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Abstract—Faced with an uncertain path forward to renewables o
portfolio standard (RPS) goals and the high cost of energy P
storage, we believe that deep demand side management mustde oo
central strategy to achieve widespread penetration of reneable I
energy sources. We examine the variability of wind as a souec o8+ 3
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of renewable, non-dispatchable energy and the loads that na
be dispatched to match sources of this type. We identify two NSNS
classes of dispatchable energy loads, and create models for oapf-

these loads to match their consumption to the generation of !
energy sources, while introducingslack, a generalized measure of
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dispatchability of energy. From these load models, we examé o2

a number of techniques and considerations for source-follving 01

loads, including the sensitivity of thermostat constraing and the R R REE

effects of aggregating appliance populations. Our resultshow s 10 15 = 25 s 3 40
a home heater that is able to reduce energy consumption by Absolute Ramp Rate (kW)

over 50% while increasing the proportion of renewable enery

consumed versus grid energy. Fig. 1. Wind ramping. Although wind is unpredictable ovender times

frames, like hours, its short-term variability, over terfsnuinutes, is quite
predictable. This energy information can be used to dispktads and take
I. INTRODUCTION AND BACKGROUND advantage of slack, either by advancing or delaying eneamgumption.

A regulatory push for renewables to play a larger role in
the mix of energy sources is well underway in many statéfsthis kind of energy information were available to loads
across the U.S. Already, 36 of the 50 states have set goals(fa@rhaps in aggregate). Then, intelligent, networked doad
a Renewables Portfolio Standard (RPS) of anywhere from ¢Quld adapt their behavior to be greedy or miserly with eperg
to 25% of total energy consumed [1] and California has calle®nsumption. For example, a refrigerator could advance the
for renewables to comprise 33% of its energy mix by 2020 [2§tart time of its cooling cycle to consume excess energy, or
However, as the fraction of energy from renewable, but noa-temperature setpoint could be slightly increased to reduc
dispatchable, sources like wind and solar increases, it wéinergy consumption. In the first case, pre-cooling charfges t
become more difficult to match supply and demand becaugease of subsequent cooling cycles, while in the second case
today’s loads are largely oblivious to supply variations. changing the temperature setpoint (for a cycle or two) reduc

Beyond existing demand response programs [3], we propdbe energy consumption.
deep demand response — a distributed conjoining of energy in-
formation with physical control systems enabled by pemeasi
sensor/actuator networks — to dynamically match supply andin order to make reasoned decisions in sculpting energy
demand down to the appliance-level. The two keys to matchilgads, it is important to have a metric to exprles sculptable
supply and demand in real-time are predicting the output afload is, both in magnitude as well as time. Without a way
renewable sources and controlling the consumption of loamsquantify whether energy should be consumed now or later,
in response to these dynamic predictions. The challenge l@ntrol decisions cannot be made optimally. Further, ireord
in meeting the quality-of-service requirements of the loar a load to be sculptable, we argue that (1) its consumption
while adapting to variations in the source. To model soursehedule involves choices on when to consume energy and (2)
variability, we consider the cumulative distribution faiom there is either some capacity to store energy in the system
(CDF) of the sourceamp rate, or change in output. To reasonOR there is “slide” in the task the device is to complete.
about load adaptability, we use the notion of enestpck. Slide, the ability to schedule consumption, is prevalent in
Intuitively, slack refers to the amount of time an energyhose operations when quality-of-service is defined by the
consuming operation can be advanced or delayed. user. Table | presents a number of devices that are capable

To make our proposal more concrete, consider the exampfesculptability, along with their energy storage type amd a
of wind as the renewable source and the refrigerator astimate of their control schedule.
a programmable load. Figure 1 shows the variability of a The ability to manipulate dispatchable loads enables a
wind source over different time frames using a year of dateontroller to improve the alignment of energy supply and
For example, the output power changes by less than 5 knsumption. However, the rapidly changing availabilify o
over a 5 min window 95% of the time, but up to 25 kWenergy supply and the consumption of non-dispatchablesload
over a 60 min window 95% of the time. Now, imagindictates that the controller must make decisions contipual
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Device Contirol Schedule Energy Storage Time Horizon (min/max)
Thermostafically Controlled

Refrigerator/Freezer Range maintenance, bang-bang or variable drive  Thermagdo 5m/Ih
Building Heating, Ventilation, and Air Conditioning (HVAC Range maintenance, bang-bang or variable drive  Therroedge 5m/1lh
Chiller Range maintenance, bang-bang or variable drive =~ Thermadgso 5m/1h
Water Heater Range maintenance, bang-bang Thermal storage 5m/1lh
Slide

Washing Machine On-demand with optional slide Slide Tm/30m
Clothes Dryer On-demand with optional slide Slide 1m/1lh+
Batch Computing On-demand with optional slide Slide 1m/8h+
Dishwasher On-demand with optional slide Slide 1m/8h
Coffee Maker Range maintenance, bang-bang Slide . 1m/30m
Plug-in Vehicle Range maintenance, bang-bang Electrochemical storage 8him/

TABLE |
COMMON ENERGY LOADS THAT ARE AMENABLE TO SCULPTING

Though, in order to better schedule energy consumption, we s

need not only information on flexibility of load schedules, \/J/
but also estimates on the magnitude of energy available for Boww  wmm ww oo o
scheduling. This calculation is trivial for job-based cgtérns ‘ ‘ ‘ ‘ ‘
that have well-understood consumption such as clothes-wash
ing and drying machine loads, but not as clear for systems

that attempt to maintain certain conditions through negati - ‘ ‘ ‘ ‘ ‘
reinforcement feedback such as heaters, air conditionars, f ]
refrigerators. To generalize the concept of energy aviailfdy /\
dispatch, we introduce a metric calleihck and continue by S e e wm we  weww

mOdelmg a set of common dlspatchable loads. Fig. 2. The operating cycle of a fridge: (a) temperature, fower
A. Yack consumption , and (c) energy slack.
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To represent the range of dispatchability opportunities —
varying from low- to high-power loads, short- to long-rungi  For simplicity, we assume that the conversion of electrical
operations, and one-time to continuous tasks — we introdumeergy to cooling energy by the compressor is perfect — thoug
the notion ofslack, or the potential of an energy load to benot true, we believe it is unnecessary to differentiate eetw
advanced or deferred without affecting earlier or laterrape slack energy and energy input for this process.
tions or outcomes. In critical path analysis, slack referthe Now let us consider the slack during the natural warming
scheduling flexibility in a non-critical path task that kegpe phase. Initially, the slack is at its peak value for this eycl
task off the critical path. Slack is a basic and well-undsydt as the cooling phase has just ended and the temperature has
concept in many disciplines, but in this instance, we measuiropped to its lower thresholfy. As the warming phase starts,
it in common units of energy and apply it to the operatiothe temperature begins to rise and the slack energy stored
of physical systems, where the goal is not completion tim@ the system degrades. To determine the slack during the
Usually, in physical systems, we are concerned with som&rming phase, we must find the slack during the cooling
other input and output variables — in the case of a kitch@hase with the corresponding temperature in the warming
fridge, we might askHow sculptable is the refrigerator load? phase. Lefl,(¢) be the temperature during the warming phase
More important is the question of how much can we shitit timet, wheret; < t < ¢, and lett.(T) to be the time during
the refrigerator's compressor cycle (and the resulting ggowthe cooling phase as a function of the temperaﬂ]r&ecall
draw) while keeping the temperature within an acceptabiieat the slack in the cooling phasesds(t) = jt t)dt. We
operating envelope. To make the discussion more concreten now substitute.(7,(t)) for ¢, which gives the slaclsw
consider Figure 2(a), which shows one fridge operatingecyajuring the warming phase as
consisting of forced cooling (from tim& = 00:00 to time w(®))
t; = 00:11) and natural warming (from timg to time fto P(t)dt
to = 00:59). The lower temperature threshdld, is at 2.6C wheret; <t < t2.
and the upper thresholdy,, is at 3.4C. The corresponding Computing the slack using collected values for P(t) and, T(t)
power consumption of the fridge is shown in Figure 2(b). we can calculate the slack energy as a function of time over
At time t,, the beginning of the forced cooling cycle, thea cycle of the refrigerator, as seen in Figure 2(c).
slack s,, begins at 0. In other words, we can not postpone Assumingt, (7') andT,(t) are known or can be computed,
the forced cooling phase any more, as the temperature hascan plot slack as a function of time, as Figure 2(c) shows.
risen to cross the upper threshdlg. Indeed, this is precisely More simplistically, energy slack closely follows a bangin
the control law that a refrigerator follows today. As thenetaphor — as energy is used by the system to do work (in
time progresses fromy, to ¢, the energy slack. increases this case, operate the compressor), slack is accrued in the
according to the accumulation of the energy inpi(t) into slack “account.” Then, during the natural warming cycles th
the system as a function of the system pov¥); in this accountis drained and the slack is slowly reduced. Also gsis
case this is the power consumptlon of the compressor. deposits remain in a bank account, slack remains in a system
Selte) = ft across cycles in the form of stored energy. In the case of



a battery, this is the capability to introduce energy inte th The fridge was monitored for over 3 months at various set
system later. For a refrigerator, this is the thermal enstgsed points, though only six days of data from one sensor suite and
in the contents of the fridge, whether they are food, liquidene electricity meter, all at the same set point, were nacgss
or even air (though these each have different capacities for this study. Over the six days, each cycle of the refrigggra
energy storage, as discussed later in Section 1I-B). was identified by observing electricity consumption — if the
: . fridge was consuming electricity, it was in the cooling phas

B. Modeling Sinks othgrwise it was in t%e warmigg phase. Over six days, this

Having developed a metric for dispatchability, we nowdentified a total of 153 cycles, or just over one cycle per
describe the creation of models of individual consumers @bur. Then, data from the photodiode were used to identify
energy to compose an integrated model of energy loads fouseti remove any cycles that may have been perturbed by a
in a building. In this section, we examine thermostaticallyioor opening event, as this fridge is in regular use.
controlled loads — namely, a refrigerator and a heater — asTo model the warming phase of the temperature curve,
well as loads that have slide — a clothes washer, clothes,drye number of different techniques were used. Looking at
and coffeemaker. These models can then be composed Biflire 2(a), the curve resembles a decaying exponential
sculpted in response to energy generation variations. approaching an asymptote. Physically, this squares wigh th

1) Thermostatically-Controlled Loads: A common class of intuition that the air temperature in the refrigerator apyoi
energy loads seek to maintain the temperature of a mediigally approaches the outside air temperature. The rate tha
within predetermined constraints. In most cases, this isedothis occurs is governed by the constant resistance of the
through closed-loop feedback, actuating when a temperatfiidge walls to conducting heat as well as the diminishing
sensor detects that the lower or upper bound is reached. Téperature difference between the inside and outside air.
medium under control varies — sometimes liquid (e.g. water Consequently, the air temperature in the refrigeratorciases,
a water heater), solid (e.g. food in a refrigerator), or gag.( but the increase is delayed by convection of heat from the air
air in a building) — as does the duty cycle of the actuatiaw the food with its associated large thermal mass. In theory
operation for maintaining the desired temperature range. modeling this temperature response calls for a regressiog u

In this section, we demonstrate how to generate a mod&b exponential terms. In practice, however, the portiothef
of an example thermostatically-controlled system, witle thcurve captured (roughly between 2.5 and°&pis a small
purpose of enabling accurate simulation of operation undewrtion of the entire warming curve, which would approach an
different constraints. Using the empirical vehicle of arigf outside air temperature of approximately 121 Thus, with
erator, a characterization of the warming and cooling phasg limited set of points, curve fitting solutions that minimiz
of the system is performed to generate a distribution of @sirvmean-squared error generally do not capture the shape of the
to be used in the model. Then, the curves are followed andrve in the limited domain, resulting in fits that are esisdiyt
actuation is performed according to preset control laws limear over the domain under consideration. Thus, in order t
simulate operating behavior of the system. We then show hawcurately fit the warming curves empirically observed, ae u
this basic technique can be applied to another thermostadidinear spline model that interpolates between the obderve
system, the heating system in a house. values and extrapolates to a wider domain by extending éihes

The experimental data gathered for this study was collectftt same slope as the end of the observed domain. We believe
using a network of 4 Sensirion SHT15 temperature anbat the high rate of change of the temperature early in the
relative humidity sensors coupled with a Hamamatsu S108/&rming phase is as a result of the low heat capacity of the
photodiode and 1 wireless AC Electricity Meter. Three ddir inside the fridge, which changes its temperature quickl
the climate sensor suites are deployed inside the reftiggraOnce convective heat exchange between food and air becomes
attached to the underside of different shelves, while thetfo large, the fridge temperature change transitions towagtsgb
climate sensor suite is attached to the outside of the fritlge linear, and this pattern continues outside the measureaitiom
AC Electricity Meter is in series with the refrigerator/ézer Thus, our linear spline extrapolation fits the behavior @& th
power connection. The refrigerator used for the measuresmewarming curves accurately for both the measured domain as
is an 18 cu. ft. General Electric model GTS18FBSARWWell as the extended domain.
The climate sensor suites are sampled every 10 seconds, whilFor modeling the cooling phase of the temperature curve,
the electricity sensor is sampled every second — this helps the factors contributing to the warming curve remain rehtva
capturing transient electrical loads due to compressarga However, another component, the forced cooling action ef th

Each sensor or sensor suite is attached to a low-powefrigerator compressor, not only counteracts the warming
wireless mote that is running an IPv6-compatible netwagkirbut also cools the fridge at a significantly faster rate. This
layer. The motes form an ad-hoc network along with a laptap evident in the durations of the cooling phase and warming
that acts as both an edge router for Internet access and a gdtase — 12.3 minutes and 45.3 minutes over the 98 unperturbed
storage entity, recording data samples into a MySQL dawbasurves, respectively. Thus, the extra power of the compress
Having all of the sensors on a network was important falows the fridge to cool nearly four times as fast as it
correlating events between sensors as well as automating ilaturally warms. In practice, this diminishes the effects o
gathering of sensor data. the natural warming components in designing a model of the
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cooling phase of the fridge. In addition, the power consumed
also follows an exponentially diminishing curve during leac R T T R R
cooling phase. For both, we use a simple exponential decay ‘ ‘ : ‘ ‘
model with three parameters, according to the equation 2 H H H I\

T(t) = a1 — ag * (1 — ela3*=1)

00:00 00:30 01:00 01:30 02:00 02:30 03:00

For each run of the fridge simulation, a set consisting of a
warming, cooling, and energy curve is selected. These surve
are not chosen independently because the shape and cooling e o
rate of the cooling curve is dependent on the warming curve it .
follows, and the warming curves exhibit significant vaoat Eg%vefconlﬂﬁ]&%ﬂatg”n%fg’)"g]eor‘;])?s[;%“ks%ﬁgﬁﬂé‘f’rﬁgasttag%‘fg“%vé@e
over the six days of data. The same holds true for the enefgytern dfrgm th(te frl?ge, \Ilvlth an operating cycle tqatfm&%geg Qealﬂg

. . . . . y natural cooling. Thus, the energy slack is p ed by
curve — its shape is linked to its corresponding cooling eurvdegrees from the refrigeraior. The duty cycle of the heatexbiout 24.6%.
In order to select a set of curves, we create a distribution of
the curves using the average warming r :ZZ’H:) for completion in some timeframe. We expect that the flexibil

To run a simulation of the refrigerator, an initial conditio ity of this type of load will depend highly on the quality-of-
is randomly chosen from the range of temperatures within teervice demanded by the user; if people are not incentivized
constraints of the operating range (known as the guardbarigd) be patient for completing their operations (i.e. if thése
and an initial state (warming or cooling) is chosen accaydimo preferable tariff or other benefit given for delaying the
to the proportion of time spent in each phas€0% cooling, operation), then flexibility will be limited.
~80% warming). From there, temperature curves can be plot-Examples of these loads are proposed in Table I; we recog-
ted according to the phase of the operating cycle. Additipna nize that typical appliances do not yet provide this cajitgbil
values for the power curve can also be plotted concurrentijowever, we believe that the emergence of plug-in electric
Whenever the simulated fridge reaches a guardband boyndsepicles — each of whose power consumption roughly equals
the phase is changed and a different curve is used. THiat of an entire house, essentially requiring some sonnaifrs
simple fridge model, oblivious to its energy input and angharging for a stable electricity grid — will make scheduled
other external signals, aims to recreate the behavior of appliance operations more familiar to the general public.
unperturbed fridge. Without variations in the guardband an Generating models for these appliances is straightforward
no perturbation, the fridge merely repeats the temperatnde traces of example appliances were obtained from the Lawrenc
power cycles seen in Figure 2, resulting in a compressor dugrkeley National Labs Appliance Energy Use Data repos-
cycle of 19.0% with the set of curves selected, though the dutory. [4] Each appliance was assigned an arrival pattern
cycle varies between 13% and 35% for other curves. according to expected usage. Table Il shows these arrites,ra

Having modeled a specific thermostatic device, we woulthd Figure 4 shows traces of a clothes washing machine,
like to emphasize that the technique for constructing a hisde clothes drying machine, and coffeemaker. Note that thdrebot
generalizable to a wider set of energy loads. To this endta deryer is in fact a gas model; using an all-electric clothgsedr
trace was collected for the temperature of a house. The housaild significantly increase electricity consumption.
under observation resides in a relatively mild climate weher
outside air temperature is generally 5:@lower than the
house temperature, and contains a heater but no air camelitio e
In accordance with this temperature trace, a complementary O rothes Dryer (45 minutod).
electricity trace for a heater is synthesized. Note that the ‘ ‘ ‘
magnitude of power consumption is sized for only the fan
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of the furnace — gas heat is assumed. If an electric furnace s Coffee Maker (3 hours)
was assumed, consumption would be significantly higher. § o
An important variation between the fridge and thermostat T odhooma oo oo ot oo oo oo oo
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models created is that the fridge operating cycle is forced
cooling and natural warming, while the thermostat is opjgosi
— forced warming by the heater and natural cooling as the . . . .
. . .. . Fig. 4. Traces of power consumption of appliances listedahld Il. From
inside air approaches the temperature of the cooler oudide these traces, a model over two days is created.
Also, in this case, we do not create a distribution of curves,
instead simply using a single warming and cooling curve as
a proof-of-concept. The resulting trace of the temperature In this section, we explore some of the implications of
power, and slack behavior of an oblivious thermostat owegth integrating groups of energy loads. As stated earlier, the
hours is provided in Figure 3. primary purpose of exploring slack in energy loads is not
2) Jide Loads. The other class of dispatchable energfor energy efficiency, but instead for advancing or deferrin
loads we examine in this work are those that can be schedubgzbrations to better match energy consumption to generatio

Power (W)
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Device Type Model Energy Per Operafion __ Arrival Schedule

Clothes Washer Whirfpool Imperial  0.145 KWh One Toad per, &&grting randomly between 6 AM-9 PM
Clothes Dryer (Gas)  Whirlpool Imperial ~ 0.199 kWh One loaa 11%i starting rando_m_)/ within 1 hr. after washer completes
Coffeemaker Cuisinart 12 Cup 0.249 kWh Daily at 4 AM, remaiarnv until 7 AM

TABLE I
L OADS THAT HAVE SLIDE. EACH HAS BEEN MODELED FROM EMPIRICAL DATA JOB SCHEDULING IS ASSUMED FOR A FAMILY OF FOUR

However, flexibility (and thus, slack) is also improved byncrease power when faced with a renewable energy surplus
softening guardband constraints. Figure 5 shows the effectby running the heater for longer. In addition, to reduce the
the heater average power consumption from its baselinedigcretization of its response, this fridge scales the ghan

266.2 Watts by altering the guardband constraints. its guardband boundaries by the magnitude of the deficit or
Effect of Changing Guardband on Heater Average Power SUrpIUS Of renewable energy' For example! in the |ate egenin
% Change from (0,0) of the first day, wind energy far exceeds the threshold, the

heater increases its guardband relatively more as compared
to the early evening period, when wind energy barely exceeds

[ |

H . the threshold. This change results in less energy savedhban
g o “supercool” case because the proportional response isyalwa
& 0% less than or equal to°Z.
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Fig. 5. The effect on average power consumption from chantiie heater
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enabling significant responses to variations from renesvanlergy supplies.

Note that a positive decrease in the lower guardband boyrmegiuces the H
lower guardband temperature.
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That thermostatically-controlled loads are able to “walk _ _ _
this graph — consuming comparatively more power at certelif %, - ee S trerates wihou any outsios ination. 6 second &
times while using less power at other times — allows themheater that allows the house to get cooler when faced witmargy deficit

. . - . and the third is a heater that allows the house to get coolenviéiced with

to follow source generation. This ability remains true fon energy deficit as well as warmer when presented with amgerserplus.
the fridge as well, and enables a range of flexibility in What these scenarios show is that the heater can reduce the
control strategies. In Figure 6, we show three differenticdn frequency of its cycles, and thus its energy consumptionwh
scenarios of the house heater, with the rows representfaged with an energy deficit. A natural follow-up question is
temperature, power consumption, slack energy, and a two-dahether house occupants are amenable to a wider guardband at
profile of wind energy from a wind farm in Minnesota. Thecertain times — this has been addressed widely in the bgildin
gray area (lightly shaded) on the wind energy plots reptesesomfort and demand response literature. [5]
the maximum amount of “portfolio” or non-renewable energy What is the magnitude of savings in these scenarios?
drawn throughout the two-day period. The wind supply gefrigure 7 compares the three; the first plot shows total energy
eration is the same for all three scenarios. consumption while the second considers the balance between

The first column represents an oblivious heater, whigkenewable and portfolio energy. The ability to preferdhtia
only considers its measured temperature when decidingif loosen guardband constraints saves significant energy - ove
compressor should be actuated. As such, it maintains a ti@3% by reducing only the lower guardband boundary and
guardband and consistent slack energy profile. All of thedwirover 50% while altering both the lower and upper boundaries,
plots have been scaled to provide 50% of the total energyen with responses proportional to the energy deficit or
needed to power this oblivious heater. surplus. The increase in energy savings from relaxing tiverdo

The second column (“supercool”) represents a heater tlyaiardband boundary is not surprising, but the large additio
allows the temperature to cool beyond its normal lower boumdduction from increasing the upper boundary is. This is
by 2°C when faced with a renewable energy shortage. Thecause longer than standard actuation cycles (heatirsgpha
threshold for an energy shortage, represented by the maximin this case) ensure that the heater has a lower overall power
power consumption of the heater when operating, is indicateonsumption than the default scenario. We leave quangfyin
by the dashed line on the supply power graph in Figure the limits of the potential reduction to future work.
Thus, when wind energy is available, the heater operates irOur final integration study examines the effects of ag-
its standard tight guardband, consuming more energy. gregating the responses of a population of source-follgwin

The third column (*wide guardband”) takes this concepbads. In Figure 8, we show the proportional change between
further — this heater not only reduces power consumptiomwheenewable and portfolio energy as an aggregated population
faced with a deficit of renewable energy, it also attempts toads increases. In this scenario, each fridge is inigaliat a



Porttolio Energy I Renewable Enorgy I Saved Eneray|

fridges to use excess renewable energy not used by others

obvous \

S— \ —: in the population. As the population grows, the collectidn o
oo [ T — power spikes resulting from the compression phases of each
S fridge blend into a flatter curve that begins to resemble the

wind supply curve, reducing the overall difference betwien
consumption and the supply. We feel that this result coupled
with the amplified variation among the actual population of
o Gurdoang \ fridges and similar gains from adapting other energy loads t
Pom om om e m @ W @ W be source-following forebears the potential for a subshnt
substitution of renewable energy in place of portfolio gyer

- |

Fig. 7. The energy breakdown of the three heater scenarios.tdp plot
emphasizes the energy savings of increasing the guardiduild, the bottom IV. CONCLUSIO
plot shows the improvement in the proportion of total enetwt is renewable. . NCLUSION

As the fraction of the energy supply from renewable but

unfortunately non-dispatchable sources like solar anddwin
random phase with warming, cooling, and electrical behavipcrease in the coming decade, at least one of three things mu
randomly selected from the normal distribution described happen to deal with the ensuing supply volatility: miracigo
Section II-B1. Additionally, fridge responses are scalede new energy storage technologies must be developed, refeewab
magnitude of the energy deficits and surpluses, just as in §urces must be over-provisioned, or loads must adapt auto-
“‘wide guardband” heater described previously. Further — faatically to the waxing and waning of power. Recognizing
more accurately represent actual behavior due to measatemgat the first option requires some luck and the second option
error and local microclimatic effects — a small amount dfevalues renewable energy, we focus on third — adaptivesload
randomness has been applied to the guardband boundarie this work, we present a strategy for deep demand re-
such that each time a boundary is approached, its valuesgonse of loads given a signal of energy availability. Weehav
increased or decreased by a random value within +2@.2 jdentified two broad classes of dispatchable appliances and
This small modification, while not capturing the entire @ari constructed models that can be used to alter their conteaest
tion among a large population of appliances, is beneficial §jes. with these models, we create source-following lohés t
reducing the “herd effects” when a number of identical agenditer power consumption based on an actual wind energy.trace
with identical control logic respond to the same stimulu® Wour results show that not only can a significant proportion of
believe that in practice, a population of fridges will in facenergy be saved, but also that renewable energy consumption
exhibit more variation than represented in this experimenfan be favored over other grid energy. Additionally, saglin
Also in this experiment, the wind energy supplied is scalag a larger population of source-following loads, an even
to satisfy 25% of the energy needed by the earlier describggger proportion of the necessary energy can be provided
“oblivious” fridge. This restriction highlights the benifiof by renewable sources. Considering the increasing velagity

statistical multiplexing in a population. the deployment of these non-dispatchable renewable energy
sources as well as their high variability of generation, we

NN EEEEEEEEEEEEENEEREEE believe that the type of deep demand response describeid in th
work will be necessary to encourage the widespread growth
of renewable energy sources while maintaining the balance
o between generators and loads required of the electricity gr
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