
Browsing the Web of Connectable Things

Thomas Zachariah, Joshua Adkins, Prabal Dutta
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, CA 94720

{tzachari,adkins,prabal}@berkeley.edu

Abstract
As the number of Internet of Things devices continue to

grow, a pattern of off-loading user control and interaction to
individuals’ mobile devices has emerged. The user experience,
however, is burdened by high-friction tasks, including device
discovery, app installation, scanning, pairing, and configura-
tion. Additionally, the tools and systems currently employed
to facilitate interaction vary in degree of usefulness, provide
inconsistent support, and fail to mesh together in a meaning-
ful way. This user experience model scales poorly with the
increasing population of “things”, and significantly hinders
casual interactions with ambient devices, as well as regular
interactions with persistent devices. To break away from this
restrictive paradigm, we propose an architecture that provides
a seamless, scalable approach to discovering and interacting
with nearby “things” in both short- and long-term contexts.
The system takes advantage of multiple network patterns and
modern web technologies to supply users with rich device
interfaces that can interact directly over local networking pro-
tocols. A mobile app-based implementation of this system is
tested with several embedded wireless devices. In our analy-
sis, we find that our method scales better than current popular
models and that it enables powerful and complex functionality
while remaining natural, intuitive, and secure for users.
Categories and Subject Descriptors

H.5.3 [Information Interfaces and Presentation]:
Group and Organization Interfaces—Web-based Interaction
General Terms

Design, Management, Performance, Human Factors, Stan-
dardization
Keywords

Internet of Things, Mobile Phones, Device Discovery, Blue-
tooth Low Energy, Web Browsing, User Interfaces

1 Introduction
The embedded sensors and devices that make up the Inter-

net of Things (IoT) primarily forego physical on-device user
interfaces, like buttons and displays, in favor of more fully-
featured software UIs in the form of native apps or websites
that run remotely on personal devices like mobile phones.
Recently, a variety of tools, protocols, and ecosystems have
materialized to help facilitate device interaction on mobile
platforms. Unfortunately, due to the amount of burden these
systems place on both users and devices, and the poor han-
dling of tasks like device discovery, configuration, and local
interaction, the IoT user experience remains awkward, dis-
ruptive, and often unintuitive. Even the most successful tools
fail to mesh together in a logical way that can fully support
a meaningful experience, while also scaling with the rising
population of new devices in diverse contexts and constraints.

Currently, the popular form of mobile software interface
for IoT devices is the native app. This, by nature, requires
the involved process of app installation for every new device
and assumes the user will have knowledge of the device prior
to doing so. Additionally, the developers who make these
devices are tasked with creating and deploying a mobile app
for multiple OSes, informing potential users of the existence
of the device’s corresponding app, and convincing them to
download it. As a general purpose model for the increasing
number of IoT devices, this does not scale well.

Furthermore, most mobile-based IoT ecosystems and tools
require that both the device and smartphone maintain an Inter-
net connection to operate and provide the user an interactive
interface for the device. This expectation is not practical for
many classes of smart device usage scenarios. Users should be
able to browse nearby devices and immediately load dynamic,
interactive, and context-specific user interfaces for devices
that are not otherwise Internet-connected. Moreover, devices
should be able to take advantage of the reduced power and
complexity of interacting using local network protocols.

We can begin to bridge these divides by associating
web content with these connectable devices themselves—
effectively tying the things to the Internet. This concept has
been referred to as the Web of Things (WoT) [21]. Recogni-
tion of the issues with native apps has led to developments
in web standards to support various components of WoT. No-
tably, the Physical Web project enables discovery of URLs
broadcast by nearby devices on a user’s mobile phone [18],
as depicted in Figure 1b. While useful, it hides device infor-

International Conference on Embedded Wireless Systems and Networks (EWSN) 2020
17–19 February, Lyon, France © 2020 Copyright is held by the authors.
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-4-5

49

���������������������
������������������������

���������������������
���������������������������

���

��������������������
������������������������

��������

�
����

�
����������

(a) Native App

���� �������������������

��������������������

����

� ����������������������

(b) Physical Web

����

�������������������

����������

���������������

��������������

���������������

��������

�����������

(c) Web Bluetooth

Figure 1: Native App, Physical Web, and Web Bluetooth.
The native app model (a) requires that a user have prior knowl-
edge of a device and install an app to interact with it. The
Physical Web model (b) allows discovery of URLs broadcast
by nearby devices, but does not provide device details to the
user. The Web Bluetooth model (c) requires that, once a user
manually navigates to a website, the user select the device to
pair with the website. Even if, perhaps, (b) and (c) are used to-
gether, the user would still need to identify the correct device
without information on which device pointed to the site.

mation when presented to user, which means no association
can be made between the device and web content. Web Blue-
tooth is a drafted W3C standard JavaScript API that allows
web pages to communicate directly with Bluetooth devices
[49], as depicted in Figure 1c. But it requires that, once a user
manually navigates to a website, the user select the device
that a website should pair with.

By re-focusing on and intuitively extending web standards
to better support discovery, connectivity, interactivity, and per-
sistence, we design a browsing architecture that facilitates a
broad set of both common and new paradigms for the Web of
Things that provides a more seamless user experience and can
more feasibly scale. With simple modifications to current web
standards and browser-provided APIs, we allow IoT devices to
point smartphones to rich app-like web interfaces, that enable
greater interactivity than regular websites, fewer memory and
latency impacts than native apps, and overall greater flexibil-
ity on the device and smartphone. Like a website, the contents
of the interactive web interface can be downloaded from the
Internet, but it can also immediately interact directly with the
smart device over a local network protocol—most commonly
over Bluetooth, as depicted in Figure 2. Furthermore, we in-
troduce an origin policy that treats devices as actual resources
of their websites, which when enforced, enables seamlessness
between discovery, connection, and interaction.

In this paper, we sketch out the major design points of the
browsing architecture, taking into consideration contributions
from recent works that help address some of the highlighted
challenges. We then describe and evaluate Summon—an im-
plementation of the browser as a smartphone app—and its
utilization for real devices by a variety of engineers and de-
velopers from the embedded systems community. We identify
insights gained, challenges encountered, feedback received,
and improvements made in the iterative design process and
during the two-year deployment period.

���������������������
������������������������

���������������������
���������������������������

���

��������������������
������������������������

����
�������������������
���������������
����������

�������������������
��������������
����������

�

����

�
����������������������
���������������
����������

���������������������
������������������������

���������������������
���������������������������

���

��������������������
������������������������

����

�������������������

������������������

Figure 2: Proposed model of discovery, connection, and
interaction. We suggest a scheme in which the device broad-
casts a URL that is both a link to its UI and its declaration
of origin. Users are shown a list of URLs along with details
of corresponding devices associated with each. The user can
select the link to open the corresponding website, which, with
browser-extended APIs, can access devices that have declared
it, enabling seamless interaction while providing transparency
to users and preventing mismatch of device and UI.

2 Related Work
As the Internet of Things has grown in popularity, a set of

disparate practices, standards, and ecosystems have emerged
to attempt to support it. Unfortunately, most are pieced to-
gether with only a limited set of devices in mind. However,
new initiatives for web standards have sprung up to more
broadly address various portions of this goal. We explore the
contributions and vulnerabilities of these systems which have
partially motivated how we design our architecture.
2.1 IoT Ecosystems and Initiatives

The number of ecosystems intended to interact with the
Internet of Things has grown with the ubiquity of the devices
themselves. Ecosystems are useful for providing groupings
of interoperable devices, but the protocols and standards are
typically only designed for or applicable to a narrow set of
products (e.g. AndroidThings [19], Apple Homekit [9, 8],
Samsung SmartThings [44], Nest [36, 37]). Many of the “stan-
dards” set for these ecosystems are not always extensible to
network- or energy-constrained settings and are often only
scoped to devices in a house or office. Additionally, they still
usually require a native app for each device and, often, that
the device have its own Internet connection either through its
own Wi-Fi radio or a dedicated stationary gateway. Many also
require the use of energy-intensive processes on the devices
themselves. Ultimately, in our architecture, developers are af-
forded the flexibility to design for any such desired ecosystem,
while also being provided opportunities for improvements in
discovery, device setup, and persistent interaction.

Network communities are making efforts to advance the
protocols for wireless communication for IoT applications
(e.g. Bluetooth SIG [12], W3C [50], Thread Group [45], Zig-
Bee [55]). Because we focus on mobile platforms, we delve
mostly into Bluetooth and Wi-Fi. Notably, due to its low
power usage, low cost, well-structured application-level proto-
col [11], and presence in smartphones, Bluetooth Low Energy
(BLE) is an increasingly popular choice in IoT devices. In
fact, it is experiencing the most rapid growth in adoption in

50

the embedded device industry [47], and is especially useful
for devices made for casual or public use. Ultimately, however,
we believe our browsing architecture is extensible to other
forms of local wireless communication that are integrated in
mobile platforms or computers and have a broadcast protocol.

Many initiatives and architectures have been proposed to
form a Web of Things by integrating embedded IoT devices
into the current open infrastructure of the Internet [22, 21, 53]
and extending features like search and web analytics [46, 34].
Prior work has explored spontaneous interaction with nearby
devices [17, 51], use of smartphones as universal device re-
mote controls [24], device abstraction for resource-sharing
among several interfaces [33], discovery and interaction in
mobile augmented reality [52], and device browsing with
platform-agnostic interfaces [41, 42, 15, 10]. While these are
parts of the solution, none quite provides a generalized frame-
work to enable users to browse nearby devices and retrieve
rich user interfaces that interact with devices directly.

2.2 Discovering Content in Physical Space
In the theme of “webifying” everything, Google launched

the Physical Web project to enable discovery of web content
related to smart devices in one’s proximity [26, 48]. In this
model, the Eddystone beacon protocol is used to embed a
URL in broadcasts of BLE devices that can prompt nearby
smartphone to navigate to specific web pages [18].

This achieves the goal of providing smart devices with rich,
scalable web content, however it does not necessarily provide
rich, scalable web interfaces because there is currently no
cross-platform API that enables web pages to interact directly
with a non-Internet-connected smart device from the phone’s
browser. Additionally, in practice, the system obfuscates de-
vice information — opting to simply present physically rele-
vant web content to users. Recent work has further described
challenges with Physical Web [40, 43]. Google has notably
removed Physical Web support from mobile platforms [4, 35].

2.3 Bluetooth from the Browser
Web Bluetooth is a newly-drafted W3C standard and

JavaScript API that enables connection with BLE devices
from websites [49]. It is currently implemented in Android,
but not iOS. Just like with native apps, discovery of ambient
devices is difficult with Web Bluetooth alone. The current
implementation requires that the user have prior knowledge
of the device and its associated website prior to manually nav-
igating to that particular site. Once opened, the page requires
the user to choose the device to connect to it from a, possibly
filtered, list of nearby peripherals. The user is tasked with
figuring out which device is the appropriate one.

This security model is meant to closely resemble the clas-
sic Bluetooth pairing flow. However in practice, this disrupts
the flow of operation, places burden of accuracy and authen-
tication on users, and exposes a number of risks from mali-
cious, careless, or uninformed actors. Malicious webpages
may spoof the webpages of real devices, tricking users into
pairing with those devices. Alternatively careless webpages
may present any number of inappropriate devices to the user.
Malicious or careless devices can simply use the same name or
service ID as a real device and easily trick users into pairing it
with legitimate webpages. Malicious users may purposefully

BLE

D
ev

ic
es

OS

Br
ow

se
r

Sm
ar

tp
ho

ne

HTML
JS

CSS
Media

ManifestW
eb

 A
pp Lamps

70

. . .

. . .o

W
eb

 A
pp

...

OUTLET #5

13W W
eb

 A
pp

...

THERMOSTAT

70o

Service
Registration
(Persistence)

Browser-
Extended
 APIs (BLE)

Core W3C
Standards
Support

Figure 3: The Web App UI Model. Web apps may consist of
typical web content: HTML, JavaScript, CSS, images, etc. An
app can use a provided JS BLE API to interact directly with
associated devices. By providing a manifest file for service
registration, the web app can request special permissions and
storage to enable persistent state for regularly-used devices.

initiate an inappropriate pairing of device and webpage, or
careless and confused users may do so accidentally. It is both
too permissive for security and too restrictive for usability.

Discovery could potentially be improved by combining
with Physical Web — devices broadcast a link to a page
that uses Web Bluetooth. However, because Physical Web
obfuscates device information, users do not actually know
which device linked to the page. And even though the browser
could technically possess that information, it still requires the
user to choose the appropriate device to connect to the page,
of which they are not necessarily informed. As a result, this
model is also disruptive for usability and unsafe for security.
2.4 App-ifying the Web

Since the introduction of the smartphone as a platform,
developers have primarily chosen to design their software as
native apps. Compared to websites, they would typically load
quicker, and could make use of the additional space that the
frame of a browser window would normally use. However,
upcoming web and mobile standards are enabling fairly ex-
tensive app-like capabilities for websites [20, 16]. By adding
a manifest with metadata about the content and providing
some extra JavaScript to specify a “Service Worker”, web-
sites can explicitly cache content on phones for quick loading
and offline access in a browser-less view, send push notifica-
tions from the websites’ servers, and, in network-constrained
scenarios, can queue requests for content to be fired when
appropriate network connections are established even if the
site is not opened. While not yet implemented in iOS, Apple
has stated their intent on supporting it in the near future [14].

Initiatives for web standards like Physical Web, Web Blue-
tooth, and Service Workers are decent starts, but they are cur-
rently missing key components that would actually make web-
based device interfaces viable and usable, and enable seamless
discovery, connectivity, interactivity, and persistence.

51

3 Design
In the design of the browsing architecture, we aim to ex-

tend web standards in a manner that emphasizes usability and
extensibility. We focus specifically on enabling discovery,
connectivity, and interaction for devices in both ephemeral
and persistent contexts, while ensuring a seamless experience
between each of these stages.

We have chosen to design primarily for devices using BLE.
While the architecture does not necessarily require BLE, it is
useful to work through and address its challenges and patterns
for local discovery, interaction, and security that emerge in the
context of IoT, as many subsets of the same design decisions
apply to other network systems, including Wi-Fi.
3.1 Discovery

To prompt smartphone users to interact with a peripheral
device, the device can use a simple broadcasting protocol. In
its broadcast parameters, the peripheral need only indicate
a target location from which to receive the interface. This
location can be expressed as a URL to a web app.

Like Physical Web, the browser can receive broadcasts
from BLE advertisements. The browser can be compatible
with peripherals that broadcast using Bluetooth’s URI proto-
col [11], or Eddystone-URL protocol [18]. To accommodate
size constraints in BLE advertisements, a long URL can be
specified using a shortened address (e.g. a bit.ly URL).

When the phone detects a device URL and displays the
result to the user, it should be transparent about the associated
device information. This keeps users informed of the ambient
devices in their vicinity and builds a reasonable understanding
of the devices an interface could potentially connect with.
As localization techniques improve, the browser could even
possibly use augmented reality to more tangibly tie results to
the devices in physical space [52].
3.2 Web Apps

Like ordinary websites, web apps should be developed
using web standards (HTML, CSS, JavaScript, etc.), but they
also need to be able to interact directly with devices, often
through BLE. The browser can provide APIs to facilitate
this. When a web app is retrieved, the browser can open the
interface within its own context, providing the app with a
set of standard library calls to native OS APIs. In this way,
interactive web apps can interact directly with their associated
devices over BLE, as depicted in Figure 3.

These interfaces may also wish to use other resources the
smartphone can provide. For example, information about the
location of the peripheral or the current global time may be
difficult for the device to obtain, but is straightforward for a
smartphone, which can expose the information for use by the
user interface. For this purpose, access to items like time, GPS,
acceleration, ambient light, pressure, and magnetic field can,
with user permission, be provided to the web apps through
browser-extended calls to the native API.
3.3 Device as Web Resource (Origin Policy)

Web Bluetooth uses a user-select pairing model to asso-
ciate a device with an interface. While done as an apparent se-
curity measure, this introduces more potential vulnerabilities
to the device, user, and interface, while also presenting a dis-
ruptive user experience. To fix this, we can start treating “Web

of Things” devices as actual things of the web—specifically,
devices can be made resources of websites themselves.

This is possible if devices can declare the sites to which
they belong or from which they can be accessed. Conveniently,
in this architecture, devices are already broadcasting their web
app’s location in order to enable discovery. So the browser can
at least take this as a declaration of origin. Since the browser
would also be transparent about the devices associated with
a web app listing, the user is informed of the devices it can
access. When the web app is opened, the browser can enable
BLE access exclusively for devices that have declared their
association to the site or indicated some form of cross-origin
access. This way, the need for the Web Bluetooth pairing
model is eliminated. And developers, if they so choose, still
have the ability to implement any additional authentication
mechanism they normally would in the interface itself.

3.4 Persistence
While seamless discovery and interaction is nice, users

will likely end up having regular interactions with a particular
set of devices, like those in their home or office. In these cases,
it is useful to have a method to save web apps (service regis-
tration) like caching, installing, or saving to home-screen, to
be able to reload the UI quickly and work offline if necessary,
as well as storing any local items like authentication data that
might be used to connect with a device that the user owns.
This is similar to the way Service Workers enable explicit
caching of a website’s content.

Furthermore, it would be useful for these apps to specify
scripts to run in the background. For instance, a phone in the
user’s pocket could mule data for the device (with user per-
mission), as in Figure 5a, or perform proximity based actions
like turning on a light or setting the thermostat temperature to
a preset setting when the user is near by, as in Figure 5b.

To make this work, the web app’s script could specify a
callback function to run when the browser, while scanning
opportunistically in the background, detects the device. When
this happens, the browser can pass a “device-detected” event
to the web app’s script and run the event’s callback.

We have implemented examples of these scenarios in na-
tive Android apps, but the ability to run such background tasks
for multiple web apps is currently limited by both Android and
iOS, due to energy-saving optimizations. Service Workers,
as implemented, do not yet support real background service.
However Google and Apple’s renewed commitment to pro-
gressive web app standards make such services seem feasible
in the near future. We discuss this further in Section 6.2.

3.5 Aggregation
In some cases, simultaneous interactions with and between

multiple devices may be desired from a single interface. We
can, for instance, consider a scenario in which a person walks
into a room with three power-metering devices and opens the
browser on a smartphone. Instead of showing three instances
of the power meter interface with each accessing only one
corresponding device, the browser could show one common
instance, which when opened can access any of the three. This
concept can be extended to groups of multiple device classes—
like the lights, speakers, and projector of a conference room
being controllable from a single room-wide interface.

52

huw e

https://huwebulb.io

Living Room Bulb 1

Living Room Bulb 3

NAME: LivingRoomBulb3

URL: https://huwebulb.io

NAME: LivingRoomBulb1

URL: https://huwebulb.io

NAME: LivingRoomBulb2

URL: https://litex.lighting

(a) Aggregation

https://home.things

HomeThings Alliance

DEVICES

RECIPES

Living Room

Bulb 2

ON

Home

Thermostat

70°

THENIF

 --° > 80°

+

+

= OFF

NAME: LivingRoomBulb1

URL: https://huwebulb.io

NAME: LivingRoomBulb2

URL 1 : https://litex.lighting

URL 2 : https://home.things

70°

NAME: HomeThermostat

URL 1 : https://thermo.stat

URL 2 : https://home.things

(b) Orchestration

Figure 4: Using a single interface with multiple devices.
With aggregation (a), devices pointing to the same interface
location could be accessible from a single instance of the
interface, rather than opening a separate instance for each
device. With orchestration (b), different classes of devices
could be accessible from the same interface, which might be
used to set up device-to-device interactions.

In order to enable such interactions while maintaining the
standard of expected behavior between devices, user, and in-
terface, we can provide web apps access to nearby peripherals
that advertise its URL, instead of just to the single periph-
eral the user selects in the device list. An example of this
is depicted in Figure 4a. We can also potentially extend to
allow ecosystem web apps to claim devices from participant
companies, either by having devices simultaneously broad-
cast a link to the ecosystem or by allowing the sites to specify
cross-origin sharing whitelists for devices.

3.6 Orchestration
Different classes of devices could be accessible from the

same interface, which could be used to set up device-to-device
interactions. This could be done by providing extensions for
“ecosystem” services like HomeKit [8] or IFTTT [25] for
devices the user owns or has access to, as shown in Figure 4b.

In a different scenario, the browser can provide an interface
for a stationary hardware gateway (or the gateway can provide
its own interface) that allows users to setup connections be-
tween devices. The gateway can then handle operation of the
services thereafter. Additionally, if a phone detects a device
in its proximity that is out-of-range for a gateway, it could act
as a bridge between the gateway and the device.

Alternatively, the browser could provide some interface
that allows users to set rudimentary connections between
devices. This can ultimately register a background service to
facilitate device-to-device interaction through the phone.

In specific contexts, the browser could use location to
enable customization for personal-, business-, or institution-
based control and aesthetic. When a link for a verified device
is detected in a participating organization’s location, the user
interface could be opened under the organizations own theme.
This would minimize setup time for IoT device owners and
enable quick deployability within controlled contexts. For
instance, a hotel room could provide a single interface for all
the devices in it with a theme for that specific hotel.

70°

NAME: HomeThermostat

URL: https://thermo.stat

Temperature DB

thermo.stat

(a) Data Muling

70°

NAME: HomeThermostat

URL: https://thermo.stat

6:30

70°
Welcome home!

Setting to 70°

(b) Proximity-Based Action

Figure 5: Potential background services for persistent-
use devices. If background mode is supported, an event could
be passed to service-registered web app scripts when the
phone detects the nearby device. In a data muling scenario
(a), a phone in the user’s pocket could mule data on behalf
of the web app, with user permission. In a proximity-based
action scenario (b), the web app could trigger some proximity
based actions like turning on a light or setting the thermostat
temperature to a preset setting when the user is nearby.

4 Implementation
As a proof-of-concept of key components of the proposed

architecture, we have implemented: (1) a browser application
for Android and iOS, (2) a broadcast specification for devices,
(3) a cloud-hosted web service to scrape and obtain informa-
tion about the peripheral’s advertised interface location, and
(4) an HTML/JavaScript API for web apps.
4.1 Browser App on Android and iOS

The browser is implemented as an application, called Sum-
mon, that runs on Android and iOS [30, 29]. It fulfills the
role of the user-facing platform for discovering devices and
viewing interfaces. The browser adds the advertised periph-
eral and its destination URL to a device manager list, and
notifies the user of the presence of a peripheral with a linked
interface. The smartphone user can open the device manager
screen to view a list of the nearby peripherals and correspond-
ing interfaces, as shown in Figure 6. When the user selects
an item, an interactive web app is typically retrieved from
the broadcast URL or from local cache, and is opened within
a browser-controlled context. Alternatively, a native app or
regular website may be opened.

For web apps, Summon provides a controlled context and
native API bindings that are derived from core Apache Cor-
dova frameworks [6]. Systems like Apache Cordova and
PhoneGap [5] allow developers to write native applications
for mobile phones in HTML that can access the phone’s
native API using JavaScript. The browser app provides a spe-
cial Cordova-based context in which to open web content.
In this context, the web content can access and utilize a set
of JavaScript libraries that the browser provides as native
smartphone APIs. In implementation, web apps are effec-
tively websites that make use of these APIs. In particular, the
provided BLE API allows web apps to interact directly with
devices. Web apps can also request permission to use APIs
that access smartphone sensor data, storage, and information.

53

(a) (b) (c)

Figure 6: Summon— Browser implementation for mobile
phones. If the browser detects a device that links to an inter-
face, it is listed in the device browser (a). If multiple devices
link to the same interface, they are grouped under one list
item. When the user selects an item, its web app (c) is opened.
Since the interface is opened within a controlled framework
(instead of a regular browser), it can use provided JavaScript
bindings to behave like a native app and interact with associ-
ated devices. If a device’s native app is detected on the phone,
it is opened instead. The UI options, linked devices, and list
of features used by the web app are visible in detail view (b).

Notably, Summon extends its own APIs, as web standards—
particularly Web Bluetooth and Service Worker APIs—had
not yet matured at the time of initial implementation. A Web
Bluetooth-compatible shim-layer was added at a later stage.

Users are able to configure how and to what extent their
smartphone is utilized as a user interface platform. They can
enable or disable caching, choose which radios the browser
can use to discover devices (BLE / Wi-Fi via mDNS), and
allow or reject permissions associated with each web app.
Additionally, users can filter by device or UI name, as well sort
UI listings by device discovery time, device signal strength,
and UI popularity.
4.2 Destination Resolution

When the browser application receives a broadcast URL,
it determines if the URL is a website or a fully-featured web
app that requests use of the browser’s extended APIs. It also
checks to see if a native application for the device exists and
is already installed. If the device does not broadcast a URL or
the smartphone is not connected to the Internet, the browser
checks its cache of web apps to check if any are already
associated with the device’s address or advertisement profile.
This way, when a user makes a selection, the browser can take
the appropriate action, whether that be opening a native app,
or retrieving a web app from the Internet or local cache.

To assist the browser in obtaining information on the inter-
faces corresponding to URLs advertised by devices, we have
set up a link resolution web service. The service sits in the
cloud and responds to requests from the browser application.
Figure 7 depicts the flow of this process. When the browser
discovers a device, it sends a request containing the broadcast
URL to the service. The service first resolves short URLs or

DEVICE BROWSER CLOUD

1. Device broadcasts URL

2. Browser parses URL to
determine web app location

BLE Light

5. Service returns

details of web app

3. Browser requests

details of web app

4. Service scrapes
web app content

& checks own DB
to obtain details

6. Browser lists
web app w/ details

8. Web app isdownloaded

7. User selects web app9. Web app is opened
(& cached for future use)

10. Web app reads/connects
device & user interacts

Figure 7: Overview of the implemented flow of device dis-
covery and presentation between the device, the mobile
browser, and the cloud. With help from an implemented
destination-resolution cloud service, the browser can obtain
detailed information on the interface at the device’s advertised
URL, and present it to the user.

any URL redirects in order to determine the full-form address
of the actual web app location. It then scrapes the linked con-
tent, and returns useful data like the website or web app’s title,
description, potential native applications to check for, icon
image location, browser-extended APIs used, and requested
smartphone permissions. The service also stores this infor-
mation in a database to provide a rapid response when the
same URL is requested again from any phone. Additionally,
it monitors popularity and usage of each web app, which can
be used to sort web apps by relevance in the browser. While
not fundamentally vital to the design of the architecture, the
service provides useful information that will better inform the
user about the relevant web apps prior to potentially opening
one of them, while reducing latency in response time.

4.3 Caching
To further enable device interactions without requiring

connection to the Internet, the implemented browser can also
cache web apps. By default, the browser caches all of the web
app’s details when it is originally listed in the browser and
caches the web app’s resources when it is first opened. This is
essentially Summon’s version of service registration. Unless
specified otherwise in the HTTP header of a web app, the
browser caches all web content for an indefinite period of time
until the user manually clears it or until app cache capacity
is reached, at which point the least-recently used resources
are replaced. If a known device is detected again while the
phone does not have Internet connection, the smartphone
can retrieve the web app details and the web app itself from
memory. When connection is available, the cached UI can
be loaded if header-request validates that online resources
have not changed. This improves load time and data usage.
The cached UI details also allow for quicker response when
scanning for devices when the phone is online and quicker
loading of the actual UI when it is used often.

54

(a) Environment Sensor
(BLEES [31])

(b) Smart LED Light
(Torch [28])

(c) Smart City Platform
(Signpost [2])

(d) CO Breathalyzer
(Monoxalyze [3])

(e) Localization Tag
(Polypoint [27])

(f) Power Meter
(PowerBlade [13])

Figure 8: A selection of real “browsable” devices

4.4 Peripheral Devices
During the study, a number of peripherals have been con-

figured to be discoverable by the browser app, including em-
bedded devices like power meters, software-defined lighting
controllers, indoor localization systems, environmental sen-
sors, smoking cessation meters, and BLE tags. Some of these
systems are shown in Figure 8. Examples of both BLE- and
Wi-Fi-based peripherals have also been successfully set up
on Android smartphones and tablets, Nordic nRF51/nRF52
and Espressif ESP32-based embedded devices, Raspberry Pis,
and Linux and Mac computers.

The devices specify a URL in a BLE broadcast linking to
corresponding user-facing content that can interact directly
with the device without the peripheral requiring Internet ac-
cess. While Summon is primarily used with BLE devices,
the browser also detects and lists URLs that are broadcast
from devices on the local Wi-Fi network via mDNS, a zero-
configuration network service discovery protocol. Conve-
niently, some network-connected devices, like printers, al-
ready advertise web interfaces using this protocol, and are
readily visible in the browser.

4.5 Web Apps
Concurrently, a number of web apps have been built specif-

ically for use with our browser application using standard web
tools. Device advertisements link to the corresponding web
app, which may be fetched online or from the phone itself
(if the interface is cached), and can interact with the device
and use native smartphone features via browser-extended
JavaScript APIs. Notably, web apps have been made for each
of the embedded devices listed earlier, some of which are
shown in Figure 9.

During a two year period, approximately 20 embedded de-
velopers created web apps for use with corresponding embed-

(a) (b) (c)

Figure 9: Subset of web apps for real devices. All interact
directly with the corresponding devices (Figures 8a to 8c)
directly over BLE using a browser-defined JavaScript API.

ded devices and the browser received about 1000 downloads
on iOS and Android. The set of embedded developers were
primarily from the academic community and included under-
graduates, graduates, and faculty from multiple institutions.
There was also participation from a couple of interested hob-
byists. Developers chose to use the browser based on discus-
sions about the relative ease of the development and deploy-
ment process for device UIs. No formal recruitment campaign
was involved. Developers were provided online documenta-
tion, code samples, and informal tutorials to help create their
web-applications and configure devices [32]. While most of
the developers had little or no web and mobile app develop-
ment experience, they were able to create fully functioning
and moderately aesthetic interfaces that successfully enable
user interaction with the devices.

5 Evaluation
For the purpose of evaluation, we test the browser with a

range of devices. Along with observing the general functional-
ity between the browser, user, and devices, we quantify some
tradeoffs between web apps and native apps. We explore the
mechanics of device discovery and impacts on presentation.

5.1 Paradigms of Real Applications
For a high-level qualitative assessment, we have made

the implemented browser app, APIs, and template code for
web apps available to embedded developers to create proto-
type interfaces for their devices. By using standard web tools
(HTML, JavaScript, CSS, etc) to create web apps and making
slight modifications to appropriately configure their respec-
tive devices, the developers have been able to create easily
discoverable, powerfully interactive interfaces. A subset of
the devices and web apps are shown in Figure 8 and Figure 9.
The ability to directly control devices and offload real-time
data have been notably appealing to developers, particularly
for those of energy- and network-constrained devices. The fol-
lowing real examples describe interaction paradigms for web
apps and devices supported in the browser implementation.

55

 0

 5

 10

 15

 20

 25

 30

 0.1 0.2 0.5 1 2 5 10 20

T
im

e
 u

n
ti
l
D

is
c
o

v
e
re

d
 (

s
)

Advertising Interval (s)

Figure 10: Device discovery latency for varying advertis-
ing intervals. The solid point is the mean of recorded laten-
cies at each interval. Measurements taken on a Google Pixel.

Advertisement-only. The 1-inch round environmental
sensor system shown in Figure 8a, continuously broadcasts
BLE advertisements, sending out its shortened web app URL
and sensor readings in alternate packets once a second. The
browser detects the URL advertisement, obtains data for the
linked URL from the browser’s cloud service, and lists the
web app in the device browser. When the user selects the list-
ing, the web app, shown in Figure 9a, loads and immediately
begins receiving and parsing the sensor reading advertise-
ment packets to retrieve temperature, humidity, illuminance,
air pressure, and motion data from the device. The display
is updated with the corresponding readings in real time. If a
user enters a room with one of these environmental sensors
on the wall and opens the web app, updated data is typically
displayed every 2 to 6 seconds (accounting for dropped pack-
ets), while taking approximately a quarter of a second to parse
and format the data when each packet is received. Running
on a coin cell battery, the environmental sensor device has a
lifetime of approximately 6 months while continuously broad-
casting and taking sensor readings.

Connection. The software-defined lighting system shown
in Figure 8b, continuously advertises its URL. After the
browser discovers the device and its corresponding web app,
shown in Figure 9b, is opened, it is able to automatically con-
nect with the device over BLE. Connection typically occurs
within one second of the web app opening. The web app ob-
tains the light’s current brightness level and displays it on a
slider interface. Whenever the user uses the slider interface
to change the brightness level, the new value is immediately
written to the device, and the light’s brightness is changed
accordingly. Since the device is in connection mode with
the phone, there is low transmission latency and light state is
visibly updated in approximately half a second.

Multiple Devices. The system shown in Figure 8c is a
solar-powered city-scale sensing platform that is mounted on
a signpost. It contains 6 sensor modules, a control module,
and a power module, each of which send its own data via BLE.
Because each module advertises the same URL, the browser
aggregates them all under one listing in the device browser.

0.0

0.5

1.0

1.5

2.0

Basic

Door Lock

Environmental Sensor

Indoor Localization

Power M
eter

Smart L
ED

Softw
are-Defined Light

Thermometer

U
I
/

A
p
p

 S
iz

e
s
 (

M
B

)

Android App iOS App Web App

Figure 11: Size of example web apps vs native apps. Web
app size accounts for bare web resources—HTML, JS, CSS,
images, etc. Browser-provided JavaScript APIs allow web
apps to use native smartphone features like BLE at run time.
Because native apps repackage large commonly-used libraries
into their binaries, they are significantly larger than web UIs.

The user can view all associated devices accessible by the
web app in the listing’s detail view. When the web app is
opened, as in Figure 9c, it can scan for, obtain data from, and
display appropriate interfaces for each associated module.

5.2 Device Discovery
The browser’s ability and performance in discovering BLE

peripherals depends on the advertisement rate, physical prox-
imity, and transmit signal strength of the device. Figure 10
depicts how much of an effect the advertising rate has on the
speed of discoverability, for intervals ranging 10ms to 10s. By
default, the browser app displays results in the order in which
devices are discovered. Devices with higher advertisement
rates, as well as closer proximity and higher transmit signal
strength, have higher chance of early detection.

However, the only metric the phone can provide when
it discovers a device is the received signal strength (RSSI).
RSSI of BLE devices vary significantly over time due to trans-
mission parameters, environmental factors, and interference.
Ordering by device RSSI can still be useful, but doing so in
real-time yields an unstable presentation to the user. User
feedback has indicated that even slight changes to the order-
ing of the list of devices in real-time can cause significant user
error when attempting to select a list item. To accommodate
users who desire it, a sorting scheme using a sliding average
of RSSI is presented as an option in the browser app.

5.3 Web App Size
While browsing, the user would likely be accessing and

downloading web apps relatively often. This leads to concerns
about Internet data usage, especially when the smartphone
uses cellular network data. Most web apps developed dur-
ing the deployment period have been on the order of 10 kB
- 100 kB each. While the average web site is over 1 MB
[23], the browser’s environment seems to be more conducive
of higher quantities of interfaces for short connections and

56

Physical Web Web Bluetooth Phys. Web + Web BT Native App Summon (Our Browser)
Steps for ambient device/
UI discovery

- Open list screen - 1
(obfuscates device info)
≈ 1 gesture

N/A
(no ambient discovery)
≈ ∞ gestures

- Open list screen - 1
(obfuscates device info)
≈ 1 gesture

N/A
(no ambient discovery)
≈ ∞ gestures

- Open list screen - 1
≈ 1 gesture

Steps for first-time setup
of a device/UI requiring
an associated account

N/A
(no device interaction)
≈ ∞ gestures

- Open browser - 1
- Type URL - u
- Press go/enter - 1
- Create username - n
- Create password - p
- Press sign-up / log-in - 1
- Perform trigger action- 1
- Pick device in prompt - 1
- Press “pair” - 1
- Confirm/add device - 1
≈ 7+u+n+ p gestures

- Open list screen - 1
- Press listing - 1
- Create username - n
- Create password - p
- Press sign-up / log-in - 1
- Perform trigger action- 1
- Pick device in prompt - 1
- Press “pair” - 1
- Confirm/add device - 1
≈ 7+n+ p gestures

- Open app store - 1
- Enter search query - q
- Press search/enter - 1
- Find app / tap install - 1
- Open app - 1
- Create username - n
- Create password - p
- Press sign-up / log-in - 1
- Confirm/add device - 1
≈ 6+q+n+ p gestures

- Open list screen - 1
- Press listing - 1
- Create username - n
- Create password - p
- Press sign-up / log-in - 1
- Confirm/add device - 1
≈ 4+n+ p gestures

Steps for general interac-
tion

N/A
(no device interaction)
≈ ∞ gestures

- Open browser - 1
- Type URL - u
- Press go/enter - 1
- Perform trigger action- 1
- Pick device in prompt - 1
- Press “pair” - 1
≈ 5+u gestures

- Open list screen - 1
- Press listing - 1
- Perform trigger action- 1
- Pick device in prompt - 1
- Press “pair” - 1
≈ 5 gestures

- Open app - 1
(app autoconnects)
≈ 1 gesture

- Open list screen - 1
- Press listing - 1
(UI autoconnects)
≈ 2 gestures

Table 1: User gesture analysis. The table compares the steps of actions necessary to perform tasks of discovery, setup, and
interaction with BLE devices using Physical Web, Web Bluetooth, native app and our browser. Our approach generally requires
fewer user gestures to accomplish tasks than the alternative methods, while also enabling better ambient discovery of devices and
their UIs. Variables u, n, p, and q represent gesture counts when typing URL, username, password, and search query respectively.

speedy interactions. However, even when web apps contain
rich elements typically seen on the average flashier websites,
the usage impact is typically much less than native apps. A
2012 study revealed that the average mobile phone applica-
tion was, at that time, 23 MB for iOS and 6 MB for Android,
increasing 16% and 10%, respectively, over a 6 month period
[1]. To meet growing demands in the past couple years, both
Android and iOS app stores increased their app size limits to
4 GB (with a 100 MB network delivery limit) respectively.
Without overhead of re-imported native libraries, web apps
can also be cached trivially for repeated or offline use.

Apps for casual interaction can be quite lightweight, but
each must often re-import its own instance of commonly-
used libraries, which ultimately bloats the size of the app
binary. With the support of web-based interfaces, the browser
app reduces size requirements. Figure 11 shows that the size
of web-based interfaces are low (~kBs) when compared to
the size of native apps (~MBs). In an experiment measuring
the data usage of repeatedly opening a small web app with
and without cache, the first opening consumed 92 kB of data
both times. Without cache, the full 92 kB were used in each
subsequent opening. With cache, 4 kB were used for each sub-
sequent request to detect if any changes were made to the web
app. While web apps sizes are already low, caching further
diminishes impact on network data costs, especially when
compared to those of installing full apps. This experiment
illustrates that caching keeps the data usage cost of repeated
web app downloads at a nearly negligible amount, all without
the permanent memory requirements of an installed native
application. While, still, native apps can provide very rich
user interfaces and could actually reduce data costs when de-
vices have high repeated use, we foresee a great increase in
ambient interaction use cases in the near future of the Internet
of Things, and find that this browser model will offer lower
memory and data costs for those cases.

5.4 User Action
As an examination of seamlessness and ease of use in

our approach, we consider a set of common tasks that the
browser would be expected to handle. We perform a rudimen-
tary analysis by calculating the number of gestures required to
accomplish each task, and compare with Physical Web, Web
Bluetooth, and native apps. This is depicted in Table 1.

We first examine how ambient device and UI discovery
is facilitated. In our model, simply opening the browser will
reveal ambient devices and their corresponding interfaces.
While users can open a similar list screen from a Physical
Web notification, device information is obfuscated.

In the general interaction scenario, an interface for a known
device would need to be opened and receive data from the
device. When a Web Bluetooth-enabled web page is opened,
it requires that the user perform a trigger action, like pressing
a button on the page, before then prompting the user to select
the appropriate device. This is in addition to requiring the user
to manually navigate to the device’s page. Using Physical Web
to direct users to the Web Bluetooth UI helps to reduce some
work for the user. However, our implementation would allow a
UI opened from the browser list screen to immediately receive
data from its associated device. If a native app is already
installed, it likely requires the same or less user action.

Next, we explore the actions a user might need to take to
open a new UI for the first time for a device that requires a
user to set up an account and link the device to their account.
In the native app model, a user would need to have knowledge
of the device’s app and install it from the app store prior to
creating a user account, scanning for the device, and adding it
to their account within the app. The Web Bluetooth interface
would face the same hurdles as its general interaction case.
Our browser implementation would allow users to jump right
into account setup and device confirmation immediately after
opening the interface from the list screen.

57

Energy % Battery
LCD Screen 24.00 J ~0.0563%
App Processes 7.18 J ~0.0168%
Wi-Fi 0.88 J ~0.0021%
Bluetooth Low Energy 0.72 J ~0.0017%
Total 32.78 J ~0.0769%

Table 2: Phone energy usage while discovering devices.
The listed total is an average of 10 one-minute trials on a
Motorola Nexus 6 with a 3200mAh battery while in a setting
with 5 URL-beaconing peripherals (4 BLE, 1 mDNS) and 5
other broadcasting peripherals (2 BLE, 3 mDNS), and with
screen at lowest brightness. Measurements are recorded using
PowerTutor and Trepn Profiler.

5.5 Energy Usage
Peripherals do not require their own connection to the In-

ternet via an on-board Wi-Fi or GSM chip, or through an
external hardware gateway. They can, instead, leverage the
smartphone’s network connectivity, while using the energy
efficient, short-distance communications of BLE. As a result,
our architecture can help eliminate high power costs generally
associated with such communication systems on peripherals.
In the architecture, BLE peripherals need only operate in the
low power advertising mode. NRF51822, the most common
BLE chip used on our developers’ devices, averages <80 µW
(dependent on transmit power and payload), when advertising
once per second [38]. It should be noted that most BLE pe-
ripherals already advertise, so adherence to our protocol does
not likely impact typical consumption significantly.

While power efficiency has not been a primary consider-
ation in the browser implementation, it is useful to know a
rough breakdown of energy dependence of individual com-
ponents of the system, particularly with the communications
systems and application processing. To obtain a rough break-
down, approximate power measurements are taken using the
PowerTutor tool [54] for the Android platform. The tool offers
an accuracy within 0.8% on average with at most 2.5% error.
Additionally, Qualcomm’s Trepn Power Profiler [39] is used
to help determine energy usage distribution among hardware
components in finer detail. Table 2 depicts the average usage
breakdown over 10 one-minute trials on a Nexus 6.

In this evaluation, usage is broken into four categories:
LCD, Wi-Fi, BLE, and app processing. As with many native
apps, most of the energy is consumed by the LCD screen,
taking up nearly 75% of overall consumption. The Summon
browser only operates in the foreground, so the application
must be open and on screen to be active. Application pro-
cessing consumes approximately 20%, which is mostly spent
creating and manipulating visual elements in the graphical
interface of the browser. The remaining ~5% is consumed by
the BLE and Wi-Fi radios, with a slightly higher percentage
attributed to the latter. Cellular network connectivity is inac-
tive on the tested mobile device, but generally consumes about
as much as Wi-Fi when used instead. Unless the phone screen
remains on throughout the day, the browser’s consumption
does not raise major concern. Additionally, this should have
diminishing impact as phone batteries continue to improve.

6 Discussion
During this study, we have gained insights from developers

and users about their experiences, and have encountered and
contemplated various technical challenges. In this section,
we more deeply discuss questions regarding these challenges,
examine how our system has evolved over time, and explore
methods to better improve.

6.1 Bluetooth and Denial of Service
BLE peripherals have two primary modes of operation:

advertising and connected. Peripherals typically spend most
time advertising to broadcast identifying information. How-
ever, for interaction, it is often required that the phone connect
to the peripheral. During the deployment, developers noticed
that many BLE software stacks do not allow simultaneous
advertisements and connections. Moreover, most stacks only
allow a peripheral to be in one connection at a time. This
means connecting to a BLE device could create a denial of
service for other phones. While a one-to-one connection is
useful for personal devices like the smoking cessation breath-
alyzer, it can limit casual interactions with ambient devices
designed to be accessible to multiple users.

Possible solutions to this problem include imposing con-
nection time limits either on the peripheral device itself or
in the our browser application. While these solutions would
help with the problem, starvation is inherent to a peer-to-peer
networking architecture like BLE. Another approach could be
to have phones rebroadcast connected peripherals’ informa-
tion and virtualize their services to other nearby users. This
scheme would also allow the phone to absorb the energy cost
of broadcasting while in a connection, instead of the periph-
eral device, which is more likely to be energy-constrained.
However, this solution weakens the notion of spacial locality
upon which our system relies, and raises the security concerns
of untrusted phones facilitating connections. In order to pre-
vent denial of service, developers should more often utilize
interaction models that cut out or significantly reduce time in
connected mode.

6.2 Feasibility of Background Service
Due to how the mobile OSes (both iOS and Android) regu-

late native applications’ background service tasks, particularly
with respect to services running BLE, web apps currently must
share from the quota of background service execution time
that is allotted to the browser application (bursts of approx-
imately 5s periodically at unspecified intervals on iOS [7]).
Native apps are able to claim their own background service
that would, hypothetically, be able to run as long and often
as the entirety of the browser app’s allotment for all web app
background services combined. This means that a native app
can perform tasks like communicating with a corresponding
device in the background for longer than individual web app.
For example, we have successfully implemented a native app
version of a background data muling service similar to the
one in Figure 5a, albeit on a less restrictive Android 5 device.
With both Apple and Google invested in Progressive Web
App standards, it is possible the respective mobile OSes will
evolve to offer better support and web apps could eventually
gain a larger allotment of such OS resources.

58

6.3 Adaptation of Origin Policy
While we have developed and implemented a stand-alone

browser application that successfully accomplishes most of
the design goals of the browsing architecture, traditional
browsers may benefit from at least integrating the key notion
of treating devices as web resources. This device origin policy
would still be applicable and useful in the typical type-and-go
web browsing model. Friction can be drastically reduced in
web apps that make use of Web Bluetooth by allowing de-
vices to claim their origin, restricting website’s access to spec-
ified/approved origins, and providing transparency to users
rather than making them choose devices blindly—perhaps in
the form of a permissions request prompt with a clear listing
of associated devices that is displayed once, akin to geoloca-
tion request prompts in the browser.

6.4 Extending the Architecture
While we focus primarily on a mobile implementation

that enables discovery of user interfaces for BLE devices,
the architecture has been applied to a number of different
platforms, contexts, and networks. For instance, the browser
has been implemented and is regularly used on MacOS—the
same web-apps can be discovered, enabling interaction with
devices around the desktop using BLE and Wi-Fi. In the
Android implementation, an API was provided to support dis-
covery and communication over NFC. For settings in which
Internet-connectivity is limited, the browser had also sup-
ported a custom BLE service that allows downloading of user
interfaces directly from the device. Recent work also explores
how augmented reality might improve the browsing approach
by making discovery a more tangible user experience [52].

7 Conclusions
We have introduced a mobile browsing architecture that

extends web standards to provide a seamless and open ap-
proach to discovering, connecting, and interacting with nearby
“things” for both ephemeral and persistent use cases. The
approach enables direct local access to and smartphone-
mediated interaction with proximal devices, while embracing
modern web technologies and open standards, and taking
advantage of native smartphone capabilities. Through the
implementation and distribution of Summon, a smartphone
browser application that employs this architecture, we have
learned that the approach scales better than current models of
mobile-based interactions, particularly with low-power em-
bedded devices, and provides intuitive, natural functionality
for both users and developers. Insights from the deployment
of this architecture can be generally applied in the creation
and improvement of “webification” tools and in the develop-
ment of a new generation of interfaceable devices.

To further facilitate the “webification” of the Internet of
Things and aid the development of future web standards, we
aim to help expose which architectural design choices achieve
the highest level of simplicity, usability, comprehensiveness,
and comfort for both the user and developer, while also en-
suring enhanced reliability and security. If deployed on the
worldwide network of smartphones, our approach would fi-
nally provide a user-interfacing solution that adequately en-
ables, supports, and handles the advent of an increasingly
global, robust, and intimate Internet of Things.

8 Acknowledgments
This work was supported in part by the CONIX Research

Center, one of six centers in JUMP, a Semiconductor Re-
search Corporation (SRC) program sponsored by DARPA.
This material is also based upon work partially supported by
the National Science Foundation under grant CNS-1824277,
as well as by the NSF/Intel Partnership on CPS Security and
Privacy under grant CNS-1822332.

9 References
[1] ABI Research. Average size of mobile games for iOS increased by a

whopping 42% between march and september. https://www.abiresearch.
com/press/average-size-of-mobile-games-for-ios-increased-by-/, Oct.
2012.

[2] J. Adkins, B. Campbell, B. Ghena, N. Jackson, P. Pannuto, and P. Dutta.
The signpost network: Demo abstract. In Proceedings of the 14th ACM
Conference on Embedded Network Sensor Systems, SenSys ’16, pages
320–321, New York, NY, USA, 2016. ACM.

[3] J. Adkins and P. Dutta. Monoxalyze: Verifying smoking cessation with
a keychain-sized carbon monoxide breathalyzer. In Proceedings of the
14th ACM Conference on Embedded Network Sensor Systems, SenSys
’16, pages 190–201, New York, NY, USA, 2016. ACM.

[4] J. Adkins, B. Ghena, and P. Dutta. Freeloader’s guide through the
google galaxy. In Proceedings of the 20th International Workshop on
Mobile Computing Systems and Applications, HotMobile ’19, pages
111–116, New York, NY, USA, 2019. ACM.

[5] Adobe Systems. Adobe PhoneGap. http://phonegap.com/, Apr 2018.
[6] Apache Software Foundation. Apache Cordova. https://cordova.apache.

org/, Mar 2019.
[7] Apple. Extending your app’s background execution time.

https://developer.apple.com/documentation/uikit/app and
environment/scenes/preparing your ui to run in the background/
extending your app s background execution time, Sep 2019.

[8] Apple. Homekit - apple developer. https://developer.apple.com/
homekit/, Sep 2019.

[9] Apple. ios - home - apple. https://www.apple.com/ios/home/, Sep
2019.

[10] S. Bae, D. Kim, M. Ha, and S. H. Kim. Browsing architecture with
presentation metadata for the internet of things. In 2011 IEEE 17th
International Conference on Parallel and Distributed Systems, pages
721–728, Dec 2011.

[11] Bluetooth Special Interest Group. Bluetooth core specifications. https://
www.bluetooth.com/specifications/bluetooth-core-specification, Jul
2017.

[12] Bluetooth Special Interest Group. Bluetooth sig. https://www.bluetooth.
com/, Sep 2019.

[13] S. DeBruin, B. Ghena, Y.-S. Kuo, and P. Dutta. Powerblade: A low-
profile, true-power, plug-through energy meter. In Proceedings of
the 13th ACM Conference on Embedded Networked Sensor Systems,
SenSys ’15, New York, NY, USA, 2015. ACM.

[14] M. Firtman. Pwas are coming to ios: Cupertino, we have a
problem. https://medium.com/@firt/pwas-are-coming-to-ios-11-3-
cupertino-we-have-a-problem-2ff49fd7d6ea, Jan 2018.

[15] J. A. Garcia-Macias, J. Alvarez-Lozano, P. Estrada-Martinez, and
E. Aviles-Lopez. Browsing the Internet of Things with sentient vi-
sors. Computer, 44(5):46–52, May 2011.

[16] M. Gaunt. Service worker. https://developers.google.com/web/ilt/pwa/
introduction-to-service-worker, Sep 2019.

[17] H. Gellersen, C. Fischer, D. Guinard, R. Gostner, G. Kortuem, C. Kray,
E. Rukzio, and S. Streng. Supporting device discovery and sponta-
neous interaction with spatial references. Personal Ubiquitous Comput.,
13(4):255–264, May 2009.

[18] Google. The physical web. https://google.github.io/physical-web/, Jun
2017.

[19] Google. Android things. https://developer.android.com/things, Aug
2019.

[20] Google. Progressive web apps. https://developers.google.com/web/
progressive-web-apps/, Sep 2019.

59

https://www.abiresearch.com/press/average-size-of-mobile-games-for-ios-increased-by-/
https://www.abiresearch.com/press/average-size-of-mobile-games-for-ios-increased-by-/
http://phonegap.com/
https://cordova.apache.org/
https://cordova.apache.org/
https://developer.apple.com/documentation/uikit/app_and_environment/scenes/preparing_your_ui_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/app_and_environment/scenes/preparing_your_ui_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/app_and_environment/scenes/preparing_your_ui_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/homekit/
https://developer.apple.com/homekit/
https://www.apple.com/ios/home/
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/
https://www.bluetooth.com/
https://medium.com/@firt/pwas-are-coming-to-ios-11-3-cupertino-we-have-a-problem-2ff49fd7d6ea
https://medium.com/@firt/pwas-are-coming-to-ios-11-3-cupertino-we-have-a-problem-2ff49fd7d6ea
https://developers.google.com/web/ilt/pwa/introduction-to-service-worker
https://developers.google.com/web/ilt/pwa/introduction-to-service-worker
https://google.github.io/physical-web/
https://developer.android.com/things
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/

[21] D. Guinard, V. Trifa, and E. Wilde. A resource oriented architecture
for the web of things. In 2010 Internet of Things (IOT), pages 1–8, Nov
2010.

[22] D. Guinard, V. M. Trifa, and E. Wilde. Architecting a mashable open
world wide web of things. In Technical report/Swiss Federal Institute
of Technology Zurich, Department of Computer Science, volume 663.
ETH Zurich, Feb 2010.

[23] HTTPArchive Mobile. Interesting stats. http://mobile.httparchive.org/
interesting.php, Feb. 2016.

[24] L. Iftode, C. Borcea, N. Ravi, P. Kang, and P. Zhou. Smart phone: an
embedded system for universal interactions. In Distributed Computing
Systems, 2004. FTDCS 2004. Proceedings. 10th IEEE International
Workshop on Future Trends of, pages 88–94, May 2004.

[25] IFTTT. IFTTT helps your apps and devices work together. https://
ifttt.com/, Sep 2019.

[26] S. Jenson, R. Want, B. N. Schilit, and R. H. Kravets. Building an on-
ramp for the internet of things. In Proceedings of the 2015 Workshop on
IoT Challenges in Mobile and Industrial Systems, IoT-Sys ’15, pages
3–6, New York, NY, USA, May 2015. ACM.

[27] B. Kempke, P. Pannuto, and P. Dutta. Polypoint: Guiding indoor quadro-
tors with ultra-wideband localization. In 2015 ACM Workshop on Hot
Topics in Wireless, HotWireless ’15, September 2015.

[28] Y.-S. Kuo, P. Pannuto, and P. Dutta. System architecture directions for
a software-defined lighting infrastructure. In 1st ACM Workshop on
Visible Light Communication Systems, VLCS ’14, September 2014.

[29] Lab11. Summon [Lab11] - apps on google play. https://play.google.
com/store/apps/details?id=edu.umich.eecs.lab11.summon, Oct. 2016.

[30] Lab11. Summon [Lab11] on the app store. https://apps.apple.com/us/
app/summon-lab11/id1051205682, Oct. 2016.

[31] Lab11. BLEES: Bluetooth low energy environmental sensors. https://
github.com/lab11/blees, Feb. 2017.

[32] Lab11. Summon: Browser for the local web of things. https://github.
com/lab11/summon, May 2017.

[33] A. A. Levy, J. Hong, L. Riliskis, P. Levis, and K. Winstein. Beetle:
Flexible communication for bluetooth low energy. In Proceedings of the
14th Annual International Conference on Mobile Systems, Applications,
and Services, MobiSys ’16, pages 111–122, New York, NY, USA, June
2016. ACM.

[34] M. Mikusz, S. Clinch, R. Jones, M. Harding, C. Winstanley, and
N. Davies. Repurposing web analytics to support the IoT. Computer,
48(9):42–49, Sep 2015.

[35] R. M. Nayak. Discontinuing support for android nearby no-
tifications. https://android-developers.googleblog.com/2018/10/
discontinuing-support-for-android.html, Oct 2018.

[36] Nest Labs. Weave. https://nest.com/weave/, Mar 2018.
[37] Nest Labs. Works with nest. https://nest.com/works-with-nest/, Mar

2018.
[38] Nordic Semiconductor. nRF51822 - multiprotocol bluetooth low ener-

gy/2.4 ghz rf system on chip. https://infocenter.nordicsemi.com/pdf/
nRF51822 PS v3.1.pdf, 2014.

[39] Qualcomm Technologies Inc. When mobile apps use too much power:
A developer guide for Android app performance. https://developer.
qualcomm.com/download/trepn-whitepaper-power.pdf, Dec. 2013.

[40] D. Raggett. The web of things: Challenges and opportunities. Com-
puter, 48(5):26–32, May 2015.

[41] C. Roduner. Bit–a browser for the internet of things. In Proceedings
of the CIoT Workshop 2010 at the Eighth International Conference
onPervasive Computing (Pervasive 2010), pages 4–12, May 2010.

[42] E. Rukzio, S. Wetzstein, and A. Schmidt. A framework for mobile
interactions with the physical world. In Wireless Personal Multimedia
Communication, WPMC ’05, Aalborg, Denmark, Sep 2005.

[43] M. Ruta, S. Ieva, G. Loseto, and E. Di Sciascio. From the physical web
to the physical semantic web: Knowledge discovery in the internet of
things. In The Tenth International Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologies (UBICOMM 2016),
Oct 2016.

[44] Samsung. Smart home - home monitoring, smart things. https://
www.samsung.com/us/smart-home/, Sep 2019.

[45] Thread Group. Thread group. https://threadgroup.org, Jun 2019.
[46] N. K. Tran, Q. Z. Sheng, M. A. Babar, and L. Yao. Searching the web

of things: State of the art, challenges, and solutions. ACM Computing
Surveys, 50(4):55:1–55:34, Aug 2017.

[47] UBM Tech. 2017 Embedded markets study. In Embedded Systems
Conference, Embedded Systems Conference, May 2017.

[48] R. Want, B. N. Schilit, and S. Jenson. Enabling the internet of things.
Computer, 48(1):28–35, Jan 2015.

[49] Web Bluetooth W3C Community Group. Web bluetooth draft com-
munity report. https://webbluetoothcg.github.io/web-bluetooth/, Aug
2019.

[50] World Wide Web Consortium. World wide web consortium (w3c).
https://www.w3.org/, Sep 2019.

[51] L. Yao, Q. Z. Sheng, A. H. H. Ngu, X. Li, and B. Benattalah. Unveiling
correlations via mining human-thing interactions in the web of things.
ACM Transactions on Intelligent Systems and Technology, 8(5):62:1–
62:25, Jun 2017.

[52] T. Zachariah and P. Dutta. Browsing the web of things in mobile
augmented reality. In Proceedings of the 20th International Workshop
on Mobile Computing Systems and Applications, HotMobile ’19, pages
129–134, New York, NY, USA, 2019. ACM.

[53] T. Zachariah, N. Klugman, B. Campbell, J. Adkins, N. Jackson, and
P. Dutta. The Internet of Things has a gateway problem. In Proceedings
of the 16th International Workshop on Mobile Computing Systems and
Applications, HotMobile ’15, pages 27–32, New York, NY, USA, Feb
2015. ACM.

[54] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and
L. Yang. Accurate online power estimation and automatic battery be-
havior based power model generation for smartphones. In Proceedings
of the Eighth IEEE/ACM/IFIP International Conference on Hardware/-
Software Codesign and System Synthesis, CODES/ISSS ’10, pages
105–114, New York, NY, USA, 2010. ACM.

[55] Zigbee Alliance. Zigbee alliance. http://www.zigbee.org/, May 2019.

60

http://mobile.httparchive.org/interesting.php
http://mobile.httparchive.org/interesting.php
https://ifttt.com/
https://ifttt.com/
https://play.google.com/store/apps/details?id=edu.umich.eecs.lab11.summon
https://play.google.com/store/apps/details?id=edu.umich.eecs.lab11.summon
https://apps.apple.com/us/app/summon-lab11/id1051205682
https://apps.apple.com/us/app/summon-lab11/id1051205682
https://github.com/lab11/blees
https://github.com/lab11/blees
https://github.com/lab11/summon
https://github.com/lab11/summon
https://android-developers.googleblog.com/2018/10/discontinuing-support-for-android.html
https://android-developers.googleblog.com/2018/10/discontinuing-support-for-android.html
https://nest.com/weave/
https://nest.com/works-with-nest/
https://infocenter.nordicsemi.com/pdf/nRF51822_PS_v3.1.pdf
https://infocenter.nordicsemi.com/pdf/nRF51822_PS_v3.1.pdf
https://developer.qualcomm.com/download/trepn-whitepaper-power.pdf
https://developer.qualcomm.com/download/trepn-whitepaper-power.pdf
https://www.samsung.com/us/smart-home/
https://www.samsung.com/us/smart-home/
https://threadgroup.org
https://webbluetoothcg.github.io/web-bluetooth/
https://www.w3.org/
http://www.zigbee.org/

	Introduction
	Related Work
	IoT Ecosystems and Initiatives
	Discovering Content in Physical Space
	Bluetooth from the Browser
	App-ifying the Web

	Design
	Discovery
	Web Apps
	Device as Web Resource (Origin Policy)
	Persistence
	Aggregation
	Orchestration

	Implementation
	Browser App on Android and iOS
	Destination Resolution
	Caching
	Peripheral Devices
	Web Apps

	Evaluation
	Paradigms of Real Applications
	Device Discovery
	Web App Size
	User Action
	Energy Usage

	Discussion
	Bluetooth and Denial of Service
	Feasibility of Background Service
	Adaptation of Origin Policy
	Extending the Architecture

	Conclusions
	Acknowledgments
	References

