Sourcery G++ Lite
ARM EABI
Sourcery G++ Lite 2010g1-188
Getting Started

(& (ODESOURCERY

Sourcery G++ Lite: ARM EABI: Sourcery G++ Lite 2010q1-
188: Getting Started

CodeSourcery, Inc.
Copyright © 2005, 2006, 2007, 2008, 2009, 2010 CodeSourcery, Inc.

All rights reserved.

Abstract

This guide explains how to install and build applications with Sourcery G++ Lite, CodeSourcery's
customized, validated, and supported version of the GNU Toolchain. Sourcery G++ Lite includes
everything you need for application development, including C and C++ compilers, assemblers,
linkers, and libraries.

When you have finished reading this guide, you will know how to use Sourcery G++ from the
command line.

Table of Contents

P ACE . it v
1. INENdEU AUGIENCE ...t vi
2. OFQANIZALION ...ttt ettt vi
3. Typographical CONVENTIONSuuiiiiiiie ittt vii
Lo QUICK SEAMT ..ottt e e e e e et et e e e ae 1
1.1, Installation and SEt-UPc..uiiiiiiiiiii e 2
1.2. Configuring Sourcery G++ Lite for the Target SyStemoccoiiiiiiiiiieiiiiineennns 2
1.3. BUIldiNG YOUT PrOGramcoouuiiiiiiii ettt e 2
1.4. Running and Debugging YOUr PrOgramoveeuuuuneeiriieeiiiiae et eennens 2
2. Installation and CoNfIQUIATIONuiiiiiiiiiiii e 4
2.1, TEIMINOIOQY . ..eeitieeeiit et e e ettt e eeee 5
2.2, SYStem REQUITEIMENESeeutiieiiii et 5
2.3. Downloading an INSEAlIEriiiiii e 6
2.4, Installing SOUrCEry G+ LIteuiiiiiiii e 6
2.5. Installing Sourcery G++ Lite UPJatesuuviiiiiiiiiiiiiieeeii e 9
2.6. Setting up the ENVIFONMENToovvtiiiii e 9
2.7. Uninstalling SOUICEry G+ Litecoouuiiiiiiiiiiiiii e 11
3. Sourcery G++ Lite for ARM EABI ... 13
3.1. Included Components and FEATUIESuiiiiiiiieiiii e 14
3.2, Library Configurationsieeeiiiieeeii e 14
3.3.USING FIash IMEIMOIY ... 15
3.4, Using VP FI0ating POINTccouutiiiiiiicii s 16
3.5 ABI CompPatibDilitycooeeeiiiii e 17
3.6. ARM Profiling Implementationcoveiiiiiiiiii e 18
3.7. Object File POrtabilitycoouuuiiiiii e 18
4. Using Sourcery G++ from the Command Lineccoouiiiiiiiiiniiiiieeec e 19
4.1. Building an ApplICAtIoNuiiiiiii e 20
4.2. Running Applications on the Target SYStEMooeiiiiiiiiiiiiiie e 20
4.3. Running Applications in the SIMulatorcccooviiiiiiii e, 20
4.4. Running Applications from GDBc.uiiiiiiiiiiiii e 21
5. CS3™: The CodeSourcery Common Startup Code SEQUENCEcccvvvriveirinieeiiiineeeeiinnnn 23
5.1 LINKEE SCIIPLS ...t 24
5.2. Program Startup and Terminationc...oovieieiiiiiieii e 26
5.3, MEMOIY LAYOUL ...c.enieiiiite et e 29
5.4. Interrupt Vectors and Handlerscoooiiiiiiiiii e 31
5.5. Supported Boards for ARM EABI ... 32
5.6. Interrupt VECtor TabIESuiiiiii e 33
6. SOUrcery G++ DEDUQG SPIITEiee et 35
6.1. Probing for DebUQG DEVICESuumiiiiiiie i 36
6.2. Debug Sprite EXAmMPIeooouiiiiiii e 36
6.3. Invoking Sourcery G++ Debug SPriteoiiviiiiiiiiiiie e 37
6.4. Sourcery G++ Debug Sprite OptionSuiiiiiiiiiiiiie e 38
6.5. Remote Debug INterface DEVICESovevuuiiiiiiie e 38
6.6. ACtEl FIASNPIO DEVICES .. .cevvtiieiiiii et e 39
B.7. AITEIA DBVICES ...ttt et 39
6.8. Debugging @ REMOLe BOAITuiiiiiiiieiiiii i 40
6.9. Supported BOoard FIlEScoouuiiiiii i 41
6.10. BOArd File SYNTAXcoouuniiiiiiiii e 41
7. Next Steps With SOUICEIY G .ooviiiiiiii e 45
7.1. Sourcery G++ KNOWIedge BaSeuiiiiiiiiiiiiiii e 46
7.2. Manuals for GNU Toolchain COMPONENTSuuiiiiiiieiiiiiieeeiiine e 46

Sourcery G++ Lite

A. Sourcery G++ Lite RelEase NOTESiiiiieiii i e e aen 47
A.1. Changes in Sourcery G++ Lite for ARM EABIcoooviiiiiiiiie e, 48
B. SOUICErY G Lite LICENSES .vuuiiiiiiiiieiii e et e e e e e e e e e e e e aaas 66
B.1. Licenses for Sourcery G++ Lite COMPONENTSvvvvvieiiniiiiiieiiiieeiie e e eieeean 67
B.2. Sourcery G++ Software License AQreBmeNtcouueviiieiiiieiiiieeiiieeeeeeeeeeaaeeaens 68
B3 AUIIDULION . 71

Preface

This preface introduces the Sourcery G++ Lite Getting Started guide. It explains the structure
of this guide and describes the documentation conventions used.

Preface

1. Intended Audience

This guide is written for people who will install and/or use Sourcery G++ Lite. This guide provides
a step-by-step guide to installing Sourcery G++ Lite and to building simple applications. Parts of
this document assume that you have some familiarity with using the command-line interface.

2. Organization

This document is organized into the following chapters and appendices:

Chapter 1, “Quick Start”

Chapter 2, “Installation and Config-
uration”

Chapter 3, “Sourcery G++ Lite for
ARM EABI”

Chapter 4, “Using Sourcery G++
from the Command Line”

Chapter 5, “CS3™: The Code-
Sourcery Common Startup Code Se-
quence”

Chapter 6, “Sourcery G++ Debug
Sprite”

Chapter 7, “Next Steps with Sourcery
G++”

Appendix A, “Sourcery G++ Lite
Release Notes”

This chapter includes a brief checklist to follow when in-
stalling and using Sourcery G++ Lite for the first time. You
may use this chapter as an abbreviated guide to the rest of this
manual.

This chapter describes how to download, install and configure
Sourcery G++ Lite. This section describes the available install-
ation options and explains how to set up your environment so
that you can build applications.

This chapter contains information about using Sourcery G++
Lite that is specific to ARM EABI targets. You should read
this chapter to learn how to best use Sourcery G++ Lite on
your target system.

This chapter explains how to build applications with Sourcery
G++ Lite using the command line. In the process of reading
this chapter, you will build a simple application that you can
use as a model for your own programs.

CS3is CodeSourcery's low-level board support library. This
chapter documents the boards supported by Sourcery G++
Lite and the compiler and linker options you need to use with
them. It also explains how you can use and modify CS3-
provided definitions for memory maps, system startup code
and interrupt vectors in your own code.

This chapter describes the use of the Sourcery G++ Debug
Sprite for remote debugging. The Sprite allows you to debug
programs running on a bare board without an operating system.
This chapter includes information about the debugging devices
and boards supported by the Sprite for ARM EABI.

This chapter describes where you can find additional docu-
mentation and information about using Sourcery G++ Lite
and its components. It also provides information about
Sourcery G++ subscriptions. CodeSourcery customers with
Sourcery G++ subscriptions receive comprehensive support
for Sourcery G++.

This appendix contains information about changes in this re-
lease of Sourcery G++ Lite for ARM EABI. You should read
through these notes to learn about new features and bug fixes.

Vi

Preface

Appendix B, “Sourcery G++ Lite This appendix provides information about the software li-

Licenses” censes that apply to Sourcery G++ Lite. Read this appendix
to understand your legal rights and obligations as a user of
Sourcery G++ Lite.

3. Typographical Conventions

The following typographical conventions are used in this guide:

> command arg ... A command, typed by the user, and its output. The “>” character is the
command prompt.

command The name of a program, when used in a sentence, rather than in literal
input or output.

literal Text provided to or received from a computer program.

pl acehol der Text that should be replaced with an appropriate value when typing a
command.

\ At the end of a line in command or program examples, indicates that a
long line of literal input or output continues onto the next line in the
document.

vii

Chapter 1
Quick Start

This chapter includes a brief checklist to follow when installing and using Sourcery G++
Lite for the first time. You may use this chapter as an abbreviated guide to the rest of this
manual.

Quick Start

Sourcery G++ Lite for ARM EABI is intended for developers working on embedded applications
or firmware for boards without an operating system, or that run an RTOS or boot loader. This Sourcery
G++ configuration is not intended for Linux or uClinux kernel or application development.

Follow the steps given in this chapter to install Sourcery G++ Lite and build and run your first ap-
plication program. The checklist given here is not a tutorial and does not include detailed instructions
for each step; however, it will help guide you to find the instructions and reference information you
need to accomplish each step.

You can find additional details about the components, libraries, and other features included in this
version of Sourcery G++ Lite in Chapter 3, “Sourcery G++ Lite for ARM EABI”.

1.1. Installation and Set-Up

Install Sourcery G++ Lite on your host computer. You may download an installer package
from the Sourcery G++ web site?, or you may have received an installer on CD. The installer is an
executable program that pops up a window on your computer and leads you through a series of dialogs
to configure your installation. If the installation is successful, it will offer to launch the Getting
Started guide. For more information about installing Sourcery G++ Lite, including host system re-
quirements and tips to set up your environment after installation, refer to Chapter 2, “Installation
and Configuration”.

Install drivers for your debug device. If you plan to use the Sourcery G++ Debug Sprite, you
may need to install drivers, libraries, or other software on your host system. Refer to Chapter 6,
“Sourcery G++ Debug Sprite” for a list of supported devices and information about installing drivers
and other device set-up. Sourcery G++ Lite also supports third-party debug devices that communicate
via the GDB remote serial protocol. If you plan to use one of these devices, follow the manufacturer's
directions to connect the device and install any required drivers or software.

1.2. Configuring Sourcery G++ Lite for the Tar-
get System

Identify your target board. On bare-metal targets, you must explicitly specify a linker script
for your target board on your link command line. Supported boards are listed in Chapter 5, “CS3™:
The CodeSourcery Common Startup Code Sequence”. You can also choose a simulator as your target
board.

1.3. Building Your Program

Build your program with Sourcery G++ command-line tools. Create a simple test program,
and follow the directions in Chapter 4, “Using Sourcery G++ from the Command Line” to compile
and link it using Sourcery G++ Lite. On bare-metal targets, you must specify a linker script using
the —T option on your link command line. Supported boards and linker scripts are listed in Chapter 5,
“CS3™: The CodeSourcery Common Startup Code Sequence”.

1.4. Running and Debugging Your Program

The steps to run or debug your program depend on your target system and how it is configured.
Choose the appropriate method for your target.

! http://www.codesourcery.com/gnu_toolchains/

http://www.codesourcery.com/gnu_toolchains/
http://www.codesourcery.com/gnu_toolchains/

Quick Start

Run or debug your program in the simulator. ~ Sourcery G++ Lite includes an instruction-set
simulator, which provides an easy way to run or debug your program without requiring target hard-
ware. The simulator can be run directly from the command line (see Section 4.3, “Running Applica-
tions in the Simulator™) or via the debugger (see Section 4.4, “Running Applications from GDB”).

Debug your program on the target using the Debug Sprite. You can use the Sourcery G++
Debug Sprite to load and execute your program on the target from the debugger. Refer to Section 4.4,
“Running Applications from GDB” for instructions on using the Sprite from the GDB command
line. Detailed reference material for the Sourcery G++ Debug Sprite, including information about
supported debug devices, can be found in Chapter 6, “Sourcery G++ Debug Sprite”.

Debug your program on the target using a third-party debug device. ~ Sourcery G++ supports
debugging programs on the remote target using third-party debug devices that can communicate via
the GDB remote serial protocol. For command-line GDB instructions, see Section 4.4, “Running
Applications from GDB”.

Chapter 2
Installation and Configuration

This chapter explains how to install Sourcery G++ Lite. You will learn how to:
1. Verify that you can install Sourcery G++ Lite on your system.

2. Download the appropriate Sourcery G++ Lite installer.

3. Install Sourcery G++ Lite.

4. Configure your environment so that you can use Sourcery G++ Lite.

Installation and Configuration

2.1. Terminology

Throughout this document, the term host system refers to the system on which you run Sourcery
G++ while the term target systemrefers to the system on which the code produced by Sourcery G++
runs. The target system for this version of Sourcery G++ is arm-none-eabi.

If you are developing a workstation or server application to run on the same system that you are using
to run Sourcery G++, then the host and target systems are the same. On the other hand, if you are
developing an application for an embedded system, then the host and target systems are probably
different.

2.2. System Requirements

2.2.1. Host Operating System Requirements
This version of Sourcery G++ supports the following host operating systems and architectures:

* Microsoft Windows NT 4, Windows 2000, Windows XP, Windows Vista, and Windows 7 systems
using 1A32, AMDG64, and Intel 64 processors.

e GNU/Linux systems using 1A32, AMD64, or Intel 64 processors, including Debian 3.1 (and later),
Red Hat Enterprise Linux 3 (and later), and SUSE Enterprise Linux 8 (and later).

Sourcery G++ is built as a 32-bit application. Therefore, even when running on a 64-bit host system,
Sourcery G++ requires 32-bit host libraries. If these libraries are not already installed on your system,
you must install them before installing and using Sourcery G++ Lite. Consult your operating system
documentation for more information about obtaining these libraries.

Installing on Ubuntu and Debian GNU/Linux Hosts

The Sourcery G++ graphical installer is incompatible with the dash shell, which is the
default /bin/sh for recent releases of the Ubuntu and Debian GNU/Linux distributions.
To install Sourcery G++ Lite on these systems, you must make /bin/sh a symbolic link
to one of the supported shells: bash, csh, tcsh, zsh, or ksh.

For example, on Ubuntu systems, the recommended way to do this is:

> sudo dpkg-reconfigure -plow dash
Install as /bin/sh? No

This is a limitation of the installer and uninstaller only, not of the installed Sourcery G++
Lite toolchain.

2.2.2. Host Hardware Requirements
In order to install and use Sourcery G++ Lite, you must have at least 128MB of available memory.

The amount of disk space required for a complete Sourcery G++ Lite installation directory depends
on the host operating system and the number of target libraries included. Typically, you should plan
on at least 400MB.

In addition, the graphical installer requires a similar amount of temporary space during the installation
process. On Microsoft Windows hosts, the installer uses the location specified by the TEMP environ-
ment variable for these temporary files. If there is not enough free space on that volume, the installer

Installation and Configuration

prompts for an alternate location. On Linux hosts, the installer puts temporary files in the directory
specified by the IATEMPD IR environment variable, or /tmp if that is not set.

2.2.3. Target System Requirements

See Chapter 3, “Sourcery G++ Lite for ARM EABI” for requirements that apply to the target system.

2.3. Downloading an Installer

If you have received Sourcery G++ Lite on a CD, or other physical media, then you do not need to
download an installer. You may skip ahead to Section 2.4, “Installing Sourcery G++ Lite”.

You can download Sourcery G++ Lite from the Sourcery G++ web sitel. This free version of Sourcery
G++, which is made available to the general public, does not include all the functionality of Code-
Sourcery's product releases. If you prefer, you may instead purchase or register for an evaluation of
CodeSourcery's product toolchains at the Sourcery G++ Portal®.

Once you have navigated to the appropriate web site, download the installer that corresponds to your
host operating system. For Microsoft Windows systems, the Sourcery G++ installer is provided as
an executable with the . exe extension. For GNU/Linux systems Sourcery G++ Lite is provided as
an executable installer package with the .bin extension. You may also install from a compressed
archive with the . tar .bz2 extension.

On Microsoft Windows systems, save the installer to the desktop. On GNU/Linux systems, save the
download package in your home directory.

2.4. Installing Sourcery G++ Lite

The method used to install Sourcery G++ Lite depends on your host system and the kind of installation
package you have downloaded.

2.4.1. Using the Sourcery G++ Lite Installer on Microsoft Windows

If you have received Sourcery G++ Lite on CD, insert the CD in your computer. On most computers,
the installer then starts automatically. If your computer has been configured not to automatically run
CDs, open My Computer, and double click on the CD. If you downloaded Sourcery G++ Lite,
double-click on the installer.

After the installer starts, follow the on-screen dialogs to install Sourcery G++ Lite. The installer is
intended to be self-explanatory and on most pages the defaults are appropriate.

! http://www.codesourcery.com/gnu_toolchains/
2 https://support.codesourcery.com/GNUToolchain/

http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/
http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/

Installation and Configuration

2 Sourcery G++ for ARM EABI M= B3
Sourcery G++ for ARM EABI Wizard

@ Welcome! Installamawhere will guide you thraugh the installation of Sourcery

) Important Infarmation G+ for ARM EABI.

O Choose Install Set Itis strangly recommended that you quit all programs befare
(@ choose Install Folder continuing with this installation.

© Add to PATH?

() Choose Shortcut Folder
O Fre-Installation Surmmary
) Installing... You may cancel this installation at any time by clicking the 'Cancel’

© Install Complete huttan.

Click the 'Next' huttan to proceed to the next screen. Ifyou want to
change something an a previous screen, click the ‘Previous' buttan.

(& CoeSoucea

InstallAmpwhere by Macravision

Cancel | Erevious |

Running the Installer. The graphical installer guides you through the steps to
install Sourcery G++ Lite.

You may want to change the install directory pathname and customize the shortcut installation.

2 Sourcery G++ for ARM EABI (- [T =]

Choose Install Folder

G Welcome! Where Would You Like to Install?

G Impartant Information IC:'l,Program Files\CodeSourceryl Sourcery G++ I
& Choose Install Set

& Choose Install Folder

@ Add to PATH?

() Choose Shortcut Folder
O Fre-Installation Surmmary
) Installing...

) Install Complete

Restore Default Folder | Choose...

(& CoeSoucea

InstallAmpwhere by Macravision

Cancel | Frevious | INext |

Choose Install Folder. Select the pathname to your install directory.

Installation and Configuration

2 Sourcery G++ for ARM EABI

& wielcome!

& Important Infarmation

& Choose Install Set

& Choose Install Folder

@ Add to PATH?

& Choose Shorteut Folder
O Fre-Installation Surmmary
) Installing...

) Install Complete

(& (onESouncea

M= B3
Choose Shortcut Folder

Where would you like to create product icons?

{~ In & new Program Group: ISourcery G++ For ARM EABL

{~ In an existing Program Group: IAccessories LI
" In the Start Menu

= On the Desktop

' In the Quick Launch Bar

.
¥ Other: IieSourcery'l,Sourcery G+ For ARM BB Choose... |

" Don't create icons

[~ Create Icons For Al Users

InstallAmpwhere by Macravision

Cancel |

Frevious |

Choose Shortcut Folder.

You can customize where the installer creates

shortcuts for quick access to Sourcery G++ Lite.

When the installer has finished, it asks if you want to launch a viewer for the Getting Started guide.
Finally, the installer displays a summary screen to confirm a successful install before it exits.

2 Sourcery G++ for ARM EABI

& wielcome!
& Important Infarmation
& Choose Install Set

I B3
Install Complete

fongratulations! Sourcery G++ For ARM EART
has been successfully installed to:

diicygwinthomesandralarmss3instal

& Choose Install Folder
@ Add to PATH?

& Choose Shorteut Folder
G Fre-Installation Summary
& Installing...

& Install Complete

Press "Done” to quit the installer,

(& (onESouncea

InstallAmpwhere by Macravision

Cancel |

Frevious |

You should see a screen similar to this after a successful
install.

Install Complete.
If you prefer, you can run the installer in console mode rather than using the graphical interface. To
do this, invoke the installer with the -1 console command-line option. For example:
> /path/to/package.exe -1 console
2.4.2. Using the Sourcery G++ Lite Installer on GNU/Linux Hosts

Start the graphical installer by invoking the executable shell script:

Installation and Configuration

> /bin/sh _/path/to/package.bin

After the installer starts, follow the on-screen dialogs to install Sourcery G++ Lite. For additional
details on running the installer, see the discussion and screen shots in the Microsoft Windows section
above.

If you prefer, or if your host system does not run the X Window System, you can run the installer
in console mode rather than using the graphical interface. To do this, invoke the installer with the
-1 console command-line option. For example:

> /bin/sh ./path/to/package.bin -i console

2.4.3. Installing Sourcery G++ Lite from a Compressed Archive

You do not need to be a system administrator to install Sourcery G++ Lite from a compressed archive.
You may install Sourcery G++ Lite using any user account and in any directory to which you have
write access. This guide assumes that you have decided to install Sourcery G++ Lite in the $HOME/
CodeSourcery subdirectory of your home directory and that the filename of the package you
have downloaded is /path/to/package.tar.bz2. After installation the toolchain will be in
$HOME/CodeSourcery/sourceryg++-2010q1.

First, uncompress the package file:

> bunzip2 /path/to/package.tar._bz2

Next, create the directory in which you wish to install the package:
> mkdir -p $HOME/CodeSourcery

Change to the installation directory:

> cd $HOME/CodeSourcery

Unpack the package:

> tar xf /path/to/package.tar

2.5. Installing Sourcery G++ Lite Updates

If you have already installed an earlier version of Sourcery G++ Lite for ARM EABI on your system,
it is not necessary to uninstall it before using the installer to unpack a new version in the same location.
The installer detects that it is performing an update in that case.

If you are installing an update from a compressed archive, it is recommended that you remove any
previous installation in the same location, or install in a different directory.

Note that the names of the Sourcery G++ commands for the ARM EABI target all begin with
arm-none-eabi. This means that you can install Sourcery G++ for multiple target systems in the
same directory without conflicts.

2.6. Setting up the Environment

As with the installation process itself, the steps required to set up your environment depend on your
host operating system.

Installation and Configuration

2.6.1. Setting up the Environment on Microsoft Windows Hosts
2.6.1.1. Setting the PATH

In order to use the Sourcery G++ tools from the command line, you should add them to your PATH.
You may skip this step if you used the graphical installer, since the installer automatically adds
Sourcery G++ to your PATH.

To set the PATH on a Microsoft Windows Vista system, use the following command in a cmd . exe
shell:

> setx PATH "%PATH%;C:\Program Files\Sourcery G++\bin"

where C:\Program Files\Sourcery G++ should be changed to the path of your Sourcery
G++ Lite installation.

To set the PATH on a system running a Microsoft Windows version other than Vista, from the desktop
bring up the Start menu and right click on My Computer. Select Properties, go to the
Advanced tab, then click on the Environment Variables button. Select the PATH variable
and click the Edit. Add the string ;C:\Program Files\Sourcery G++\bin to the end,
and click OK. Again, you must adjust the pathname to reflect your installation directory.

You can verify that your PATH is set up correctly by starting a new cmd . exe shell and running:
> arm-none-eabi-g++ -v

Verify that the last line of the output contains: Sourcery G++ Lite 2010g1-188.
2.6.1.2. Working with Cygwin

Sourcery G++ Lite does not require Cygwin or any other UNIX emulation environment. You can
use Sourcery G++ directly from the Windows command shell. You can also use Sourcery G++ from
within the Cygwin environment, if you prefer.

The Cygwin emulation environment translates Windows path names into UNIX path names. For
example, the Cygwin path /home/user/hel 1o . c corresponds to the Windows path ¢ 2 \cygwin\
home\user\hello. c. Because Sourcery G++ is not a Cygwin application, it does not, by default,
recognize Cygwin paths.

If you are using Sourcery G++ from Cygwin, you should set the CYGPATH environment variable.
If this environment variable is set, Sourcery G++ Lite automatically translates Cygwin path names
into Windows path names. To set this environment variable, type the following command in a Cygwin
shell:

> export CYGPATH=cygpath

To resolve Cygwin path names, Sourcery G++ relies on the cygpath utility provided with Cygwin.
You must provide Sourcery G++ with the full path to cygpath if cygpath is not in your PATH.
For example:

> export CYGPATH=c:/cygwin/bin/cygpath

directs Sourcery G++ Lite to use c:/cygwin/bin/cygpath as the path conversion utility. The
value of CYGPATH must be an ordinary Windows path, not a Cygwin path.

10

Installation and Configuration

2.6.2. Setting up the Environment on GNU/Linux Hosts

If you installed Sourcery G++ Lite using the graphical installer then you may skip this step. The in-
staller does this setup for you.

Before using Sourcery G++ Lite you should add it to your PATH. The command you must use varies
with the particular command shell that you are using. If you are using the C Shell (csh or tcsh),
use the command:

> setenv PATH $HOME/CodeSourcery/Sourcery_G++/bin:$PATH
If you are using Bourne Shell (sh), the Korn Shell (ksh), or another shell, use:

> PATH=$HOME/CodeSourcery/Sourcery_G++/bin:$PATH
> export PATH

If you are not sure which shell you are using, try both commands. In both cases, if you have installed
Sourcery G++ Lite in an alternate location, you must replace the directory above with bin subdir-
ectory of the directory in which you installed Sourcery G++ L.ite.

You may also wish to set the MANPATH environment variable so that you can access the Sourcery
G++ manual pages, which provide additional information about using Sourcery G++. To set the
MANPATH environment variable, follow the same steps shown above, replacing PATH with MANPATH,
and bin with share/doc/sourceryg++-arm-none-eabi/man.

You can test that your PATH is set up correctly by running the following command:
> arm-none-eabi-g++ -v

Verify that the last line of the output contains: Sourcery G++ Lite 2010g1-188.

2.7. Uninstalling Sourcery G++ Lite

The method used to uninstall Sourcery G++ Lite depends on the method you originally used to install
it. If you have modified any files in the installation it is recommended that you back up these changes.
The uninstall procedure may remove the files you have altered. In particular, the arm-none-eabi
directory located in the install directory will be removed entirely by the uninstaller.

2.7.1. Using the Sourcery G++ Lite Uninstaller on Microsoft Windows

You should use the provided uninstaller to remove a Sourcery G++ Lite installation originally created
by the graphical installer. Start the graphical uninstaller by invoking the executable Uninstall execut-
able located in your installation directory, or use the uninstall shortcut created during installation.
After the uninstaller starts, follow the on-screen dialogs to uninstall Sourcery G++ Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall executable found in your Sourcery G++ Lite installation directory withthe -1 console
command-line option.

To uninstall third-party drivers bundled with Sourcery G++ Lite, first disconnect the associated
hardware device. Then use Add or Remove Programs (non-Vista) or Uninstall a
program (Vista) to remove the drivers separately. Depending on the device, you may need to reboot
your computer to complete the driver uninstall.

11

Installation and Configuration

2.7.2. Using the Sourcery G++ Lite Uninstaller on GNU/Linux

You should use the provided uninstaller to remove a Sourcery G++ Lite installation originally created
by the executable installer script. Start the graphical uninstaller by invoking the executable Uninstall
shell script located in your installation directory. After the uninstaller starts, follow the on-screen
dialogs to uninstall Sourcery G++ Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall script with the -1 console command-line option.

2.7.3. Uninstalling a Compressed Archive Installation

If you installed Sourcery G++ Lite from a . tar .bz2 file, you can uninstall it by manually deleting
the installation directory created in the install procedure.

12

Chapter 3
Sourcery G++ Lite for ARM EABI

This chapter contains information about features of Sourcery G++ Lite that are specific to
ARM EABI targets. You should read this chapter to learn how to best use Sourcery G++

Lite on your target system.

13

Sourcery G++ Lite for ARM EABI

3.1. Included Components and Features

This section briefly lists the important components and features included in Sourcery G++ Lite for
ARM EABI, and tells you where you may find further information about these features.

Component ’Version ’Notes

GNU programming tools

GNU Compiler Collection 441 Separate manual included.

GNU Binary Utilities 21951 Includes assembler, linker, and other utilities.
Separate manuals included.

Debugging support and simulators

GNU Debugger 7.0.50 Separate manual included.

Sourcery G++ Debug Sprite for|{2010q1-188|See Chapter 6, “Sourcery G++ Debug Sprite”.
ARM

GDB Simulator N/A See Section 4.3, “Running Applications in the
Simulator”.

Target libraries
CodeSourcery Common Startup|2010q1-188|See Chapter 5, “CS3™: The CodeSourcery

Code Sequence Common Startup Code Sequence”.
Newlib C Library 1.17.0 Separate manuals included.

Other utilities

GNU Make N/A Build support on Windows hosts.
GNU Core Utilities N/A Build support on Windows hosts.

3.2. Library Configurations

Sourcery G++ includes copies of run-time libraries that have been built with optimizations for different
target architecture variants or other sets of build options. Each such set of libraries is referred to as
a multilib. When you link a target application, Sourcery G++ selects the multilib matching the build
options you have selected.

Sourcery G++ Lite includes linker scripts as well as runtime libraries for each multilib. You can find
these files in multilib-specific subdirectories of the arm-none-eabi/1ib directory of your
Sourcery G++ install.

3.2.1. Included Libraries

The following library configurations are available in Sourcery G++ Lite for ARM EABI.

ARMV4 - Little-Endian, Soft-Float
Command-line option(s): default

Library subdirectory: V4

ARMvV4 Thumb - Little-Endian, Soft-Float
Command-line option(s): -mthumb

Library subdirectory: thumb/

14

Sourcery G++ Lite for ARM EABI

ARMV7 Thumb-2 - Little-Endian, Soft-Float
Command-line option(s): -mthumb -march=armv7 -mfix-cortex-m3-1drd
Library subdirectory: thumb2/

ARMvV6-M Thumb - Little-Endian, Soft-Float
Command-line option(s): -mthumb -march=armv6-m

Library subdirectory: armvé-m/

3.2.2. Library Selection

A given multilib may be compatible with additional processors and build options beyond those listed
above. However, even if a particular set of command-line options produces code compatible with
one of the provided multilibs, those options may not be sufficient to identify the intended library to
the linker. For example, on some targets, specifying only a processor option on the command line
may imply architecture features or floating-point support for compilation, but not for library selection.
The details of the mapping from command-line options to multilibs are target-specific and quite
complex. Therefore, it is recommended that your link command line include exactly the options listed
in the tables above for your intended target multilib. In some cases, you may need to supply different
options for linking than for compilation.

If you are uncertain which multilib is selected by a particular set of command-line options, GCC can
tell you if you invoke it with the -print-multi-directory option in addition to your other
build options. For example:

> arm-none-eabi-gcc -print-multi-directory options. ..

The output of this command is a directory name for the multilib, which you can look up in the tables
given previously.

3.3. Using Flash Memory

Sourcery G++ Lite supports development and debugging of applications loaded into flash memory
on ARM EABI targets. There are three steps involved:

1. You must use an appropriate linker script that identifies the ROM memory region on your target
board, and locates the program text within that region. Refer to Chapter 5, “CS3™: The Code-
Sourcery Common Startup Code Sequence” for information about the boards supported by Sourcery
G++.

2. Next, load your program into the flash memory on your target board. You must use third-party
tools to program the flash memory.

3. Finally, when debugging a program in flash memory, GDB must be told about the ROM region
so that it knows where it must use hardware breakpoints to control program execution. If you are
using the Sourcery G++ Debug Sprite to debug your program, the Sprite does this automatically,
using the memory map provided in the board configuration file. Otherwise, you must provide this
information explicitly.

When using GDB from the command line, you can mark the flash memory as read-only by using
the command:

(gdb) mem start end ro

15

Sourcery G++ Lite for ARM EABI

where st art and end define the address range of the read-only memory region.

Although GDB automatically attempts to use hardware breakpoints on code locations in the read-
only memory region, on many targets the number of available hardware breakpoints is very small.
Furthermore, GDB also uses hardware breakpoints internally to implement commands such as step,
next, and Finish. Thus the number of breakpoints you can explicitly set in ROM may be fewer
than the number supported by the target system.

For example, ARM7TDMI cores support only one hardware breakpoint, which must also be used
internally by the debugger if you set any software breakpoints in RAM. On ARM9 cores, there are
two hardware breakpoints supported and one is consumed by the debugger if you set any software
breakpoints.

3.4. Using VFP Floating Point

3.4.1. Enabling Hardware Floating Point
GCC provides three basic options for compiling floating-point code:

 Software floating point emulation, which is the default. In this case, the compiler implements
floating-point arithmetic by means of library calls.

e VFP hardware floating-point support using the soft-float ABI. This is selected by the
-mFloat-abi=softfp option. When you select this variant, the compiler generates VFP
floating-point instructions, but the resulting code uses the same call and return conventions as
code compiled with software floating point.

» VFP hardware floating-point support using the VFP ABI, which is the VFP variant of the Procedure
Call Standard for the ARM® Architecture (AAPCS). This ABI uses VVFP registers to pass function
arguments and return values, resulting in faster floating-point code. To use this variant, compile
with -mFloat-abi=hard.

You can freely mix code compiled with either of the first two variants in the same program, as they
both use the same soft-float ABI. However, code compiled with the VFP ABI is not link-compatible
with either of the other two options. If you use the VFP ABI, you must use this option to compile
your entire program, and link with libraries that have also been compiled with the VFP ABI. For
example, you may need to use the VFP ABI in order to link your program with other code compiled
by the ARM RealView® compiler, which uses this ABI.

Sourcery G++ Lite for ARM EABI includes libraries built with software floating point, which are
compatible with VFP code compiled using the soft-float ABI. While the compiler is capable of
generating code using the VFP ABI, no compatible runtime libraries are provided in Sourcery G++
Lite. However, VFP hard-float libraries built with both ABIs are available to Sourcery G++ Standard
and Professional Edition subscribers.

Note that, in addition to selecting hard/soft float and the ABI via the -mfloat-abi option, you
can also compile for a particular FPU using the -m¥pu option. For example, -mFpu=neon selects
VFPv3 with NEON coprocessor extensions.

3.4.2. NEON SIMD Code

Sourcery G++ includes support for automatic generation of NEON SIMD vector code. Autovector-
ization is a compiler optimization in which loops involving normal integer or floating-point code
are transformed to use NEON SIMD instructions to process several data elements at once.

16

Sourcery G++ Lite for ARM EABI

To enable generation of NEON vector code, use the command-line options -ftree-vectorize
-mFpu=neon -mfloat-abi=softfp. The -mFpu=neon option also enables generation of
VFPv3 scalar floating-point code.

Sourcery G++ also includes support for manual generation of NEON SIMD code using C intrinsic
functions. These intrinsics, the same as those supported by the ARM RealView® compiler, are
defined in the arm_neon. h header and are documented in the '"ARM NEON Intrinsics' section of
the GCC manual. The command-line options -mfpu=neon -mfloat-abi=softfp must be
specified to use these intrinsics; -fFtree-vectorize is not required.

3.4.3. Half-Precision Floating Point

Sourcery G++ for ARM EABI includes support for half-precision (16-bit) floating point, including
the new _ fpl6 data type in C and C++, support for generating conversion instructions when
compiling for processors that support them, and library functions for use in other cases.

To use half-precision floating point, you must explicitly enable it via the -mfp16-Fformat command-
line option to the compiler. For more information about __ Fp16 representations and usage from C
and C++, refer to the GCC manual.

3.5. ABI Compatibility

The Application Binary Interface (ABI) for the ARM Architecture is a collection of standards, pub-
lished by ARM Ltd. and other organizations. The ABI makes it possible to combine tools from dif-
ferent vendors, including Sourcery G++ and ARM RealView®.

Sourcery G++ implements the ABI as described in these documents, which are available from the
ARM Information Center’:

* BSABI - ARM IHI 0036B (28 October 2009)

BPABI - ARM IHI 0037B (28 October 2009)

« EHABI - ARM IHI 0038A (28 October 2009)

» CLIBABI - ARM IHI 0039B (4 November 2009)

* AADWARF - ARM IHI 0040A (28 October 2009)

» CPPABI - ARM IHI 0041C (5 October 2009)

e AAPCS - ARM IHI 0042D (16 October 2009)

» RTABI - ARM IHI 0043C (19 October 2009)

» AAELF - ARM IHI 0044D (28 October 2009)

* ABI Addenda - ARM IHI 0045C (4 November 2009)

Sourcery G++ currently produces DWARF version 2, rather than DWARF version 3 as specified in
AADWARF.

L http://infocenter.arm.com

17

http://infocenter.arm.com
http://infocenter.arm.com
http://infocenter.arm.com

Sourcery G++ Lite for ARM EABI

3.6. ARM Profiling Implementation

Profiling is enabled by means of the —pg compiler option. In this mode, the compiler inserts a call
to __gnu_mcount_nc into every function prologue. However, no implementation of __ gnu__
mcount_nc is provided (to do so would be impossible without knowledge of the execution envir-
onment).

You must provide your own implementation of __gnu_mcount_nc . Here are the requirements:

» On exit, pop the top value from the stack, and place it in the I'r register. The sp register should
be adjusted accordingly. For example, this is how to write it as a stub function:

-globl __ gnu_mcount_nc
-type _ gnu_mcount_nc, %function
__gnu_mcount_nc:

mov ip, Ir
pop {Ir}
bx ip

 Preserve all other register state except for r12 and the CPSR condition code bits. In particular all
coprocessor state and registers rO-r3 must be preserved.

 Record and count all occurrences of the function calls in the program. The caller can be determined
from the I'r value stored on the top of the stack (onentryto __gnu_mcount_nc), and the callee
can be determined from the current value of the I'r register (i.e. the caller of this function).

 Arrange for the data to be saved to a file named gmon . out when the program exits (via atexit).
Refer to the gprof profiler manual for more information.

3.7. Object File Portability

It is possible to create object files using Sourcery G++ for ARM EABI that are link-compatible with
the GNU C library provided with Sourcery G++ for ARM GNUY/Linux as well as with the Code-
Sourcery C Library or Newlib C Library provided with ARM bare-metal toolchains. These object
files are additionally link-compatible with other ARM C Library ABI-compliant static linking envir-
onments and toolchains.

To use this feature, when compiling your files with the bare-metal ARM EABI toolchain define the
preprocessor constant _ AEABI_PORTABILITY_LEVEL to 1 before including any system header
files. For example, pass the option -D_AEABI_PORTABILITY_LEVEL=1 on your compilation
command line. No special options are required when linking the resulting object files. When building
applications for ARM EABI, files compiled with this definition may be linked freely with those
compiled without it.

Files compiled in this manner may not use the functions fgetpos or fsetpos, or reference the
type fpos_t. This is because Newlib assumes a representation for fpos_t that is not AEABI-
compliant.

Note that object files are only portable from bare-metal toolchains to GNU/Linux, and not vice versa;
object files compiled for ARM GNU/Linux targets cannot be linked into ARM EABI executables.

18

Chapter 4
Using Sourcery G++ from the

Command Line

This chapter demonstrates the use of Sourcery G++ Lite from the command line.

19

Using Sourcery G++ from the Command Line

4.1. Building an Application

This chapter explains how to build an application with Sourcery G++ Lite using the command line.
As elsewhere in this manual, this section assumes that your target system is arm-none-eabi, as indicated
by the arm-none-eabi command prefix.

Using an editor (such as notepad on Microsoft Windows or vi on UNIX-like systems), create a
file named main.c containing the following simple factorial program:

#include <stdio.h>

int factorial(int n) {
it (n == 0)
return 1;
return n * factorial (n - 1);

}

int main () {
int i;
int n;
for (i = 0; 1 < 10; ++i) {
n = factorial (i);
printf ('factorial(%d) = %d\n', i, n);
}

return O;

}

Compile and link this program using the command:
> arm-none-eabi-gcc -o factorial main.c -T scri pt

Sourcery G++ requires that you specify a linker script with the - T option to build applications for
bare-board targets. Linker errors like undefined reference to “read” are a symptom of
failing to use an appropriate linker script. Default linker scripts are provided in arm-none-eabi/
1 ib. Refer to Chapter 5, “CS3™: The CodeSourcery Common Startup Code Sequence” for inform-
ation about the boards and linker scripts supported by Sourcery G++ Lite. You must also add the
processor options for your board, as documented in that chapter, to your compile and link command
lines.

There should be no output from the compiler. (If you are building a C++ application, instead of a C
application, replace arm-none-eabi-gcc with arm-none-eabi-g++.)

4.2. Running Applications on the Target System

Consult your target board documentation for instructions on loading programs onto the target, and
running them. Alternatively, you can use the Sourcery G++ Debug Sprite from within GDB to
download and run programs on the target via a supported hardware debugging device.

4.3. Running Applications in the Simulator

Sourcery G++ Lite includes a simulator that you can use on the host system to run programs compiled
for the target system. Since you do not need target hardware, this is the easiest way to try out Sourcery
G++.

20

Using Sourcery G++ from the Command Line

To use the simulator run:
> arm-none-eabi-run factorial

You should see the expected output:

factorial(0) =1
factorial(l) =1
factorial(2) = 2
factorial(3) = 6
factorial(4) = 24
factorial(5) = 120
factorial(6) = 720
factorial(7) = 5040
factorial(8) = 40320
factorial(9) = 362880

You can also use the simulator to execute target programs when debugging with GDB. See Section 4.4,
“Running Applications from GDB” for more information.

The simulator supports the ARMv4 (StrongARM), ARMVAT (ARM7TDMI, ARM920, ARMITDMI),
ARMV5, and ARMV5TE (ARM926, Xscale) instruction sets. The arm-none-eabi-run simulator also
includes support for Thumb instructions.

4.4. Running Applications from GDB

You can run GDB, the GNU Debugger, on your host system to debug programs running remotely
on a target board or system. You can also run and debug programs using the GDB simulator.

When starting GDB, give it the pathname to the program you want to debug as a command-line ar-
gument. For example, if you have built the factorial program as described in Section 4.1, “Building
an Application”, enter:

> arm-none-eabi-gdb factorial

While this section explains the alternatives for using GDB to run and debug application programs,
explaining the use of the GDB command-line interface is beyond the scope of this document. Please
refer to the GDB manual for further instructions.

4.4.1. Connecting to the GDB Simulator

GDB includes a simulator that allows you to debug ARM EABI applications without target hardware.
To start and connect to the simulator from within GDB, use this command:

(gdb) target sim
4.4.2. Connecting to the Sourcery G++ Debug Sprite

The Sourcery G++ Debug Sprite is a program that runs on the host system to support hardware de-
bugging devices. You can use the Debug Sprite to run and debug programs on a target board without
an operating system, or to debug an operating system kernel. See Chapter 6, “Sourcery G++ Debug
Sprite” for detailed information about the supported devices.

You can start the Sprite directly from within GDB:

21

Using Sourcery G++ from the Command Line

(gdb) target remote | arm-none-eabi-sprite argunents

Refer to Section 6.3, “Invoking Sourcery G++ Debug Sprite” for a full description of the Sprite ar-
guments.

4.4.3. Connecting to an External GDB Server

From within GDB, you can connect to a running gdbserver or other debugging stub that uses the
GDB remote protocol using:

(gdb) target remote host :port

where host is the host name or IP address of the machine the stub is running on, and port is the
port number it is listening on for TCP connections.

4.4.4.Loading and Running Applications

Connecting to a bare-metal target or simulator from GDB does not cause your program to be loaded
into target memory. You must do this explicitly from GDB after you connect:

(gdb) load

Alternatively, you can use third-party tools to load your application into flash memory before starting
GDB.

To begin execution of your application, you should generally use the continue command:
(gdb) continue

However, you should use run instead of continue to start your program if you used target
simto connect:

(gdb) run

22

Chapter 5
CS3™: The CodeSourcery
Common Startup Code Sequence

CS3is CodeSourcery's low-level board support library. This chapter documents the boards
supported by Sourcery G++ Lite and the compiler and linker options you need to use with
them. It also explains how you can use and modify CS3-provided definitions for memory
maps, system startup code and interrupt vectors in your own code.

23

CS3™: The CodeSourcery Common Startup Code Sequence

Many developers turn to the GNU toolchain for its cross-platform consistency: having a single system
support so many different processors and boards helps to limit risk and keep learning curves gentle.
Historically, however, the GNU toolchain has lacked a consistent set of conventions for processor-
and board-level initialization, language run-time setup, and interrupt and trap handler definition.

The CodeSourcery Common Startup Code Sequence (CS3) addresses this problem. For each supported
system, CS3 provides a set of linker scripts describing the system's memory map, and a board support
library providing generic reset, startup, and interrupt handlers. These scripts and libraries all follow
a standard set of conventions across a range of processors and boards.

In addition to providing linker support, CS3's functionality is fully integrated with the Sourcery G++
Debug Sprite. For each supported board, CS3 provides the board file containing the memory map
and initialization sequence required for debugging applications on the board via the Sprite, as docu-
mented in Section 6.9, “Supported Board Files”.

This chapter is organized in two parts. The first part explains CS3 concepts:

» Section 5.1, “Linker Scripts” provides basic information you need to know in order to select an
appropriate CS3-provided linker script for your ARM EABI board.

» CS3's program startup and termination model is discussed in Section 5.2, “Program Startup and
Termination”.

 Section 5.3, “Memory Layout” discusses the mapping from program sections to memory regions.
It also explains how you can refer to memory regions using CS3-provided symbolic names from
C, assembly language, or the linker script, and customize placement of code or data in your program.

 Section 5.4, “Interrupt Vectors and Handlers” covers CS3's interrupt handling model, and discusses
how you can customize the CS3-provided interrupt vector tables.

The second part provides details about the CS3 implementation for ARM EABI:

 Section 5.5, “Supported Boards for ARM EABI” lists the boards supported by CS3 for ARM
EABI, and the available linker scripts for them.

 Section 5.6, “Interrupt Vector Tables” documents the details of the provided interrupt vectors for
CS3-supported devices.

5.1. Linker Scripts

When you build programs for ARM EABI targets, you must use a linker script. The linker script
serves several purposes:

* It determines the memory addresses for placement of code and data sections.

* It defines symbolic names for memory regions present on the board, which you can use program-
matically within your code.

* It provides appropriate program startup and termination code, and causes the linker to pull in any
low-level board support libraries that are required to run code on the target.

« It optionally provides a hosting library for basic 1/0 functionality.

* It provides a default interrupt vector appropriate for the target processor.

24

CS3™: The CodeSourcery Common Startup Code Sequence

When invoking the Sourcery G++ linker from the command line, you must explicitly supply a linker
script using the -T option; otherwise a link error results.

CS3 may provide multiple linker scripts for different configurations using the same board. For ex-
ample, on some boards CS3 may support running the program from either RAM or ROM (flash).
Some CS3 link configurations are also designed to co-exist with, or be run from, a boot monitor on
the target board. Simulator targets typically require different startup code configurations than hardware
targets. In CS3 terminology, each of these different configurations is referred to as a profile.

The remainder of this section discusses profile and hosting selection considerations in more detail.
You can find the full list of supported boards and linker scripts included in this release of Sourcery
G++ Lite in Section 5.5, “Supported Boards for ARM EABI”.

5.1.1. Program and Data Placement

Many boards have both RAM and ROM (flash) memory devices. CS3 provides distinct linker scripts
to place the application either entirely in RAM, or to place code and read-only data in ROM.

Some hoards have very small amounts of RAM memory. If you use large library functions (such as
printf and mal loc), you may overflow the available memory. You may need to use the ROM-
based profile for such programs, so that the program itself is stored in ROM. You may be able to
reduce the total amount of memory used by your program by replacing portions of the Sourcery G++
runtime library and/or startup code.

5.1.2. Hosting and Semihosting

CS3 is designed to support boards without an operating system. To allow functions like open and
wr i te to work without operating system support, a semihosting feature is supported, in conjunction
with the debugger.

With semihosting enabled, these system calls are translated into equivalent function calls on your
host system. You can only use these function calls while connected to the debugger; if you try to use
them when disconnected from the debugger, you will get a hardware exception.

Semihosting requires support from the remote GDB debugging stub or agent, as well as the debugger
itself. The Sourcery G++ Debug Sprite implements semihosting for all supported devices. Semihosting
is also supported by the GDB Simulator included with Sourcery G++ Lite. However, semihosting
may not be supported by debugging stubs provided by third parties. If you are using a debug device
that communicates with GDB using the GDB remote protocol, check the documentation for your
device to see whether semihosting is supported.

A good use of semihosting is to display debugging messages. For example, this program prints a
message on the debugger console on the host:

#include <unistd.h>

int main Q {
write (STDERR_FILENO, *"Hello, world!\n", 14);
return O;

}

The hosted CS3 linker scripts provide the semihosting support, and as such programs linked with
them may only be run with the debugger. For production code, or programs where memory usage
is tightly constrained, use the unhosted CS3 linker scripts instead. These scripts provide stub versions
of the system calls, which return an appropriate error value in errno. If such a stub system call is

25

CS3™: The CodeSourcery Common Startup Code Sequence

required in the executable, the linker also produces a warning. Such a warning may indicate that you
have left debugging code active, or that your program contains unused code.

As an alternative to semihosting via the debugger, some targets supported by CS3 can run a boot
monitor that provides console I/O services and other basic system calls. CS3 can also provide hosting
via these facilities; where a boot monitor is supported, this is noted in the board tables below. Unlike
semihosting, hosting via the boot monitor can be used when running programs outside of the debugger.

5.1.3. Specifying a Linker Script

When using Sourcery G++ from the command line, you must add -T scri pt to your linking
command, where scr i pt is the appropriate linker script. For example, to target ARMulator (RDI)
boards, you could link with -T armulator-ram-hosted. 1d.

5.2. Program Startup and Termination

This section documents CS3's model for target initialization prior to invoking the main function of
your program, and aspects of program termination that are left unspecified in the C and C++ standards.
It explains how you can customize or override the default behavior for your application.

CS3 divides the startup sequence into three phases:

» The hardreset phase(__cs3_reset) includes actions such as initializing the memory controller
and setting up the memory map.

» The assembly initialization phase (__cs3_start_asm) prepares the stack to run C code, and
jumps to the C initialization function.

» TheCinitializationphase(___cs3_start_c) isresponsible for initializing the data areas, running
constructors for statically-allocated objects, and calling main.

The hard reset and assembly initialization phases are necessarily written in assembly language; at
reset, there may not yet be stack to hold compiler temporaries, or perhaps even any RAM accessible
to hold the stack. These phases do the minimum necessary to prepare the environment for running
simple C code. Then, the code for the final phase may be written in C; CS3 leaves as much as possible
to be done at this point.

The CodeSourcery board support library provides default code for all three phases. The hard reset
phase is implemented by board- and profile-specific code. The assembly initialization phase is im-
plemented by profile-specific code. The C initialization phase is implemented by generic code.

5.2.1. The Hard Reset Phase

This phase, which beginsat _ ¢cs3_reset, is responsible for initializing board-specific registers,
such as memory base registers and DRAM controllers, or scanning memory to check the available
size. It is written in assembler and ends with a jump to __ cs3_start_asm, which is where the
assembly initialization phase begins.

The hard reset code is in a section named . cs3. reset. CS3 linker scripts define _ cs3_reset
as an alias for a board- and profile-specific entry point. You may override the CS3-provided reset
code by defining your own __ cs3_reset entry point in the .cs3. reset section.

Program execution always begins at _ cs3_reset, whether the program is started from the reset
vector, the debugger, or a boot monitor. However,the cs3_reset code linked into the application

26

CS3™: The CodeSourcery Common Startup Code Sequence

is typically non-empty only for ROM-based profiles. For example, in a RAM-based profile, resetting
the memory controllers would overwrite the code being executed.

When using the Sourcery G++ Debug Sprite, the Sprite is responsible for carrying out the hard reset
actions before the program is loaded onto the target. This is performed prior to execution of both
RAM- and ROM-profile applications from the debugger. Thus, when debugging a ROM-profile ap-
plication, hard reset is actually performed twice — once by the Sprite, and once by the application
itself.

5.2.2.The Assembly Initialization Phase

This phase is responsible for initializing the stack pointer and creating an initial stack frame. The
symbol __cs3_start_asmmarks the entry point of the assembly initialization code. The assembly
initialization phase ends with a call or jumpto __ cs3_start_c.

The assembly initialization phase is profile-specific. For example, while bare-board applications
typically must initialize the stack themselves, CS3 also supports boot-monitor profiles where the
stack is initialized by the boot monitor before it launches the application. Likewise, some simulators
automatically initialize the stack pointer and initial stack frame on startup, while others require a
supervisory operation on startup to determine the amount of available memory. Each of these scen-
arios requires different assembly initialization behavior.

Note that on bare-board targets setting the stack pointer explicitly in the assembly initialization phase
is required even if the processor itself initializes the stack pointer automatically on reset. This is to
support running programs from the debugger as well as from processor reset.

For backwards compatibility with previous versions of CS3, on RAM and ROM profiles the symbol
___cs3_start_asm is actually an alias for a symbol named _start. However, referencing or
defining _start directly is now deprecated.

The value of the symbol __cs3_stack provides the initial value of the stack pointer for profiles
that must set it explicitly. The CodeSourcery linker scripts provide a default value for this symbol,
which you may override by defining __ cs3_stack yourself.

The initial stack frame is created for the use of ordinary C and C++ calling conventions. The stack
should be initialized so that backtraces stop cleanly at this point; this might entail zeroing a dynamic
link pointer, or providing hand-written DWARF call frame information.

The last action of the assembly initialization phase is to call the C function __cs3_start_c. This
function never returns, and __¢s3_start_asm need not be prepared to handle a return from it.

As with the hard reset code, the CodeSourcery board support library provides reasonable default
assembly initialization code. However, you may provide your own code by providing a definition
for __cs3 start_asm, either in an object file or a library.

5.2.3.The C Initialization Phase

Finally, C code can be executed. The C startup function is declared as follows:
void _ cs3 start _c (void) _ attribute_ ((noreturn));
This function performs the following steps:

« Initialize all .data-like sections by copying their contents. For example, ROM-profile linker
scripts use this mechanism to initialize writable data in RAM from the read-only data program
image.

27

CS3™: The CodeSourcery Common Startup Code Sequence

e Clear all .bss-like sections.

» Run constructors for statically-allocated objects, recorded using whatever conventions are usual
for C++ on the target architecture.

CS3 reserves priorities from 0 to 100 for use by initialization code. You can handle tasks like en-
abling interrupts, initializing coprocessors, pointing control registers at interrupt vectors, and so
on by defining constructors with appropriate priorities.

» Call main as appropriate.
+ Call exit, if itis available.

As with the hard reset and assembly initialization code, the CodeSourcery board support library
provides a reasonable definition for the _ cs3 start_c function. You may override this by
providing a definition for __ cs3_start_c, either in an object file or in a library.

5.2.4. Arguments to mai n

The CodeSourcery-provided definition of __cs3_start_c can pass command-line arguments to
main using the normal C argc and argv mechanism if the board support package provides corres-
ponding definitions for __¢s3 _argcand __ cs3_argv. For example:

int __ cs3 argc;
char **_ cs3 argv;

These variables should be initialized using a constructor function, whichisrunby __ cs3_start__
c after it initializes the data segment. Use the constructor attribute on the function definition:

__attribute_ ((constructor))

static void _ cs3 init args (void) {
__ecs3 argc = ...;
__ecs3 argv = ...;

}

The constructor function may have an arbitrary name; _ ¢s3_init_args is used only for illus-
trative purposes here.

If definitions of __ cs3_argc and ___cs3_argv are not provided, then the default _ cs3_
start_c function invokes main with zero as the argc argument and a null pointer as argv.

5.2.5. Program Termination

A program running on an embedded system is usually designed never to exit — it runs until the
system is powered down. The C and C++ standards leave it unspecified as to whether ex it is called
at program termination. If the program never exits, then there is no reason to include exit;, facilities
to run functions registered with atexit, or global destructors. This code would never be run and
would therefore just waste space in the application.

The CS3 startup code, by itself, does not cause ex it to be present in the application. It dynamically
checks whether exit is present, and only calls it if it is. If you require exit to be present, either
refer to it within your application, or add -WI , -u, exit to the linking command line.

Similarly, code to register global destructors is only invoked when atexit is already in the execut-
able; CS3, by itself, does not cause atexit to be present. If you require atexit, either refer to it
within your application, or add -WI, -u, atexit to the linking command line.

28

CS3™: The CodeSourcery Common Startup Code Sequence

5.3. Memory Layout

Boards supported by CS3 can have multiple banks or regions of memory with different characteristics.
This section describes how program sections are mapped onto memory regions, and how you can
use these CS3 features to customize placement of your program's code or data in memory. CS3 also
provides a uniform set of symbolic names for each region, allowing you to programmatically refer
to each region's address range from C or assembly language as well as from the linker script.

5.3.1. Memory Regions and Program Sections

The regions that are available on a particular board are listed in the table for that board in Section 5.5,
“Supported Boards for ARM EABI”, below. There are two kinds of regions: those documented as
"Memory regions", which are general-purpose memory banks that can be used for program or data
storage; and those documented as "Other regions", which typically correspond to memory-mapped
control registers or other special-purpose storage.

CS3 supports boards that include both ram and rom memory regions. The ram region holds the
.dataand . bss sections, and the . text section in RAM profiles. In ROM profiles, the rom region
holds the . text section and initialization values for the writable data sections.

In addition, all regions documented as "Memory regions" correspond to similarly-named program
sections. For example, the linker script assigns the . ram section to the ram region.

More generally, for a memory region named R, CS3 linker scripts define a section named . R, which
may contain initialized data or code. There is also a section named . bss . Rfor zero-initialized data
(BSS), which is placed after the initialized data section for this region.

You can explicitly locate data or code in a section corresponding to a particular memory region using
section attributes in your source C or C++ code. Section attributes are especially useful on code
compiled for boards that include special memory banks, such as a fast on-chip cache memory, in
addition to the default ram and/or rom regions. CS3's start-up code arranges for additional data-like
sections to be initialized in the same way as the default . data section.

As an example to illustrate the attribute syntax, you can put a variable v in the . ram section using:
int v __ attribute ((section ('-ram'™)));

To declare a function ¥ in this section, use:

int ¥ (void) _ attribute ((section (".ram"))) {--.}

For more information about attribute syntax, see the GCC manual.

In addition to the .Rand .bss.Rsections, CS3 places a .cs3. region-head.Rsection at the
beginning of each region R. Explicitly placing data in . cs3. region-head . Rsections is discour-
aged, because CS3 itself may want to place items (like interrupt vector tables) at these locations. If
there is a conflict, CS3 raises an error at link time.

Regions documented as "Other regions" in the tables in Section 5.5, “Supported Boards for ARM
EABI” do not have corresponding program sections. Typically, these regions contain memory-mapped
control and 1/0O registers and cannot be used for general data or program storage. If your program
needs to manipulate data in these regions, you can use the CS3 memory map access interface declared
in cs3.h, as described in Section 5.3.2, “Programmatic Access to the CS3 Memory Map”.

29

CS3™: The CodeSourcery Common Startup Code Sequence

Memory maps for boards supported by Sourcery G++ Lite for ARM EABI are documented in XML
files in the arm-none-eabi/lib/boards/ subdirectory of your Sourcery G++ installation
directory.

5.3.2. Programmatic Access to the CS3 Memory Map

CS3 makes C declarations describing the memory regions on the target board available to your program
via the header file cs3.h, which you can find in the arm-none-eabi/include directory
within your install.

For each region named R, cs3_h declares a byte array variable _ ¢s3_region_start_Ratthe
region's start address, andasize_tvariable cs3 region_size_Rto represent the total size
of the region. These symbols are defined by the linker script and so may also be referenced from
assembly language. Note that all regions are aligned on eight-byte boundaries and sizes are also
multiples of eight bytes.

For memory regions that can correspond to program sections (as described in Section 5.3.1, “Memory
Regions and Program Sections™), there are additional symbols __ ¢s3_region_init_R and
__cs3_region_init_size Rthat describe constant data used to initialize the region. During
the C initialization phase (Section 5.2, “Program Startup and Termination”), this data is copied into
the lower part of the memory region. The symbol __ cs3_region_zero_size_ Rrepresents the
size of the zero-initialized . bss.R section following the initialized data. Any of these identifiers
may actually be defined as a preprocessor macro that expands to an expression of the appropriate
type and value.

To perform the memory region initializations during startup, CS3 internally uses the array variable
___cs3_regions, which contains descriptors for all of the writable (RAM) memory regions. These
descriptors are also exposed in cs3. h; refer to the header file for details.

5.3.3. Heap and Stack Placement

CS3 linker scripts provide default placement of the heap and stack in the RAM region. However,
you can override the defaults by providing your own definitions of the associated CS3 variables. For
example, you may put the heap and/or stack in some other memory region.

Heap placement is controlled by defining the symbol _ ¢cs3_heap_start at the beginning of
the heap, and either the symbol _ cs3_heap_end or the pointer variable c¢s3 heap limit
to mark the end of the heap. For example, this fragment of C code places the heap in a region named
extsram:

#define HEAPSIZE ... /* However big you want to make it. */
unsigned char _ cs3 heap start[HEAPSIZE]

__attribute ((section (".bss.extsram'), aligned(8)));
unsigned char * c¢s3 heap limit = _ cs3 heap_start + HEAPSIZE;

The default initial stack pointer for bare-metal profiles is given by the symbol __ cs3_stack. Stack
initialization is discussed in more detail in Section 5.2.2, “The Assembly Initialization Phase”.

You can find C declarations for the CS3 heap and stack symbols in the header file cs3.h.

30

CS3™: The CodeSourcery Common Startup Code Sequence

5.4. Interrupt Vectors and Handlers

CS3 provides standard handlers for interrupts, exceptions and traps, but also allows you to define
your own handlers as needed. In this section, we use the term interrupt as a generic term for this
entire class of events.

Different processors handle interrupts in various ways, but there are two general approaches:

» Some processors fetch an address from an array indexed by the interrupt number, and jump to that
address. We call these address vector processors.

 Others multiply the interrupt number by some constant factor, add a base address, and jump directly
to that address. Here, the interrupt vector consists of blocks of code, so we call these code vector
processors.

M-profile processors like the Cortex-M3 use the address vector model. Classic ARM processors
(including ARM7/ARM9 as well as Cortex-A/R series processors) are technically code vector pro-
cessors. However, each vector slot only holds a single instruction. CS3 emulates the address vector
model on these processors by placing an indirect branch instruction in each slot of the real exception
vector. The remainder of this section assumes that you have some understanding of the specific re-
quirements for your target; refer to the architecture manuals if necessary.

5.4.1. ARM EABI Interrupt Vector Implementation

On address vector processors, the CS3 library provides an array of pointers to interrupt handlers
named __ cs3_interrupt_vector_form where f or midentifies the particular processor
variant the vector is appropriate for. Each entry in the vector holds a reference to a symbol named
___cs3_1isr_nane, where nane is the customary name of that interrupt on the processor, or a
number if there is no consistently used name. You can find the interrupt vector details in Section 5.6,
“Interrupt Vector Tables”. The particular vector used by a given CS3-supported board is documented
in the tables in Section 5.5, “Supported Boards for ARM EABI”.

CS3 provides a reasonable default definition for each _ ¢s3_isr_nane handler. Many of these
symbols are aliased to a common handler routine. If your program stops at a default interrupt handler,
its name as shown in backtraces may therefore not correctly reflect which interrupt occurred.

To override an individual handler, provide your own definition for the appropriate _ cs3_isr_
nane symbol. The definition need not be placed in any particular object file section.

To override the entire interrupt vector, you can define ___ ¢s3_interrupt_vector_f or mYou
must place this definition in a section named .cs3. interrupt_vector. The linker script reports
an error if the .cs3.interrupt_vector section is empty, to ensure that the definition of
___cs3_interrupt_vector_f or moccupies the proper section.

You may define the vector in C with an array of pointers using the section attribute to place it in
the appropriate section. For example, to override the interrupt vector on ARMulator (RDI) boards,
make the following definition:

typedef void handler(void);
handler * attribute ((section (.cs3.interrupt _vector'™)))
__cs3_interrupt_vector_arm[] =

{.--)

31

CS3™: The CodeSourcery Common Startup Code Sequence

5.4.2. Writing Interrupt Handlers

Interrupt handlers typically require special call/return and register usage conventions that are target-
specific and beyond the scope of this document. In many cases, normal C functions cannot be used
as interrupt handlers. For example, the EABI requires that the stack be 8-byte aligned, but on some
ARMvV7-M processors, only 4-byte stack alignment is guaranteed when calling an interrupt vector.
This can cause subtle runtime failures, usually when 8-byte types are used.

As an alternative to writing interrupt handlers in assembly language, on ARM targets they may be
written in C using the interrupt attribute. This tells the compiler to generate appropriate function
entry and exit sequences for an interrupt handler. For example, to overridethe __ cs3_isr_undef
handler, use the following definition:

void __ attribute__ ((interrupt)) _ cs3_isr_undef (void)
{

}

On ARM targets, the interrupt attribute also takes an optional parameter to specify the type of
interrupt. Refer to the GCC manual for more details about attribute syntax and usage.

5.5. Supported Boards for ARM EABI

CS3 provides support for the following boards on ARM EABI targets.

... custom handler code ...

Altera Cyclone 111 Cortex-M1

Processor name: Cortex-M1

Processor options: |-mcpu=cortex-ml -mthumb

Memory regions: itcm,
ram (SRAM),
rom (Flash)

Interrupt vector: __cs3_interrupt_vector_micro

Linker scripts: RAM Hosted cycloneiii-cml-ram-hosted. Id
RAM Unhosted cycloneiii-cml-ram.ld
ROM Hosted cycloneiii-cml-rom-hosted. Id
ROM Unhosted cycloneiii-cml-rom.Id

ARM M-profile Simulator

Processor name: Cortex-M3

Processor options: |-mcpu=cortex-m3 -mthumb

Memory regions: ram

Interrupt vector: __cs3_interrupt_vector_micro

Linker scripts: Simulator Hosted |generic-m-hosted. Id

Simulator Unhosted |generic-m.1d

32

CS3™: The CodeSourcery Common Startup Code Sequence

ARM Simulator

Processor name: unspecified

Processor options: [none

Memory regions: ram

Interrupt vector: __cs3_interrupt_vector_arm

Linker scripts: Simulator Hosted generic-hosted. 1d

Simulator Unhosted |generic.ld

ARM Simulator (VFP)

Processor name: unspecified

Processor options: |none

Memory regions: ram
Interrupt vector: __cs3_interrupt_vector_arm
Linker scripts: Simulator Hosted |generic-vfp-hosted. Id

Simulator Unhosted |generic-vfp.1Id

ARMulator (RDI)

Processor name: unspecified

Processor options: [none

Memory regions: ram

Interrupt vector: __cs3_interrupt_vector_arm

Linker scripts: RAM Hosted armulator-ram-hosted. Id

RAM Unhosted armulator-ram.1d

5.6. Interrupt Vector Tables

5.6.1. cs3 interrupt_vector_arm

The ARM interrupt vector table (__¢s3_interrupt_vector_arm) contents are:

Number [Name Meaning

0 __cs3 _reset Reset entry point

1 __cs3_isr_undef Undefined Instruction

2 __cs3_isr_swi Software Interrupt/Supervisor Call
3 ___cs3_1isr_pabort |Prefetch Abort

4 ___cs3_isr_dabort |DataAbort

5 __cs3_1isr_reserved

6 __cs3_1isr_irq External Interrupt (IRQ)

7 __cs3_isr_fiq Fast Interrupt (FIQ)

33

CS3™: The CodeSourcery Common Startup Code Sequence

5.6.2. _cs3_interrupt_vector_mcro

The Microcontroller Profile interrupt vector table (__ ¢s3 _interrupt_vector_micro) contents
are:

Number [Name Meaning

0 ___cs3_stack Initial stack pointer

1 __€s3 _reset Reset entry point

2 __cs3 _isr_nmi Non Maskable Interrupt
3 __cs3_isr_hard_fault Hardware fault

4 __cs3_isr_mpu_fault MPU fault

5 ___cs3_1isr_bus fault Bus fault

6 __cs3_isr_usage_fault Usage fault

7..10 __cs3_1isr_reserved_7..10|Reserved for future use
11 __cs3_isr_svcall System Vector Call

12 __cs3_isr_debug Debug interrupt

13 __cs3_1isr_reserved_13 Reserved for future use
14 ___cs3_1isr_pendsv

15 ___cs3_isr_systick System Ticker

16.47 |__cs3_isr_external_0. .31 |External interrupt

34

Chapter 6
Sourcery G++ Debug Sprite

This chapter describes the use of the Sourcery G++ Debug Sprite for remote debugging.
The Sprite allows you to debug programs running on a bare board without an operating
system. This chapter includes information about the debugging devices and boards supported

by the Sprite for ARM EABI.

35

Sourcery G++ Debug Sprite

Sourcery G++ Lite contains the Sourcery G++ Debug Sprite for ARM EABI. This Sprite is provided
to allow debugging of programs running on a bare board. You can use the Sprite to debug a program
when there is no operating system on the board, or for debugging the operating system itself. If the
board is running an operating system, and you wish to debug a program running on that OS, you
should use the facilities provided by the OS itself (for instance, using gdbserver).

The Sprite acts as an interface between GDB and external debug devices and libraries. Refer to
Section 6.3, “Invoking Sourcery G++ Debug Sprite” for information about the specific devices sup-
ported by this version of Sourcery G++ Lite.

Important

The Sourcery G++ Debug Sprite is not part of the GNU Debugger and is not free or open-
source software. You may use the Sourcery G++ Debug Sprite only with the GNU Debugger.
You may not distribute the Sourcery G++ Debug Sprite to any third party.

6.1. Probing for Debug Devices

Before running the Sourcery G++ Debug Sprite for the first time, or when attaching new debug
devices to your host system, it is helpful to verify that the Sourcery G++ Debug Sprite recognizes
your debug hardware. From the command line, invoke the Sprite with the —i option:

> arm-none-eabi-sprite -i

This prints out a list of supported device types. For devices that can be autodetected, it additionally
probes for and prints out a list of attached devices. For instance:

CodeSourcery ARM Debug Sprite
(Sourcery G++ Lite 2010g1-188)
armusb: [speed=<n:0-7>] ARMUSB (Stellaris) device
armusb:///0B01000C - Stellaris Evaluation Board (0B01000C)
rdi: (rdi-library=<file>&rdi-config=<file>) RDI Device
rdi:/// - RDI Device

This shows that ARMUSB and RDI devices are supported. The exact set of supported devices depends
on your host system and the version of Sourcery G++ you have installed; refer to Section 6.3, “In-
voking Sourcery G++ Debug Sprite” for complete information.

Note that it may take several seconds for the Debug Sprite to probe for all types of supported devices.

6.2. Debug Sprite Example

Start by compiling and linking a simple test program for your target board, following the instructions
in Chapter 4, “Using Sourcery G++ from the Command Line”. Use the —g option to tell the compiler
to generate debugging information.

To build the Factorial program to run on the ARMulator simulator, which can communicate
with the Sprite via the RDI protocol, use:

> arm-none-eabi-gcc -g -Tarmulator-ram-hosted.ld main.c \
-0 factorial

Next start the debugger on your host system:

> arm-none-eabi-gdb factorial

36

Sourcery G++ Debug Sprite

The command for connecting GDB to the board depends on the debug device you are using; this is
described in more detail in Section 6.3, “Invoking Sourcery G++ Debug Sprite”. If you are connecting
via RDI, you must specify the full path to the RDI library file and configuration file for that library.
Use quotes to escape the Sprite argument syntax from the shell. For example, use a command like
this to connect to the ARMulator:

(gdb) target remote | arm-none-eabi-sprite \
“rdi:///?rdi-library=li brary&rdi-config=confi g" armulator

The Sprite prints some status messages as it connects to your debug device and target board. If the
connection is successful, you should see output similar to:

arm-none-eabi-sprite:Target reset
0x00008936 in ?? (O

(gdb)

Next, use GDB to load your program onto the target board.

(gdb) load

At this point you can use GDB to control the execution of your program as required. For example:

(gdb) break main
(gdb) continue

6.3. Invoking Sourcery G++ Debug Sprite

The Debug Sprite is invoked as follows:
> arm-none-eabi-sprite [options] device-url board-file

The devi ce- ur| specifies the debug device to use to communicate with the board. It follows the
standard format:

schene:schene- specifi c-part [?devi ce-opti ons]
Most device URL schemes also follow the regular format:
schene:[//host nane:[port]]/pat h[?devi ce- opti ons]

The meanings of host nane, port, pat h and devi ce- opt i ons parts depend on the schene
and are described below. The following schemes are supported in Sourcery G++ Lite for ARM EABI:

rdi Use an RDI debugging device. Refer to Section 6.5, “Remote Debug Interface
Devices”.

Fflashpro Use a FlashPro debugging device. Refer to Section 6.6, “Actel FlashPro Devices”.
altera Use an Altera FPGA. Refer to Section 6.7, “Altera Devices”.

The optional ?devi ce- opt i ons portion is allowed in all schemes. These allow additional device-
specific options of the form name=val ue. Multiple options are concatenated using &.

The boar d-fi | e specifies an XML file that describes how to initialize the target board, as well
as other properties of the board used by the debugger. If boar d- f i | e refers to a file (via a relative
or absolute pathname), it is read. Otherwise, boar d- f i | e can be a board name, and the toolchain's

37

Sourcery G++ Debug Sprite

board directory is searched for a matching file. See Section 6.9, “Supported Board Files” for the list
of supported boards, or invoke the Sprite with the —b option to list the available board files. You
can also write a custom board file; see Section 6.10, “Board File Syntax” for more information about
the file format.

Both the devi ce-url and board-fil e command-line arguments are required to correctly
connect the Sprite to a target board.

6.4. Sourcery G++ Debug Sprite Options

The following command-line options are supported by the Sourcery G++ Debug Sprite:

-q

-V

[host]: port

Print a list of boar d- f i | e files in the board config directory.

Print a list of options and their meanings. A list of devi ce- ur| syntaxes
is also shown.

Print a list of the accessible devices. If a devi ce-url is also specified,
only devices for that device type are scanned. Each supported device type is
listed along with the options that can be appended to the devi ce- ur | . For
each discovered device, the devi ce- ur | is printed along with a description
of that device.

Specify the host address and port number to listen for a GDB connection. If
this option is not given, the Debug Sprite communicates with GDB using
stdin and stdout. If you start the Sprite from within GDB using the target
remote | arm-none-eabi-sprite ... command,youdonotneed
this option.

Listen for multiple sequential connections. Normally the Debug Sprite ter-
minates after the first connection from GDB terminates. This option instead
makes it listen for a subsequent connection. To terminate the Sprite, open a
connection and send the string END\n.

Do not print any messages.

Print additional messages.

If any of —b, -1 or —h are given, the Debug Sprite terminates after providing the information rather
than waiting for a debugger connection.

6.5. Remote Debug Interface Devices

Remote Debug Interface (RDI) devices are supported. The RDI device URL accepts no hostname,
port or path components, so the devi ce- ur | is specified as follows:

rdi:[///][?devi ce-opti ons]

The following devi ce- opt i ons are required:

rdi-library=library Specify the library (DLL or shared object) implementing the RDI

target you wish to use.

rdi-config=confi gfil e Specifyafile containing configuration information forl i br ary.

The format of this file is specific to the RDI library you are using,

38

Sourcery G++ Debug Sprite

but tends to constitute a list of key=val ue pairs. Consult the
documentation of your RDI library for details.

6.6. Actel FlashPro Devices

On Windows hosts, Sourcery G++ Lite supports FlashPro devices used with Actel Cortex-M1 devel-
opment Kits.

For FlashPro devices, the devi ce- ur | has the following form:
flashpro:[//usb12345/][?jtagclock=rat e]

The optional usb12345 part indicates the ID of the FlashPro device to connect to, which is useful
if you have more than one such device attached to your computer. If the ID is omitted, the Debug
Sprite connects automatically to the first detected FlashPro device. You can enumerate the connected
FlashPro devices by invoking the Sprite with the — i switch, as follows:

> arm-none-eabi-sprite -i flashpro:

The jtagclock option allows the communication speed with the target board to be altered. The
r at e is specified in Hz and may range between 93750 and 4000000. The default is 93750, the
slowest speed supported by the FlashPro device. Depending on your target board, you may be able
to increase this rate, but beware that communication errors may occur above a certain threshold. If
you encounter communication errors with a higher-than-default speed selected, try reducing the
speed.

6.6.1. Installing FlashPro Windows drivers

Windows drivers for the FlashPro device are included with the FlashPro software provided by Actel.
Refer to Actel's documentation for details on installing this software. You must use the Actel FlashPro
software to configure the FPGA on your Cortex-M1 board, but it does not need to be running when
using the Debug Sprite.

Once you have set up your board using the FlashPro software, you can check that it is recognized
by the Sourcery G++ Debug Sprite by running the following command:

> arm-none-eabi-sprite -1i
flashpro: [Jtagclock=<n:93750-4000000>] FlashPro device
flashpro://usb12345/ - FlashPro Device

If output similar to the above does not appear, your FlashPro device is not working correctly. Contact
CodeSourcery for further guidance in that case.

6.7. Altera Devices

The Debug Sprite can be used to debug applications running on a Cortex-M1 core embedded in an
Altera FPGA supporting the System-Level Debug (SLD) architecture. Currently, the Sprite supports
the Cyclone Il FPGA Starter board on Microsoft Windows hosts.

The Debug Sprite accepts two forms of the devi ce- ur | for Altera devices. For the common case
where you have only one Altera Cortex-M1 device configured, you can use simply:

altera://

39

Sourcery G++ Debug Sprite

The full form of the devi ce- url is:
altera://usbX/hubY/nodez

where X, Y, and Z are non-negative integers. The SLD architecture forms a hierarchy; there may be
multiple USB Blaster devices (humbered by X), multiple Altera FPGAs (numbered by Y) per USB
Blaster, and multiple nodes (numbered by Z) per FPGA.

The Debug Sprite can autodetect connected Altera Cortex-M1 devices. Invoking the Sprite with the
-1 option, as described in Section 6.1, “Probing for Debug Devices”, displays the devi ce- ur |
for each detected device:

> arm-none-eabi-sprite -i

altera: Altera SLD Hub device
altera://usb0/hub0/nodel - Altera Cortex-M Device

6.7.1. Setting Up the Altera Device

Follow these steps for initial installation and set up of the Altera device.

1. Install Quartus Il Web Edition (or any equivalent), available from Altera.

2. Install drivers for USB Blaster, also available from Altera.

3. Install Sourcery G++ Lite for ARM EABI. See Chapter 2, “Installation and Configuration”.
4. Connect the board and the host computer with a USB cable.

5. Turn on the board.

6. Use Quartus Il to download a . sof file including a Cortex-M1 core to the FPGA.

7. Use arm-none-eabi-sprite -i to verify that the Sprite can detect the installed Cortex-
M1 core.

6.7.2. Hardware Breakpoints

The Cortex-M1 core only permits hardware breakpoints to be set in the first 512MB of its address
space. Because both external SRAM and flash memory are located at higher addresses, you cannot
set hardware breakpoints in these memory regions.

6.8. Debugging a Remote Board

You can run the Sourcery G++ Debug Sprite on a different machine from the one on which GDB is
running. For example, if your board is connected to a machine in your lab, you can run the debugger
on your laptop and connect to the remote board. The Sourcery G++ Debug Sprite must run on the
machine that is connected to the target board. You must have Sourcery G++ installed on both ma-
chines.

To use this mode, you must start the Sprite with the —1 option and specify the port on which you
want it to listen. For example:

> arm-none-eabi-sprite -1 :10000 devi ce-url board-file

starts the Sprite listening on port 10000.

40

Sourcery G++ Debug Sprite

When running GDB from the command line, use the following command to connect GDB to the
remote Sprite:

(gdb) target remote host :10000

where host is the name of the remote machine. After this, debugging is just as if you are debugging
a target board connected to your host machine.

For more detailed instructions on using the Sourcery G++ Debug Sprite in this way, please refer to
the Sourcery G++ Knowledge Basel.

6.9. Supported Board Files

The Sourcery G++ Debug Sprite for ARM EABI includes support for the following target boards.
Specify the appropriate boar d- f i | e as an argument when invoking the Sprite from the command
line.

Board Config

Altera Cyclone Il Cortex-M1|cycloneiii-cml
ARMulator (RDI) armulator

6.10. Board File Syntax

The boar d- f i | e can be a user-written XML file to describe a non-standard board. The Sourcery
G++ Debug Sprite searches for board files in the arm-none-eabi/1ib/boards directory in
the installation. Refer to the files in that directory for examples.

The file's DTD is:

<I-- Board description Ffiles
Copyright (c) 2007-2009 CodeSourcery, Inc.

THIS FILE CONTAINS PROPRIETARY, CONFIDENTIAL, AND TRADE
SECRET INFORMATION OF CODESOURCERY AND/OR ITS LICENSORS.

You may not use or distribute this file without the express
written permission of CodeSourcery or its authorized
distributor. This file is licensed only for use with
Sourcery G++. No other use is permitted.

—

<IELEMENT board
(properties?, feature?, initialize?, memory-map?)>

<IELEMENT properties
(description?, property*)>

<IELEMENT initialize
(write-register | write-memory | delay
| wait-until-memory-equal | wait-until-memory-not-equal)* >

! https://support.codesourcery.com/GNUToolchain/kbentry132

41

https://support.codesourcery.com/GNUToolchain/kbentry132
https://support.codesourcery.com/GNUToolchain/kbentry132

Sourcery G++ Debug Sprite

<IELEMENT
<IATTLIST

<IELEMENT
<IATTLIST

<IELEMENT
<IATTLIST

<IELEMENT
<IATTLIST

<IELEMENT
<IATTLIST

<IELEMENT
<IELEMENT
<IATTLIST

<IELEMENT
<IELEMENT
<IATTLIST
<IELEMENT
<IATTLIST

write-register EMPTY>

write-register
address CDATA #REQUIRED
value CDATA #REQUIRED
bits CDATA #IMPLIED>
write-memory EMPTY>
write-memory
address CDATA #REQUIRED
value CDATA #REQUIRED
bits CDATA #IMPLIED>
delay EMPTY>
delay
time CDATA #REQUIRED>
wait-until-memory-equal EMPTY>

wait-until-memory-equal

address CDATA #REQUIRED
value CDATA #REQUIRED
timeout CDATA #IMPLIED
bits CDATA #IMPLIED>
wait-until-memory-not-equal EMPTY>
wait-until-memory-not-equal
address CDATA #REQUIRED
value CDATA #REQUIRED
timeout CDATA #IMPLIED
bits CDATA #IMPLIED>
memory-map (memory-device)*>
memory-device (property*, description?,
memory-device
address CDATA #REQUIRED
size CDATA #REQUIRED
type CDATA #REQUIRED
device CDATA #IMPLIED>
description (#PCDATA)>
property (#PCDATA)>
property name CDATA #REQUIRED>
sectors EMPTY>
sectors

size CDATA #REQUIRED
count CDATA #REQUIRED>

<IENTITY % gdbtarget SYSTEM *gdb-target.dtd'>
%gdbtarget;

All values can be provided in decimal, hex (with a Ox prefix) or octal (with a O prefix). Addresses
and memory sizes can use a K, KB, M, MB, G or GB suffix to denote a unit of memory. Times must

use a ms or us suffix.

The following elements are available:

<board>

This top-level element encapsulates the entire description of the board. It
can contain <properties>, <feature>, <initialize> and

<memory-map> elements.

sectors*)>

42

Sourcery G++ Debug Sprite

<properties>

<initialize>

<feature>

<memory-map>

<memory-device>

<write-register>

The <properties> element specifies specific properties of the target
system. This element can occur at most once. It can contain a
<description> element.

It can also contain <property> elements with the following names:

banked-regs The banked-regs property specifies that the CPU
of the target board has banked registers for different
processor modes (supervisor, IRQ, etc.).

has-vfp The has-vTp property specifies that the CPU of the
target board has VFP registers.

system-v6-m The system-v6-m property specifies that the CPU
of the target board has ARMv6-M architecture system
registers.

system-v7-m The system-v7-mproperty specifies that the CPU
of the target board has ARMv7-M architecture system
registers.

core-family The core-family property specifies the ARM
family of the target. The body of the <property>
element may be one of arm7, arm9, arm11, and
cortex.

system-clock This property specifies the target clock frequency (in
Hertz) after reset. It is used to configure flash program-
ming algorithms.

The <initialize> element defines an initialization sequence for the
board, which the Sprite performs before downloading a program. It can
contain <write-register>, <write-memory> and <delay>
elements.

This element is used to inform GDB about additional registers and peri-
pherals available on the board. It is passed directly to GDB; see the GDB
manual for further details.

This element describes the memory map of the target board. It is used by
GDB to determine where software breakpoints may be used and when
flash programming sequences must be used. This element can occur at
most once. It can contain <memory-device> elements.

This element specifies a region of memory. It has four attributes:
address, size, typeanddevice. The address and size attributes
specify the location of the memory device. The type attribute specifies
that device as ram, rom or Flash. The device attribute is required for
flash regions; it specifies the flash device type. The
<memory-device> element can contain a <description> element.

This element writes a value to a control register. It has three attributes:
address, value and bits. The bits attribute, specifying the bit
width of the write operation, is optional; it defaults to 32.

43

Sourcery G++ Debug Sprite

<wr ite-memory>

<delay>

<description>

<property>

This element writes a value to a memaory location. It has three attributes:
address, value and bits. The bits attribute is optional and defaults
to 32. Bit widths of 8, 16 and 32 bits are supported. The address written
to must be naturally aligned for the size of the write being done.

This element introduces a delay. It has one attribute, time, which specifies
the number of milliseconds, or microseconds to delay by.

This element encapsulates a human-readable description of its enclosing
element.

The <property> element allows additional name/value pairs to be
specified. The property name is specified in a name attribute. The property
value is the body of the <property> element.

44

Chapter 7
Next Steps with Sourcery G++

This chapter describes where you can find additional documentation and information about
using Sourcery G++ Lite and its components.

45

Next Steps with Sourcery G++

7.1. Sourcery G++ Knowledge Base

The Sourcery G++ Knowledge Base is available to registered users at the Sourcery G++ Portal®.
Here you can find solutions to common problems including installing Sourcery G++, making it work
with specific targets, and interoperability with third-party libraries. There are also additional example
programs and tips for making the most effective use of the toolchain and for solving problems
commonly encountered during debugging. The Knowledge Base is updated frequently with additional
entries based on inquiries and feedback from customers.

7.2. Manuals for GNU Toolchain Components

Sourcery G++ Lite includes the full user manuals for each of the GNU toolchain components, such
as the compiler, linker, assembler, and debugger. Most of the manuals include tutorial material for
new users as well as serving as a complete reference for command-line options, supported extensions,
and the like.

When you install Sourcery G++ Lite, links to both the PDF and HTML versions of the manuals are
created in the shortcuts folder you select. If you elected not to create shortcuts when installing
Sourcery G++ Lite, the documentation can be found in the share/doc/
sourceryg++-arm-none-eabi/ subdirectory of your installation directory.

In addition to the detailed reference manuals, Sourcery G++ Lite includes a Unix-style manual page
for each toolchain component. You can view these by invoking the man command with the pathname
of the file you want to view. For example, you can first go to the directory containing the man pages:

> cd $INSTALL/share/doc/sourceryg++-arm-none-eabi/man/manl
Then you can invoke man as:
> man ./arm-none-eabi-gcc.1

Alternatively, if you use man regularly, you'll probably find it more convenient to add the directory
containing the Sourcery G++ man pages to your MANPATH environment variable. This should go in
your .profFile or equivalent shell startup file; see Section 2.6, “Setting up the Environment” for
instructions. Then you can invoke man with just the command name rather than a pathname.

Finally, note that every command-line utility program included with Sourcery G++ Lite can be invoked
with a —=—hellp option. This prints a brief description of the arguments and options to the program
and exits without doing further processing.

! https://support.codesourcery.com/GNUToolchain/

46

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/

Appendix A
Sourcery G++ Lite Release Notes

This appendix contains information about changes in this release of Sourcery G++ Lite for
ARM EABI. You should read through these notes to learn about new features and bug fixes.

47

Sourcery G++ Lite Release Notes

A.l. Changes in Sourcery G++ Lite for ARM
EABI

This section documents Sourcery G++ Lite changes for each released revision.

A.1.1. Changes in Sourcery G++ Lite 2010gq1-188

ARM internal compiler error fix. ~ Abug that caused the error internal compiler error:
in get_arm_condition_code when compiling code using 64-bit integers has been fixed.

Improved NEON code generation for 0.0 constants. The compiler now generates better code
for loading double float 0.0 constants on processors supporting NEON instructions.

Incorrect linker-generated functions. A bug that caused some linker-generated functions (in-
cluding stubs to support interworking from ARM mode to Thumb mode and stubs to implement long
branches) to jump to invalid offsets has been fixed.

Improved support for debugging RealView® programs with inlined functions. GDB has
been enhanced to better handle debug information for inlined functions contained in binaries produced
by the ARM RealView® compiler. Formerly, local variables in inner function scopes would become
unavailable at calls to static inline functions. GDB now also includes inlined functions in the stack
trace in binaries produced by RealView® versions earlier than 4.0. In addition, GDB's support for
stepping over inline functions in programs built with such compilers has been improved.

Long branchfix. A bug has been fixed that caused the linker to generate ARM-mode instructions
for long branches on ARM v6-M. The linker now generates Thumb instructions.

Improved code generation for i f statements. The compiler can now generate better code for
i T statements when the then and else clauses contain similar code.

Assembler encoding bug fixes. Several bugs in the assembler have been fixed that caused selection
of incorrect encodings for some instructions that have multiple encodings. The incorrect encodings
are not believed to have affected runtime behavior but were not in conformance with the canonical
encodings specified by the ARM ARM. The ob jdump command has also been fixed to decode such
instructions correctly.

ARMV7-A performance improvements. The compiler has been enhanced to produce faster code
for the ARM architecture, particularly for ARMv7-A cores, when compiling using the —02 option.
This results in a significant improvement in performance relative to CodeSourcery's 200993 releases.

Linker performance improvement. A bug in the linker that caused applications with many input
files to link slowly has been fixed.

ARM EABI 2.08. Thetoolchain has been updated to implement ARM EABI 2.08 (October 2009).

Weak symbols. An assembler bug has been fixed that caused incorrect code to be generated for
references to weak symbols when a default definition is also provided in the same file.

GDB shared library support. ~ GDB now supports targets that report loaded shared libraries using
the gXfer:libraries:read Remote Serial Protocol packet. For more information, see the
GDB manual.

Optimization of ARM NEON vdupq_n* intrinsics. The compiler now generates better code
for vdupq_n* intrinsics to load particular constants.

48

Sourcery G++ Lite Release Notes

Linker bug fix for - - secti on-start. A linker bug that caused --section-start to
fail to work as documented if the section is defined in multiple object files has been fixed.

GCC inline assembly bug fixes. A bug that caused NEON/VFP registers specified in the clobber
list of inline assembly statements to be saved and restored incorrectly has been fixed. Another bug
that caused incorrect code when double-precision or quad-precision registers were specified in the
clobber list has also been fixed.

Assembler segmentation fault fix. A bug has been fixed that caused the assembler to crash when
processing some data filling directives, suchas . fill 0, 0, O.

Linker bug with Cortex-A8 erratum fix. A bug in the -—Fix-cortex-a8 linker option,
which is enabled by default when linking ARMv7-A objects, has been fixed. The bug could cause
the linker to generate incorrect shared libraries.

Improved code generation for Cortex-A5. The compiler has been enhanced to provide instruction
scheduling for Cortex-Ab cores. To take advantage of this, use the -mcpu=cortex-a5 command-
line option.

Improved support for debugging RealView® programs. GDB has been enhanced to handle
some debug information contained in binaries produced by the ARM Real View® compiler. Formerly,
GDB sometimes crashed on these programs and libraries.

Linker script processing improvement. The linker can now automatically place sections that
are not mentioned in your linker script. Previously, it issued the error no memory region
specified for loadable section.

Better use of NEON instructions on Cortex-A8. The compiler now generates better code when
optimizing for the Cortex-A8 by being less eager to use NEON instructions.

Assembler segmentation fault fix. A bug has been fixed that caused the assembler to crash when
assembling some Thumb-only instructions in ARM mode. The assembler now gives an error on all
incorrect uses of Thumb-only instructions in ARM mode.

GCC internal compiler error. A bug has been fixed that caused GCC to crash when compiling
some C++ code using templates at -02 or -03.

Linker script compatibility. A bug that caused the linker error undefined reference to
T cs3_start_asm” has been fixed. The bug applied to projects using a linker script from an
older version of Sourcery G++ with a newer CS3 library.

GCC internal compiler error with opt i m ze attribute. A bug has been fixed that caused the
compiler to crash when invoked with the —00 or —01 option on code using the optimi ze attribute
to specify higher optimization levels for individual functions.

C++ array initializer optimization. The compiler now generates better code for some non-constant
array initializations in C++.

A.1.2. Changes in Sourcery G++ Lite 2010gq1-155

IPSR register. A bug in the Sourcery G++ Debug Sprite that caused only five bits of the M-
profile 1PSR register to be displayed in the debugger has been fixed.

Support for ARM Cortex-M4 cores. Sourcery G++ now includes support for ARM Cortex-M4
cores. Use the -mcpu=cortex-m4 command-line option.

49

Sourcery G++ Lite Release Notes

Debugging preprocessed source code. A compiler bug has been fixed that caused debug output
to erroneously contain the name of the intermediate preprocessed file.

Thumb-2 size optimization improvements. The compiler has been enhanced to produce smaller
code for the ARM architecture, particularly for Thumb-2 mode, when compiling using the —Os option.
This results in a significant improvement in code size relative to CodeSourcery's 200993 releases.

GDB update. The included version of GDB has been updated to 7.0.50.20100218. This update
adds numerous bug fixes and new features, including improved C++ language support, automatic
caching of stack memory, and Position Independent Executable (PIE) support.

CS3 program startup behavior revised. CS3's model for program startup has been made more
uniform across different target profiles. Changes include:

» Execution now consistently begins at hard reset (__cs3_reset) for all profiles. Formerly, the
debugger began execution at assembly initialization (_start) instead.

* All profiles now perform the assembly initialization phase, using profile-specific code. Formerly,
simulator and boot monitor profiles skipped this initialization phase.

Most existing programs using customized linker scripts or startup code based on the previous CS3
initialization model should continue to work as before with the new CS3 library. For more details
on the CS3 startup model, refer to Section 5.2, “Program Startup and Termination”.

CS3 improvements. Several changes have been made to CS3 to make it easier to customize, in-
cluding improved documentation and additions and corrections to the header file cs3 . h. For details,
see Chapter 5, “CS3™: The CodeSourcery Common Startup Code Sequence”.

GDB asynchronous mode fix. GDB can now be used from the command line in asynchronous
mode with remote targets. Previously, GDB did not accept user input while asynchronous commands
(such as continue &) were running.

GDB interrupt handling bug fix. A bug in GDB has been fixed that caused it to sometimes fail
to indicate that the target had stopped after being interrupted. The bug affected clients using GDB's
Ml front end.

GDB and programs linked with the - - gc- sect i ons linker option. GDB has been improved
to better handle debug information found in programs and libraries linked with the --gc-sections
option. GDB formerly selected the wrong debug information in some cases, resulting in incorrect
behavior when stepping over a function or displaying local variables, for example.

GDB memory find bug fix. A bug in GDB's find command has been fixed. The bug caused
searches on large memory areas to fail or report matches at incorrect addresses.

Debugger errors after loading program. A bug in GDB has been fixed that sometimes caused
a GDB internal error after the load command.

Frame manipulation bug fix. A bug in GDB has been fixed that caused frame manipulation
commands to report an internal error in some cases when used on arbitrary stack frames specified
by an address.

Read watchpoints bug fix. A GDB bug has been fixed that caused watchpoints set to trigger on
memory reads to be silently ignored in some cases.

50

Sourcery G++ Lite Release Notes

GDB load improvement. GDB now automatically initializes ARM Cortex-M devices to Thumb
mode on the load command. This is helpful, for example, when an incorrect program image was
previously flashed onto the board, causing it to enter an invalid state on reset.

Setting thread-specific breakpoints in GDB. A bug in GDB has been fixed that caused a syntax
error for the break *expr essi on thread t hr eadnumcommand.

Backtracing through ARM M-profile exceptions. =~ GDB now supports backtracing through
processor exceptions on ARMv6-M and ARMv7-M targets, including Cortex-M3.

Backtracing through noreturn functions. A compiler bug that made it impossible to obtain a
backtrace through functions declared with the noreturn attribute has been fixed. This fix makes
it possible for the debugger to present a useful stack backtrace for applications that call abort.

vcvt assembly bug fix. A bug that caused vevt.s32 .64 instructions to be misassembled
as vevtr.s32. 164 has been fixed.

Branches between ARM and Thumb fix. An assembler bug that caused incorrect branches
between ARM and Thumb code in different sections has been fixed.

Assembler segmentation fault fix. A bug has been fixed that caused the assembler to crash when
processing code containing invalid Thumb-mode instructions such as Idr r0, 0. The assembler
now produces an error message in such cases.

Assembler fix for Thumb-2. A bug that caused the assembler to reject some valid Thumb-2
strexd instructions has been fixed.

NEON assembler fix. The assembler now correctly handles the three-operand form of NEON
logic instructions, such as vorr.i32 q0, g0, #Oxff

Warning for deprecated instructions. The assembler now issues warnings about uses of swp
or swpb instructions on architectures where they have been deprecated.

Additional error checks in the assembler. The assembler has been improved to perform a
number of additional checks for invalid inputs. In particular, it now diagnoses additional invalid uses
of the PC and SP registers, as specified in the ARM documentation. The assembler now also rejects
invalid NEON alignment qualifiers, suchasvild1.8 {d0}, [rO, :-128]andvid1.8 {qO},
[rO, :-256].

Thumb-2 multiply fix. A bug that caused an invalid mul's instruction to be generated in certain
circumstances has been fixed. This affected code compiled for Thumb-2, and resulted in an error
from the assembler.

Debug Sprite multiple connections fix. ~ When started with the —m option, the Sourcery G++
Debug Sprite no longer exits if the connection to GDB is lost when sending a response. Instead, it
goes back to waiting for another connection.

Disassembler bug fix. A bug in the disassembler has been fixed that caused incorrect output for
data objects, including literal pools and the interrupt vector.

Improved code generation for Cortex-A9. The compiler has been enhanced to provide better
instruction scheduling for Cortex-A9 cores. To take advantage of this, use the -mcpu=cortex-a9
command-line option.

51

Sourcery G++ Lite Release Notes

Improved NEON code generation. GCC's code generation for NEON targets (e.g., when com-
piling with -mFpu=neon) has been improved. In particular, the compiler can now make use of
NEON instructions for many 64-bit integer operations.

Indirect function call optimization. The instruction sequence used to implement calls via a
function pointer has been improved to give better branch-prediction performance on some processors.

Thumb-2 function call optimization. ~ The compiler has been enhanced to generate improved
code on Thumb-2 targets for functions that return via calls to other functions.

Watchpoint fix. A bug in the Sourcery G++ Debug Sprite that sometimes prevented watchpoints
on Cortex-M targets from functioning has been fixed.

Optimizer bug fix. A bug in GCC that caused internal compiler errors at 02 or above has been
fixed. The bug also occurred at other optimization levels when the -fpromote-loop-indices
command-line option was used.

Internal compiler error fix. A bug that caused an internal compiler error when using
-fno-omit-frame-pointer to compile code for Thumb-2 has been fixed.

Thumb-2 internal compiler error fix. A bug that caused an internal compiler error when
building the QT library for Thumb-2 has been fixed.

Incorrect symbol addresses bug fix. A bug in the linker that caused it to assign incorrect addresses
to symbols has been fixed. The bug occurred when the input objects contained sections not explicitly
mentioned in the linker script.

Static constructor and destructor ordering fixes. The linker now correctly ensures that static
destructors with priorities are executed after destructors without priorities. Another linker bug that
caused incorrect static constructor and destructor ordering with partial linking involved has been
fixed.

Linker fix for data-only sections. A bug has been fixed that caused the linker to incorrectly
mark parts of the output as containing code, rather than data, when linking data-only sections not
explicitly tagged as such. The bug resulted in incorrect disassembly.

Linker relocation diagnostics. A bug that caused the linker to incorrectly diagnose overflows
for some valid relocations has been fixed.

C++name-manglingofva_| i st. Thecompiler no longer issues the mangling of "va_
list®™ has changed warnings for references to std: :va_list within system header files.

A.1.3. Changes in Sourcery G++ Lite 200993-68

Out-of-range branch error. A compiler bug has been fixed that caused out-of-range branch errors
from the assembler. The bug only affected code compiled in Thumb-2 mode.

A.1.4. Changes in Sourcery G++ Lite 200993-64

GDB crash fix. A GDB bug has been fixed that caused GDB to crash when unloading shared
libraries or switching executables.

@ LE fix. A bug has been fixed in the processing of @FI LE command-line options by GCC,
GDB, and other tools. The bug caused any options in FI LE following a blank line to be ignored.

52

Sourcery G++ Lite Release Notes

Preprocessor error handling. The preprocessor now treats failing to find a file referenced via
#include as a fatal error.

NEON improvements. The compiler now generates improved NEON vector code when copying
memory or storing constants to memory using the NEON coprocessor. The compiler also generates
better code for accessing data arrays that are not known to have 64-bit alignment. In addition, a bug
that caused internal compiler errors when compiling for Thumb-2 with NEON enabled has been
fixed, as has another bug that caused some vector shift NEON operations to be wrongly rejected.

ELF file corruption with st ri p. A bug that caused strip to corrupt unusual ELF files has
been fixed.

GDB support for Cygwin pathnames. A bug in GDB's translation of Cygwin pathnames has
been fixed.

Compiler errors with fl oat 32_t. A bug has been fixed that caused compiler errors when
using the Float32_t type from arm_neon.h.

Support for ARM Cortex-A5 cores. Sourcery G++ now includes basic support for ARM Cortex-
A5 cores. Use the -mcpu=cortex-a5 command-line option.

Static variables and asmstatements bug fix. A bug in GCC that caused functions containing
static variables and asm statements to be miscompiled at —02 or above has been fixed. The bug also
occurred at other optimization levels when the -Fremove-local -statics command-line option
was used.

Linker script fixes. A bug in CS3 linker scripts for simulator profiles has been fixed. The bug
resulted in data memory being too small, which sometimes caused the stack to be overwritten during
initialization, or reduced space for mal loc to allocate.

Warnings for naked functions. A compiler bug that resulted in incorrect warnings about missing
return statements in non-void functions declared with the naked attribute has been fixed.

Optimizer bug fix. Abugin GCC that caused functions with complex loop nests to be miscompiled
at —02 or above has been fixed. The bug also occurred at other optimization levels when the
-fpromote-loop-indices command-line option was used.

VFPv4 support. Sourcery G++ now includes support for VFPv4, VFPv4-D16 and NEON-VFPv4
coprocessors. Use the -mFpu=vfpv4, -mFpu=vFpv4-d16 or -mFpu=neon-vTpv4 options,
respectively.

GCC internal compiler error. A bug has been fixed that caused the compiler to crash when
optimizing code that casts between structure types and the type of the first field.

Flash programming support on Atmel AT91SAM7Sxxx. The Sourcery G++ Debug Sprite
now supports flash programming on Atmel AT91SAM7Sxxx when using SEGGER J-Link devices.

ELF Program Headers. The linker now better diagnoses errors in the usage of FILEHDR and
PHDRS keywords in PHDRS command of linker scripts. Refer to the linker manual for more inform-
ation.

A.1.5. Changes in Sourcery G++ Lite 2009gq3-37

Improved optimization for ARM. GCC now automatically enables loop unrolling and
-fpromote-loop-indices when -02 or -03 is specified. Loop unrolling is limited at —-02
to control code growth. These changes improve performance by more than 5%.

53

Sourcery G++ Lite Release Notes

VFP assembly mnemonics. The assembler now accepts unified assembly mnemonics for VFP
instructions (e.g. VADD. 32 s0, sO) in legacy syntax mode.

ARM Cortex-R4F assembler bug fix. The assembler now correctly recognizes the
—-mcpu=cortex-r4f command-line option to select the Cortex-R4F processor.

VFP half-precision extensions. Sourcery G++ now includes support for VFP coprocessors with
half-precision floating-point extensions. This can be enabled with the -mfpu=vfpv3-d16-fpl6
or -mFpu=vFpv3-Fpl6 command-line options.

Optimizer improvements. When optimizing for speed, the compiler now uses improved heuristics
to limit certain types of optimizations that may adversely affect both code size and speed. This change
also makes it possible to produce better code when optimizing for space rather than speed.

Improved optimization for Thumb-2. GCC now supports instruction scheduling for Thumb-2
code. This optimization is enabled when compiling with —-02, -03, or -0s, and can improve per-
formance substantially.

ARM VFP assembler bug fix. The assembler now correctly assembles the vml's, vnmla and
vnmls mnemonics. Previously these were incorrectly assembled to different instructions.

GDBfi ni shinternal error. A bug has been fixed that caused a GDB internal error when using
the Finish command. The bug occurred when debugging optimized code.

Linking objects built without - f PI Cinto shared libraries. The linker now gives an error for
attempts to link object files built without —FP 1 C or -Fpic into shared libraries when those objects
use the ARMv7 MOVW and MOVT instructions in ways that are unsafe in a shared library. Previously
it built a shared library that behaved incorrectly when used.

GDB update. The included version of GDB has been updated to 6.8.50.20090630. This update
adds numerous bug fixes and new features, including support for multi-byte and wide character sets
and improved C++ template support.

New assembler directive . i nst. The assembler now accepts the new . inst directive to gen-
erate an instruction from its integer encoding.

GDB and third-party compilers. Some bugs that caused GDB to crash when debugging programs
compiled with third-party tools have been fixed. These bugs did not affect programs built with
Sourcery G++.

Remote debugging hardware watchpoint bug fix. =~ A GDB bug has been fixed that caused
hardware watchpoint hits to be incorrectly reported in some cases.

Internal error in assembler. An assembler bug that caused an internal error when . thumb or
-arm appears after an invalid instruction has been fixed.

GDB internal warning fix. =~ A GDB bug has been fixed that caused warnings of the form
warning: (Internal error: pc address in read in psymtab, but not
in symtab.).

Incorrect linker diagnostic removed. The linker has been corrected to not emit an error message
when the load address of an output section with no contents overlaps an output section with contents.
This can occur in linker scripts that use MEMORY regions and AT> to place initialized contents into
ROM.

54

Sourcery G++ Lite Release Notes

Improved bit counting operation. The __bui l'tin_ctz built-in function, which returns the
number of trailing zero bits in a value, has been improved to use a shorter instruction sequence for
ARMV6T2 and later.

Out-of-range branch errors. A Thumb-2 code generation defect in the compiler that caused
branch out of range errors from the assembler has been eliminated.

Binutils update. The binutils package has been updated to version 2.19.51.20090709 from the
FSF trunk. This update includes numerous bug fixes.

Linker fix. The linker now correctly processes references to undefined local symbols. Such ref-
erences are treated the same as references to undefined global symbols. Usually object files contain
no such references, as they can never be satisfied.

Assembler validation improvements. The assembler now issues a warning when a section finishes
with an unclosed IT instruction block at the end of the input file. It also now rejects unwinding dir-
ectives that appear outside of a . Fnstart/. fnend pair. Additionally, 32-bit Thumb instructions
are now correctly rejected when assembling for cores that do not support these instructions.

Destructor function bug fix. A bug in CS3 has been fixed that caused functions with the
destructor attribute not to be run on program termination.

Assembler validations fix. A bug in the assembler that caused some addw and subw instructions
with SP or PC as operand to be wrongly rejected has been fixed.

- maut o- i t assembler option replacedwith-m nplicit-it. The-mauto-itcommand-
line option to the assembler has been replaced with a more general -mimplicit-it option to
control the behavior of the assembler when conditional instructions appear outside an IT instruction
block. If you were previously using -mauto-it, you should now use -mimplicit-it=always.
Other -mimplicit-it modes allow you to separately control implicit IT instruction insertion
behavior in ARM and Thumb-2 code. For more information, refer to the assembler manual. In addition
to renaming the option, a number of bugs in the implicit IT generation have been fixed.

GDB backwards compatibility fix. A bug has been fixed that caused GDB to crash when loading
symbols from binaries built by very old versions of GCC.

Linker failure with Cortex-A8 erratum fix. A bug in the —-—Fix-cortex-a8 linker option
has been fixed. The bug caused the linker either to produce a bad value error, or to silently gen-
erate an incorrect executable.

Debug information for variadic functions. A compiler bug that resulted in incorrect debug in-
formation for functions with variable arguments has been fixed.

Overlay sections. arm-none-eabi-readelf now correctly recognizes section headers for
ARM_DEBUGOVERLAY and ARM_OVERLAYSECT ION sections.

Code generation improvements. The compiler has been changed to make better use of VFP re-
gisters in mixed integer and floating-point code, resulting in faster code.

Register variable corruption. A compiler bug has been fixed that caused incorrect code to be
generated when the frame pointer or other special-use registers are used as explicit local register
variables, introduced via the asm keyword on their declarations.

Startup code debugging fixes. Two GDB bugs have been fixed that caused errors when debugging
startup code. One bug caused an internal error message; the other caused the error Cannot find
bounds of current function.

55

Sourcery G++ Lite Release Notes

Assembler fix for mixed Thumb and ARM mode. A bug in the assembler has been fixed where
mapping symbols were sometimes incorrectly placed at section boundaries. This could lead to incorrect
disassembly in some cases.

C++ exception matching. A C++ conformance defect has been fixed. According to clause 15.3
of the standard, given a derived class D with base B, a thrown D * object is not caught by a handler
with type B *& (that is, a reference to pointer B). The compiler formerly treated this case incorrectly
as if the handler had type B *, which does catch D *.

-frenove-| ocal - st ati cs optimization. The -fremove-local-statics optimization
is now enabled by default at -02 and higher optimization levels.

Elimination of spurious warnings about NULL . The C++ compiler no longer issues spurious
warnings about comparisons between pointers to members and NULL.

Vectorizer improvements. The compiler now generates improved code for accesses to static
nested array variables (e.g. static int foo[8][8]:).

Linker bugfix. Abug that caused the linker to crash when . ARM . ex i dx sections were discarded
by a linker script has been fixed.

Configuration file required for Debug Sprite. ~ When invoking the Sourcery G++ Debug Sprite
from the command line, it is now required to specify a board configuration file argument. This change
eliminates a source of confusion and errors resulting from accidental omission of the configuration
file argument, since recent improvements to debugger functionality depend on properties specified
in the configuration file. Refer to Chapter 6, “Sourcery G++ Debug Sprite” for more details on in-
voking the Sourcery G++ Debug Sprite from the command line.

GCCversion4.4.1. Sourcery G++ Lite for ARM EABI is now based on GCC version 4.4.1. For
more information about changes from GCC version 4.3 that was included in previous releases, see
http://gcc.gnu.org/gcc-4.4/changes.html.

Watchpoint support. The Sourcery G++ Debug Sprite now implements watchpoints on all cur-
rently-supported debugging devices.

Linker map address sorting. The map generated by the linker —Map option now lists symbols
sorted by address.

Assembler fix. The assembler now correctly diagnoses a missing operand to b1 and b I x instruc-
tions. Previously, incorrect code was silently generated.

A.1.6. Changes in Sourcery G++ Lite 2009q1-161

Incorrect placement of linker-generated functions. A bug that caused some linker-generated
functions (including stubs to support interworking from ARM mode to Thumb mode and stubs to
avoid processor errata) to be placed in data sections has been fixed.

ARMulator support. CS3 now includes support for using the ARMulator via the Sourcery G++
Debug Sprite using the RDI protocol.

New option for automatically generating IT blocks. The assembler now allows use of condi-
tional Thumb-2 instructions without requiring explicit IT instructions. Use the -mauto- it command-
line option to enable this automatic generation of IT instructions.

Optimized menctpy. The Newlib implementation of memcpy has been optimized to increase
performance on ARM targets that support prefetch instructions.

56

Sourcery G++ Lite Release Notes

Support for Cortex-M0. Sourcery G++ Lite now includes support for Cortex-MO processors.
To compile for these processors, use -mcpu=cortex-m0 -mthumb.

Incorrect code when using - fal i gn-1 abel s . A bug that caused the compiler to generate
incorrect code for swi tch statements when the —Fal ign-1abel's option is used has been fixed.

Reduced compilation time. Compilation and build times when using Sourcery G++ Lite are now
slightly faster. This performance improvement is the result of building the compilers and other host
tools with a recent version of Sourcery G++, rather than an older GCC version.

Linker script load address processing. A bug in the linker has been fixed affecting linker scripts
using AT>region to set the load address. This now follows the documented behavior of maintaining
the virtual address to load address difference in output section statements. Refer to the "Output
Section LMA" section of the linker manual for details of how to control the load address.

Debug section placement. A linker script bug in CS3 has been fixed that caused .debug__
ranges debug sections to be misplaced.

Assembler bug fix. A bug in the assembler that caused duplicate and missing mapping symbols
has been fixed. The bug caused incorrect ob jdump output and incorrect byte-swapping for BES8
configurations.

Multiple flash regions. A bug in the CS3 linker scripts affecting boards with multiple flash
devices has been fixed. The bug caused initialization code to treat certain flash devices as normal
memory.

Stack backtracing and C++ exception handling. Improvements have been made to the linker
in support of C++ runtime exception handling and stack backtracing. A problem that caused crashes
during the backtrace of C routines that were not compiled with the -fexceptions option has
been fixed. In addition, the linker generates more compact stack unwinding tables which can lead
to smaller executables.

Assembler floating-point format. The assembler now defaults to VFP format for floating-point
numbers. It previously defaulted to the legacy FPA format if no -mcpu or -march option was
specified, or if a CPU with no floating-point unit was specified. This bug resulted in incorrect beha-
vior of the _.double and .dcb .d directives.

Incorrect linker-generated functions. A bug that caused some linker-generated functions (such
as stubs to support interworking from ARM mode to Thumb mode) to contain only nop instructions
instead of correct code sequences has been fixed.

Assembler diagnostics for invalid instructions. The assembler now issues diagnostics for invalid
ADR and ADRL instructions. Formerly, these invalid instructions were silently mis-assembled. This
assembler bug did not affect correct code.

Sprite's failure to reset the target. A bug has been fixed that sometimes caused the Sourcery
G++ Debug Sprite to fail to reset the target when using the multiple sequential connection feature
(enabled via the -m command-line option). This problem was specific to running the Debug Sprite
on Microsoft Windows hosts.

Optimized menctpy and nenset routines. The Newlib implementations of memcpy and
memset have been optimized to increase performance on ARM targets.

Loop optimization improvements. A new option, -fpromote-loop-indices, has been
added to the compiler. Specifying this option enables an optimization that improves the performance

57

Sourcery G++ Lite Release Notes

of loops with index variables of integer types narrower than the target machine word size, such as
char or short. This optimization also applies to int on 64-bit targets.

Disassembler bug fix. A bug has been fixed that caused incorrect disassembly of some object
files with multiple sections whose symbol tables included symbols in the middle of functions. These
typically resulted from hand-written assembly.

DMVB, DSB, and | SBinstructions on ARMv6-M. The assembler now accepts the DMB, DSB, and
ISB instructions on ARMv6-M CPUs, including Cortex-M0 and Cortex-M1. These instructions
were incorrectly rejected on these CPUs in previous releases.

Extraneous linker error messages. A linker bug that caused extraneous error messages of the
form Dwarf Error: Offset (507) greater than or equal to .debug str
size (421). has been corrected. This bug did not affect the correctness of output binaries.

Linker crash with very large applications. A linker bug that caused a crash when linking very
large applications with the -—Fix-cortex-a8 command-line option has been fixed.

Assembler marking of data. Data generated using the assembler directives .asci i, -asciz,
.dc.d, .dc.s, .dc.x, -.dcb, .dcb.b, .dcb.d, .dcb.1, .dcb.s, .dcb.w, .dcb.x, .ds,
.ds.b, .ds.d, .ds.1, .ds.p, -ds.s, .ds.w, .ds.x, .double, . Fill, _float, . incbin,
-single, .space, .skip, .string, -string8, .stringl6, .string32, .string64,
and . zero is now correctly marked by the assembler as data rather than code. This fixes incorrect
byte-swapping of such data when linking for BE8 configurations.

ar m none- eabi - obj copy bug fix. A bug has been fixed that caused
arm-none-eabi-objcopy to issue an error when generating output in the Intel HEX format
and using -—change-section-Ima to change section addresses.

Linker script search path. The bug in the linker has been fixed that caused it not to follow its
documented behavior for searching for linker scripts named with the -T option. Now scripts are
looked up first in the current directory, then in library directories specified with -L command-line
options, and finally in the default system linker script directory.

VFP ABI support. Sourcery G++ now supports the VFP variant of the Procedure Call Standard
for the ARM® Architecture (AAPCS) in addition to the default soft-float ABI. The VFP ABI uses
VFP registers to pass function arguments and return values, resulting in faster floating-point code.
Code compiled with the VFP ABI is not compatible with the soft-float ABI libraries provided with
Sourcery G++ Lite; however, VFP ABI libraries for little-endian ARM v7-A processors are now
available as add-ons for Sourcery G++ Professional Edition. For further information about floating-
point compiler, ABI and library support in Sourcery G++, refer to Section 3.4.1, “Enabling Hardware
Floating Point”.

Cortex-A8 erratum workaround enabled for ARMv7-A. The workaround for the erratum in
Cortex-A8 processors mentioned below is now enabled by default if you are targeting the ARMv7-
A architecture profile. The workaround can be disabled by passing the —--no-fix-cortex-a8
option to the linker.

Improved vectorization. Automatic vectorization for NEON now uses the fused multiply-add
(VMLA) and fused multiply-subtract (VMLS) instructions. These fused instructions are faster than the
equivalent two-instruction sequence consisting of a multiply followed by an add or subtract.

Internal compiler error when optimizing. A bug has been fixed that caused internal
compiler error: in build2_stat when compiling.

58

Sourcery G++ Lite Release Notes

GDB qui t error. Abug in GDB has been fixed that caused quit to report Quitting: You
can"t do that without a process to debug. when debugging a core dump file.

Out-of-bounds accesses to stack arrays. A bug has been fixed that caused internal compiler
errors when some code involving out-of-bounds accesses to stack-allocated arrays was compiled
with the -mthumb option. Such code is not valid C; although it is now accepted by the compiler
and no diagnostic is issued, it has undefined behavior if executed.

Erratum workaround for Cortex-A8 processors. The linker now implements a workaround
for an erratum in Cortex-A8 processors. If you are targeting an affected part and wish to use the
workaround, pass the ——-Fix-cortex-a8 option to the linker. Please contact ARM for further
details of the erratum.

Maximum code alignment increased. The maximum allowed code alignment has been increased
from 32 to 64 bytes. This change affects the .p2align and .al ign assembler directives and the
-falign-functions GCC option.

Corruption of block-scope variables. A compiler optimization bug that sometimes caused cor-
ruption of stack-allocated variables has been fixed. The bug affected variables declared in a local
block scope in functions containing multiple non-overlapping lexical block scopes, a technique
commonly used by programmers to reduce stack frame size. In some rare cases, other optimizations
performed by the compiler were ignoring the local extent of such block-scope variables.

A.1.7. Changes in Sourcery G++ Lite 2009q1-116

Linking big-endian programs for ARMv7-A. When linking for ARMv7-A targets with
-mbig-endian, Sourcery G++ now implicitly assumes BE8 mode, rather than BE32.

GCCversion4.3.3. Sourcery G++ Lite for ARM EABI is now based on GCC version 4.3.3. This
is a bug fix update to GCC. For more information about changes from GCC version 4.3.2 that was
included in previous releases, see http://gcc.gnu.org/gcc-4.3/changes.html.

Improved NOP generation for Thumb-2 cores. The assembler now generates Thumb-2/ARMv6K
architectural NOP instructions when alignment padding is required in code sections.

Internal compiler error with - 3 or - f predi cti ve- conmoni ng. A bug has been fixed
that caused internal compiler errors when compiling some code with -03 or
-fpredictive-commoning.

CS3 board and processor support. CS3 board and processor support has been cleaned up to
remove entries that are not appropriate for or supported by Sourcery G++ Lite on ARM EABI targets.
This includes processors for which Sourcery G++ Lite does not include appropriate run-time libraries.
These changes are intended to simplify processor and board selection. For the full list of boards
supported by CS3, refer to Chapter 5, “CS3™: The CodeSourcery Common Startup Code Sequence”.

C++ named operators bug fix. A bug has been fixed that caused the compiler to crash in some
cases when the C++ operators and_eq, bitand, bitor, compl, not_eq, or_eqand xor_eq
were used in contexts where the preprocessor converts their names to strings.

Debug information for anonymous structure types. A GCC bug in the generation of debug
information for anonymous structure types in C++ code has been fixed. The bug caused printing the
type information for such structures in the debugger (via the ptype command) to fail with an error
message.

59

Sourcery G++ Lite Release Notes

CS3 bug fix. A bug in CS3 has been fixed that caused a write to invalid address on program
startup for all hosted targets.

Altera device detection. A bug in the Sourcery G++ Debug Sprite has been fixed. The bug
showed a spurious error when an Altera device without an SLD hub was connected to the host.

Interrupting the target from the debugger. GDB has been improved to be more responsive to
attempts to interrupt the target (as by a Ctrl+C when using GDB from the command line) during
execution of programs using semihosting.

Linker errors on non-ELF input. A bug has been fixed that caused internal errors from the
linker when linking non-ELF input files (with the —-b or ——-Fformat linker options).

Undefined weak references in shared libraries. A linker bug has been fixed affecting calls from
Thumb code in shared libraries to functions that are undefined weak references when the shared
library is linked. Such calls executed as nops whether or not the functions were defined at run time.

Improved code generation. The compiler has been improved to generate better code for an integer
multiplication whose result feeds into an addition.

Newlib update. ~ The Newlib package has been updated to version 1.17.0, with additions from the
community CVS trunk as of 2009-02-24. This update provides new C99 wide-character functions;
POSIX regex functions; string-function performance improvements; an improved sprintf imple-
mentation that no longer requires 1/O functions like _open, _write, and _close; and other bug
fixes and improvements. For more information, refer to the Newlib C Library and Math Library
manuals, and to the Newlib web site at http://sourceware.org/newlib/.

Installer fails during upgrade. The Sourcery G++ installer for Microsoft Windows hosts could
fail during an upgrade while waiting for the previous version to be uninstalled. This bug has been
fixed.

Performance improvements. Tuning parameters for ARM code generation have been adjusted
to improve performance of the generated code.

Uninstaller removed by upgrade. The uninstaller could be incorrectly deleted during an upgrade
on Microsoft Windows hosts. This bug has been fixed.

Remote debugging connection auto-retry. The target remote command within GDB now
uses a configurable auto-retry timeout when establishing TCP connections. This is useful in avoiding
race conditions when the remote GDB stub or GDB server is launched simultaneously with GDB.
The auto-retry behavior is enabled by default; refer to the GDB manual for details.

CWVP Thumb-2 instruction. The assembler no longer issues an error about CMP instructions in
which the second argument is the stack pointer (r13), as these are valid instructions. However, use
of the stack pointer in this context is deprecated in the current ARM architecture specification and
the assembler now warns about the deprecated use.

Thumb half-precision floating point bug fix. A compiler bug has been fixed that formerly
caused incorrect code to be generated in Thumb mode for functions using half-precision floating-
point constants. The bug did not affect Thumb-2 code.

Improved code generation. The compiler has been improved to generate better code for integer
multiplication by certain constants.

Support for Keil MCB2130 and MCB2140 boards. CS3 now includes support for Keil MCB2130
and MCB2140 boards.

60

Sourcery G++ Lite Release Notes

Thumb-2 swi t ch code generation bug fix. A bug has been fixed that caused incorrect Thumb-
2 code to be generated for some switch statements.

Internal compiler errors when optimizing. A defect that occasionally caused internal compiler
errors when partial redundancy elimination (PRE) optimization was enabled has been corrected.

Install directory pathnames. Bugs in the install and uninstall scripts for Linux hosts that caused
errors or incorrect behavior when the Sourcery G++ install directory pathname contains whitespace
characters have been fixed.

Internal compiler error with large NEON types. A bug has been fixed that caused internal
compiler errors when compiling code using NEON types at least 32 bytes wide.

Temporary files on Microsoft Windows. On Microsoft Windows hosts, Sourcery G++ Lite now
uses the standard Windows algorithm to choose the directory in which to place temporary files. This
change eliminates a crash that occurred if none of the TEMP, TMP, or TMPD IR variables were set to
a suitable directory.

Vectorized shift fix. A bug has been fixed that caused incorrect code for loops containing a right
shift by a constant. The bug affected code compiled with -mfpu=neon and loop vectorization enabled
with -03 or —-Ftree-vectorize.

Incorrect code for nested functions. A bug in GCC that caused the compiler to generate incorrect
code for nested functions has been fixed. The bug resulted in incorrect stack alignments in the affected
functions.

Binutils update. The binutils package has been updated to version 2.19.51.20090205 from the
FSF trunk. This update includes numerous bug fixes.

ARM build attributes conformance improvements. Several ARM EABI 2.07 conformance
issues relating to the handling of build attributes in the assembler and linker have been fixed. All
build attribute types are now recognized, and can now be declared by name, in addition to by number.
Support for merging attributes in the linker has been improved, and the linking of incompatible objects
is now detected and rejected in more cases.

VFP initialization for i.MX31. The CS3 startup code for i.MX31 now automatically enables the
ARM VFP coprocessor.

Internal compiler error with - f r enove-1 ocal - stati cs. Aninternal compiler error that
occurred when using the —fremove-local -statics option has been fixed. The error occurred
when compiling code with function-local static array or structure variables.

GDB update. The included version of GDB has been updated to 6.8.50.20081022. This update
includes numerous bug fixes.

Linker crash on incompatible input files. Some third-party compilers, including ARM
RealView® 4.0, produce a build attribute marking output files that are not compatible with the ABI
for the ARM Architecture. This attribute sometimes caused the linker to crash. The linker now cor-
rectly issues an error message.

A.1.8. Changes in Sourcery G++ Lite 200893-66

Bug fix for assembly listing. A bug that caused the assembler to produce corrupted listings (via
the —a option) on Windows hosts has been fixed.

61

Sourcery G++ Lite Release Notes

Reduced RAM usage for semihosting. The previous change to add support for command-line
arguments in semihosted applications increased RAM requirements for all programs using semihosting.
This feature has been reimplemented to substantially reduce the amount of additional memory required.

Optimizer bug fix. A bug that caused an unrecognizable insn internal compiler error
when compiling at optimization levels above —00 has been fixed.

VFP compiler fix. A compiler bug that resulted in internal compiler error: output_
operand: invalid expression as operand when generating VFP code has been fixed.

GDB display of source. A bug has been fixed that prevented GDB from locating debug inform-
ation in some cases. The debugger failed to display source code for or step into the affected functions.

Profiling support added. The —pg option is now supported by the compiler. You are required
to provide a function named ___gnu_mcount_nc. For more details, see Section 3.6, “ARM Profiling
Implementation”.

Workaround for Cortex-M3 CPU errata. Errata present in some Cortex-M3 cores can cause
data corruption when overlapping registers are used in LDRD instructions. The compiler avoids
generating these problematic instructions when the -mFix-cortex-m3-1ldrd or
-mcpu=cortex-m3 command-line options are used. The Sourcery G++ runtime libraries have
also been updated to include this workaround.

GDB segment warning. Some compilers produce binaries including uninitialized data regions,
such as the stack and heap. GDB incorrectly displayed the warning Loadable segment "nane™
outside of ELF segments for such binaries; the warning has now been fixed.

Misaligned NEON memory accesses. A bug has been fixed that caused the compiler to use
aligned NEON load/store instructions to access misaligned data when autovectorizing certain loops.
The bug affected code compiled with -mFpu=neon and loop vectorization enabled with —-03 or
-ftree-vectorize.

Sprite crash on error. A bug has been fixed which sometimes caused the Sourcery G++ Debug
Sprite to crash when it attempted to send an error message to GDB.

Portable object file fixes. Bugs in the Iimits.h, stdlib.h, time.h, and setjmp.h
headers have been fixed. These bugs caused compilation errors when using -D_AEABI _
PORTABILITY_LEVEL=1, as described in Section 3.7, “Object File Portability”.

Persistent remote server connections. A GDB bug has been fixed that caused the target
extended-remote command to fail to tell the remote server to make the connection persistent
across program invocations.

A.1.9. Changes in Sourcery G++ Lite 200893-39

Definitionof va_l i st. Inorder to conform to the ABI for the ARM Architecture, the definition
of the type of va_ list (defined in stdarg. h) has been changed. This change impacts only the
mangled names of C++ entities. For example, the mangled name of a C++ function taking an argument
of type va_list, orva_list *, oranother type involving va_l i st has changed. Since this is
an incompatible change, you must recompile and relink any modules defining or using affected va_
1 i st-typed entities.

Thumb-2 assembler fixes. The Thumb-2 encodings of QADD, QDADD, QSUB, and QDSUB have
been corrected. Previous versions of the assembler generated incorrect object files for these instruc-
tions. The assembler now accepts the ORN, QASX, QSAX, RRX, SHASX, SHSAX, SSAX, USAX,

62

Sourcery G++ Lite Release Notes

UHASX, UQSAX, and USAX mnemonics. The assembler now detects and issues errors for invalid
uses of register 13 (the stack pointer) and register 15 (the program counter) in many instructions.

Printing casted valuesin GDB. A GDB bug that caused incorrect output for expressions contain-
ing casts, such as in the print *(Type *)ptr command, has been fixed.

Bug fix for objcopy/strip. An objcopy bug that corrupted COMDAT groups when creating new
binaries has been fixed. This bug also affected strip -g.

Improved support for debugging RealView® objects. GDB support for programs compiled
by the ARM RealView® compiler has been improved.

Binutils support for DWARF Version 3. The addr2l1ine command now supports binaries
containing DWARF 3 debugging information. The Id command can display error messages with
source locations for input files containing DWARF 3 debugging information.

NEON improvements. Several improvements and bug fixes have been made to the NEON Ad-
vanced SIMD Extension support in GCC. A problem that caused the autovectorizer to fail in some
circumstances has been fixed. Also, many of the intrinsics available via the arm_neon.h header
file now have improved error checking for out-of-bounds arguments, and the vget_lane intrinsics
that return signed values now produce improved code.

NEON compiler fix. A compiler bug that resulted in incorrect NEON code being generated has
been fixed. Typically the incorrect code occurred when NEON intrinsics were used inside small i
statements.

Connecting to the target using a pipe. A bug in GDB's target remote | program
command has been fixed. When launching the specified pr ogr amfailed, the bug caused GDB to
crash, hang, or give a message Error: No Error.

Mixed-case NEON register aliases. An assembler bug that prevented NEON register aliases
from being created with mixed-case names using the .dn and . gn directives has been fixed. Previ-
ously only aliases created with all-lowercase or all-uppercase names worked correctly.

Newlib manuals. The documentation packaged with Sourcery G++ Lite now includes the
Newlib C Library and Math Library manuals.

Object file portability. Sourcery G++ for ARM EABI can now produce object files that are link-
compatible with the GNU C Library included with Sourcery G++ for ARM GNU/Linux. These object
files are additionally link-compatible with other ARM C Library ABI-compliant static linking envir-
onments and toolchains. For additional information, refer to Section 3.7, “Object File Portability”.

Janus 2CC support. GCC now includes a work-around for a hardware bug in Avalent Janus
2CC cores. To compile and link for these cores, use the -mFix-janus-2cc compiler option. If
you are using the linker directly use the ——-Fix-janus-2cc linker option.

ARM exception handling bug fix. A bug in the runtime library has been fixed that formerly
caused throwing an unexpected exception in C++ to crash instead of calling the unexpected exception
handler. The bug only affected C++ code compiled by non-GNU compilers such as ARM Real View®.

Simulation of programs with command-line arguments. When using the simulator, command-
line arguments are now correctly passed to the simulator program via argc and argv.

Mangling of NEON type names. A bug in the algorithm used by the C++ compiler for mangling
the names of NEON types, such as int8x16_t, has been fixed. These mangled names are used
internally in object files to encode type information in addition to the programmer-visible names of

63

Sourcery G++ Lite Release Notes

the C++ variables and functions. The new mangled name encoding is more compact and conforms
to the ARM C++ ABI.

Errors after loading the debugged program. An intermittent GDB bug has been fixed. The
bug could cause a GDB internal error after the load command.

Half-precision floating point. ~ Sourcery G++ now includes support for half-precision floating
point via the __ Fp16 type in C and C++. The compiler can generate code using either hardware
support or library routines. For more information, see Section 3.4.3, “Half-Precision Floating Point”.

A.1.10. Changes in Sourcery G++ Lite 200893-12

Stellaris UDMAERR interrupt vector. The name of the UDMAERR (UDMA Error) interrupt
vector provided by CS3 for Luminary Micro Stellaris configurations has been corrected. The correct
nameis __ cs3 _isr_udmaerr.

GDB update. The included version of GDB has been updated to 6.8.50.20080821. This update
adds numerous bug fixes and new features, including support for decimal floating point, improved
Thumb mode support, the new Find command to search memory, the new /m (mixed source and
assembly) option to the disassemble command, and the new macro define command to
define C preprocessor macros interactively.

Uppercase operands to IT instructions. The assembler now accepts both uppercase and lowercase
operands for the 1T family of instructions.

NEON autovectorizer fix. A compiler bug that caused generation of bad VLD1 instructions has
been fixed. The bug affected code compiled with -mfpu=neon -ftree-vectorize.

Bug fix in simulator reset code. A bug which could cause programs to crash at startup has been
fixed in the CS3 reset code used for simulators. The affected linker scripts are generic. 1d,
generic-vfp.ld, generic-m. Id, and hosted versions of the above.

Output files removed on error. When GCC encounters an error, it now consistently removes
any incomplete output files that it may have created.

Atmel AT91SAMT7S-EK support. Support for Atmel AT91SAM7S-EK hoards has been added.

Placing bss-like regions in load regions. The linker no longer issues an incorrect error message
when a bss-like section is placed at specific load region. The linker formerly incorrectly considered
the section as taking up space in the load region.

ARMV7 offset out of range errors. An assembler bug that resulted in offset out of
range errors when compiling for ARMv7 processors has been fixed.

Thumb-2 MJL encoding. In Thumb-2 mode, the assembler now encodes MUL as a 16-bit instruction
(rather than as a 32-bit instruction) when possible. This fix results in smaller code, with no loss of
performance.

ARM C++ ABI utility functions. Vector utility functions required by the ARM C++ ABI no
longer crash when passed null pointers. The affected functionsare __aeabi_vec_dtor_cookie,
__aeabi_vec _delete, aeabi_vec delete3,and___aeabi_vec delete3 nodtor.
These functions are not intended for use by application programmers; they are only called by compiler-
generated code. They are not presently used by the GNU C++ compiler, but are used by some other
compilers, including ARM's Real View® compiler.

64

Sourcery G++ Lite Release Notes

GCC version 4.3.2. Sourcery G++ Lite for ARM EABI is now based on GCC version 4.3.2. For
more information about changes from GCC version 4.2 that was included in previous releases, see
http://gcc.gnu.org/gcc-4.3/changes.html.

Smaller Thumb-2 code. When optimizing for size (i.e., when -Os is in use), GCC now generates
the 16-bit MULS Thumb-2 multiply instruction instead of the 32-bit MUL instruction.

Thumb-2 RBI T encoding. An assembler bug that resulted in incorrect encoding of the Thumb-
2 RBIT instruction has been fixed.

Additional Stellaris interrupt vectors. The USBO, PWM3, UDMA and UDMAERR interrupt
vectors have been added to the CS3 Luminary Micro Stellaris configurations.

Additional Luminary Micro CPUs. A large number of additional Luminary Micro CPUs are
now supported. Linker scripts for these CPUs include the internal ROM region.

Sprite communication improvements. The Sourcery G++ Debug Sprite now uses a more efficient
protocol for communicating with GDB. This can result in less latency when debugging, especially
when running the Sprite on a remote machine over a network connection.

Marvell Feroceon compiler bug fix. A bug that caused an internal compiler error when optim-
izing for Marvell Feroceon CPUs has been fixed.

Misaligned accesses to packed structures fix. A bug that caused GCC to generate misaligned
accesses to packed structures has been fixed.

SI ZE_ M Nand SI ZE_MAX. S1ZE_MAX s now correctly defined in stdint. hto be an unsigned
quantity equal to the maximum possible value of a size_t, as required by the C standard. In addition,
the definition of S1ZE_MIN has been removed, as this constant is not prescribed by the C standard.

Bug fix for objdump on Windows. An objdump bug that caused the -S option not to work on
Windows in some cases has been fixed.

A.1.11. Changes in Older Releases

For information about changes in older releases of Sourcery G++ Lite for ARM EABI, please refer
to the Getting Started guide packaged with those releases.

65

Appendix B
Sourcery G++ Lite Licenses

Sourcery G++ Lite contains software provided under a variety of licenses. Some components
are “free” or “open source” software, while other components are proprietary. This appendix
explains what licenses apply to your use of Sourcery G++ Lite. You should read this appendix
to understand your legal rights and obligations as a user of Sourcery G++ Lite.

66

Sourcery G++ Lite Licenses

B.1. Licenses for Sourcery G++ Lite Compon-
ents

The table below lists the major components of Sourcery G++ Lite for ARM EABI and the license
terms which apply to each of these components.

Some free or open-source components provide documentation or other files under terms different
from those shown below. For definitive information about the license that applies to each component,
consult the source package corresponding to this release of Sourcery G++ Lite. Sourcery G++ Lite
may contain free or open-source components not included in the list below; for a definitive list,
consult the source package corresponding to this release of Sourcery G++ Lite.

Component License

GNU Compiler Collection GNU General Public License 3.0
http://www.gnu.org/licenses/gpl.html

GNU Binary Utilities GNU General Public License 3.0
http://www.gnu.org/licenses/gpl.html

GNU Debugger GNU General Public License 3.0

http://www.gnu.org/licenses/gpl.html

Sourcery G++ Debug Sprite for ARM | CodeSourcery License

CodeSourcery Common Startup Code | CodeSourcery License

Sequence

Newlib C Library BSD License. For the text of the license and a complete list
of copyright holders, see Section B.3.2, “Newlib”.

GNU Make GNU General Public License 2.0
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

GNU Core Utilities GNU General Public License 2.0

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

The CodeSourcery License is available in Section B.2, “Sourcery G++ Software License Agreement”.
Important

Although some of the licenses that apply to Sourcery G++ Lite are “free software” or “open
source software” licenses, none of these licenses impose any obligation on you to reveal
the source code of applications you build with Sourcery G++ Lite. You can develop propri-
etary applications and libraries with Sourcery G++ Lite.

Sourcery G++ Lite may include some third party example programs and libraries in the share/
sourceryg++-arm-none-eabi-examples subdirectory. These examples are not covered
by the Sourcery G++ Software License Agreement. To the extent permitted by law, these examples
are provided by CodeSourcery as is with no warranty of any kind, including implied warranties of
merchantability or fitness for a particular purpose. Your use of each example is governed by the license
notice (if any) it contains.

67

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

Sourcery G++ Lite Licenses

B.2. Sourcery G++™ Software License Agree-
ment

1.

Parties. The parties to this Agreement are you, the licensee (“You” or “Licensee”) and
CodeSourcery. If You are not acting on behalf of Yourself as an individual, then “You” means
Your company or organization.

The Software. The Software licensed under this Agreement consists of computer programs
and documentation referred to as Sourcery G++™ Lite Edition (the “Software”).

Definitions.

3.1. CodeSourcery Proprietary Components. The components of the Software that are
owned and/or licensed by CodeSourcery and are not subject to a “free software” or
*“open source” license, such as the GNU Public License. The CodeSourcery Proprietary
Components of the Software include, without limitation, the Sourcery G++ Installer,
any Sourcery G++ Eclipse plug-ins, and any Sourcery G++ Debug Sprite. For a complete
list, refer to the Getting Started Guide included with the distribution.

3.2. Open Source Software Components. The components of the Software that are
subject to a “free software” or “open source” license, such as the GNU Public License.

3.3. Proprietary Rights. All rights in and to copyrights, rights to register copyrights,
trade secrets, inventions, patents, patent rights, trademarks, trademark rights, confidential
and proprietary information protected under contract or otherwise under law, and other
similar rights or interests in intellectual or industrial property.

3.4. Redistributable Components. The CodeSourcery Proprietary Components that are
intended to be incorporated or linked into Licensee object code developed with the
Software. The Redistributable Components of the Software include, without limitation,
the CSLIBC run-time library and the CodeSourcery Common Startup Code Sequence
(CS3). For a complete list, refer to the Getting Started Guide included with the distribu-
tion.

License Grant to Proprietary Components of the Software. You are granted a non-exclus-
ive, royalty-free license (a) to install and use the CodeSourcery Proprietary Components of the
Software, (b) to transmit the CodeSourcery Proprietary Components over an internal computer
network, (c) to copy the CodeSourcery Proprietary Components for Your internal use only, and
(d) to distribute the Redistributable Component(s) in binary form only and only as part of Li-
censee object code developed with the Software that provides substantially different function-
ality than the Redistributable Component(s).

Restrictions. You may not: (i) copy or permit others to use the CodeSourcery Proprietary
Components of the Software, except as expressly provided above; (ii) distribute the CodeSourcery
Proprietary Components of the Software to any third party, except as expressly provided above;
or (iii) reverse engineer, decompile, or disassemble the CodeSourcery Proprietary Components
of the Software, except to the extent this restriction is expressly prohibited by applicable law.

“Free Software” or “Open Source” License to Certain Components of the Software.

This Agreement does not limit Your rights under, or grant You rights that supersede, the license
terms of any Open Source Software Component delivered to You by CodeSourcery. Sourcery
G++ includes components provided under various different licenses. The Getting Started Guide
provides an overview of which license applies to different components. Definitive licensing

68

Sourcery G++ Lite Licenses

10.

11.

12.

13.

information for each “free software” or “open source” component is available in the relevant
source file.

CodeSourcery Trademarks. Notwithstanding any provision in a “free software” or “open
source” license agreement applicable to a component of the Software that permits You to dis-
tribute such component to a third party in source or binary form, You may not use any Code-
Sourcery trademark, whether registered or unregistered, including without limitation, Code-
Sourcery™, Sourcery G++™ the CodeSourcery crystal ball logo, or the Sourcery G++ splash
screen, or any confusingly similar mark, in connection with such distribution, and You may not
recompile the Open Source Software Components with the --with-pkgversion or
—--with-bugurl configuration options that embed CodeSourcery trademarks in the resulting
binary.

Term and Termination. This Agreement shall remain in effect unless terminated pursuant
to this provision. CodeSourcery may terminate this Agreement upon seven (7) days written
notice of a material breach of this Agreement if such breach is not cured; provided that the un-
authorized use, copying, or distribution of the CodeSourcery Proprietary Components of the
Software will be deemed a material breach that cannot be cured.

Transfers. You may not transfer any rights under this Agreement without the prior written
consent of CodeSourcery, which consent shall not be unreasonably withheld. A condition to
any transfer or assignment shall be that the recipient agrees to the terms of this Agreement. Any
attempted transfer or assignment in violation of this provision shall be null and void.

Ownership. CodeSourcery owns and/or has licensed the CodeSourcery Proprietary Com-
ponents of the Software and all intellectual property rights embodied therein, including copyrights
and valuable trade secrets embodied in its design and coding methodology. The CodeSourcery
Proprietary Components of the Software are protected by United States copyright laws and in-
ternational treaty provisions. CodeSourcery also owns all rights, title and interest in and with
respect to its trade names, domain names, trade dress, logos, trademarks, service marks, and
other similar rights or interests in intellectual property. This Agreement provides You only a
limited use license, and no ownership of any intellectual property.

Warranty Disclaimer; Limitation of Liability. CODESOURCERY AND ITS LICENSORS
PROVIDE THE SOFTWARE “AS-IS” AND PROVIDED WITH ALL FAULTS. CODE-
SOURCERY DOES NOT MAKE ANY WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED. CODESOURCERY SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES
OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, SYSTEM INTEGRATION, AND DATA ACCURACY. THERE IS NO WAR-
RANTY OR GUARANTEE THAT THE OPERATION OF THE SOFTWARE WILL BE
UNINTERRUPTED, ERROR-FREE, OR VIRUS-FREE, OR THAT THE SOFTWARE WILL
MEET ANY PARTICULAR CRITERIA OF PERFORMANCE, QUALITY, ACCURACY,
PURPOSE, OR NEED. YOU ASSUME THE ENTIRE RISK OF SELECTION, INSTALLA.-
TION, AND USE OF THE SOFTWARE. THIS DISCLAIMER OF WARRANTY CONSTI-
TUTES AN ESSENTIAL PART OF THIS AGREEMENT. NO USE OF THE SOFTWARE
IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.

Local Law. If implied warranties may not be disclaimed under applicable law, then ANY
IMPLIED WARRANTIES ARE LIMITED IN DURATION TO THE PERIOD REQUIRED
BY APPLICABLE LAW.

Limitation of Liability. =~ INDEPENDENT OF THE FORGOING PROVISIONS, IN NO
EVENT AND UNDER NO LEGAL THEORY, INCLUDING WITHOUT LIMITATION,
TORT, CONTRACT, OR STRICT PRODUCTS LIABILITY, SHALL CODESOURCERY
BE LIABLE TOYOU ORANY OTHER PERSON FOR ANY INDIRECT, SPECIAL, INCID-

69

Sourcery G++ Lite Licenses

14.

15.

16.

17.

18.

ENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING WITHOUT
LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER
MALFUNCTION, OR ANY OTHER KIND OF COMMERCIAL DAMAGE, EVEN IF
CODESOURCERY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
THIS LIMITATION SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL
INJURY TO THE EXTENT PROHIBITED BY APPLICABLE LAW. IN NO EVENT SHALL
CODESOURCERY'S LIABILITY FOR ACTUAL DAMAGES FOR ANY CAUSE WHAT-
SOEVER, AND REGARDLESS OF THE FORM OF ACTION, EXCEED THE AMOUNT
PAID BY YOU IN FEES UNDER THIS AGREEMENT DURING THE PREVIOUS ONE
YEAR PERIOD.

Export Controls. You agree to comply with all export laws and restrictions and regulations
of the United States or foreign agencies or authorities, and not to export or re-export the Software
or any direct product thereof in violation of any such restrictions, laws or regulations, or without
all necessary approvals. As applicable, each party shall obtain and bear all expenses relating to
any necessary licenses and/or exemptions with respect to its own export of the Software from
the U.S. Neither the Software nor the underlying information or technology may be electronically
transmitted or otherwise exported or re-exported (i) into Cuba, Iran, Iraq, Libya, North Korea,
Sudan, Syria or any other country subject to U.S. trade sanctions covering the Software, to in-
dividuals or entities controlled by such countries, or to nationals or residents of such countries
other than nationals who are lawfully admitted permanent residents of countries not subject to
such sanctions; or (ii) to anyone on the U.S. Treasury Department's list of Specially Designated
Nationals and Blocked Persons or the U.S. Commerce Department's Table of Denial Orders.
By downloading or using the Software, Licensee agrees to the foregoing and represents and
warrants that it complies with these conditions.

U.S. Government End-Users. The Software is a “commercial item,” as that term is defined
in 48 C.F.R. 2.101 (Oct. 1995), consisting of “commercial computer software” and “commercial
computer software documentation,” as such terms are used in 48 C.F.R. 12.212 (Sept. 1995).
Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995),
all U.S. Government End Users acquire the Software with only those rights set forth herein.

Licensee Outside The U.S. IfYou are located outside the U.S., then the following provisions
shall apply: (i) Les parties aux presentes confirment leur volonte que cette convention de meme
que tous les documents y compris tout avis qui siy rattache, soient rediges en langue anglaise
(translation: “The parties confirm that this Agreement and all related documentation is and will
be in the English language.”); and (ii) You are responsible for complying with any local laws
in your jurisdiction which might impact your right to import, export or use the Software, and
You represent that You have complied with any regulations or registration procedures required
by applicable law to make this license enforceable.

Severability. If any provision of this Agreement is declared invalid or unenforceable, such
provision shall be deemed modified to the extent necessary and possible to render it valid and
enforceable. In any event, the unenforceability or invalidity of any provision shall not affect
any other provision of this Agreement, and this Agreement shall continue in full force and effect,
and be construed and enforced, as if such provision had not been included, or had been modified
as above provided, as the case may be.

Arbitration. Except for actions to protect intellectual property rights and to enforce an ar-
bitrator's decision hereunder, all disputes, controversies, or claims arising out of or relating to
this Agreement or a breach thereof shall be submitted to and finally resolved by arbitration under
the rules of the American Arbitration Association (“AAA”) then in effect. There shall be one
arbitrator, and such arbitrator shall be chosen by mutual agreement of the parties in accordance
with AAA rules. The arbitration shall take place in Granite Bay, California, and may be conducted

70

Sourcery G++ Lite Licenses

19.

20.

21.

22.

by telephone or online. The arbitrator shall apply the laws of the State of California, USA to
all issues in dispute. The controversy or claim shall be arbitrated on an individual basis, and
shall not be consolidated in any arbitration with any claim or controversy of any other party.
The findings of the arbitrator shall be final and binding on the parties, and may be entered in
any court of competent jurisdiction for enforcement. Enforcements of any award or judgment
shall be governed by the United Nations Convention on the Recognition and Enforcement of
Foreign Arbitral Awards. Should either party file an action contrary to this provision, the other
party may recover attorney's fees and costs up to $1000.00.

Jurisdiction And Venue. The courts of Placer County in the State of California, USA and
the nearest U.S. District Court shall be the exclusive jurisdiction and venue for all legal proceed-
ings that are not arbitrated under this Agreement.

Independent Contractors. The relationship of the parties is that of independent contractor,
and nothing herein shall be construed to create a partnership, joint venture, franchise, employ-
ment, or agency relationship between the parties. Licensee shall have no authority to enter into
agreements of any kind on behalf of CodeSourcery and shall not have the power or authority
to bind or obligate CodeSourcery in any manner to any third party.

Force Majeure. Neither CodeSourcery nor Licensee shall be liable for damages for any
delay or failure of delivery arising out of causes beyond their reasonable control and without
their fault or negligence, including, but not limited to, Acts of God, acts of civil or military au-
thority, fires, riots, wars, embargoes, or communications failure.

Miscellaneous. This Agreement constitutes the entire understanding of the parties with respect
to the subject matter of this Agreement and merges all prior communications, representations,
and agreements. This Agreement may be modified only by a written agreement signed by the
parties. If any provision of this Agreement is held to be unenforceable for any reason, such
provision shall be reformed only to the extent necessary to make it enforceable. This Agreement
shall be construed under the laws of the State of California, USA, excluding rules regarding
conflicts of law. The application of the United Nations Convention of Contracts for the Interna-
tional Sale of Goods is expressly excluded. This license is written in English, and English is its
controlling language.

B.3. Attribution

This version of Sourcery G++ Lite may include code based on work under the following copyright
and permission notices:

B.3.1. Android Open Source Project

N
*

ook % o % o % o X o X ok X b X o X

Copyright (C) 2008 The Android Open Source Project
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS 1S™ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

71

Sourcery G++ Lite Licenses

COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

O X X X F O F

*/

B.3.2. Newlib

The newlib subdirectory is a collection of software from several sources.

Each file may have its own copyright/license that is embedded in the source
file. Unless otherwise noted in the body of the source file(s), the following copyright
notices will apply to the contents of the newlib subdirectory:

(1) Red Hat Incorporated
Copyright (c) 1994-2007 Red Hat, Inc. All rights reserved.

This copyrighted material is made available to anyone wishing to use,
modify, copy, or redistribute it subject to the terms and conditions
of the BSD License. This program is distributed in the hope that
it will be useful, but WITHOUT ANY WARRANTY expressed or implied,
including the implied warranties of MERCHANTABILITY or FITNESS FOR

A PARTICULAR PURPOSE. A copy of this license is available at
http://www.opensource.org/licenses. Any Red Hat trademarks that are
incorporated in the source code or documentation are not subject to
the BSD License and may only be used or replicated with the express
permission of Red Hat, Inc.

(2) University of California, Berkeley

Copyright (c) 1981-2000 The Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name of the University nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 1S"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

(3) David M. Gay (AT&T 1991, Lucent 1998)

The author of this software is David M. Gay.

Copyright (c) 1991 by AT&T.

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice

is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting

72

Sourcery G++ Lite Licenses

documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS, WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

The author of this software is David M. Gay.

Copyright (C) 1998-2001 by Lucent Technologies
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of Lucent or any of its entities
not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

(4) Advanced Micro Devices
Copyright 1989, 1990 Advanced Micro Devices, Inc.

This software is the property of Advanced Micro Devices, Inc (AMD) which
specifically grants the user the right to modify, use and distribute this
software provided this notice is not removed or altered. All other rights
are reserved by AMD.

AMD MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
SOFTWARE. IN NO EVENT SHALL AMD BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES IN CONNECTION WITH OR ARISING FROM THE FURNISHING, PERFORMANCE, OR
USE OF THIS SOFTWARE.

So that all may benefit from your experience, please report any problems
or suggestions about this software to the 29K Technical Support Center at
800-29-29-AMD (800-292-9263) in the USA, or 0800-89-1131 in the UK, or
0031-11-1129 in Japan, toll free. The direct dial number is 512-462-4118.

Advanced Micro Devices, Inc.

29K Support Products

Mail Stop 573

5900 E. Ben White Blvd.

Austin, TX 78741

800-292-9263

(5) C.W. Sandmann

Copyright (C) 1993 C.W. Sandmann
This file may be freely distributed as long as the author®s name remains.
(6) Eric Backus

(C) Copyright 1992 Eric Backus

This software may be used freely so long as this copyright notice is
left intact. There is no warrantee on this software.

73

Sourcery G++ Lite Licenses

(7) Sun Microsystems
Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.

Developed at SunPro, a Sun Microsystems, Inc. business.
Permission to use, copy, modify, and distribute this
software is freely granted, provided that this notice is preserved.

(8) Hewlett Packard
(c) Copyright 1986 HEWLETT-PACKARD COMPANY

To anyone who acknowledges that this file is provided "AS IS"
without any express or implied warranty:

permission to use, copy, modify, and distribute this file
for any purpose is hereby granted without fee, provided that
the above copyright notice and this notice appears in all
copies, and that the name of Hewlett-Packard Company not be
used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
Hewlett-Packard Company makes no representations about the
suitability of this software for any purpose.

(9) Hans-Peter Nilsson
Copyright (C) 2001 Hans-Peter Nilsson

Permission to use, copy, modify, and distribute this software is
freely granted, provided that the above copyright notice, this notice
and the following disclaimer are preserved with no changes.

THIS SOFTWARE 1S PROVIDED ~~AS 1S"" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

(10) Stephane Carrez (m68hcll-elf/m68hcl2-elf targets only)
Copyright (C) 1999, 2000, 2001, 2002 Stephane Carrez (stcarrez@nerim.fr)

The authors hereby grant permission to use, copy, modify, distribute,

and license this software and its documentation for any purpose, provided
that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement,
license, or royalty fee is required for any of the authorized uses.
Modifications to this software may be copyrighted by their authors

and need not follow the licensing terms described here, provided that
the new terms are clearly indicated on the first page of each file where

they apply.
(11) Christopher G. Demetriou

Copyright (c) 2001 Christopher G. Demetriou
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE 1S PROVIDED BY THE AUTHOR ~~AS 1S"" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

74

Sourcery G++ Lite Licenses

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(12) SuperH, Inc.
Copyright 2002 SuperH, Inc. All rights reserved

This software is the property of SuperH, Inc (SuperH) which specifically
grants the user the right to modify, use and distribute this software
provided this notice is not removed or altered. All other rights are
reserved by SuperH.

SUPERH MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS SOFTWARE. IN NO EVENT SHALL SUPERH BE LIABLE FOR INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM
THE FURNISHING, PERFORMANCE, OR USE OF THIS SOFTWARE.

So that all may benefit from your experience, please report any problems
or suggestions about this software to the SuperH Support Center via
e-mail at softwaresupport@superh.com .

SuperH, Inc.

405 River Oaks Parkway
San Jose

CA 95134

USA

(13) Royal Institute of Technology

Copyright (c) 1999 Kungliga Tekniska Hoégskolan
(Royal Institute of Technology, Stockholm, Sweden).
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of KTH nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE 1S PROVIDED BY KTH AND ITS CONTRIBUTORS ~~AS IS"" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KTH OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(14) Alexey Zelkin

Copyright (c) 2000, 2001 Alexey Zelkin <phantom@FreeBSD.org>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright

75

Sourcery G++ Lite Licenses

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE 1S PROVIDED BY THE AUTHOR AND CONTRIBUTORS ~~AS 1S"" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(15) Andrey A. Chernov

Copyright (C) 1997 by Andrey A. Chernov, Moscow, Russia.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE 1S PROVIDED BY THE AUTHOR ~~AS IS"" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(16) FreeBSD

Copyright (c) 1997-2002 FreeBSD Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE 1S PROVIDED BY THE AUTHOR AND CONTRIBUTORS ~~AS 1S"" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(17) S. L. Moshier

Author: S. L. Moshier.

76

Sourcery G++ Lite Licenses

Copyright (c) 1984,2000 S.L. Moshier

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS, WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, THE AUTHOR MAKES NO REPRESENTATION

OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY OF THIS

SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

(18) Citrus Project

Copyright (c)1999 Citrus Project,
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE 1S PROVIDED BY THE AUTHOR AND CONTRIBUTORS ~~AS 1S"" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(19) Todd C. Miller

Copyright (c) 1998 Todd C. Miller <Todd.Miller@courtesan.com>
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE 1S PROVIDED ~~AS 1S"" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(20) DJ Delorie (i386)
Copyright (C) 1991 DJ Delorie
All rights reserved.

Redistribution and use in source and binary forms is permitted

77

Sourcery G++ Lite Licenses

provided that the above copyright notice and following paragraph are
duplicated in all such forms.

This file is distributed WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

(21) Free Software Foundation LGPL License (*-linux* targets only)

Copyright (C) 1990-1999, 2000, 2001 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Mark Kettenis <kettenis@phys.uva.nl>, 1997.

The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public

License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.

(22) Xavier Leroy LGPL License (i[3456]86-*-linux* targets only)
Copyright (C) 1996 Xavier Leroy (Xavier.Leroy@inria.fr)

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License
as published by the Free Software Foundation; either version 2

of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.

(23) Intel (i960)
Copyright (c) 1993 Intel Corporation

Intel hereby grants you permission to copy, modify, and distribute this
software and its documentation. Intel grants this permission provided
that the above copyright notice appears in all copies and that both the
copyright notice and this permission notice appear in supporting
documentation. In addition, Intel grants this permission provided that
you prominently mark as "not part of the original™ any modifications
made to this software or documentation, and that the name of Intel
Corporation not be used in advertising or publicity pertaining to
distribution of the software or the documentation without specific,
written prior permission.

Intel Corporation provides this AS IS, WITHOUT ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Intel makes no guarantee or
representations regarding the use of, or the results of the use of,

the software and documentation in terms of correctness, accuracy,
reliability, currentness, or otherwise; and you rely on the software,
documentation and results solely at your own risk.

IN NO EVENT SHALL INTEL BE LIABLE FOR ANY LOSS OF USE, LOSS OF BUSINESS,
LOSS OF PROFITS, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES
OF ANY KIND. IN NO EVENT SHALL INTEL"S TOTAL LIABILITY EXCEED THE SUM
PAID TO INTEL FOR THE PRODUCT LICENSED HEREUNDER.

(24) Hewlett-Packard (hppa targets only)

(c) Copyright 1986 HEWLETT-PACKARD COMPANY

78

Sourcery G++ Lite Licenses

To anyone who acknowledges that this file is provided "AS IS"
without any express or implied warranty:

permission to use, copy, modify, and distribute this file
for any purpose is hereby granted without fee, provided that
the above copyright notice and this notice appears in all
copies, and that the name of Hewlett-Packard Company not be
used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
Hewlett-Packard Company makes no representations about the
suitability of this software for any purpose.

(25) Henry Spencer (only *-linux targets)

Copyright 1992, 1993, 1994 Henry Spencer. All rights reserved.
This software is not subject to any license of the American Telephone
and Telegraph Company or of the Regents of the University of California.

Permission is granted to anyone to use this software for any purpose on
any computer system, and to alter it and redistribute it, subject
to the following restrictions:

1. The author is not responsible for the consequences of use of this
software, no matter how awful, even if they arise from flaws in it.

2. The origin of this software must not be misrepresented, either by
explicit claim or by omission. Since few users ever read sources,
credits must appear in the documentation.

3. Altered versions must be plainly marked as such, and must not be
misrepresented as being the original software. Since few users
ever read sources, credits must appear in the documentation.

4. This notice may not be removed or altered.
(26) Mike Barcroft

Copyright (c) 2001 Mike Barcroft <mike@FreeBSD.org>
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE 1S PROVIDED BY THE AUTHOR AND CONTRIBUTORS ~~AS 1S"" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(27) Konstantin Chuguev (--enable-newlib-iconv)

Copyright (c) 1999, 2000
Konstantin Chuguev. All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

79

Sourcery G++ Lite Licenses

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE 1S PROVIDED BY THE AUTHOR AND CONTRIBUTORS ~~AS 1S"" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

iconv (Charset Conversion Library) v2.0
(28) Artem Bityuckiy (--enable-newlib-iconv)

Copyright (c) 2003, Artem B. Bityuckiy, SoftMine Corporation.
Rights transferred to Franklin Electronic Publishers.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE 1S PROVIDED BY THE AUTHOR AND CONTRIBUTORS ~~AS 1S"" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(29) IBM, Sony, Toshiba (only spu-* targets)

(C) Copyright 2001,2006,

International Business Machines Corporation,
Sony Computer Entertainment, Incorporated,
Toshiba Corporation,

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the names of the copyright holders nor the names of their
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 1S
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

80

Sourcery G++ Lite Licenses

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

(30) - Alex Tatmanjants (targets using libc/posix)

Copyright (c) 1995 Alex Tatmanjants <alex@elvisti.kiev.ua>
at Electronni Visti 1A, Kiev, Ukraine.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE 1S PROVIDED BY THE AUTHOR ~~AS IS"" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(31) - M. Warner Losh (targets using libc/posix)

Copyright (c) 1998, M. Warner Losh <imp@freebsd.org>
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ~~AS I1S*" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(32) - Andrey A. Chernov (targets using libc/posix)

Copyright (C) 1996 by Andrey A. Chernov, Moscow, Russia.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE 1S PROVIDED BY THE AUTHOR ~~AS 1S"" AND

81

Sourcery G++ Lite Licenses

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(33) - Daniel Eischen (targets using libc/posix)

Copyright (c) 2001 Daniel Eischen <deischen@FreeBSD.org>.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE 1S PROVIDED BY THE AUTHOR AND CONTRIBUTORS ~~AS 1S"" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(34) - Jon Beniston (only Im32-* targets)
Contributed by Jon Beniston <jon@beniston.com>

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ~~AS IS"" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(35) - ARM Ltd (arm and thumb variant targets only)

Copyright (c) 2009 ARM Ltd
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

82

Sourcery G++ Lite Licenses

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the company may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY ARM LTD ~“"AS IS"" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(36) - CodeSourcery, Inc.

Copyright (c) 2009 CodeSourcery, Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of CodeSourcery nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE 1S PROVIDED BY CODESOURCERY, INC. ~"AS IS"" AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL CODESOURCERY BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(37) MIPS Technologies, Inc

/*

* Copyright (c) 2009 MIPS Technologies, Inc.
*

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

*

*

*

*

*

*

* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.

* * Redistributions in binary form must reproduce the above

* copyright

* notice, this list of conditions and the following disclaimer

* in the documentation and/or other materials provided with

* the distribution.

* * Neither the name of MIPS Technologies Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.

*

*

*

*

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

83

Sourcery G++ Lite Licenses

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

o % % % % % ¥

*/

84

	Sourcery G++ Lite
	Table of Contents
	Preface
	1. Intended Audience
	2. Organization
	3. Typographical Conventions

	Chapter 1 Quick Start
	1.1. Installation and Set-Up
	1.2. Configuring Sourcery G++ Lite for the Target System
	1.3. Building Your Program
	1.4. Running and Debugging Your Program

	Chapter 2 Installation and Configuration
	2.1. Terminology
	2.2. System Requirements
	2.2.1. Host Operating System Requirements
	2.2.2. Host Hardware Requirements
	2.2.3. Target System Requirements

	2.3. Downloading an Installer
	2.4. Installing Sourcery G++ Lite
	2.4.1. Using the Sourcery G++ Lite Installer on Microsoft Windows
	2.4.2. Using the Sourcery G++ Lite Installer on GNU/Linux Hosts
	2.4.3. Installing Sourcery G++ Lite from a Compressed Archive

	2.5. Installing Sourcery G++ Lite Updates
	2.6. Setting up the Environment
	2.6.1. Setting up the Environment on Microsoft Windows Hosts
	2.6.1.1. Setting the PATH
	2.6.1.2. Working with Cygwin

	2.6.2. Setting up the Environment on GNU/Linux Hosts

	2.7. Uninstalling Sourcery G++ Lite
	2.7.1. Using the Sourcery G++ Lite Uninstaller on Microsoft Windows
	2.7.2. Using the Sourcery G++ Lite Uninstaller on GNU/Linux
	2.7.3. Uninstalling a Compressed Archive Installation

	Chapter 3 Sourcery G++ Lite for ARM EABI
	3.1. Included Components and Features
	3.2. Library Configurations
	3.2.1. Included Libraries
	3.2.2. Library Selection

	3.3. Using Flash Memory
	3.4. Using VFP Floating Point
	3.4.1. Enabling Hardware Floating Point
	3.4.2. NEON SIMD Code
	3.4.3. Half-Precision Floating Point

	3.5. ABI Compatibility
	3.6. ARM Profiling Implementation
	3.7. Object File Portability

	Chapter 4 Using Sourcery G++ from the Command Line
	4.1. Building an Application
	4.2. Running Applications on the Target System
	4.3. Running Applications in the Simulator
	4.4. Running Applications from GDB
	4.4.1. Connecting to the GDB Simulator
	4.4.2. Connecting to the Sourcery G++ Debug Sprite
	4.4.3. Connecting to an External GDB Server
	4.4.4. Loading and Running Applications

	Chapter 5 CS3™: The CodeSourcery Common Startup Code Sequence
	5.1. Linker Scripts
	5.1.1. Program and Data Placement
	5.1.2. Hosting and Semihosting
	5.1.3. Specifying a Linker Script

	5.2. Program Startup and Termination
	5.2.1. The Hard Reset Phase
	5.2.2. The Assembly Initialization Phase
	5.2.3. The C Initialization Phase
	5.2.4. Arguments to main
	5.2.5. Program Termination

	5.3. Memory Layout
	5.3.1. Memory Regions and Program Sections
	5.3.2. Programmatic Access to the CS3 Memory Map
	5.3.3. Heap and Stack Placement

	5.4. Interrupt Vectors and Handlers
	5.4.1. ARM EABI Interrupt Vector Implementation
	5.4.2. Writing Interrupt Handlers

	5.5. Supported Boards for ARM EABI
	5.6. Interrupt Vector Tables
	5.6.1. __cs3_interrupt_vector_arm
	5.6.2. __cs3_interrupt_vector_micro

	Chapter 6 Sourcery G++ Debug Sprite
	6.1. Probing for Debug Devices
	6.2. Debug Sprite Example
	6.3. Invoking Sourcery G++ Debug Sprite
	6.4. Sourcery G++ Debug Sprite Options
	6.5. Remote Debug Interface Devices
	6.6. Actel FlashPro Devices
	6.6.1. Installing FlashPro Windows drivers

	6.7. Altera Devices
	6.7.1. Setting Up the Altera Device
	6.7.2. Hardware Breakpoints

	6.8. Debugging a Remote Board
	6.9. Supported Board Files
	6.10. Board File Syntax

	Chapter 7 Next Steps with Sourcery G++
	7.1. Sourcery G++ Knowledge Base
	7.2. Manuals for GNU Toolchain Components

	Appendix A Sourcery G++ Lite Release Notes
	A.1. Changes in Sourcery G++ Lite for ARM EABI
	A.1.1. Changes in Sourcery G++ Lite 2010q1-188
	A.1.2. Changes in Sourcery G++ Lite 2010q1-155
	A.1.3. Changes in Sourcery G++ Lite 2009q3-68
	A.1.4. Changes in Sourcery G++ Lite 2009q3-64
	A.1.5. Changes in Sourcery G++ Lite 2009q3-37
	A.1.6. Changes in Sourcery G++ Lite 2009q1-161
	A.1.7. Changes in Sourcery G++ Lite 2009q1-116
	A.1.8. Changes in Sourcery G++ Lite 2008q3-66
	A.1.9. Changes in Sourcery G++ Lite 2008q3-39
	A.1.10. Changes in Sourcery G++ Lite 2008q3-12
	A.1.11. Changes in Older Releases

	Appendix B Sourcery G++ Lite Licenses
	B.1. Licenses for Sourcery G++ Lite Components
	B.2. Sourcery G++ Software License Agreement
	B.3. Attribution
	B.3.1. Android Open Source Project
	B.3.2. Newlib

