
1

EECS 373
Design of Microprocessor-Based Systems

Branden Ghena
University of Michigan

Lecture 3: Assembly, Tools, and ABI

September 9, 2014

Slides developed in part by

Mark Brehob & Prabal Dutta

2

Announcements

• I’m not Prabal

– You probably noticed

• Homework 1 is due

• No office hours this week

• Projects

– Continue thinking about them

Today…

Finish ARM assembly example from last time

Software Development Tool Flow

Application Binary Interface (ABI)

3

4

...
start:

movs r0, #1
movs r1, #1
movs r2, #1
sub r0, r1
bne done
movs r2, #2

done:
b done

...

Exercise:

What is the value of r2 at done?

Conditional execution:

Append to many instructions for conditional execution

Application Program Status Register (APSR)

7

...
start:

movs r0, #1 // r0  1, Z=0
movs r1, #1 // r1  1, Z=0
movs r2, #1 // r2  1, Z=0
sub r0, r1 // r0  r0-r1

// but Z flag untouched
// since sub vs subs

bne done // NE true when Z==0
// So, take the branch

movs r2, #2 // not executed
done:

b done // r2 is still 1
...

Solution:

what is the value of r2 at done?

8

.equ STACK_TOP, 0x20000800 /* Equates symbol to value */

.text /* Tells AS to assemble region */

.syntax unified /* Means language is ARM UAL */

.thumb /* Means ARM ISA is Thumb */

.global _start /* .global exposes symbol */
/* _start label is the beginning */
/* ...of the program region */

.type start, %function /* Specifies start is a function */
/* start label is reset handler */

_start:
.word STACK_TOP, start /* Inserts word 0x20000800 */

/* Inserts word (start) */
start:

movs r0, #10 /* We’ve seen the rest ... */
movs r1, #0

loop:
adds r1, r0
subs r0, #1
bne loop

deadloop:
b deadloop
.end

Real assembly example

9

.equ STACK_TOP, 0x20000800 /* Sets symbol to value (#define)*/

.text /* Tells AS to assemble region */

.syntax unified /* Means language is ARM UAL */

.thumb /* Means ARM ISA is Thumb */

.global _start /* .global exposes symbol */
/* _start label is the beginning */
/* ...of the program region */

.type start, %function /* Specifies start is a function */
/* start label is reset handler */

_start:
.word STACK_TOP, start /* Inserts word 0x20000800 */

/* Inserts word (start) */
start:

movs r0, #10 /* We’ve seen the rest ... */
movs r1, #0

loop:
adds r1, r0
subs r0, #1
bne loop

deadloop:
b deadloop
.end

What’s it all mean?

What happens after a power-on-reset (POR)?

• ARM Cortex-M3 (many others are similar)

• Reset procedure

– SP  mem(0x00000000)

– PC  mem(0x00000004)

_start:

.word __STACKTOP /* Top of Stack */

.word Reset_Handler /* Reset Handler */

.word NMI_Handler /* NMI Handler */

.word HardFault_Handler /* Hard Fault Handler */

.word MemManage_Handler /* MPU Fault Handler */

.word BusFault_handler /* Bus Fault Handler */

...

10

Today…

Walk though of the ARM ISA

Software Development Tool Flow

Application Binary Interface (ABI)

11

12

How does an assembly language program

get turned into a executable program image?

Assembly
files (.s)

Object
files (.o)

as
(assembler)

ld
(linker)

Memory
layout

Linker
script (.ld)

Executable
image file

Binary program
file (.bin)

Disassembled
code (.lst)

13

What are the real GNU executable names for the ARM?

• Just add the prefix “arm-none-eabi-” prefix

• Assembler (as)

– arm-none-eabi-as

• Linker (ld)

– arm-none-eabi-ld

• Object copy (objcopy)

– arm-none-eabi-objcopy

• Object dump (objdump)

– arm-none-eabi-objdump

• C Compiler (gcc)

– arm-none-eabi-gcc

• C++ Compiler (g++)

– arm-none-eabi-g++

Real-world example

• To the terminal!

(code at https://github.com/brghena/eecs373_toolchain_examples)

14

15

$ arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o

How are assembly files assembled?

• $ arm-none-eabi-as

– Useful options

• -mcpu

• -mthumb

• -o

16

all:
arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o
arm-none-eabi-ld -Ttext 0x0 -o example1.out example1.o
arm-none-eabi-objcopy -Obinary example1.out example1.bin
arm-none-eabi-objdump -S example1.out > example1.lst

A simple (hardcoded) Makefile example

17

What information does the disassembled file provide?

.equ STACK_TOP, 0x20000800

.text

.syntax unified

.thumb

.global _start

.type start, %function

_start:
.word STACK_TOP, start

start:
movs r0, #10
movs r1, #0

loop:
adds r1, r0
subs r0, #1
bne loop

deadloop:
b deadloop
.end

example1.out: file format elf32-littlearm

Disassembly of section .text:

00000000 <_start>:
0: 20000800 .word 0x20000800
4: 00000009 .word 0x00000009

00000008 <start>:
8: 200a movs r0, #10
a: 2100 movs r1, #0

0000000c <loop>:
c: 1809 adds r1, r1, r0
e: 3801 subs r0, #1

10: d1fc bne.n c <loop>

00000012 <deadloop>:
12: e7fe b.n 12 <deadloop>

all:
arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o
arm-none-eabi-ld -Ttext 0x0 -o example1.out example1.o
arm-none-eabi-objcopy -Obinary example1.out example1.bin
arm-none-eabi-objdump -S example1.out > example1.lst

Linker script

OUTPUT_FORMAT("elf32-littlearm")

OUTPUT_ARCH(arm)

ENTRY(main)

MEMORY

{

/* SmartFusion internal eSRAM */

ram (rwx) : ORIGIN = 0x20000000, LENGTH = 64k

}

SECTIONS

{

.text :

{

. = ALIGN(4);

(.text)

. = ALIGN(4);

_etext = .;

} >ram

}

end = .;

• Specifies little-endian arm in ELF

format.

• Specifies ARM CPU

• Should start executing at label named

“main”

• We have 64k of memory starting at

0x20000000. You can read, write and

execute out of it. We’ve named it

“ram”

• “.” is a reference to the current

memory location

• First align to a word (4 byte) boundary

• Place all sections that include .text at

the start (* here is a wildcard)

• Define a label named _etext to be the

current address.

• Put it all in the memory location

defined by the ram memory location.

18

19

How does a mixed C/Assembly program

get turned into a executable program image?

Assembly
files (.s)

Object
files (.o)

as
(assembler)

gcc
(compile
+ link)

Memory
layout

Linker
script (.ld)

Executable
image file

Binary program
file (.bin)

Disassembled
code (.lst)

ld
(linker)

Library object
files (.o)

C files (.c)

Real-world example #2

• To the terminal! Again!

(code at https://github.com/brghena/eecs373_toolchain_examples)

20

Today…

Finish ARM assembly example from last time

Walk though of the ARM ISA

Software Development Tool Flow

Application Binary Interface (ABI)

21

22

ABI Basic Rules

1. A subroutine must preserve the contents of the

registers r4-11 and SP

– Let’s be careful with r9 though.

2. Arguments are passed though r0 to r3

– If we need more, we put a pointer into memory in one

of the registers.

• We’ll worry about that later.

3. Return value is placed in r0

– r0 and r1 if 64-bits.

4. Allocate space on stack as needed. Use it as

needed. Put it back when done…

– Keep word aligned.

23

Let’s write a simple ABI routine

• int bob(int a, int b)

– returns a2 + b2

• Instructions you might need

– add adds two values

– mul multiplies two values

– bx branch to register

Other useful factoids

• Stack grows down.

– And pointed to by “sp”

• Address we need to go back to in “lr”

24

When is this relevant?

• The ABI is a contract with the compiler

– All assembled C code will follow this standard

• You need to follow it if you want C and Assembly

to work together correctly

• What if you are writing everything in Assembly

by hand?

– Maybe less important. Unless you’re ever going to

extend the code

25

26

Questions?

Comments?

Discussion?

