light. We compare pixel-by-pixel
capture in QuarkOS against a full-image capture scheme,
where system starts image sensing when harvested volt-
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Figure 4: Image captured using pixel-by-pixel image capture.

age is higher than a predefined threshold (3.3V, the im-
age sensor’s operating voltage). Figure 2 shows a static
112×112 image captured by QuarkOS at a slow rate of
about 1 image per minute. In contrast, the full-image
capture scheme doesn’t even get a chance to capture a
single pixel because the system dies prior to this point.

5 Conclusion
In this paper, we present a simple but powerful abstrac-
tion, QuarkOS, that can enable systems to seamlessly
scale down to miniature buffer sizes as well as ultra-low
and dynamic harvesting conditions. Our approach is to
deconstruct every task within the operating system and
look for opportunities to insert sleep gaps to allow for
the energy buffer to replenish before continuing execu-
tion of the task. Results show that our QuarkOS pro-
vides substantial benefits in pushing the limits of oper-
ation of micro-powered devices, and allow them to per-
form useful work under more extreme environments than
previously thought possible. We believe that designing
an operating system that works under such conditions
can make it valuable to a wide range of emerging micro-
powered embedded systems and applications.
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