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Announcements

• I’m not Prabal

– You probably noticed

• Homework 1 is due

• No office hours this week

• Projects

– Continue thinking about them



Today…

Finish ARM assembly example from last time

Software Development Tool Flow

Application Binary Interface (ABI)
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...
start:

movs r0, #1
movs r1, #1
movs r2, #1
sub  r0, r1
bne  done
movs r2, #2

done:
b    done

...

Exercise:

What is the value of r2 at done?



Conditional execution:

Append to many instructions for conditional execution



Application Program Status Register (APSR)
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...
start:

movs r0, #1 // r0  1, Z=0
movs r1, #1 // r1  1, Z=0
movs r2, #1 // r2  1, Z=0
sub  r0, r1 // r0  r0-r1

// but Z flag untouched
// since sub vs subs

bne  done // NE true when Z==0
// So, take the branch

movs r2, #2 // not executed
done:

b    done // r2 is still 1
...

Solution:

what is the value of r2 at done?
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.equ STACK_TOP, 0x20000800 /* Equates symbol to value */

.text /* Tells AS to assemble region */

.syntax unified /* Means language is ARM UAL */

.thumb /* Means ARM ISA is Thumb */

.global _start /* .global exposes symbol */
/* _start label is the beginning */
/* ...of the program region */

.type start, %function /* Specifies start is a function */
/* start label is reset handler */

_start:
.word STACK_TOP, start /* Inserts word 0x20000800 */

/* Inserts word (start) */
start:

movs r0, #10 /* We’ve seen the rest ... */
movs r1, #0

loop:
adds r1, r0
subs r0, #1
bne  loop

deadloop:
b    deadloop
.end

Real assembly example
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.equ STACK_TOP, 0x20000800 /* Sets symbol to value (#define)*/

.text /* Tells AS to assemble region */

.syntax unified /* Means language is ARM UAL */

.thumb /* Means ARM ISA is Thumb */

.global _start /* .global exposes symbol */
/* _start label is the beginning */
/* ...of the program region */

.type start, %function /* Specifies start is a function */
/* start label is reset handler */

_start:
.word STACK_TOP, start /* Inserts word 0x20000800 */

/* Inserts word (start) */
start:

movs r0, #10 /* We’ve seen the rest ... */
movs r1, #0

loop:
adds r1, r0
subs r0, #1
bne  loop

deadloop:
b    deadloop
.end

What’s it all mean?



What happens after a power-on-reset (POR)?

• ARM Cortex-M3 (many others are similar)

• Reset procedure

– SP  mem(0x00000000)

– PC  mem(0x00000004)

_start:

.word __STACKTOP /* Top of Stack */

.word Reset_Handler /* Reset Handler */

.word NMI_Handler /* NMI Handler */

.word HardFault_Handler /* Hard Fault Handler */

.word MemManage_Handler /* MPU Fault Handler */

.word BusFault_handler /* Bus Fault Handler */

...
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Today…

Walk though of the ARM ISA

Software Development Tool Flow

Application Binary Interface (ABI)
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How does an assembly language program 

get turned into a executable program image?

Assembly
files (.s)

Object
files (.o)

as
(assembler)

ld
(linker)

Memory
layout

Linker
script (.ld)

Executable
image file

Binary program
file (.bin)

Disassembled
code (.lst)
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What are the real GNU executable names for the ARM?

• Just add the prefix “arm-none-eabi-” prefix

• Assembler (as)

– arm-none-eabi-as

• Linker (ld)

– arm-none-eabi-ld

• Object copy (objcopy)

– arm-none-eabi-objcopy

• Object dump (objdump)

– arm-none-eabi-objdump

• C Compiler (gcc)

– arm-none-eabi-gcc

• C++ Compiler (g++)

– arm-none-eabi-g++



Real-world example

• To the terminal!

(code at https://github.com/brghena/eecs373_toolchain_examples)
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$ arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o

How are assembly files assembled?

• $ arm-none-eabi-as

– Useful options

• -mcpu

• -mthumb

• -o
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all:
arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o
arm-none-eabi-ld -Ttext 0x0 -o example1.out example1.o
arm-none-eabi-objcopy -Obinary example1.out example1.bin
arm-none-eabi-objdump -S example1.out > example1.lst

A simple (hardcoded) Makefile example
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What information does the disassembled file provide?

.equ STACK_TOP, 0x20000800

.text

.syntax unified

.thumb

.global _start

.type start, %function

_start:
.word STACK_TOP, start

start:
movs r0, #10
movs r1, #0

loop:
adds r1, r0
subs r0, #1
bne  loop

deadloop:
b    deadloop
.end

example1.out:     file format elf32-littlearm

Disassembly of section .text:

00000000 <_start>:
0: 20000800 .word 0x20000800
4: 00000009 .word 0x00000009

00000008 <start>:
8: 200a      movs r0, #10
a: 2100      movs r1, #0

0000000c <loop>:
c: 1809      adds r1, r1, r0
e: 3801      subs r0, #1

10: d1fc      bne.n c <loop>

00000012 <deadloop>:
12: e7fe      b.n 12 <deadloop>

all:
arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o
arm-none-eabi-ld -Ttext 0x0 -o example1.out example1.o
arm-none-eabi-objcopy -Obinary example1.out example1.bin
arm-none-eabi-objdump -S example1.out > example1.lst



Linker script

OUTPUT_FORMAT("elf32-littlearm")

OUTPUT_ARCH(arm)

ENTRY(main)

MEMORY

{

/* SmartFusion internal eSRAM */

ram (rwx) : ORIGIN = 0x20000000, LENGTH = 64k

}

SECTIONS

{

.text :

{

. = ALIGN(4);

*(.text*)

. = ALIGN(4);

_etext = .;

} >ram

}

end = .;

• Specifies little-endian arm in ELF 

format.

• Specifies ARM CPU

• Should start executing at label named 

“main”

• We have 64k of memory starting at 

0x20000000.  You can read, write and 

execute out of it.  We’ve named it 

“ram”

• “.” is a reference to the current 

memory location

• First align to a word (4 byte) boundary

• Place all sections that include .text at 

the start (* here is a wildcard)

• Define a label named _etext to be the 

current address.

• Put it all in the memory location 

defined by the ram memory location.
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How does a mixed C/Assembly program 

get turned into a executable program image?

Assembly
files (.s)

Object
files (.o)

as
(assembler)

gcc
(compile
+ link)

Memory
layout

Linker
script (.ld)

Executable
image file

Binary program
file (.bin)

Disassembled
code (.lst)

ld
(linker)

Library object
files (.o)

C files (.c)



Real-world example #2

• To the terminal! Again!

(code at https://github.com/brghena/eecs373_toolchain_examples)
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Today…

Finish ARM assembly example from last time

Walk though of the ARM ISA

Software Development Tool Flow

Application Binary Interface (ABI)
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ABI Basic Rules

1. A subroutine must preserve the contents of the 

registers r4-11 and SP

– Let’s be careful with r9 though.

2. Arguments are passed though r0 to r3

– If we need more, we put a pointer into memory in one 

of the registers.

• We’ll worry about that later.

3. Return value is placed in r0

– r0 and r1 if 64-bits.

4. Allocate space on stack as needed.  Use it as 

needed. Put it back when done…

– Keep word aligned.
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Let’s write a simple ABI routine

• int bob(int a, int b)

– returns a2 + b2

• Instructions you might need

– add adds two values 

– mul multiplies two values

– bx branch to register

Other useful factoids

• Stack grows down.

– And pointed to by “sp”

• Address we need to go back to in “lr”
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When is this relevant?

• The ABI is a contract with the compiler

– All assembled C code will follow this standard

• You need to follow it if you want C and Assembly 

to work together correctly

• What if you are writing everything in Assembly 

by hand?

– Maybe less important. Unless you’re ever going to 

extend the code
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Questions?

Comments?

Discussion?


