Bypassing Passkey Authentication
in Bluetooth Low Energy

(extended abstract)

Tomas Rosa
tomas.rosa@b. cz

Raiffeisenbank, a.s.
Hvézdova 1716/2b, 140 78 Praha 4

Keywords: Bluetooth Low Energy (Smart), Security Manager, huttication, Cryptanalysis

This memo describes certain new cryptographic weskrof the passkey-based pairing of Bluetooth LEE(Br
BTLE, also known a8luetooth Smartas one prefers). The vulnerability discussed lestends the set of possible
attacking scenarios that were already elaboratémtdby Mike Ryan in [4].

Instead of the passive sniffing attack on pairiagrets, we show how a frauduldé¢spondef1] can gracefully bypass
the passkey authentication, despite it being pbsbédmsed on even one-time generated PIN.

Such an active attack may become handy in situatioere passive sniffing of correct pairing cannetdmployed —
for instance, because of the origif@spondedevice being out of reach or otherwise unwilliogpgir again. Or, we
may already want to actively impersonate the periphdevice to inject some data into e.g. iPhong@sAfrom
attacker’s keyboard, perform MITM, etc.

Since the attack runs on tBecurity Managelayer [1], it can reuse a lot of the existing netkvstack that is already in
place for this approach. This namely concerns ¢karyg bellowHost Controller InterfacgHCI) [1]. Actually, the
whole procedure starting with the authenticatiopdss and continuing to data injection (which wolkda regular
communication anyway) can be done using a geduatooth 4.0 Smart ReadliSB dongle via HCl commands.

Furthermore, we shall perhaps emphasize the attecgresent here would be possible even if theeadir was the
yet-awaited ephemeral Diffie-Hellman key agreemamployed in BLE as, for instance, in Bluetooth BREESecure
Simple Pairing1]. In other words, introducing D-H would not pent this attack as long as the functarfcf. bellow)

would not be redesigned as well.

Flawed Bit Commitment

The flaw was discovered during an investigatiorcigfptographic properties of tH&it Commitmenprotocols in the
way they are employed in the authentication schesh&¥i-Fi Protected SetupBT Secure Simple Pairingand BLE
Security ManagerDespite targeting different radio networks, trehare a lot of common ideas, namely the mutual
authentication based @it Commitmenvariants [2].

The notation bellow follows the one used in BlugtoGore Spec. v 4.0 [1].

In particular, we address th€6nfirm value generation functiblenotedc; in [1], Vol. 3, part H-2.2.3. This function
actually computes a commitment of the respectiveyp@nitiator or Respondérto a secret passkey together with
labelsp;, p. related to the actual public pairing parametensparticular, for the passkey authentication comarit
valueC, we have:

C = ¢(TK, rand, py, p2) = AES([AES((rand O p;) O p3], (EQ. 1)
where:

- TK (Temporary Keyis the passkey derived directly from the commedidgit PIN (the six-digit length is
constant in BLE),

- randis 128 bits long secret value [1].

Actually, the functiorc; servers the role of thgit Commitmenprimitive called ‘Commit with (TK, py, p,) being the
committed message anand being the opener [5].

We show the functiol, lacks so-called binding property, so the originaian freely change the committed message
even after having already announ&&dorovided they did not reveal the particuland, yet. We will further show this
notable weakness allows a dishorfeespondeto bypass the authentication procedure even foreatime PIN.

We start by showing how to change the “committeé&ssage. Let us be given any value of commitr@esmd let TK,
P, po) be arbitrarily chosen aftef has been already announced. Then we can triviiaity a new validrand (the
opener) as:

rand= AES'«[AES1(C) O p)] Op. (Eq. 2)

Proof. Substituting this value gand into the original Eq. 1, we can verify that indeed

C =cy(TK, rand, py, p2)

= AESr[AESr¢(rand O py) O p7]

= AESHIAES(AES 1x [AES ™ 1¢(C) O p,] O py O py) O pal

= AESHIAES((AES 1¢ [AES™1«(C) O p,]) O po]

= AESHJAES7¢(C) O p, O py]

= AESHIAES ™ 1«(C)]

=C

Subverting the Authentication Protocol
To see a practical application of tbeweakness discussed above, let us consitRespondefin the context of BLE
Security Managef1]), who has already sent their commitm8obnfirm

Sconfirm=yresumanyC2(TK, Srand py, p2) = AES[AESrk(Srand py) O pa,
but who has not revealed th&rand yet.

Due to the lack of binding in;, such éRespondecan still arbitrarily change their "committed" pkeyTK and labels
p1, P2, Since — as we have seen above — the coBreatdfor any new value ofTK, p1, p») can be trivially found by
Eq. 2 while keeping the form&confirmstill the same.

This implies that even the one-time passkey —a.&esh value of PIN generated for each and eviegles pairing
protocol run — can be easily broken by a frauduRsgponder

The illustrative attack procedure follows (cf. [Vjpl. 3, part H-2.3.5.5 for the context):
i) Initiator senddMconfirmto theRespondefi.e. to the attacker)
i) the attacker (aRespondgrresponds with a purely random valueSabnfirm
ii) Initiator sendsMrand, such thaMconfirm = cy(TK, Mrand, p;, p,) = AES[AES«(Mrand O p;) O po]

iv) using a brute-force, the attacker finds the cormpasiskeyTK (based on a 6-digit PIN) froidconfirm Mrand,
and known labelp,, p, (already noted in a different attack in [4], [1])

v) having gained the correct passke, the attacker uses Eq. 2 to compute its correspgrabrrect value of
Srandand sends it tnitiator

vi) Initiator receives the (just correcteBjandand using the original Eq. 1 verifies that it indecorresponds with
Sconfirmreceived in step (ii) before, so thetiator now believes the right passkey was already knanthe
Respondebefore step (iii)!

vii) Initiator concludes the passkey was verified successfullycantinues wittSTKderivation and so on [1]

Now, the attacker knows everything needed to deheecorrecShort Term KeySTK) [1] and is fully in the position
to follow the pairing procedure to its “happy enf&ttually, the whole pairing procedure is goinghtigccording to the
standard [1] with just one imperfection — tRespondes part of the authentication has been bypassed.

BLE MITM Security Assurance Is False

We have just seen thHeasskey Entrypairing method of th@luetooth Low Energgommunication standard fails to
provide authentication of thRespondeto thelnitiator even with a one-time generated PIN. There is atracone-
way authentication of thiitiator to the Respondelachieved, provided the attacker cannot mount thEMVnoted
bellow for some reason (for instance, because ikare original Initiator available).

The elaboration given above shows the conjectutednm [1], Vol.3, part H-2.3.5.3, saying:..The passkey Entry
method provides protection against active “mantie-middle” (MITM) attacks as an active man-in-thedbe will
succeed with a probability of 0.000001 on each ¢ation of the method.,.is false.

From a cryptography viewpoint, we have just seermaetive MITM (attacker in between the hondsitiator and
Respondér succeeds with probability 1. The active attackesuld first use the aforementioned procedure to
authenticate with the honestitiator. After having established this link together witaving learned the correct
passkeyTK, the attacker starts its own pairing procedurd lie honesResponderNote that, since this is the very
first interaction with the honedResponder(the previous interaction in between thdtiator and thedishonest
Respondedid not concern the honest one), it will still aed this value offK as a valid one even under the possible
one-time PIN policy.

Simple Python code [3] was written to verify theadis mathematically correct in that sense it mfesius with the
correctSrandas needed. It would be interesting to see itstigal@pplications and further extensions.

Countermeasures

Interestingly, under a reasonable assumptionShadis the only commitment-related value the attaaar change
after having serbconfirm there are several trivial hot fixes possible.iBaly, all we need is to perform just one more
eXclusive OR (xor) operation.

The main idea of the countermeasure is to distuptunwanted reversibility af, towardsSrandunder fixed 1, p,).
This can be practically achieved by any one offtflewing constructions of¢;-fixed”:

a) c-fixedTK, rand, py, p2) = AESrk g rand [AEStk orand (rand O py) O po
b) c¢-fixedTK, rand, py, p2) = AES [AEST((rand O py) O rand 0 py
c) c-fixedTK, rand, p1, po) = AESK[AESt (rand O p;) O p,] O rand

Recall this hot-fix does rely omp{, p,) being invariable after the commitment has beedenai.e. after th®esponder
has sent itSSconfirmto thelnitiator. Fortunately, this is true for theasskey Entryairing protocol in BLE, so the
patch can be applied. Furthermore, it can be sedriag aligned with the whole BLE strategy — toedtactly what is
necessary, no less no more.

Since the countermeasure is to be dorgegturity Managetayer, it does not affect the Bluetooth controfiemware
bellow HCI.

References
[1] Bluetooth Core Specificationer. 4.0, Bluetooth SIG, June 2010

[2] Rosa, T.\Wi-Fi Protected Setup - Friend or FoBmart Cards & Devices Forum, Prague, Ma’?,ZDlB,
http://crypto.hyperlink.cz/files/rosa_scadforumid.p

[3] http://crypto.hyperlink.cz/files/blecommit.py
[4] Ryan, M.:How Smart is Bluetooth Smart8hmoocon 2013, Feb http://lacklustre.net/bluetootfvetrieved May-16-2013

[5] http://en.wikipedia.org/wiki/Bit_commitmerjtetrieved Nov-12-2013

