EECS 373

Design of Microprocessor-Based Systems

Branden Ghena
University of Michigan

Lecture 3: Assembly, Tools, and ABI
September 9, 2014

Slides developed in part by
Mark Brehob & Prabal Dutta

Announcements

I’m not Prabal
- You probably noticed

Homework 1 is due

No office hours this week

Projects
- Continue thinking about them

Today...

Finish ARM assembly example from last time

Exercise:
What is the value of r2 at done?

start:
movs ro, #1
movs rl, #1
movs r2, #1
sub reo, ril
bne done
movs r2, #2
done:
b done

Conditional execution:

Append to many instructions for conditional execution

Table A6-1 Condition codes

cond E}::E:L?S::: Meaning (integer) Meaning (floating-point) ab Condition flags
0000 EQ Equal Equal LZ=1

0001 NE Not equal Not equal, or unordered LZ=0

0010 s¢c Carry set Greater than equal. or unordered C=—1

0011 ccd Carry clear Less than =)

0100 MI Minns, negatve Less than N=1

0101 PL Plus, positive or zero Greater than, equal. or unordered N=0

0110 VS Overflow Unordered V=1

0111 VC No overflow Not unordered V=0

1000 HI Unsigned higher Greater than or unordered C=1landZ==10
1001 LS Unsigned lower or same Less than or equal C=—0oaZi=1
1010 GE Signed greater than or equal Greater than or equal N=V

1011 LT Signed less than Less than, or unordered NI=V

1100 CcT Signed greater than Greater than LZ=0ad N=V
1101 LE Signed less than or equal Less than equal, or nnordered LZ=1lorNI=V
1110 None (AL)® Always (unconditional) Always (unconditional) Any

Application Program Status Register (APSR)

31 30 29 28 27 26 0

N|Z|C|V|Q RESERVED

APSR bit fields are in the following two categories:

. Reserved bits are allocated to system features or are available for future expansion Further
information on currently allocated reserved bits is available in The special-purpose program status
registers (xP5R) on page B1-8. Application level software must ignore values read from reserved bits,
and preserve their value on a write. The bits are defined as UNK/SBZP.

. Flags that can be set by many instructions:

N. bit [31] Negative condition code flag. Set to bit [31] of the result of the instruction. If the result
1s regarded as a two's complement signed integer, then N == 1 if the result is negative and

Z, bit [30] Zero condition code flag. Set to 1 if the result of the mnstruction 15 zero, and to 0 otherwise.
A result of zero often indicates an equal result from a companson.

C, bit [29] Carry condition code flag. Set to 1 if the instruction results in a carry condition. for
example an unsigned overflow on an addition.

V, bit [28] Overflow condition code flag. Set to 1 if the instruction results in an overflow condition,
for example a signed overflow on an addition.

Q, bit [27] Set to 1 if an SSAT or USAT instruction changes (saturates) the input value for the signed or
unsigned range of the result.

Solution:

what is the value of r2 at done?

start:

done:

movs
movs
movs
sub

bne

movs

ro, #1
rl, #1
r2, #1
ro, rl

done
r2, #2

done

//
//
//
//
//
//
//
//
//

//

flag untouched
since sub vs subs

NE true when Z==

So, take the branch
not executed

r2 is still 1

Real assembly example

.equ STACK_TOP, 0©x20000800
.text

.syntax unified

.thumb

.global _start

.type start, %function

_start:
.word STACK_TOP, start

start:
movs ro, #10
movs rl, #0
loop:
adds rl1, ro
subs ro, #1
bne loop
deadloop:

b deadloop
.end

What'’s it all mean?

.equ STACK_TOP, 0x20000800 /* Sets symbol to value (#define)*/

.text /* Tells AS to assemble region */
.syntax unified /* Means language is ARM UAL */
.thumb /* Means ARM ISA is Thumb */
.global _start /* .global exposes symbol */

/* _start label is the beginning */

/* ...of the program region */
.type start, %function /* Specifies start is a function */

/* start label is reset handler */

start:
.word STACK_TOP, start /* Inserts word 0x20000800 */
/* Inserts word (start) */
start:
movs ro, #10 /* We’ve seen the rest ... */
movs rl, #0
loop:
adds rl1, ro
subs ro, #1
bne loop
deadloop:

b deadloop
.end

What happens after a power-on-reset (POR)?

e ARM Cortex-M3 (many others are similar)

e Reset procedure
- SP < mem(0x00000000)
- PC < mem(0x00000004)

_start:
.word __ STACKTOP
.word Reset Handler
.word NMI Handler
.word HardFault Handler
.word MemManage Handler
.word BusFault handler

/*
/*
/*
/*
/*

Top of Stack */

Reset Handler */

NMI Handler */

Hard Fault Handler */
MPU Fault Handler */
Bus Fault Handler */

Today...

Software Development Tool Flow

How does an assembly language program
get turned into a executable program image?

Binary program

file (.bin)
1:.L.\:slsembly f.gbjECt Executable
iles (.s) iles (.0) image file@@

O

OO

o

> ey)
link

- (1linker) %

(assembler) Vo

Disassembled

Finker code (.1st)
script (.1d)

What are the real GNU executable names for the ARM?

Just add the prefix “arm-none-eabi-” prefix

Assembler (as)
- arm-none-eabi-as

Linker (ld)
- arm-none-eabi-ld
Object copy (objcopy)

- arm-none-eabi-objcopy
Object dump (objdump)
- arm-none-eabi-objdump

C Compiler (gcc)
- arm-none-eabi-gcc
C++ Compiler (g++)

- arm-none-eabi-g++

Real-world example

e To the terminal!

(code at https://github.com/brghena/eecs373_toolchain_examples)

How are assembly files assembled?

e S arm-none-eabi-as
- Useful options

e -mcCpu
e -mthumb
¢ -0

$ arm-none-eabi-as -mcpu=cortex-m3 -mthumb examplel.s -o examplel.o

A simple (hardcoded) Makefile example

all:
arm-none-eabi-as -mcpu=cortex-m3 -mthumb examplel.s -o examplel.o
arm-none-eabi-1ld -Ttext 0x0 -o examplel.out examplel.o
arm-none-eabi-objcopy -Obinary examplel.out examplel.bin
arm-none-eabi-objdump -S examplel.out > examplel.lst

What information does the disassembled file provide?

all:

arm-none-eabi-as -mcpu=cortex-m3 -mthumb examplel.s -o examplel.o

arm-none-eabi-1ld -Ttext 0x0 -o examplel.out examplel.o

arm-none-eabi-objcopy -Obinary examplel.out examplel.bin

arm-none-eabi-objdump -S examplel.out > examplel.lst

.equ STACK_TOP, ©x20000800 examplel.out: file format elf32-littlearm

.text

.syntax unified

.thumb Disassembly of section .text:

.global _start

.type start, %function 00000000 <_start>:

0: 20000800 .word 0x20000800

_start: 4: 00000009 .word 0x00000009

.word STACK_TOP, start
start: 00000008 <start>:

movs ro, #10 8: 200a movs ro, #10

movs rl, #0O a: 2100 movs rl, #0
loop:

adds ri1, roe 0000000c <loop>:

subs ro, #1 c: 1809 adds rl, rl, ro

bne 1loop e: 3801 subs ro, #1
deadloop: 10: difc bne.n ¢ <loop>

b deadloop

.end 00000012 <deadloop>:

12: e7fe b.n 12 <deadloop>

Linker script

OUTPUT FORMAT ("elf32-littlearm")
OUTPUT ARCH (arm)
ENTRY (main)

SECTIONS

{
.text

{
. = ALIGN (4) ;
* (.text¥*)
. = ALIGN (4) ;
_etext = .
}
}

end = .;

Specifies little-endian arm in ELF
format.

Specifies ARM CPU

Should start executing at label named
“main”

“.” is a reference to the current
memory location

First align to a word (4 byte) boundary
Place all sections that include .text at
the start (* here is a wildcard)

Define a label hamed _etext to be the
current address.

How does a mixed C/Assembly program
get turned into a executable program image?

C files (.c)

Binary program

file (.bin)
1d

(1linker)

.L.\ssembly f.(l)bject @ Executable
files (.s) iles (.o) image file<ii;1d§§
O

9
gcc >
:> (compile >
as + 1link) %
(assembler) Ja&
@
A Nk
Disassembled
.1
Library object Linker code (.1st)

files (.0) script (.1d)

Real-world example #2

e To the terminal! Again!

(code at https://github.com/brghena/eecs373_toolchain_examples)

Today...

Application Binary Interface (ABI)

Register | Synonym | Special Role in the procedure call standard
rs PC The Program Counter.
rid LR The Link Register.
r13 SP The Stack Pointer.
riz IP The Intra-Procedure-call scratch register.
ri1 v Variable-register 8.
ri0 (' Variable-register 7.
9 ;g Platform rn_agister. . . .
= The meaning of this register is defined by the platform standard.
rg vh Variable-register 5.
rf vd Variable register 4.
rG v3 Variable reqgister 3.
s v Variable reqgister 2.
rd vl Variable reqgister 1.
ra ad Argument f scratch register 4.
rZ al Argument f scratch register 3.
r al Argument f result / scratch register 2.
rQ ail Argument / result / scratch register 1.

- r - - [N st ata

ABI Basic Rules

1. A subroutine must preserve the contents of the
registers r4-11 and SP
- Let’s be careful with r9 though.

2. Arguments are passed though rO to r3

- If we need more, we put a pointer into memory in one
of the registers.

« We’ll worry about that later.

3. Return value is placed in r0
- r0 and r1 if 64-bits.

4. Allocate space on stack as needed. Use it as
needed. Put it back when done...
- Keep word aligned.

Let’s write a simple ABI routine

e int bob(int a, int b)
- returns a? + b?
e Instructions you might need

- add adds two values
- mul multiplies two values
- bx branch to register

Other useful factoids

o Stack grows down.
- And pointed to by “sp”

e Address we need to go back to in “lr”

Register

Synonym

rMs

ri4

r3a

2

ri1

v

r10

'l

g

rg

rf

vd

rg

v3

rs

Ve

r4

vl

r3

ad

r2

ald

r1

a’l

rd

ai

When is this relevant?

e The ABI is a contract with the compiler
- All assembled C code will follow this standard

e You need to follow it if you want C and Assembly
to work together correctly

« What if you are writing everything in Assembly
by hand?

- Maybe less important. Unless you’re ever going to
extend the code

Questions?

Comments?

Discussion?

