
Bypassing Passkey Authentication

in Bluetooth Low Energy

 (extended abstract)

Tomáš Rosa

tomas.rosa@rb.cz

Raiffeisenbank, a.s.
Hvězdova 1716/2b, 140 78 Praha 4

Keywords: Bluetooth Low Energy (Smart), Security Manager, Authentication, Cryptanalysis

This memo describes certain new cryptographic weakness of the passkey-based pairing of Bluetooth LE (BLE or
BTLE, also known as Bluetooth Smart; as one prefers). The vulnerability discussed here extends the set of possible
attacking scenarios that were already elaborated before by Mike Ryan in [4].

Instead of the passive sniffing attack on pairing secrets, we show how a fraudulent Responder [1] can gracefully bypass
the passkey authentication, despite it being possibly based on even one-time generated PIN.

Such an active attack may become handy in situation where passive sniffing of correct pairing cannot be employed –
for instance, because of the original Responder device being out of reach or otherwise unwilling to pair again. Or, we
may already want to actively impersonate the peripheral device to inject some data into e.g. iPhone Apps from
attacker’s keyboard, perform MITM, etc.

Since the attack runs on the Security Manager layer [1], it can reuse a lot of the existing network stack that is already in
place for this approach. This namely concerns everything bellow Host Controller Interface (HCI) [1]. Actually, the
whole procedure starting with the authentication bypass and continuing to data injection (which would be a regular
communication anyway) can be done using a general Bluetooth 4.0 Smart Ready USB dongle via HCI commands.

Furthermore, we shall perhaps emphasize the attack we present here would be possible even if there already was the
yet-awaited ephemeral Diffie-Hellman key agreement employed in BLE as, for instance, in Bluetooth BR/EDR Secure
Simple Pairing [1]. In other words, introducing D-H would not prevent this attack as long as the function c1 (cf. bellow)
would not be redesigned as well.

Flawed Bit Commitment
The flaw was discovered during an investigation of cryptographic properties of the Bit Commitment protocols in the
way they are employed in the authentication schemes of Wi-Fi Protected Setup, BT Secure Simple Pairing, and BLE
Security Manager. Despite targeting different radio networks, they share a lot of common ideas, namely the mutual
authentication based on Bit Commitment variants [2].

The notation bellow follows the one used in Bluetooth Core Spec. v 4.0 [1].

In particular, we address the “Confirm value generation function” denoted c1 in [1], Vol. 3, part H-2.2.3. This function
actually computes a commitment of the respective party (Initiator or Responder) to a secret passkey together with
labels p1, p2 related to the actual public pairing parameters. In particular, for the passkey authentication commitment
value C, we have:

C = c1(TK, rand, p1, p2) = AESTK[AESTK(rand ⊕ p1) ⊕ p2], (Eq. 1)

where:

- TK (Temporary Key) is the passkey derived directly from the common 6-digit PIN (the six-digit length is
constant in BLE),

- rand is 128 bits long secret value [1].

Actually, the function c1 servers the role of the Bit Commitment primitive called “Commit” with (TK, p1, p2) being the
committed message and rand being the opener [5].

We show the function c1 lacks so-called binding property, so the originator can freely change the committed message
even after having already announced C, provided they did not reveal the particular rand, yet. We will further show this
notable weakness allows a dishonest Responder to bypass the authentication procedure even for a one-time PIN.

We start by showing how to change the “committed” message. Let us be given any value of commitment C and let (TK,
p1, p2) be arbitrarily chosen after C has been already announced. Then we can trivially find a new valid rand (the
opener) as:

rand = AES-1
TK [AES-1

TK(C) ⊕ p2] ⊕ p1. (Eq. 2)

Proof. Substituting this value of rand into the original Eq. 1, we can verify that indeed

C = c1(TK, rand, p1, p2)

= AESTK[AESTK(rand ⊕ p1) ⊕ p2]

= AESTK[AESTK(AES-1
TK [AES-1

TK(C) ⊕ p2] ⊕ p1 ⊕ p1) ⊕ p2]

= AESTK[AESTK(AES-1
TK [AES-1

TK(C) ⊕ p2]) ⊕ p2]

= AESTK[AES-1
TK(C) ⊕ p2 ⊕ p2]

= AESTK[AES-1
TK(C)]

= C

�

Subverting the Authentication Protocol
To see a practical application of the c1 weakness discussed above, let us consider a Responder (in the context of BLE
Security Manager [1]), who has already sent their commitment Sconfirm,

Sconfirm =presumably c1(TK, Srand, p1, p2) = AESTK[AESTK(Srand ⊕ p1) ⊕ p2],

but who has not revealed their Srand, yet.

Due to the lack of binding in c1, such a Responder can still arbitrarily change their "committed" passkey TK and labels
p1, p2, since – as we have seen above – the correct Srand for any new value of (TK, p1, p2) can be trivially found by
Eq. 2 while keeping the former Sconfirm still the same.

This implies that even the one-time passkey – i.e. a fresh value of PIN generated for each and every single pairing
protocol run – can be easily broken by a fraudulent Responder.

The illustrative attack procedure follows (cf. [1], Vol. 3, part H-2.3.5.5 for the context):

i) Initiator sends Mconfirm to the Responder (i.e. to the attacker)

ii) the attacker (as Responder) responds with a purely random value of Sconfirm

iii) Initiator sends Mrand, such that Mconfirm = c1(TK, Mrand, p1, p2) = AESTK[AESTK(Mrand ⊕ p1) ⊕ p2]

iv) using a brute-force, the attacker finds the correct passkey TK (based on a 6-digit PIN) from Mconfirm, Mrand,
and known labels p1, p2 (already noted in a different attack in [4], [1])

v) having gained the correct passkey TK, the attacker uses Eq. 2 to compute its corresponding correct value of
Srand and sends it to Initiator

vi) Initiator receives the (just corrected) Srand and using the original Eq. 1 verifies that it indeed corresponds with
Sconfirm received in step (ii) before, so the Initiator now believes the right passkey was already known to the
Responder before step (iii)!

vii) Initiator concludes the passkey was verified successfully and continues with STK derivation and so on [1]

Now, the attacker knows everything needed to derive the correct Short Term Key (STK) [1] and is fully in the position
to follow the pairing procedure to its “happy end”. Actually, the whole pairing procedure is going right according to the
standard [1] with just one imperfection – the Responder’s part of the authentication has been bypassed.

BLE MITM Security Assurance Is False
We have just seen the Passkey Entry pairing method of the Bluetooth Low Energy communication standard fails to
provide authentication of the Responder to the Initiator even with a one-time generated PIN. There is at most a one-
way authentication of the Initiator to the Responder achieved, provided the attacker cannot mount the MITM noted
bellow for some reason (for instance, because there is no original Initiator available).

The elaboration given above shows the conjecture noted in [1], Vol.3, part H-2.3.5.3, saying: "...The passkey Entry
method provides protection against active “man-in-the-middle” (MITM) attacks as an active man-in-the-middle will
succeed with a probability of 0.000001 on each invocation of the method...", is false.

From a cryptography viewpoint, we have just seen an active MITM (attacker in between the honest Initiator and
Responder) succeeds with probability 1. The active attacker would first use the aforementioned procedure to
authenticate with the honest Initiator. After having established this link together with having learned the correct
passkey TK, the attacker starts its own pairing procedure with the honest Responder. Note that, since this is the very
first interaction with the honest Responder (the previous interaction in between the Initiator and the dishonest
Responder did not concern the honest one), it will still regard this value of TK as a valid one even under the possible
one-time PIN policy.

Simple Python code [3] was written to verify the idea is mathematically correct in that sense it provides us with the
correct Srand as needed. It would be interesting to see its practical applications and further extensions.

Countermeasures
Interestingly, under a reasonable assumption that Srand is the only commitment-related value the attacker can change
after having sent Sconfirm, there are several trivial hot fixes possible. Basically, all we need is to perform just one more
eXclusive OR (xor) operation.

The main idea of the countermeasure is to disrupt the unwanted reversibility of c1 towards Srand under fixed (p1, p2).
This can be practically achieved by any one of the following constructions of “c1-fixed ”:

a) c1-fixed(TK, rand, p1, p2) = AESTK ⊕⊕⊕⊕ rand [AESTK ⊕⊕⊕⊕ rand (rand ⊕ p1) ⊕ p2]

b) c1-fixed(TK, rand, p1, p2) = AESTK [AESTK (rand ⊕ p1) ⊕⊕⊕⊕ rand ⊕ p2]

c) c1-fixed(TK, rand, p1, p2) = AESTK [AESTK (rand ⊕ p1) ⊕ p2] ⊕⊕⊕⊕ rand

Recall this hot-fix does rely on (p1, p2) being invariable after the commitment has been made – i.e. after the Responder
has sent its Sconfirm to the Initiator. Fortunately, this is true for the Passkey Entry pairing protocol in BLE, so the
patch can be applied. Furthermore, it can be seen as being aligned with the whole BLE strategy – to do exactly what is
necessary, no less no more.

Since the countermeasure is to be done at Security Manager layer, it does not affect the Bluetooth controller firmware
bellow HCI.

References
[1] Bluetooth Core Specification, ver. 4.0, Bluetooth SIG, June 2010

[2] Rosa, T.: Wi-Fi Protected Setup - Friend or Foe, Smart Cards & Devices Forum, Prague, May 23rd, 2013,
http://crypto.hyperlink.cz/files/rosa_scadforum13.pdf

[3] http://crypto.hyperlink.cz/files/blecommit.py

[4] Ryan, M.: How Smart is Bluetooth Smart?, Shmoocon 2013, Feb 16th, http://lacklustre.net/bluetooth/ [retrieved May-16-2013]

[5] http://en.wikipedia.org/wiki/Bit_commitment [retrieved Nov-12-2013]

