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Abstract workload patterns from above the file system, but focus

We develop and apply two new methods for analyzing file sy@Ur @nalysis notonly on the time taken for said operations,
tem behavior and evaluating file system changes. Fieshan- OUtalso on the resulting stream of read and write requests
tic block-level analysis (SBAJombines knowledge of on-diskPelowthe f”e_ system. This analysis semantichecause
data structures with a trace of disk traffic to infer file systse- W€ l€verage information about block typed, whethera
havior; in contrast to standard benchmarking approachs, sPlock requestis to the journal or to an inode); this analysis
enables users to understanthy the file system behaves as iS block-levelbecause it interposes on the block interface
does. Secondsemantic trace playback (STEpables traces of {0 Storage. By analyzing the low-level block stream in a
disk traffic to be easily modified to represent changes in the ff€Mmantically meaningful way, one can understahgithe
system implementation; in contrast to directly modifying file file System behaves as it does.

system, STP enables users to rapidly gauge the benefits of neinalysis hints at how the file system could be im-
policies. We use SBA to analyze Linux ext3, ReiserFS, JA®oved, but does not reveal whether the change is worth
and Windows NTFS; in the process, we uncover many strengti¥plementing. Traditionally, for each potential improve-
and weaknesses of these journaling file systems. We alsy agpent to the file system, one must implement the change
STP to evaluate several modifications to ext3, demonstyétie  and measure performance under various workloads; if the
benefits of various optimizations without incurring thetsosf change gives little improvement, the implementation ef-

a real implementation. fort is wasted. In this paper, we introduce and apply a
. complementary technique to SBA callesdmantic trace
1 Introduction playback(STP). STP enables us to rapidly suggest and

Modern file systems are journaling file systems [4, zgyaluat_e file system _modifications_ without a large imple-
29, 32]. By writing information about pending update&entation or simulation effort. Using real Wor_kloads and
to a write-ahead log [12] before committing the updat&&ces, we show how STP can be used effectively.
to disk, journaling enables fast file system recovery afterWe have applied a detailed analysis to both Linux ext3
a crash. Although the basic techniques have existed &hd ReiserFS and a preliminary analysis to Linux JFS and
many yearsé.g, in Cedar [13] and Episode [9]), journalWindows NTFS. In each case, we focus on the journaling
ing has increased in popularity and importance in receégpects of each file system. For example, we determine
years; due to ever-increasing disk capacities, scan-batfedevents that cause data and metadata to be written to
recovery é.g, via fsck [16]) is prohibitively slow on mod- the journal or their fixed locations. We also examine how
ern drives and RAID volumes. However, despite the pothie characteristics of the workload and configuration pa-
ularity and importance of journaling file systems such &8meters €.g, the size of the journal and the values of
ext3 [32], ReiserFS [22], JFS [4], and NTFS [27] little isommit timers) impact this behavior.
known about their internal policies. Our analysis has uncovered design flaws, performance
Understanding how these file systems behave is imppreblems, and even correctness bugs in these file systems.
tant for developers, administrators, and application-wrfor example, ext3 and ReiserFS make the design decision
ers. Therefore, we believe it is time to perform a detailed group unrelated traffic into the same compound trans-
analysis of journaling file systems. Most previous workction; the result of thisangled synchronys that a sin-
has analyzed file systems from above; by writing usejte disk-intensive process forcall write traffic to disk,
level programs and measuring the time taken for varioparticularly affecting the performance of otherwise asyn-
file system operations, one can elicit some salient aspegtisonous writers.§3.2.1). Further, we find that both ext3
of file system performance [6, 8, 19, 26]. However, #nd ReiserFS artificialljimit parallelism by preventing
is difficult to discover the underlying reasons for the olthe overlap of pre-commit journal writes and fixed-place
served performance with this approach. updates{3.2.2). Our analysis also reveals that in ordered
In this paper we employ a novel benchmarking methodnd data journaling modes, ext3 exhibéager writing
ology calledsemantic block-level analys{SBA) to trace forcing data blocks to disk much sooner than the typical
and analyze file systems. With SBA, we induce controll@d-second delay§8.2.3). In addition, we find that JFS
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has aninfinite write delay as it does not utilize commit | Ext3 ReiserFs  JFS  NTFS

. . .. . . . X eiser

timers :_;md |ndef|n|tely_ postpones journal writes until an- SBA Ganaric 1589 1589 1289 1285

other trigger forces writes to occur, such as memory pres-  spa s specific | 181 48 20 15

sure §5). Finally, we identify four previously unknown SBA Total 1470 1337 1309 1304

bugs in ReiserFS that will be fixed in subsequent releases

(84.3). Table 1:Code size of SBA drivers.The number of C statements
The main contributions of this paper are: (counted as the number of semicolons) needed to implemént SB
e A new methodology, semantic block analysis (SBASOf ext3 and ReiserFS and a preliminary SBA for JFS and NTFS.

for understanding the internal behavior of file systems. the behavior of the file system. The main difference be-
e A new methodology, semantic trace playback (STRyveensemantic block analysiSBA) and more standard
for rapidly gauging the benefits of file system modificasiock-level tracing is that SBA analysis understands the
tions without a heavy implementation effort. on-disk format of the file system under test. SBA enables
e A detailed analysis using SBA of two important jourus to understand new properties of the file system. For ex-
naling file systems, ext3 and ReiserFS, and a preliminaiiyiple, SBA allows us to distinguish between traffic to the
analysis of JFS and NTFS. journal versus to in-place data and to even track individual
e An evaluation using STP of different design and imransactions to the journal.
plementation alternatives for ext3. )
The rest of this paper is organized as follows.§dwe 2-1.1 Implementation
describe our new techniques for SBA and STP. We apgijje infrastructure for performing SBA is straight-
these techniques to ext3, ReiserFS, JFS, and NTRS,in forward. One places a pseudo-device driver in the ker-
§4, §5, and§6 respectively. We discuss related work if€l, associates it with an underlying disk, and mounts the

§7 and conclude if8. file system of intereste(g, ext3) on the pseudo device;
we refer to this as the SBA driver. One then runs con-
2 Methodology trolled microbenchmarks to generate disk traffic. As the

We introduce two techniques for evaluating file system3BA driver passes the traffic to and from the disk, it also
First, semantic block analysis (SBA) enables users to @ificiently tracks each request and response by storing a
derstand the internal behavior and policies of the file sy&nall record in a fixed-sized circular buffer. Note that
tem. Second, semantic trace playback (STP) allows us@ysfracking the ordering of requests and responses, the
to quantify how changing the file system will impact theseudo-device driver can infer the order in which the re-

performance of real workloads. quests were scheduled at lower levels of the system.
) ) SBA requires that one interpret thententsof the disk
2.1 Semantic Block-Level Analysis block traffic. For example, one must interpret the con-

File systems have traditionally been evaluated using aeeats of the journal to infer the type of journal bloakd,
of two approaches; either one applies synthetic or reatlescriptor or commit block) and one must interpret the
workloads and measures the resulting file system perfimurnal descriptor block to know which data blocks are
mance [6, 14, 17, 19, 20] or one collects traces to uurnaled. As a result, it is most efficient to semantically
derstand how file systems are used [1, 2, 21, 24, 35, 3iterpret block-leveltraces on-line; performing this ra
However, performing each in isolation misses an interests off-line would require exporting the contents of blocks
ing opportunity: by correlating the observed disk traffigreatly inflating the size of the trace.
with the running workload and with performance, one can An SBA driver is customized to the file system under
often answewhya given workload behaves as it does. test. One concern is the amount of information that must
Block-level tracing of disk traffic allows one to analyzée embedded within the SBA driver for each file system.
a number of interesting properties of the file system afven that the focus of this paper is on understanding jour-
workload. At the coarsest granularity, one can record theling file systems, our SBA drivers are embedded with
quantityof disk traffic and how it is divided between readenough information to interpret the placement and con-
and writes; for example, such information is useful fdents of journal blocks, metadata, and data blocks. We
understanding how file system caching and write buffarew analyze the complexity of the SBA driver for four
ing affect performance. At a more detailed level, one c@urnaling file systems, ext3, ReiserFS, JFS, and NTFS.
track theblock numbenf each block that is read or writ- Journaling file systems have both a journal, where
ten; by analyzing the block numbers, one can see the transactions are temporarily recorded, and fixed-location
tent to which traffic is sequential or random. Finally, ongata structures, where data permanently reside. Our SBA
can analyze théming of each block; with timing infor- driver distinguishes between the traffic sent to the jour-
mation, one can understand when the file system initiated and to the fixed-location data structures. This traffic
a burst of traffic. is simple to distinguish in ReiserFS, JFS, and NTFS be-
By combining block-level analysis wittemantignfor- cause the journal is a set of contiguous blocks, separate
mation about those blocks, one can infer much more abfraim the rest of the file system. However, to be backward
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compatible with ext2, ext3 can treat the journal as a re© rates. For every 1/O request, the SBA driver performs
ular file. Thus, to determine which blocks belong to thibe following operations to collect detailed traces:
journal, SBA uses its knowledge of inodes and indirecte A gettimeofday() call during the start and end of I/0.
blocks; given that the journal does not change location afs A block number comparison to see if the block is a
ter it has been created, this classification remains efficiggurnal or fixed-location block.

atrun-time. SBA is also able to classify the differenttypes, A check for a magic number on journal blocks to dis-
of journal blocks such as the descriptor block, journal dajgquish journal metadata from journal data.

block, and commit block. o SBA stores the trace records with details like read or
To perform useful analysis of journaling file systeMgyrite, block number, block type, time of issue and com-
the SBA driver does not have to understand many detgj|gtion in an internal circular buffer. All these operation
of the file system. For example, our driver does not undefe performed only if one needs detailed traces. But for
stand the directory blocks or superblock of ext3 or the B#any of our analyses, it is sufficient to have cumulative
tree structure of ReiserFS or JFS. However, if one wishggyistics like the total number of journal writes and fixed-

to infer additional file system properties, one may neghation writes. These numbers are easy to collect and
to embed the SBA driver with more knowledge. NeveFéquire less processing within the SBA driver.

theless, the SBA driver does not know anything about the
policies or parameters of the file system in fact, SBA can1 4 Alternative Approaches

be used to infer these policies and parameters. . One might believe that directly instrumenting a file sys-
_ Table 1 reports the number of C statements requireq &y, 1 obtain timing information and disk traces would be
implement th_e SBA driver. '_I'he_se numbers show that rfn%%}uivalent or superior to performing SBA analysis. We
of the code in the SBA driveri.¢., 1289 statements) iSygjieve this is not the case for several reasons. First, to

for general infrastructure; only between approximately 9}ty instrument the file system, one needs source code
a”‘?' 20(_) statements are needed to_ _support _dlfferent 1% that file system and one must re-instrument new ver-
naling file systems. The ext3 specific code is more thgfys a5 they are released; in contrast, SBA analysis does
that of the other file systems because in ext3, journalds; require file system source and much of the SBA driver
created asa file and can span multiple blOCk groups. d8de can be reused across file systems and versions. Sec-
order to find the blocks belonging to the journal file, gy \yhen directly instrumenting the file system, one may
parse the journal inode and journal indirect blocks. Uy cigentally miss some of the conditions for which disk
Reiserfs, JFS, and NTFS the journal is contiguous aggl s are written; however, the SBA driver is guaranteed
finding its blocks is trivial (even though the journal is &, see aJ disk traffic. Finally, instrumenting existing €od
file in NTFS, for small journals they are contiguously alr'nay accidentally change the behavior of that code [36];
located). an efficient SBA driver will likely have no impact on file

2.1.2 Workloads system behavior.

SBA analysis can be used to gather useful informati .
for any workload. However, the focus of this paper g?Z Semantic Trace Playback

on understanding the internal policies and behavior of tHethis section we describe semantic trace playback (STP).
file system. As a result, we wish to construct synthetg! P can be used to rapidly evaluate certain kinds of new
workloads that uncover decisions made by the file systéliff System designs, both without a heavy implementation
More realistic workloads will be considered only when wivestment and without a detailed file system simulator.
apply semantic trace playback. We now describe how STP functions. STP is built as
When constructing synthetic workloads that stress tfie/Ser-level process; it takes as input a trace (described
file system, previous research has revealed a range offggher below), parses it, and issues 1/O requests to the
rameters that impact performance [8]. We have creafdigk using the raw disk interface. Multiple threads are
synthetic workloads varying these parameters: the amo@ftPloyed to allow for concurrency.
of data written, sequential versus random accesses, the ifdeally, STP would function by only taking a block-
terval between calls thbsync, and the amount of concur-level trace as input (generated by the SBA driver), and in-
rency. We focus exclusively on write-based workloads béeed this is sufficient for some types of file system modifi-
cause reads are directed to their fixed-place location, &#ions. For example, it is straightforward to model differ
thus do not impact the journal. When we analyze each fét layout schemes by simply mapping blocks to different
system, we only report results for those workloads whigt-disk locations.

revealed file system policies and parameters. However, it was our desire to enable more powerful em-
ulations with STP. For example, one issue we explore later
2.1.3 Overhead of SBA is the effect of using byte differences in the journal, in-

The processing and memory overheads of SBA are misiead of storing entire blocks therein. One complication
mal for the workloads we ran as they did not generate hititat arises is that by changing the contents of the journal,
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thetiming of block 1/0 changes; the thresholds that initition of the file system should remain intact. Finally, STP
ate I/O are triggered at a different time. does not provide a means to evaluhtevto implement

To handle emulations that alter the timing of disk I/Ga given change; rather, it should be used to understand
more information is needed than is readily available in thiehethera certain modification improves performance.
low-level block trace. Specifically, STP needs to observe .
two high-level activities. First, STP needs to obsere3 Environment
any file-system level operations that create dirty buffefdl measurements are taken on a machine running Linux
in memory. The reason for this requirement is found @4.18 with a 600 MHz Pentium III processor and 1 GB
§3.2.2; when the number of uncommitted buffers reachesmain memory. The file system under test is created
athreshold (in ext3} of the journal size), a commit is en-on a single IBM 9LZX disk, which is separate from the
acted. Similarly, when one of the interval timers expiregot disk. Where appropriate, each data point reports the
these blocks may have to be flushed to disk. average of 30 trials; in all cases, variance is quite low.

Second, STP needs to observe application-level caglls .
to f sync; without doing so, STP cannot understanaé The Ext3 File SyStem
whether an 1/O operation in the SBA trace is there duelio this section, we analyze the popular Linux filesystem,
af sync call or due to normal file system behavierd, ext3. We begin by giving a brief overview of ext3, and
thresholds being crossed, timers going off, etc.). Withatlien apply semantic block-level analysis and semantic
such differentiation, STP cannot emulate behaviors thetce playback to understand its internal behavior.
are timing sensitive.

Both of these requirements are met by giving a filé-1 Background
system level trace as input to STP, in addition to the SBAINux ext3 [33, 34] is a journaling file system, built as an
generated block-level trace. We currently use libranele\extension to the ext2 file system. In ext3, data and meta-
interpositioning to trace the application of interest. data are eventually placed into the standard ext2 struc-

We can now qualitatively compare STP to two othdures, which are the fixed-location structures. In this or-
standard approaches for file system evolution. In the figgnization (which is loosely based on FFS [15]), the disk
approach, when one has an idea for improving a file sys-split into a number oblock groups within each block
tem, one simply implements the idea within the file sygroup are bitmaps, inode blocks, and data blocks. The
tem and measures the performance of the real syst€xi3 journal (or log) is commonly stored as a file within
This approach is attractive because it gives a reliable &ne file system, although it can be stored on a separate de-
swer as to whether the idea was a real improvement, ¥ige or partition. Figure 1 depicts the ext3 on-disk layout.
suming that the workload applied is relevant. However, it Information about pending file system updates is writ-
is time consuming, particularly if the modification to théen to the journal. By forcing journal updates to dis
file system is non-trivial. fore updating complex file system structures, this write-

In the second approach, one builds an accurate sim@head logging technique [12] enables efficient crash re-
tion of the file system, and evaluates a new idea within thevery; a simple scan of the journal and a redo of any
domain of the file system before migrating it to the reéilcomplete committed operations bring the file system to
system. This approach is attractive because one can oft@®nsistent state. During normal operation, the journal is
avoid some of the details of building a real implement&eated as a circular buffer; once the necessary informa-
tion and thus more quickly understand whether the idedign has been propagated to its fixed location in the ext2
a good one. However, it requires a detailed and accurateictures, journal space can be reclaimed.
simulator, the construction and maintenance of whichJsurnaling Modes: Linux ext3 includes three flavors of
certainly a challenging endeavor. journaling:writeback modeordered modganddata jour-

STP avoids the difficulties of both of these approachesling mode Figure 2 illustrates the differences between
by using the low-level traces as the “truth” about how titbese modes. The choice of mode is made at mount time
file system behaves, and then modifying file system outgutd can be changed via a remount.

(i.e. the block stream) based on its simple internal modelsin writeback modgonly file system metadata is jour-
of file system behavior; these models are based on oated; data blocks are written directly to their fixed loca-
empirical analysis found i§3.2. tion. This mode does not enforce any ordering between

Despite its advantages over traditional implementatitime journal and fixed-location data writes, and because of
and simulation, STP is limited in some important way#his, writeback mode has the weakest consistency seman-
For example, STP is best suited for evaluating design tés of the three modes. Although it guarantees consistent
ternatives under simpler benchmarks; if the workload efide system metadata, it does not provide any guarantee as
hibits complex virtual memory behavior whose intera¢e the consistency of data blocks.
tions with the file system are not modeled, the results mayin ordered journaling modeagain only metadata writes
not be meaningful. Also, STP is limited to evaluating filare journaled; however, data writes to their fixed location
system changes that are not too radical; the basic opena orderedeforethe journal writes of the metadata. In
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CYLINDER GROUP 1 OTHER GROUPS

1B DB | INODE s e RIS

IB = Inode Bitmap, DB = Data Bitmap, JS = Journal Superblock, JD = Journal Descriptor Block, JC = Journal Commit Block

Figure 1:Ext3 On-Disk Layout. The picture shows the layout of an ext3 file system. The diesslspace is broken down into a
series of block groups (akin to FFS cylinder groups), eaclituth has bitmaps to track allocations and regions for ir@ded data
blocks. The ext3 journal is depicted here as a file within e filock group of the file system; it contains a superbloekious
descriptor blocks to describe its contents, and commitks@c denote the ends of transactions.

WRITEBACK ORDERED DATA

— Fixed (Data) | Fixed (Data)

777777777 Sync

is constantly being extended) [13].

Journal Structure: Ext3 uses additional metadata struc-
[ Journal (Inode)] [ Journal (Inode) [Juurnal (Inode+Data} Journal Write tures to traCk the ||St Of Journaled bIOCkS Timjrnal
[ sme [ e [ sme superblocktracks summary information for the journal,
such as the block size and head and tail pointergut:
. . nal descriptor blocknarks the beginning of a transaction
L rhedam) | and describes the subsequent journaled blocks, including
T o ),x’ , their final fixed on-disk location. In data journaling mode,
[ Fixed (Inode) ] [ Fixed (Inode) ] [ Fixed (Inode+Dala)] Checkpoint Wit the dESCI’iptOI‘ block is followed by the data and metadata
blocks; in ordered and writeback mode, the descriptor
L Fixed (ata) | block is followed by the metadata blocks. In all modes,
Fi 2Et3 ] lina Modes. The di depicts th ext3 logs full blocks, as opposed to differences from old
tr:?eug%iﬁére):wtjo&%g:ﬁw;;n%od%seosf'exts? W:ﬁgrbaélrgk’ gggrzndeversions; thus, even a single bit change in a bitmap results

data. In the diagram, time flows downward. Boxes represdftthe entire bitmap block being logged. Depending upon
updates to the file system, e.g., “Journal (Inode)” implige t the size of the transaction, multiple descriptor block$eac

write of an inode to the journal; the other destination forites followed by the Corresponding data and metadata blocks

is labeled “Fixed”, which is a write to the fixed in-place ext . . . . .
structures. An arrow labeled with a “Sync” implies that thea ay be logged. Finally, purnal commit blocks written

blocks are written out in immediate succession synchrdgioud® the journal at the end of the transaction; once the com-
hence guaranteeing the first completes before the second.mA block is written, the journaled data can be recovered
curved arrow indicates ordering but not immediate suca®@ssi without loss.

hence, the second write will happen at some later time. Binal o o

for writeback mode, the dashed box around the “Fixed (DatayZheckpointing: The process of writing journaled meta-
block indicates that it may happen at any time in the sequendata and data to their fixed-locations is knowrchsck-

In this example, we consider a data block write and its inosle Bointing Checkpointing is triggered when various thresh-

the updates that need to be propagated to the file systemj-the . .
agrams show how the data flow is different for each of the eXd'5S aré crossee, g, when file system buffer space is low,
journaling modes. when there is little free space left in the journal, or when

. . _ a timer expires.
contrast to writeback mode, this mode provides more sep-

sible consistency semantics, where both the data and QSh Recovery: Crash recovery is straightforward in

metadata are guaranteed to be consistent after recove ftrgc(i?)slcl)t 'S.': U;a?gg uégigniglﬁ:yﬂe?ast)és (b ar?;r]:g:To
In full data journaling modeext3 logsboth metadata 9gings used. u wup w

. : I data or just metadata) are written to the log, the process
and data to the journal. This decision implies that whe A ! X :
. N . .. Of restoring in-place file system structures is easy. During
a process writes a data block, it will typically be written ) ;
) . . recovery, the file system scans the log for committed com-
out to disktwice once to the journal, and then later to . & ; )
s ) . . . lete transactions; incomplete transactions are disdarde
its fixed ext2 location. Data journaling mode provides t . S
; : ach update in a completed transaction is simply replayed
same strong consistency guarantees as ordered journali .
) ; 4 INto’the fixed-place ext2 structures.
mode; however, it has different performance characteris-

tics, in some cases worse, and surprisingly, in some cases,
better. We explore this topic furthef3.2). . .

Transactions: Instead of considering each file system ué'z Analysis of ext3 with SBA

date as a separate transaction, ext3 groups many updatesow perform a detailed analysis of ext3 using our SBA
into a singlecompound transactiothat is periodically framework. Our analysis is divided into three categories.
committed to disk. This approach is relatively simple tBirst, we analyze the basic behavior of ext3 as a function
implement [33]. Compound transactions may have betthe workload and the three journaling modes. Second,
ter performance than more fine-grained transactions whvesisolate the factors that control when data is committed
the same structure is frequently updated in a short pertodthe journal. Third, we isolate the factors that control

of time (e.g, a free space bitmap or an inode of a file thathen data is checkpointed to its fixed-place location.

Journal (Commit) Journal (Commit) Journal (Commit) Journal Commit

In writeback mode, data write can happen at any time
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Figure 3: Basic Behavior for Sequential Workloads in ext3. Figure 4: Basic Behavior for Random Workloads in ext3.
Within each graph, we evaluate ext2 and the three ext3 jodmis figure is similar to Figure 3. The workload issues 4 KB
naling modes. We increase the size of the written file aloag thrites to random locations in a single file and céllsync once
x-axis. The workload writes to a single file sequentially arfdr every 256 writes. Top graph shows the bandwidth, middle
then performs afi sync. Each graph examines a different metgraph shows the journal traffic, and the bottom graph reports
ric: the top graph shows the achieved bandwidth; the middike fixed-location traffic. The journal size is set to 50 MB.
graph uses SBA to report the amount of journal traffic; the bot )

tom graph uses SBA to report the amount of fixed-locatiofi¢raf it writes and observe how the behavior of ext3 changes.

The journal size is set to 50 MB. The top graphs in Figures 3, 4, and 5 plot the achieved
. _ bandwidth for the three workloads; within each graph, we
3.2.1 Basic Behavior: Modes and Workload compare the three different journaling modes and ext2.
We begin by analyzing the basic behavior of ext3 asFaom these bandwidth graphs we make four observations.
function of the workload and journaling modee(, write-  First, the achieved bandwidth is extremely sensitive to the
back, ordered, and full data journaling). Our goal is igorkload: as expected, a sequential workload achieves
understand the workload conditions that trigger ext3 gauch higher throughputthan a random workload and call-
write data and metadata to the journal and to their fix@sh f sync more frequently further reduces throughput
locations. We explored a range of workloads by varyirigr random workloads. Second, for sequential traffic, ext2
the amount of data written, the sequentiality of the writeserforms slightly better than the highest performing ext3
the synchronization interval between writes, and the numode: there is a small but noticeable cost to journaling
ber of concurrent writers. for sequential streams. Third, for all workloads, ordered
Sequential and Random Workloads: We begin by mode and writeback mode achieve bandwidths that are
showing our results for three basic workloads. The firsitmilar to ext2. Finally, the performance of data journal-
workload writes to a single file sequentially and then peang is quite irregular, varying in a sawtooth pattern with
forms anf sync to flush its data to disk (Figure 3); thethe amount of data written.
second workload issues 4 KB writes to random locationsThese graphs of file system throughput allow us to com-
in a single file and callEsync once for every 256 writes pare performance across workloads and journaling modes,
(Figure 4); the third workload again issues 4 KB randobut do not enable us to infer tliauseof the differences.
writes but callsf sync for every write (Figure 5). In To help us infer the internal behavior of the file system, we
each workload, we increase the total amount of data tla@iply semantic analysis to the underlying block stream;
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Random write bandwidth consistency semantics are still preserved. However, even
05 Bata thpug_h it is_not necessary for consis_te_ncy, when the ap-
04l wordered pllcatlon_ writes more data, chec_:kpomtlng does occur at
03l Bxtz —e— regular intervals; this extra traffic leads to the sawtooth

bandwidth measured in the first graph. In this particu-
lar experiment with sequential traffic and a journal size of
01r 50 MB, a checkpoint occurs when 25 MB of data is writ-
0 ten; we explore the relationship between checkpoints and
journal size more carefully ir§3.2.3.

The SBA graphs also reveal why data journaling mode
performs better than the other modes for asynchronous

0.2 r

Bandwidth (MB/s)

Amount of data written (MB)

Amount of journal writes

140 Data —+—

~ 10l Ordered —x— random writes. With data journaling mode, all data is
2 ol Wwritehack —%— | written first to the log, and thus even random writes be-
g s | comelogically sequential and achieve sequential band-
T 60 width. As the journal is filled, checkpointing causes ex-
3 407 tra disk traffic, which reduces bandwidth; in this particu-
zg | | lar experiment, the checkpointing occurs near 23 MB. Fi-
0 5 10 15 20 25 nally, SBA analysis reveals that synchronous 4 KB writes
Amount of data written (ME) do not perform well, even in data journaling mode. Forc-
Amount of fixed-location writes ing each small 4 KB write to the log, even in logical
80 ‘ ‘ Data —— sequence, incurs a delay between sequential writes (not
70 - Ordered —=— Y - K .
60 Writeback —%— shown) and thus each write incurs a disk rotation.

Ext2 —=—

Concurrency: We now report our results from running
workloads containing multiple processes. We construct
a workload containing two diverse classes of traffic: an
asynchronous foreground process in competition with a
background process. The foreground process writes out a
Amount of data written (MB) 50 MB file without callingf sync, while the background
Figure 5: Basic Behavior for Random Workloads in ext3. Process repeatedly writes a 4 KB block to a random lo-
This figure is similar to Figure 3. The workload issues 4 KBation, optionally call§ sync, and then sleeps for some
random writes and call§ sync for every write. Bandwidth is period of time {.e., the “sync interval”). We focus on data
shown in the first graph; journal writes and fixed-locatiorites ;,rnaling mode, but the effect holds for ordered journal-
are reported in the second and third graph using SBA. The jour
nal size is set to 50 MB. ing mode too (not shown). _

In Figure 6 we show the impact of varying the mean
in particular, we record the amount of journal and fixedsync interval” of the background process on the perfor-
location traffic. This accounting is shown in the bottorgance of the foreground process. The first graph plots
two graphs of Figures 3, 4, and 5. the bandwidth achieved by the foreground asynchronous

The second row of graphs in Figures 3, 4, and 5 quastocess, depending upon whether it competes against an
tify the amount of traffic flushed to the journal and helgsynchronous or synchronous background process. As ex-
us to infer the events which cause this traffic. We see thagécted, when the foreground process runs with an asyn-
in data journaling mode, the total amount of data writteshronous background process, its bandwidth is uniformly
to the journal is high, proportional to the amount of datsigh and matches in-memory speeds. However, when the
written by the application; this is as expected, since badreground process competes with a synchronous back-
data and metadata are journaled. In the other two modg®und process, its bandwidth drops to disk speeds.
only metadata is journaled; therefore, the amount of trafficThe SBA analysis in the second graph reports the
to the journal is quite small. amount of journal data, revealing that the more frequently

The third row of Figures 3, 4, and 5 shows the traffihe background process caflsync, the more traffic is
to the fixed location. For writeback and ordered mode tBent to the journal. In fact, the amount of journal traf-
amount of traffic written to the fixed location is equal tdic is equal to the sum of the foreground and background
the amount of data written by the application. Howevasrocess traffic written in that interval, not that of only the
in data journaling mode, we observe a stair-stepped pagckground process. This effect is due to the implemen-
tern in the amount of data written to the fixed locatiotation of compound transactions in ext3: all file system
For example, with a file size of 20 MB, even though thepdates add their changes to a global transaction, which
process has calleisync to force the data to disk, nois eventually committed to disk.
data is written to the fixed location by the time the appli- This workload reveals the potentially disastrous conse-
cation terminates; because all data is logged, the expeajadnces of grouping unrelated updates into the same com-

Fixed-location data (MB)
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Figure 6:Basic Behavior for Concurrent Writes in ext3. Two Figure 7: Impact of Journal Size on Commit Policy in ext3.
processes compete in this workload: a foreground procegts wiT he topmost figure plots the bandwidth of data journaling enod
ing a sequential file of size 50 MB and a background processder different-sized file writes. Four lines are plottegrne
writing out 4 KB, optionally callingf sync, sleeping for the senting four different journal sizes. The second graph st
“sync interval”, and then repeating. Along the x-axis, we inamount of log traffic generated for each of the experimewis (f
crease the sync interval. In the top graph, we plot the badtiwi clarity, only two of the four journal sizes are shown).

achieved by the foreground process in two scenarios: wigh th

background process either calling or not callifigync after ten by the application (to be precise, the number of dirty
each write. In the bottom graph, the amount of data written {ghcommitted buffers, which includes both data and meta-
disk during both sets of experiments is shown. data) reache§ the size of the journal, bandwidth drops
pound transaction: all traffic is committed to disk at theonsiderably. In fact, in the first performance regime, the
same rate. Thus, even asynchronous traffic must wait §yserved bandwidth is equal to in-memory speeds.
§ynchr0nous updates to complete. We refer to this NeYapyr semantic analysis, shown in the second graph, re-
tive effect astangled synchrongind explore the benefits, s the amount of traffic to the journal. This graph re-
of untangling transactions i§3.3.3 using STP. veals that metadata and data are forced to the journal when
3.2.2  Journal Commit Policy it is equal to} the journal size. Inspection of Linux ext3
We next explore the conditions under which ext3 commgg@de confirms this threshold. Note that the threshold is
transactions to its on-disk journal. As we will see, twie same for ordered and writeback modes (not shown);
factors influence this event: the size of the journal and thewever, it is triggered much less frequently since only
settings of the commit timers. metadata is logged.

In these experiments, we focus on data journalimgnpact of Timers: In Linux 2.4 ext3, three timers have
mode; since this mode writes both metadata and datastone control over when data is written: the metadata
the journal, the traffic sent to the journal is most easipmmit timer and the data commit timer, both managed
seen in this mode. However, writeback and ordered modgsthe kupdate daemon, and the commit timer managed
commit transactions using the same policies. To exéy the kjournal daemon. The system-wide kupdate dae-
cise log commits, we examine workloads in which dataon is responsible for flushing dirty buffers to disk; the
is not explicitly forced to disk by the applicationd,, the kjournal daemon is specialized for ext3 and is respon-
process does not cdllsync); further, to minimize the sible for committing ext3 transactions. The strategy for
amount of metadata overhead, we write to a single file.ext2 is to flush metadata frequently/ g, every 5 seconds)
Impact of Journal Size: The size of the journal is awhile delaying data writes for a longer time.¢§, every
configurable parameter in ext3 that contributes to wh&0 seconds). Flushing metadata frequently has the advan-
updates are committed. By varying the size of the jourrtage that the file system can approach FFS-like consis-
and the amount of data written in the workload, we cadancy without a severe performance penalty; delaying data
infer the amount of data that triggers a log commit. Figvrites has the advantage that files that are deleted quickly
ure 7 shows the resulting bandwidth and the amountdi not tax the disk. Thus, mapping the ext2 goals to the
journal traffic, as a function of file size and journal siz&xt3 timers leads to default values of 5 seconds for the
The first graph shows that when the amount of data witdipdate metadata timer, 5 seconds for the kjournal timer,



Proceedings of the USENIX 2005 Annual Technical Conferelgel 10-15, Anaheim, CA

Sensitivity to kupdated metadata timer Write ordering in ext3
% 30 0 " -
° < 14 Fixed location —+—
5 8 Journal —<—
g By s 12
£ 15t s 8
2
S 10t % 461 i
g 5r § 2 :
E 0 5 0 * u u u t t t T
0 5 10 15 20 25 30 10.3 10.35 10.4 10.45 10.5 10.55 10.6
kupdated metadata timer value (seconds) Time (seconds)
Sensitivity to kupdated data timer
% 60 I T N e S N N N e ; . : R : :
3 [ Figure 9: Interaction of Journal and Fixed-Location Traffic
§ SO, in ext3. The figure plots the number of outstanding writes to
< a7 Terl w7 R the journal and fixed-location disks. In this experiment,rae
E ol T, T, * o PR five processes, each of which issues 16 KB random synchronous
2 e +F el writes. The file system has a 50 MB journal and is running in
2 207 A + + T ordered mode; the journal is configured to run on a separate
E 10 " fE * disk.
3 + + + 1 +
0 5 10 15 20 25 20 location data must be managed carefully for consistency.
kupdated data timer value (seconds) In fact, the difference between writeback and ordered
Sensitivity to kjournald timer mode is in this timing: writeback mode does not enforce
g 30 ‘ ‘ ‘ ‘ ‘ any ordering between the two, whereas ordered mode en-
g 257 sures that the data is written to its fixed location before the
Q
e commit block for that transaction is written to the journal.
% 15 ¢ When we performed our SBA analysis, we found a perfor-
§ 107 mance deficiency in how ordered mode is implemented.
€ s We consider a workload that synchronously writes a
3
S0 : : : : : large number of random 16 KB blocks and use the SBA
0 5 10 15 20 25 30 . . . . .
Kjournald timer value (seconds) driver to separate journal and fixed-location data. Figure 9

plots the number of concurrent writes to each data type

. . . . . over time. The figure shows that writes to the journal and
Figure 8: Impact of Timers on Commit Policy in ext3. In o .
each graph, the value of one timer is varied across the x-axig€d-place data daotoverlap. Specifically, ext3 issues
and the time of the first write to the journal is recorded alonthe data writes to the fixed location and waits for comple-
the y-axis. When measuring the impact of a particular timer, tion, then issues the journal writes to the journal and again
set the other timers to 60 seconds and the journal size to 50 MBits for completion, and finally issues the final commit
so that they do not affect the measurements. . ! . . .

block and waits for completion. We observe this behavior

and 30 seconds for the kupdate data timer. irrespective of whether the journal is on a separate device

We measure how these timers affect when transacti@mon the same device as the file system. Inspection of the
are committed to the journal. To ensure that a speciégt3 code confirms this observation. However, the first
timer influences journal commits, we set the journal sizeait is not needed for correctness. In those cases where
to be sulfficiently large and set the other timers to a lartfee journal is configured on a separate device, this ex-
value {.e., 60 s). For our analysis, we observe when thea wait can severely limit concurrency and performance.
first write appears in the journal. Figure 8 plots our resuli$us, ext3 hagalsely limited parallelism We will use
varying one of the timers along the x-axis, and plotting tI&TP to fix this timing problem irng3.3.4.
time that the first log write occurs along the y-axis.

The first graph and the third graph show that the kug-2.-3 Checkpoint Policy
date daemon metadata commit timer and the kjournal d&iée next turn our attention to checkpointing, the process
mon commit timer control the timing of log writes: theof writing data to its fixed location within the ext2 struc-
data points along = =z indicate that the log write oc-tures. We will show that checkpointing in ext3 is again a
curred precisely when the timer expired. Thus, traffic fanction of the journal size and the commit timers, as well
sent to the log at the minimum of those two timers. Tteas the synchronization interval in the workload. We focus
second graph shows that the kupdate daemon data timedata journaling mode since it is the most sensitive to
does not influence the timing of log writes: the data poinjgurnal size. To understand when checkpointing occurs,
are not correlated with the x-axis. As we will see, thiwe construct workloads that periodically force data to the
timer influences when data is written to its fixed locatiofournal (.e., call f sync) and we observe when data is
Interaction of Journal and Fixed-Location Traffic: subsequently written to its fixed location.
The timing between writes to the journal and to the fixetimpact of Journal Size: Figure 10 shows our SBA results
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38 | Sync size = IMB"—— Figure 11: Impact of Timers on Checkpoint Policy in ext3.

o0 | e e Jomn The figure plots the relationship between the time that dsita i
8 ol first written to the log and then checkpointed as dependent on
g 101 the value of the kupdate data timer. The scatter plot shows th
g OpmerITy / /it%w:ﬁf:k results of multiple (30) runs. The process that is runniniesgr
L o [ienosoumasze e 1 MB of data (nof sync); data journaling mode is used, with

10 |-t o ourna sie ] other timers set to 5 seconds and a journal size of 50 MB.

5 10 15 20 25 30 35 40 tions using the same workload as above. Here, we vary
Amount of data written (MB) the kupdate data timer while setting the other timers to
five seconds. Figure 11 shows how the kupdate data timer
Figure 10: Impact of Journal Size on Checkpoint Policy in impacts when data is written to its fixed location. First,
ext3. We consider a workload where a certain amount of datgs seen previously in Figure 8, the log is updated after

(as indicated by the x-axis value) is written sequentialith ; i i i i
afsyno issued after every 1, 15, or 20 MB. The first grapfwhe five second timers expire. Then, the checkpoint write

uses SBA to plot the amount of fixed-location traffic. Thermbed?CCUTS later by the amount specified by the kupdate data
graph uses SBA to plot the amount of free space in the journdimer, at a five second granularity; further experiments
not shown here) reveal that this granularity is controlled

as a function of file size and synchronization interval f g/the kupdate metadata timer.

a single journal size of 40 MB. The first graph shows th Our analysis reveals that the ext3 timers do not lead to

amount of data written to its fixed ext2 location at the eNfle same timing of data and metadata traffic as in ext2. Or-
of each experiment. We can see that the point at V\.'h'8 red and data journaling modes force data to disk either
checkpointing OCCUrs varies across t_he thr_ee sync 'ntﬁé'fore or at the time of metadata writes. Thiogth data
\(;alts, .fO]E exa[jn?lea_wlith f? 1 MB sylntliﬂlgterve:LQ., fwh_etn and metadata are flushed to disk frequently. This timing

ﬁal'(s qr<t:e 0 dIS ﬂa er every el \gngBohW” Es)behavior is the largest potential performance differentia
checkpaints occur after approximately aS DEE hatween ordered and writeback modes. Interestingly,
committed to the log, whereas with a 20 MB sync intervg

i : . is frequent flushing has a potential advantage; by forc-
checkpomt_s oceur after 20 MB. To illustrate what M99€IR yata to disk in a more timely manner, large disk queues
a checkpoint, in the second graph, we plot the amo

P ¥ : diatel ding the ch be avoided and overall performance improved [18].
0 _Joturréa ree Isr:aceﬂl]mrtrsls late yhprece mgth et che he disadvantage of early flushing, however, is that tem-
point. By correlating the two graphs, we see that che orary files may be written to disk before subsequent dele-
pointing occurs when the amount of free space is betw

1-th and 1-th of the journal size. The precise fraction increasing the overall load on the I/O system.
depends upon the synchronization interval, where smahep 4 summary of Ext3

sync amounts allow checkpointing to be postponed u
there is less free space in the jourhale have confirmed ext3 that can have a strong impact on performance

this same relationship for other journal sizes (not shown).. The journaling mode that delivers the best perfor-

Impact of Timers: We examine how the system timerg,ance depends strongly on the workload. It is well known
impact the timing of checkpoint writes to the fixed l0cat,5¢ random workloads perform better with logging [25];
however, the relationship between the size of the journal

_ ___and the amount of data written by the application can have
1The exact amount of free space that triggers a checkpoinotis n

straightforward to derive for two reasons. First, ext3 rese some an even _Iarger impacton performance‘ . . .

amount of journal space for overhead such as descriptor aminit @ Ext3 implements compound transactions in which un-
blocks. Second, ext3 reserves space in the journal for therdly com-  related concurrent updates are placed into the same trans-
mitting transactioni(e., the synchronization interval). Although we haveyction. The result of thimngled synchron';s that all traf-

derived the free space function more precisely, we do nétleevery . . . . . .
detailed information is particularly enlightening; thiene, we simply fic in a transaction is committed to disk at the same rate,

say that checkpointing occurs when free space is somewlsdvesén Whi(?h results in di.SaStl’Ol.JS performance for a_synChronOUS
1-th and-th of the journal size. traffic when combined with synchronous traffic.

rltjging SBA, we have isolated a number of features within

10
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Figure 12:Improved Journal Placement with STP.We com- Figure 13: Untangling Transaction Groups with STP. This

pare three placements of the journal: at the beginning of tlexperiment is identical to that described in Figure 6, witheo

partition (the ext3 default), modeled in the middle of thediys- addition: we show performance of the foreground procesk wit

tem using STP, and in the middle of the file system. 50 MB file#angled transactions as emulated with STP.

are created across the file system; a file is chosen, as ireticat . . . .

by the number along the x-axis, and the workload issues 4 #g<B writes to a chosen file. In Figure 12 we vary which

synchronous writes to that file. file is chosen along the x-axis. The first line in the graph
« In ordered mode, ext3 does not overlap any of t13@ows the performance for ordered mode in default ext3:

writes to the journal and fixed-place data. Specificallj@ndwidth drops by nearly 30% when the file is located

ext3 issues the data writes to the fixed location and waltg from the journal. SBA analysis (not shown) confirms
for completion, then issues the journal writes to the jouf1t this performance drop occurs as the seek distance in-
nal and again waits for completion, and finally issues tif&eaS€s between the writes to the file and the journal.
final commit block and waits for completion; however, the 10 €valuate the benefit of placing the journal in the mid-
first wait is not needed for correctness. When the jourrfif Of the disk, we use STP to remap blocks. For vali-
is placed on a separate device, tfitsely limited paral- dation, we also coerce ext3 to allocate its journal in the
lelismcan harm performance. middle of the disk, and compare results. Figure 12 shows
« In ordered and data journaling modes, when a tim@?‘t the _STP predicted performance is nearly identical to
flushes meta-data to disk, the corresponding data must/lg version of ext3. Furthermore, we see that worst-case
flushed as well. The disadvantage of thiger writingis P€havior is avoided; by placing the journal in the middle
that temporary files may be written to disk, increasing tifé the file system instead of at the beginning, the longest

1/O load. seeks across the entire volume are avoided during syn-
_ _ chronous workloadd.g., workloads that frequently seek
3.3 Evolving ext3 with STP between the journal and the ext2 structures).

In this section, we apply STP and use a wider range é)t3 2 Journaling Mode
workloads and traces to evaluate various modificationsAt\' .shown in §3.2.1, different workloads perform better
ext3. T_o dgmons_trate the accuracy of the STP appro%ﬁh different jo.ur.nz;\ling modes. For example, random
we begin with a simple modification that varies the plac9\/'rites perform better in data journaling mode as the ran-

ment of the journal. Our SBA analysis pointed to a NUNYom writes are written sequentially into the journal, but

ber of improvements for ext3, which we can quantlfPé\rge sequential writes perform better in ordered mode

with STP: the value of using different journaling modegs it avoids the extra traffic generated by data journal-

o_Iependmg upon the workload, haw_ng separate tTa.”SFh*Ej mode. However, the journaling mode in ext3 is set
tions for each update, and overlapping pre-commit jour: : o .
at mount time and remains fixed until the next mount.

nal writes with data updates in ordered mode. Finally, we | L .
. = L : Using STP, we evaluate a new adaptive journaling mode
use STP to evaluatifferential journaling in which block ; . i
; : . that chooses the journaling mode for each transaction ac-
differences are written to the journal. ; . . X
cording to writes that are in the transaction. If a transac-
3.3.1 Journal Location tion is sequential, it uses ordered journaling; otherwitse,
Our first experiment with STP quantifies the impact afses data journaling.
changing a simple policy: the placement of the journal. To demonstrate the potential performance benefits of
The default ext3 creates the journal as a regular file at gdaptive journaling, we run a portion of a trace from HP
beginning of the partition. We start with this policy bekabs [23] after removing the inter-arrival times between
cause we are able to validate STP: the results we obttia I/O calls and compare ordered mode, data journaling
with STP are quite similar to those when we implementode, and our adaptive approach. The trace completes
the change within ext3 itself. in 83.39 seconds and 86.67 seconds, in ordered and data
We construct a workload that stresses the placemenjafrnaling modes, respectively; however, with STP adap-
the journal: a 4 GB patrtition is filled with 50 MB filestive journaling, the trace completesin only 51.75 seconds.
and the benchmark process issues random, synchror®esause the trace has both sequential and random write

11
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Modified write ordering naled irrespective of how many bytes have changed in the
1l Fixed location 57— block, journal space fills quickly, increasing both commit
12} Journal —— and checkpoint frequency.

Using STP, we investigatalifferential journaling
where the file system writes block differences to the jour-
nal instead of new blocks in their entirety. This ap-
B § B 1 ] proach can potentially reduce disk traffic noticeably, if

: T & i K dirty blocks are not substantially different from their pre
10.3 10.35 10.4 10.45 10.5 10.55 10.6 ) . . . .
Time (seconds) vious versions. We focus on data journaling mode, as it

generates by far the most journal traffic; differential jour

. . . ) naling is less useful for the other modes.
Figure 14: Changing the Interaction of Journal and Fixed- . L .
Location Traffic with STP. The same experiment is run as in 10 €valuate whether differential journaling matters for

Figure 9; however, in this run, we use STP to issue the preal workloads, we analyze SBA traces underneath two
commit journal writes and data writes concurrently. We i@ database workloads modeled on TPC-B [30] and TPC-
g.TPt?m“:;t‘?d. pertfrclnrmance, anclit aL?o m?de this change to €X331]  The former is a simple application-level imple-
et 0 amm-g _e same-resu ant periormance. _ mentation of a debit-credit benchmark, and the latter a re-
phases, adaptive journaling out performs any single-maggtic implementation of order-entry built on top of Post-
approach. gres. With data journaling mode, the amount of data
333 Transaction Groupin written to the journal is reduced by a factor of 200 for
bing TPC-B and a factor of 6 under TPC-C. In contrast, for

Linux ext3 groups all updates into system-wide Conifdered and writeback modes, the difference is minimal

Request queue (4KB blocks)

pound transactions and commits them to disk periodica ss than 1%); in these modes, only metadata is written to

|s_|t(r)(\al\./';1€r\r1/eig ?r\:\g}?jr\]/gussh?vgalg ﬁf\/‘;’; {jursatrr?astlizgilri uggt e log, and applying differential journaling to said meta-
y ' Pact Pta blocks makes little difference in total /O volume.

the performance of other asynchronous streams, by trans-

forming in-memory updates into disk-bound ones. .

Using STP, we show the performance of a file syste% ReiserFS

thatuntangleshese traffic streams, only forcing the prowe now focus on a second Linux journaling filesystem,

cess that issues tHesync to commit its data to disk. ReiserFS. In this section, we focus on the chief differences

Figure 13 plots the performance of an asynchronous geiween ext3 and ReiserFS. Due to time constraints, we

quential stream in the presence of a random synchrondgsot use STP to explore changes to ReiserFS.

stream. Once again, we vary the interval of updates from

the synchronous process, and from the graph, we can4ek Background

that segregated transaction grouping is effective; the-asyhe general behavior of ReiserFS is similar to ext3. For

chronous I/O stream is unaffected by synchronous traffexample, both file systems have the same three journaling

334 Timing mo_des and_ both have com_pound tra_nsactions. However,
N . ._ReiserFS differs from ext3 in three primary ways.

We show that STP can quantify the cost of falsely lim- _. ) . .

. . X . .First, the two file systems use different on-disk struc-

ited parallelism, as discovered in 3.2.2, where pre-comlpun

) ) ) . res to track their fixed-location data. Ext3 uses the same
journal writes are not overlapped with data updates in qf-

dered mode. With STP, we modify the timing so thEttructures as ext2; for improved scalability, ReiserFS$ use

) . . . L . a B+ tree, in which data is stored on the leaves of the tree
journal and fixed-location writes are all initiated simul: . . .
and the metadata is stored on the internal nodes. Since

taneously; the commit transaction is written only after t . , . .
) . ; e impact of the fixed-location data structures is not the
previous writes complete. We consider the same work-

load of five processes issuing 16 KB random synchrono
writes and with the journal on a separate disk.

Figure 14 shows that STP can model this impleme h i d b i The ReiserES
tation change by modifying the timing of the requestg? € partition and may not beé contiguous. 1he Reiser
rnalis not a file and is instead a contiguous sequence of

For this workload, STP predicts an improvement of aboQt!

18%; this prediction matches what we achieve when e ?_cks at t_he beginning of the file system; as_in ext3, the
is changed directly. Thus, as expected, increasing 8!serFSJournaI can be put on a different device. Further,

amount of concurrency improves performance when t g|serFS limits the journal to a maximum of 32 MB.

ocus of this paper, this difference is largely irrelevant.
SSecond, the format of the journal is slightly different.
W_ ext3, the journal can be a file, which may be anywhere

journal is on a separate device. Third, ext3 and ReiserFS_differ slig_htly in theirjournali
contents. In ReiserFS, the fixed locations for the blocks in
3.3.5 Journal Contents the transaction are stored not only in the descriptor block

Ext3 uses physical logging and writes new blocks in thdiut also in the commit block. Also, unlike ext3, Reis-
entirety to the log. However, if whole blocks are jourerFS uses only one descriptor block in every compound

12
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140 | ‘ ‘ ‘ ‘ ‘ Data —+— Figure 16: Impact of Journal Size and Transactions on
120 | wordered Checkpoint Policy in ReiserFS We consider workloads where

data is sequentially written and drsy nc is issued after a spec-
ified amount of data. We use SBA to report the amount of fixed-
location traffic. In the first graph, we vary the amount of data
written; in the second graph, we vary the number of transac-
tions, defined as the number of calldteync.

Fixed-location data (MB)

0 2 N 3? o 4°_n M5§ 6 70 throughput of data journaling mode in ReiserFS does not
mount of data writien (VE) follow the sawtooth pattern. An initial reason for this is
Figure 15:Basic Behavior for Sequential Workloads in Reis- fqund through SBA analysis. As seen in the second and

erFS. Within each graph, we evaluate the three ReiserFS jouy-. . . .
naling modes. We consider a single workload in which thedfiz hird graphs of Figure 15, almost all of the data is written

the sequentially written file is increased along the x-afiach not only to the journal, but is also checkpointed to its in-
graph examines a different metric: the first hows the achievplace location. Thus, ReiserFS appears to checkpoint data

bandwidth; the second uses SBA to report the amount of jburpgych more aggressively than ext3, which we will explore
traffic; the third uses SBA to report the amount of fixed-lmrat in §4.2.3

traffic. The journal size is set to 32 MB.

transaction, which limits the number of blocks that can be _ _
grouped in a transaction. 4.2.2 Journal Commit Policy

We explore the factors that impact when ReiserFS com-

4.2 Semantic A_naly_SIS of RelserFS ) mits transactions to the log. Again, we focus on data jour-
We have performed identical experiments on RelserFSﬁing, since it is the most sensitive. We postpone explor-
we have on ext3. Due to space constraints, we PresgRithe impact of the timers untit4.2.3.

only those results which reveal significantly different be-

havior across the two file systems. We previously saw that ext3 commits data to the log

when approximatelg of the log is filled or when a timer
4.2.1 Basic Behavior: Modes and Workload expires. Running the same workload that does not force
Qualitatively, the performance of the three journalingata to diski(e., does not calf sync) on ReiserFS and
modes in ReiserFS is similar to that of ext3: randoRerforming SBA analysis, we find that ReiserFS uses a
workloads with infrequent synchronization perform beS8ffferent threshold: depending upon whether the journal
with data journaling; otherwise, sequential workloackZ€ is below orabove 8 MB, ReiserFS commits data when
generally perform better than random ones and wrifgbout 450 blocksi., 1.7 MB) or 900 blocksi(e., 3.6
back and ordered modes genera”y perform better tl"Mﬁ) are Wl’itten. GiVen that ReiserFS |ImItS journal Size
data journa“ng' Furthermore’ ReiserFS groups Concm_at most 32 MB, these fixed thresholds appear sufficient.
rent transactions into a single compound transaction, a$inally, we note that ReiserFS also has falsely limited
did ext3. The primary difference between the two filparallelism in ordered mode. Like ext3, ReiserFS forces
systems occurs for sequential workloads with data jodine data to be flushed to its fixed location before it issues
naling. As shown in the first graph of Figure 15, thany writes to the journal.
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Sensitivity to kreiserfsd journal timer have found a number of problems with the ReiserFS im-

o Logwiies + plementation that have not been reported elsewhere. In
Z 70t Fixed-location writes each case, we identified the problem because the SBA
§ zg | xR driver did not observe some disk traffic that it expected.
e w0 VLN L X To \_/erlfy these problems, we have also examined the cc_)de
S 30 P xxxXxx X TxX x X X to find the cause and have suggested corresponding fixes
s 20 to the ReiserFS developers.

e e e e ¢ In the first transaction after a mount, theync call

0 5 10 15 20 25 30
kreiserfsd timer value (seconds)

returns before any of the data is written. We tracked this
aberrant behavior to an incorrect initialization.

Figure 17:Impact of Timers in ReiserFS.The figure plots the » When a file block is overwritten in writeback mode,
reI%tionship bpetween the time that data is Writtgn anr:j theea Its sta’g information is not_updated. This ?rro.r occurs.due
of the kreiserfs timer. The scatter plot shows the resultautf t0 @ failure to update the inode’s transaction information.
tiple (30) runs. The process that is running writes 1 MB ofdat e When committing old transactions, dirty data is not
(nof sync); data journaling mode is used, with other timers seflways flushed. We tracked this to erroneously applying a
to 5 seconds and a journal size of 32 MB. condition to prevent data flushing during journal replay.
4.2.3 Checkpoint Policy e Irrespective of changing the journal thread’s wake up
We also investigate the conditions which trigger Reiserf@erval, dirty data is not flushed. This problem occurs due
to checkpoint data to its fixed-place location; this pole a simple coding error.

icy is more complex in ReiserFS. In ext3, we found th .

data was checkpointed when the journal Wa® 3 full. % The IBM Journaled File System

In ReiserFsS, the point at which data is checkpointed dé-this section, we describe our experience performing a
pends not only on the free space in the journal, but algeliminary SBA analysis of the Journaled File System
on the number of concurrent transactions. We again cd#FS). We began with a rudimentary understanding of JFS
sider workloads that periodically force data to the journfiom what we were able to obtain through documenta-
by callingf sync at different intervals. tion [3]; for example, we knew that the journal is located

Our results are shown in Figure 16. The first graphy default at the end of the partition and is treated as a
shows the amount of data checkpointed as a functioné@ntiguous sequence of blocks and that one cannot spec-
the amount of data written; in all cases, data is chedRthe journaling mode.
pointed beforel of the journalis filled. The second graph Due to the fact that we knew less about this file sys-
shows the amount of data checkpointed as a functiontef before we began, we found we needed to apply a new
the number of transactions. This graph shows that dat@glysis technigue as well: in some cases we filtered out
checkpointed at least at intervals of 128 transactions; riif@ffic and then rebooted the system so that we could infer
ning a similar workload on ext3 reveals no relationshighether the filtered traffic was necessary for consistency
between the number of transactions and checkpointifgnot. For example, we used this technique to understand
Thus, ReiserFS checkpoints data whenever either jourthi journaling mode of JFS. From this basic starting point,
free space drops below 4 MB or when there are 128 traggd without examining JFS code, we were able to learn a
actions in the journal. number of interesting properties about JFS.

As with ext3, timers control when data is written to First, we inferred that JFS uses ordered journaling
the journal and to the fixed locations, but with some difnode. Due to the small amount of traffic to the journal, it
ferences: in ext3, the kjournal daemon is responsible f#&s obvious that it was not employing data journaling. To
committing transactions, whereas in ReiserFS, the kreWfferentiate between writeback and ordered modes, we
erfs daemon has this role. Figure 17 shows the timeo&served that the ordering of writes matched that of or-
which data is written to the journal and to the fixed Iodered mode. That is, when a data block is written by the
cation as the kreiserfs timer is increased; we make t@pplication, JFS orders the write such that the data block
conclusions. First, log writes always occur within the fird¢ written successfully before the metadata writes are is-
five seconds of the data write by the application, regaghed.
less of the timer value. Second, the fixed-location writesSecond, we determined that JFS does logging at the
occur only when the elapsed time is both greater than @gord level. That is, whenever an inode, index tree,
seconds and a multiple of the kreiserfs timer value. Thg, directory tree structure changes, only that structure is

the ReiserFsS timer policy is simpler than that of ext3. logged instead of the entire block containing the structure
As aresult, JFS writes fewer journal blocks than ext3 and

4.3 Finding Bugs ReiserFS for the same operations.

SBA analysis is useful not only for inferring the poli- Third, JFS does not by default group concurrent up-
cies of filesystems, but also for finding cases that hadates into a single compound transaction. Running the
not been implemented correctly. With SBA analysis, weaame experiment as we performed in Figure 6, we see that
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the bandwidth of the asynchronous traffic is very high iobservation of low-level traffic, they are familiar enough
respective of whether there is a synchronous traffic in thvith the systems (indeed, they are the implementors!) to
background. However, there are circumstances in whiekplain behavior and make “semantic” inferences. For ex-
transactions are grouped: for example, if the write comnaitple, to explain why journaling performance drops in a
records are on the same log page. delete benchmark, the authors report that the file system is

Finally, there are no committimers in JFS and the fixetforced to read the first indirect block in order to reclaim
location writes happen whenever the kupdate daemottie disk blocks it references” ([26], Section 8.1). A tool
timer expires. However, the journal writes are never triguch as SBA makes such expert observations more readily
gered by the timer: journal writes are indefinitely postvailable to all. Another recent study compares a range of
poned until there is another trigger such as memory présux file systems, including ext2, ext3, ReiserFS, XFS,
sure or an unmount operation. Thiginite write delay and JFS [7]. This work evaluates which file systems are
limits reliability, as a crash can result in data loss even ffastest for different benchmarks, but gives little explana
data that was written minutes or hours before. tion as towhyone does well for a given workload.

6 Windows NTFS File System Benchmarks: There are many popular file
In this section, we explain our analysis of NTFS. NTFSystem benchmarks, such as I0zone [19], Bonnie [6], Im-
is a journaling file system that is used as the default fieench [17], the modified Andrew benchmark [20], and
system on Windows operating systems such as XP, 20P8stMark [14]. Some of these (I0Zone, Bonnie, Im-
and NT. Although the source code or documentation bénch) perform synthetic read/write tests to determine
NTFS is not publicly available, tools for finding the NTFS$hroughput; others (Andrew, Postmark) are intended to
file layout exist [28]. model “realistic” application workloads. Uniformly, all

We ran the Windows XP operating system on top ofieasure overall throughput or runtime to draw high-level
VMware on a Linux machine. The pseudo device drivepnclusions about the file system. In contrast to SBA,
was exported as a SCSI disk to the Windows and a NTR8ne are intended to yield low-level insights about the in-
file system was constructed on top of the pseudo deviternal policies of the file system.

We ran simple workloads on NTFS and observed traffic
within the SBA driver for our analysis. Perhaps the most related to our work is Chen and Patter-

Every object in NTFS is a file. Even metadata is storetn’s self-scaling benchmark [8]. In this work, the bench-
in terms of files. The journal itself is a file and is locatetharking framework conducts a search over the space of
almost at the center of the file system. We used the mibssible workload parameters g, sequentiality, request
sprogs tools to discover journal file boundaries. Usirgize, total workload size, and concurrency), and hones in
the journal boundaries we were able to distinguish jourrai interesting parts of the workload space. Interestingly,
traffic from fixed-location traffic. some conclusions about file system behavior can be drawn

From our analysis, we found that NTFS does not dmm the resultant output, such as the size of the file cache.
data journaling. This can be easily verified by the amou@ur approach is not nearly as automated; instead, we con-
of data traffic observed by the SBA driver. We also fourgtruct benchmarks that exercise certain file system behav-
that NTFS, similar to JFS, does not do block-level journdbrs in a controlled manner.
ing. It journals metadata in terms of records. We verified
that whole blocks are not journaled in NTFS by matchirigjle System Tracing: Many previous studies have traced
the contents of the fixed-location traffic to the contents bfe system activity. For example, Zhetal.[37], Ouster-
the journal traffic. houtet al. [21], Bakeret al. [2], and Roselliet al. [24]

We also inferred that NTFS performs ordered journal record various file system operations to later deduce
ing. On data writes, NTFS waits until the data blocfle-level access patterns. Vogels [35] performs a simi-
writes to the fixed-location complete before writing thiar study but inside the NT file system driver framework,
metadata blocks to the journal. We confirmed this orhere more information is available.g, mapped I/O is
dering by using the SBA driver to delay the data bloakot missed, as it is in most other studies). A recent ex-
writes upto 10 seconds and found that the following met@mple of a tracing infrastructure is TraceFS [1], which
data writes to the journal are delayed by the correspondinaces file systems at the VFS layer; however, TraceFS

amount. does not enable the low-level tracing that SBA provides.
Finally, Blaze [5] and later Ellaret al. [10] show how
7 Related Work low-level packet tracing can be useful in an NFS environ-

Journaling Studies: Journaling file systems have beement. By recording network-level protocol activity, net-
studied in detail. Most notably, Seltzet al. [26] com- work file system behavior can be carefully analyzed. This
pare two variants of a journaling FFS to soft updates [11¥pe of packet analysis is analogous to SBA since they are
a different technique for managing metadata consistermth positioned at a low level and thus must reconstruct
for file systems. Although the authors present no dirdadgher-level behaviors to obtain a complete view.
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Conclusions (9]

S. Chutani, O. T. Anderson, M. L. Kazar, B. W. Leverett, &W.Mason, and
R. N. Sidebotham. The Episode File SystemUBENIX Winter '92 pages

As systems grow in complexity, there is a need for tech- 43-60, San Francisco, CA, January 1992.
nigues and approaches that enable both users and Syst@n. Ellard and M. I. Seltzer. New NFS Tracing Tools and fieiques for

architects to understand in detail how such systems op-

System Analysis. IILISA '03 pages 73-85, San Diego, California, October
2003.

erate. We have presented semantic block-level analysis . R. Ganger and Y. N. Patt. Metadata Update PerformanEie Systems.
(SBA), a new methodology for file system benchmarking
that uses block-level tracing to provide insight about tf!

internal behavior of a file system. The block stream aps

notated with semantic informatioe.q, whether a block
belongs to the journal or to another data structure) is @
excellent source of information.

In this paper, we have focused on how the behavid?
of journaling file systems can be understood with SBA.
In this case, using SBA is very straightforward: the usBf!
must know only how the journal is allocated on disk. Us-
ing SBA, we have analyzed in detail two Linux journalingf’]

file systems: ext3 and ReiserFS. We also have perfor
a preliminary analysis of Linux JFS and Windows NTF

iy

In OSDI '94, pages 49-60, Monterey, CA, November 1994.

J. Gray and A. ReuterTransaction Processing: Concepts and Techniques
Morgan Kaufmann, 1993.

] R. Hagmann. Reimplementing the Cedar File System Ukipgging and

Group Commit. INSOSP '87 Austin, Texas, November 1987.

J. Katcher. PostMark: A New File System Benchmark. Tecdl Report
TR-3022, Network Appliance Inc., October 1997.

M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. Adt File System
for UNIX. ACM Transactions on Computer Syste2(8):181-197, August
1984,

M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry.cks The UNIX
File System Check Program. Unix System Manager's ManuaB -B&D
Virtual VAX-11 Version, April 1986.

L. McVoy and C. Staelin. Imbench: Portable Tools forfeenance Analy-
sis. INUSENIX 1996San Diego, CA, January 1996.

J. C. Mogul. A Better Update Policy. ISENIX Summer '94Boston, MA,
June 1994.

In all cases, we have uncovered behaviors that would [l W. Norcutt. The I0zone Filesystem Benchmark. httpaiwiozone.org/.
difficult to discover using more conventional approacheig] J. K. Ousterhout. Why Aren't Operating Systems Getfiiagter as Fast as

We have also developed and presented semantic trace

Hardware? IrProceedings of the 1990 USENIX Summer Technical Confer-
ence Anaheim, CA, June 1990.

playback (STP) which enables the rapid evaluation pf] J.k. ousterhout, H. D. Costa, D. Harrison, J. A. Kunze Kdpfer, and J. G.

new ideas for file systems. Using STP, we have demon-

Thompson. A Trace-Driven Analysis of the UNIX 4.2 BSD Filesgsm. In
SOSP '85pages 15-24, Orcas Island, WA, December 1985.

strated the potential benefits of numerous modificatiopsy \ reiser. Reiserrs. www.namesys.com, 2004.
to the current ext3 Impl_em.entatlon for real workloads ar_f'g] E. Riedel, M. Kallahalla, and R. Swaminathan. A Framewior Evaluating
traces. Of these modifications, we believe the transaction Storage System Security. FAST '02 pages 14-29, Monterey, CA, January

grouping mechanism within ext3 should most seriously l&q] b. Rosell

J. R. Lorch, and T. E. Anderson. A Comparisdrrile System

reevaluated; an untangled approach enables asynchronousvorkioads. InUSENIX '0Q pages 41-54, San Diego, California, June 2000.
processes to obtain in-memory bandwidth, despite tR8 M.Rosenblumand J. Ousterhout. The Design and Impléatien of a Log-

presence of other synchronous I/O streams in the system.
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