EECS 373 Fall 2014 Homework #1

Due Tuesday September 9, 2014 (in lecture).

Name: unique name:

You are to turn in this sheet as a cover page for your assignment. The rest of the assignment should be stapled
to this page. This is an individual assignment; all of the work should be your own. Assignments that are
unstapled, lack a cover sheet, or are difficult to read will lose at least 50% of the possible points and we may not
grade them at all.

The purpose of this assignment is to refresh your memory about logic and Verilog—it’s a review of EECS 270.

Review of combinational logic

Combinational logic is memory-less. The output of a combinational logic circuit is determined purely
by its current inputs. This is in contrast to sequential logic, in which the output depends on both current
inputs and current state (Mealy Machine) or only the current state (Moore Machine), and in both
Machines where the current state depends on prior inputs. In this document we will generally use the
asterisk * as AND, the plus + as OR, a single tick ‘ as negation, and a circled-plus @ as XOR. It is
generally safe to assume that both a signal (e.g. A) and its complement (A’) are
available as inputs to a circuit.

Ql. Consider the logic function F = (A+B’)*(A+C)
a. Generate the truth table for this function.
b. Implement F using three 2-input NOR gates (do not simplify the expression).

Q2. Consider a 2-to-1 MUX as drawn on the right. |B II\
a. Generate the truth table for this circuit. 1 0
b. Implement Z = f(A,B,Se) using three 2-input NAND gates. Se
Z
A
Q3. Consider a full-adder as drawn on the right. E— FULL Cour
a. Generate the truth table for this circuit. B ADDER
b. Using standard 2-input gates (AND, OR, XOR) and the NOT S
gate, draw a circuit which implements the same function Cin —
(has the same truth table).

Answer the following questions about implementing combinational logic in Verilog. You will need to
refer to the combinational logic tutorial (linked online from the course homepage).

Q4. Provide a single-line assign statement which implements the following
a. Y=(A*B’)+(B*C’)+(A*C)
b. A4-to-1 MUX. Use A, B, C, D, SO, and S1 as the inputs and Z as the output.

(5. Usingthe adder in the tutorial as a template, implement
a. A module implementing a 4-to-1 MUX called MUX41 which takes six bits of input
(A,B,C,D,S0,51) and generates one output (Z).
b. A module implementing an 8-to-1 MUX called MUX81 which takes 11 bits of input
(A[7:0], S[2:0]) and generates one output (Z). It should do all its work by instantiating
the 4-to-1 MUX of part (a) as needed.

In addition to assign statements, combinational logic can be implemented in an “always @*” block.
Q4. Redo problem Q4.a using an always @* block rather than an assign statement.

Review of Sequential logic

Sequential logic is built around storage elements. There are a number of
different types of storage elements (D, T, and JK flip-flops, for example), but digital
designers tend to use only one: the D flip-flop or DFF. A DFF has two inputs—“D” and _
“clock”—and one output—“Q”. The value of D is copied to Q on a rising edge of the — QF
clock (when clock transitions from 0 to 1). Furthermore, the value of D cannot change
too soon before or too soon after the rising edge of the clock. Finally it is common to have the value “Q”
and its inverse (Q’) as outputs. A DFF is typically drawn as shown on the right (the triangle is the clock
input). Nearly every storage unit you will encounter is built out of D flip-flops.

—D Q-

Q7. Neatly complete the following timing diagram for a D flip-flop. Indicate that the value is
unknown before the first rising edge in any way you see fit.

CLK _l

D
Q
Q’ Dy D o Qp
It is commonly the case that we wish to store larger values than just a
single bit. In such cases, we generally use flip-flops in parallel and call them e]
registers. The following diagram shows a typical 4-bit register (though it D; b o Q,
uses a slightly different symbol for a D flip-flop; CP means clock-positive).
[e B2 -] o
A counter is a device that that counts how many times a certain event o S o
has occurred. See http://en.wikipedia.org/wiki/Counter. > :
. A I ‘—4 cF oF
Q8. Using D flip-flops, and AND, OR and NOT gates, as building
Dg D +] Q:

blocks, draw a 2-bit modulo counter. That is, on each rising edge
the counter’s output value is incremented by 1, but where 3
wraps around to 0, so it is a modulo-4 counter (the counting
sequence is: 021>2->3>repeat). You do not need to worry

ol
I

CP @ cp

b 4-bit register, from
apout reset. http://cpuville.com/register.htm

Refer to the Verilog sequential logic overview linked from the course homepage for these questions.

Q9. Draw the state transition diagram which is implemented by the code on the next page. Your
diagram should resemble figure 2a from the tutorial. You need not include reset.

Q10. Define the term “setup time” and the term “hold time” with respect to a D flip-flop. Your
answer should include a (simple) timing diagram which illustrates your point.

module fsm

input clk,
output [3:

reg [3:0]
reg [1:0]
reg [1:0]

parameter

always @*
begin

end

(clk, in, reset, out);
in, reset;
0] out;

out;
state;
next_state;

zero=2'd0, one=2'dl, two=2'd2, three=2'd3;
case (state)
zero:
begin
out = 4'b0000;
next_state = one;
end
one:
begin
out = 4'b0001;
if (in)
next_state = two;
else
next_state = one;
end
two:
begin
out = 4'b0010;
if (in)
next_state = two;
else
next_state = three;
end
three:
begin
out = 4'b0100;
if (in)
next_state = zero;
else
next_state = two;
end
default:
begin
out = 4'b0000;
next_state = zero;
end
endcase

always @ (posedge clk)
begin

end

endmodule

if (reset)
state <= zero;
else
state <= next_ state;

