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Abstract—Faced with an uncertain path forward to renewables
portfolio standard (RPS) goals and the high cost of energy
storage, we believe that deep demand side management must bea
central strategy to achieve widespread penetration of renewable
energy sources. We examine the variability of wind as a source
of renewable, non-dispatchable energy and the loads that can
be dispatched to match sources of this type. We identify two
classes of dispatchable energy loads, and create models for
these loads to match their consumption to the generation of
energy sources, while introducingslack, a generalized measure of
dispatchability of energy. From these load models, we examine
a number of techniques and considerations for source-following
loads, including the sensitivity of thermostat constraints and the
effects of aggregating appliance populations. Our resultsshow
a home heater that is able to reduce energy consumption by
over 50% while increasing the proportion of renewable energy
consumed versus grid energy.

I. I NTRODUCTION AND BACKGROUND

A regulatory push for renewables to play a larger role in
the mix of energy sources is well underway in many states
across the U.S. Already, 36 of the 50 states have set goals for
a Renewables Portfolio Standard (RPS) of anywhere from 10
to 25% of total energy consumed [1] and California has called
for renewables to comprise 33% of its energy mix by 2020 [2].
However, as the fraction of energy from renewable, but non-
dispatchable, sources like wind and solar increases, it will
become more difficult to match supply and demand because
today’s loads are largely oblivious to supply variations.

Beyond existing demand response programs [3], we propose
deep demand response – a distributed conjoining of energy in-
formation with physical control systems enabled by pervasive
sensor/actuator networks – to dynamically match supply and
demand down to the appliance-level. The two keys to matching
supply and demand in real-time are predicting the output of
renewable sources and controlling the consumption of loads
in response to these dynamic predictions. The challenge lies
in meeting the quality-of-service requirements of the load
while adapting to variations in the source. To model source
variability, we consider the cumulative distribution function
(CDF) of the sourceramp rate, or change in output. To reason
about load adaptability, we use the notion of energyslack.
Intuitively, slack refers to the amount of time an energy-
consuming operation can be advanced or delayed.

To make our proposal more concrete, consider the example
of wind as the renewable source and the refrigerator as
a programmable load. Figure 1 shows the variability of a
wind source over different time frames using a year of data.
For example, the output power changes by less than 5 kW
over a 5 min window 95% of the time, but up to 25 kW
over a 60 min window 95% of the time. Now, imagine
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Fig. 1. Wind ramping. Although wind is unpredictable over longer times
frames, like hours, its short-term variability, over tens of minutes, is quite
predictable. This energy information can be used to dispatch loads and take
advantage of slack, either by advancing or delaying energy consumption.

if this kind of energy information were available to loads
(perhaps in aggregate). Then, intelligent, networked loads
could adapt their behavior to be greedy or miserly with energy
consumption. For example, a refrigerator could advance the
start time of its cooling cycle to consume excess energy, or
a temperature setpoint could be slightly increased to reduce
energy consumption. In the first case, pre-cooling changes the
phase of subsequent cooling cycles, while in the second case,
changing the temperature setpoint (for a cycle or two) reduces
the energy consumption.

II. ENERGY SINKS

In order to make reasoned decisions in sculpting energy
loads, it is important to have a metric to expresshow sculptable
a load is, both in magnitude as well as time. Without a way
to quantify whether energy should be consumed now or later,
control decisions cannot be made optimally. Further, in order
for a load to be sculptable, we argue that (1) its consumption
schedule involves choices on when to consume energy and (2)
there is either some capacity to store energy in the system
OR there is “slide” in the task the device is to complete.
Slide, the ability to schedule consumption, is prevalent in
those operations when quality-of-service is defined by the
user. Table I presents a number of devices that are capable
of sculptability, along with their energy storage type and an
estimate of their control schedule.

The ability to manipulate dispatchable loads enables a
controller to improve the alignment of energy supply and
consumption. However, the rapidly changing availability of
energy supply and the consumption of non-dispatchable loads
dictates that the controller must make decisions continually.



Device Control Schedule Energy Storage Time Horizon (min/max)
Thermostatically Controlled
Refrigerator/Freezer Range maintenance, bang-bang or variable drive Thermal storage 5m/1h
Building Heating, Ventilation, and Air Conditioning (HVAC) Range maintenance, bang-bang or variable drive Thermal storage 5m/1h
Chiller Range maintenance, bang-bang or variable drive Thermal storage 5m/1h
Water Heater Range maintenance, bang-bang Thermal storage 5m/1h
Slide
Washing Machine On-demand with optional slide Slide 1m/30m
Clothes Dryer On-demand with optional slide Slide 1m/1h+
Batch Computing On-demand with optional slide Slide 1m/8h+
Dishwasher On-demand with optional slide Slide 1m/8h
Coffee Maker Range maintenance, bang-bang Slide 1m/30m
Plug-in Vehicle Range maintenance, bang-bang Electrochemical storage 1m/8h

TABLE I
COMMON ENERGY LOADS THAT ARE AMENABLE TO SCULPTING.

Though, in order to better schedule energy consumption, we
need not only information on flexibility of load schedules,
but also estimates on the magnitude of energy available for
scheduling. This calculation is trivial for job-based operations
that have well-understood consumption such as clothes wash-
ing and drying machine loads, but not as clear for systems
that attempt to maintain certain conditions through negative
reinforcement feedback such as heaters, air conditioners,and
refrigerators. To generalize the concept of energy available for
dispatch, we introduce a metric calledslack and continue by
modeling a set of common dispatchable loads.

A. Slack

To represent the range of dispatchability opportunities –
varying from low- to high-power loads, short- to long-running
operations, and one-time to continuous tasks – we introduce
the notion ofslack, or the potential of an energy load to be
advanced or deferred without affecting earlier or later opera-
tions or outcomes. In critical path analysis, slack refers to the
scheduling flexibility in a non-critical path task that keeps the
task off the critical path. Slack is a basic and well-understood
concept in many disciplines, but in this instance, we measure
it in common units of energy and apply it to the operation
of physical systems, where the goal is not completion time.
Usually, in physical systems, we are concerned with some
other input and output variables – in the case of a kitchen
fridge, we might ask:How sculptable is the refrigerator load?

More important is the question of how much can we shift
the refrigerator’s compressor cycle (and the resulting power
draw) while keeping the temperature within an acceptable
operating envelope. To make the discussion more concrete,
consider Figure 2(a), which shows one fridge operating cycle
consisting of forced cooling (from timet0 = 00:00 to time
t1 = 00:11) and natural warming (from timet1 to time
t2 = 00:59). The lower temperature threshold,Tℓ, is at 2.6◦C
and the upper threshold,Tu, is at 3.4◦C. The corresponding
power consumption of the fridge is shown in Figure 2(b).

At time t0, the beginning of the forced cooling cycle, the
slack sw begins at 0. In other words, we can not postpone
the forced cooling phase any more, as the temperature has
risen to cross the upper thresholdTu. Indeed, this is precisely
the control law that a refrigerator follows today. As the
time progresses fromt0 to t1, the energy slacksc increases
according to the accumulation of the energy inputE(t) into
the system as a function of the system powerP (t); in this
case this is the power consumption of the compressor.

sc(tc) = E(t) =
∫ tc

t0
P (t) dt
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Fig. 2. The operating cycle of a fridge: (a) temperature, (b)power
consumption , and (c) energy slack.

For simplicity, we assume that the conversion of electrical
energy to cooling energy by the compressor is perfect – though
not true, we believe it is unnecessary to differentiate between
slack energy and energy input for this process.

Now let us consider the slack during the natural warming
phase. Initially, the slack is at its peak value for this cycle,
as the cooling phase has just ended and the temperature has
dropped to its lower thresholdTℓ. As the warming phase starts,
the temperature begins to rise and the slack energy stored
in the system degrades. To determine the slack during the
warming phase, we must find the slack during the cooling
phase with the corresponding temperature in the warming
phase. LetTw(t) be the temperature during the warming phase
at timet, wheret1 ≤ t ≤ t2 and lettc(T ) to be the time during
the cooling phase as a function of the temperatureT . Recall
that the slack in the cooling phase issc(t) =

∫ t

t0
P (t) dt. We

can now substitutetc(Tw(t)) for t, which gives the slacksw

during the warming phase as

sw(tw) =
∫ tc(Tw(t))

t0
P (t) dt

wheret1 ≤ t ≤ t2.

Computing the slack using collected values for P(t) and T(t),
we can calculate the slack energy as a function of time over
a cycle of the refrigerator, as seen in Figure 2(c).

Assumingtw(T ) andTc(t) are known or can be computed,
we can plot slack as a function of time, as Figure 2(c) shows.
More simplistically, energy slack closely follows a banking
metaphor – as energy is used by the system to do work (in
this case, operate the compressor), slack is accrued in the
slack “account.” Then, during the natural warming cycle, the
account is drained and the slack is slowly reduced. Also, just as
deposits remain in a bank account, slack remains in a system
across cycles in the form of stored energy. In the case of



a battery, this is the capability to introduce energy into the
system later. For a refrigerator, this is the thermal energystored
in the contents of the fridge, whether they are food, liquids,
or even air (though these each have different capacities for
energy storage, as discussed later in Section II-B).

B. Modeling Sinks

Having developed a metric for dispatchability, we now
describe the creation of models of individual consumers of
energy to compose an integrated model of energy loads found
in a building. In this section, we examine thermostatically-
controlled loads – namely, a refrigerator and a heater – as
well as loads that have slide – a clothes washer, clothes dryer,
and coffeemaker. These models can then be composed and
sculpted in response to energy generation variations.

1) Thermostatically-Controlled Loads: A common class of
energy loads seek to maintain the temperature of a medium
within predetermined constraints. In most cases, this is done
through closed-loop feedback, actuating when a temperature
sensor detects that the lower or upper bound is reached. The
medium under control varies – sometimes liquid (e.g. water in
a water heater), solid (e.g. food in a refrigerator), or gas (e.g.
air in a building) – as does the duty cycle of the actuation
operation for maintaining the desired temperature range.

In this section, we demonstrate how to generate a model
of an example thermostatically-controlled system, with the
purpose of enabling accurate simulation of operation under
different constraints. Using the empirical vehicle of a refrig-
erator, a characterization of the warming and cooling phases
of the system is performed to generate a distribution of curves
to be used in the model. Then, the curves are followed and
actuation is performed according to preset control laws to
simulate operating behavior of the system. We then show how
this basic technique can be applied to another thermostatic
system, the heating system in a house.

The experimental data gathered for this study was collected
using a network of 4 Sensirion SHT15 temperature and
relative humidity sensors coupled with a Hamamatsu S1087
photodiode and 1 wireless AC Electricity Meter. Three of
the climate sensor suites are deployed inside the refrigerator,
attached to the underside of different shelves, while the fourth
climate sensor suite is attached to the outside of the fridge. The
AC Electricity Meter is in series with the refrigerator/freezer
power connection. The refrigerator used for the measurements
is an 18 cu. ft. General Electric model GTS18FBSARWW.
The climate sensor suites are sampled every 10 seconds, while
the electricity sensor is sampled every second – this helps for
capturing transient electrical loads due to compressor start-up.

Each sensor or sensor suite is attached to a low-power,
wireless mote that is running an IPv6-compatible networking
layer. The motes form an ad-hoc network along with a laptop
that acts as both an edge router for Internet access and a data
storage entity, recording data samples into a MySQL database.
Having all of the sensors on a network was important for
correlating events between sensors as well as automating the
gathering of sensor data.

The fridge was monitored for over 3 months at various set
points, though only six days of data from one sensor suite and
one electricity meter, all at the same set point, were necessary
for this study. Over the six days, each cycle of the refrigerator
was identified by observing electricity consumption – if the
fridge was consuming electricity, it was in the cooling phase,
otherwise it was in the warming phase. Over six days, this
identified a total of 153 cycles, or just over one cycle per
hour. Then, data from the photodiode were used to identify
and remove any cycles that may have been perturbed by a
door opening event, as this fridge is in regular use.

To model the warming phase of the temperature curve,
a number of different techniques were used. Looking at
Figure 2(a), the curve resembles a decaying exponential
approaching an asymptote. Physically, this squares with the
intuition that the air temperature in the refrigerator asymptot-
ically approaches the outside air temperature. The rate that
this occurs is governed by the constant resistance of the
fridge walls to conducting heat as well as the diminishing
temperature difference between the inside and outside air.
Consequently, the air temperature in the refrigerator increases,
but the increase is delayed by convection of heat from the air
to the food with its associated large thermal mass. In theory,
modeling this temperature response calls for a regression using
two exponential terms. In practice, however, the portion ofthe
curve captured (roughly between 2.5 and 3.5◦C) is a small
portion of the entire warming curve, which would approach an
outside air temperature of approximately 19-21◦C. Thus, with
a limited set of points, curve fitting solutions that minimize
mean-squared error generally do not capture the shape of the
curve in the limited domain, resulting in fits that are essentially
linear over the domain under consideration. Thus, in order to
accurately fit the warming curves empirically observed, we use
a linear spline model that interpolates between the observed
values and extrapolates to a wider domain by extending linesat
the same slope as the end of the observed domain. We believe
that the high rate of change of the temperature early in the
warming phase is as a result of the low heat capacity of the
air inside the fridge, which changes its temperature quickly.
Once convective heat exchange between food and air becomes
large, the fridge temperature change transitions towards being
linear, and this pattern continues outside the measured domain.
Thus, our linear spline extrapolation fits the behavior of the
warming curves accurately for both the measured domain as
well as the extended domain.

For modeling the cooling phase of the temperature curve,
the factors contributing to the warming curve remain relevant.
However, another component, the forced cooling action of the
refrigerator compressor, not only counteracts the warming,
but also cools the fridge at a significantly faster rate. This
is evident in the durations of the cooling phase and warming
phase – 12.3 minutes and 45.3 minutes over the 98 unperturbed
curves, respectively. Thus, the extra power of the compressor
allows the fridge to cool nearly four times as fast as it
naturally warms. In practice, this diminishes the effects of
the natural warming components in designing a model of the



cooling phase of the fridge. In addition, the power consumed
also follows an exponentially diminishing curve during each
cooling phase. For both, we use a simple exponential decay
model with three parameters, according to the equation

T (t) = a1 − a2 ∗ (1 − e
(a3∗−t))

For each run of the fridge simulation, a set consisting of a
warming, cooling, and energy curve is selected. These curves
are not chosen independently because the shape and cooling
rate of the cooling curve is dependent on the warming curve it
follows, and the warming curves exhibit significant variations
over the six days of data. The same holds true for the energy
curve – its shape is linked to its corresponding cooling curve.
In order to select a set of curves, we create a distribution of
the curves using the average warming rate (Tend−Tbegin

tend−tbegin
).

To run a simulation of the refrigerator, an initial condition
is randomly chosen from the range of temperatures within the
constraints of the operating range (known as the guardband),
and an initial state (warming or cooling) is chosen according
to the proportion of time spent in each phase (≈20% cooling,
≈80% warming). From there, temperature curves can be plot-
ted according to the phase of the operating cycle. Additionally,
values for the power curve can also be plotted concurrently.
Whenever the simulated fridge reaches a guardband boundary,
the phase is changed and a different curve is used. This
simple fridge model, oblivious to its energy input and any
other external signals, aims to recreate the behavior of an
unperturbed fridge. Without variations in the guardband and
no perturbation, the fridge merely repeats the temperatureand
power cycles seen in Figure 2, resulting in a compressor duty
cycle of 19.0% with the set of curves selected, though the duty
cycle varies between 13% and 35% for other curves.

Having modeled a specific thermostatic device, we would
like to emphasize that the technique for constructing a model is
generalizable to a wider set of energy loads. To this end, a data
trace was collected for the temperature of a house. The house
under observation resides in a relatively mild climate where
outside air temperature is generally 5-10◦C lower than the
house temperature, and contains a heater but no air conditioner.
In accordance with this temperature trace, a complementary
electricity trace for a heater is synthesized. Note that the
magnitude of power consumption is sized for only the fan
of the furnace – gas heat is assumed. If an electric furnace
was assumed, consumption would be significantly higher.

An important variation between the fridge and thermostat
models created is that the fridge operating cycle is forced
cooling and natural warming, while the thermostat is opposite
– forced warming by the heater and natural cooling as the
inside air approaches the temperature of the cooler outsideair.
Also, in this case, we do not create a distribution of curves,
instead simply using a single warming and cooling curve as
a proof-of-concept. The resulting trace of the temperature,
power, and slack behavior of an oblivious thermostat over three
hours is provided in Figure 3.

2) Slide Loads: The other class of dispatchable energy
loads we examine in this work are those that can be scheduled
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Fig. 3. The operating cycle of a house thermostat: (a) temperature, (b)
power consumption , and (c) energy slack. The thermostat operates in a reverse
pattern from the fridge, with an operating cycle that consists of forced heating
followed by natural cooling. Thus, the energy slack is phase-shifted by 180
degrees from the refrigerator. The duty cycle of the heater is about 24.6%.

for completion in some timeframe. We expect that the flexibil-
ity of this type of load will depend highly on the quality-of-
service demanded by the user; if people are not incentivized
to be patient for completing their operations (i.e. if thereis
no preferable tariff or other benefit given for delaying the
operation), then flexibility will be limited.

Examples of these loads are proposed in Table I; we recog-
nize that typical appliances do not yet provide this capability.
However, we believe that the emergence of plug-in electric
vehicles – each of whose power consumption roughly equals
that of an entire house, essentially requiring some sort of smart
charging for a stable electricity grid – will make scheduled
appliance operations more familiar to the general public.

Generating models for these appliances is straightforward:
traces of example appliances were obtained from the Lawrence
Berkeley National Labs Appliance Energy Use Data repos-
itory. [4] Each appliance was assigned an arrival pattern
according to expected usage. Table II shows these arrival rates,
and Figure 4 shows traces of a clothes washing machine,
clothes drying machine, and coffeemaker. Note that the clothes
dryer is in fact a gas model; using an all-electric clothes dryer
would significantly increase electricity consumption.
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Fig. 4. Traces of power consumption of appliances listed in Table II. From
these traces, a model over two days is created.

III. I NTEGRATION STUDIES

In this section, we explore some of the implications of
integrating groups of energy loads. As stated earlier, the
primary purpose of exploring slack in energy loads is not
for energy efficiency, but instead for advancing or deferring
operations to better match energy consumption to generation.



Device Type Model Energy Per Operation Arrival Schedule
Clothes Washer Whirlpool Imperial 0.145 kWh One load per day, starting randomly between 6 AM-9 PM
Clothes Dryer (Gas) Whirlpool Imperial 0.199 kWh One load per day, starting randomly within 1 hr. after washer completes
Coffeemaker Cuisinart 12 Cup 0.249 kWh Daily at 4 AM, remain warm until 7 AM

TABLE II
LOADS THAT HAVE SLIDE. EACH HAS BEEN MODELED FROM EMPIRICAL DATA; JOB SCHEDULING IS ASSUMED FOR A FAMILY OF FOUR.

However, flexibility (and thus, slack) is also improved by
softening guardband constraints. Figure 5 shows the effecton
the heater average power consumption from its baseline at
266.2 Watts by altering the guardband constraints.

Fig. 5. The effect on average power consumption from changing the heater
guardband constraints. The black square represents the region explored in
this work (+/- 2◦C). Within this region, power consumption varies by 47%,
enabling significant responses to variations from renewable energy supplies.
Note that a positive decrease in the lower guardband boundary reduces the
lower guardband temperature.

That thermostatically-controlled loads are able to “walk”
this graph – consuming comparatively more power at certain
times while using less power at other times – allows them
to follow source generation. This ability remains true for
the fridge as well, and enables a range of flexibility in
control strategies. In Figure 6, we show three different control
scenarios of the house heater, with the rows representing
temperature, power consumption, slack energy, and a two-day
profile of wind energy from a wind farm in Minnesota. The
gray area (lightly shaded) on the wind energy plots represents
the maximum amount of “portfolio” or non-renewable energy
drawn throughout the two-day period. The wind supply gen-
eration is the same for all three scenarios.

The first column represents an oblivious heater, which
only considers its measured temperature when deciding if the
compressor should be actuated. As such, it maintains a tight
guardband and consistent slack energy profile. All of the wind
plots have been scaled to provide 50% of the total energy
needed to power this oblivious heater.

The second column (“supercool”) represents a heater that
allows the temperature to cool beyond its normal lower bound
by 2◦C when faced with a renewable energy shortage. The
threshold for an energy shortage, represented by the maximum
power consumption of the heater when operating, is indicated
by the dashed line on the supply power graph in Figure 6.
Thus, when wind energy is available, the heater operates in
its standard tight guardband, consuming more energy.

The third column (“wide guardband”) takes this concept
further – this heater not only reduces power consumption when
faced with a deficit of renewable energy, it also attempts to

increase power when faced with a renewable energy surplus
by running the heater for longer. In addition, to reduce the
discretization of its response, this fridge scales the change in
its guardband boundaries by the magnitude of the deficit or
surplus of renewable energy. For example, in the late evening
of the first day, wind energy far exceeds the threshold, the
heater increases its guardband relatively more as compared
to the early evening period, when wind energy barely exceeds
the threshold. This change results in less energy saved thanthe
“supercool” case because the proportional response is always
less than or equal to 2◦C.

Fig. 6. Three scenarios of heater operation. The first columnrepresents an
“oblivious” heater that operates without any outside information, the second is
a heater that allows the house to get cooler when faced with anenergy deficit
and the third is a heater that allows the house to get cooler when faced with
an energy deficit as well as warmer when presented with an energy surplus.

What these scenarios show is that the heater can reduce the
frequency of its cycles, and thus its energy consumption, when
faced with an energy deficit. A natural follow-up question is
whether house occupants are amenable to a wider guardband at
certain times – this has been addressed widely in the building
comfort and demand response literature. [5]

What is the magnitude of savings in these scenarios?
Figure 7 compares the three; the first plot shows total energy
consumption while the second considers the balance between
renewable and portfolio energy. The ability to preferentially
loosen guardband constraints saves significant energy – over
33% by reducing only the lower guardband boundary and
over 50% while altering both the lower and upper boundaries,
even with responses proportional to the energy deficit or
surplus. The increase in energy savings from relaxing the lower
guardband boundary is not surprising, but the large additional
reduction from increasing the upper boundary is. This is
because longer than standard actuation cycles (heating phases,
in this case) ensure that the heater has a lower overall power
consumption than the default scenario. We leave quantifying
the limits of the potential reduction to future work.

Our final integration study examines the effects of ag-
gregating the responses of a population of source-following
loads. In Figure 8, we show the proportional change between
renewable and portfolio energy as an aggregated populationof
loads increases. In this scenario, each fridge is initialized at a



Fig. 7. The energy breakdown of the three heater scenarios. The top plot
emphasizes the energy savings of increasing the guardband,while the bottom
plot shows the improvement in the proportion of total energythat is renewable.

random phase with warming, cooling, and electrical behavior
randomly selected from the normal distribution described in
Section II-B1. Additionally, fridge responses are scaled to the
magnitude of the energy deficits and surpluses, just as in the
“wide guardband” heater described previously. Further – to
more accurately represent actual behavior due to measurement
error and local microclimatic effects – a small amount of
randomness has been applied to the guardband boundaries,
such that each time a boundary is approached, its value is
increased or decreased by a random value within +/- 0.2◦C.
This small modification, while not capturing the entire varia-
tion among a large population of appliances, is beneficial in
reducing the “herd effects” when a number of identical agents
with identical control logic respond to the same stimulus. We
believe that in practice, a population of fridges will in fact
exhibit more variation than represented in this experiment.
Also in this experiment, the wind energy supplied is scaled
to satisfy 25% of the energy needed by the earlier described
“oblivious” fridge. This restriction highlights the benefits of
statistical multiplexing in a population.
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Fig. 8. The effects of population size on the proportion of total energy that
is renewable. Variations of fridge periods and phases allows for cooperation
without direct communication, making better use of renewable resources.

Looking at the results of the population study, the proportion
of energy used by the fridges improves rapidly as the number
of fridges increases, leveling off around 85%. With such
limited wind energy supplied per fridge – with only one fridge,
the wind supplies barely over 25% of the energy required
for operation – there is significant improvement as each
fridge is added. This is because fridges with slightly different
guardbands and varied warming and cooling behavior operate
at slightly different periods and phases, allowing individual

fridges to use excess renewable energy not used by others
in the population. As the population grows, the collection of
power spikes resulting from the compression phases of each
fridge blend into a flatter curve that begins to resemble the
wind supply curve, reducing the overall difference betweenthe
consumption and the supply. We feel that this result coupled
with the amplified variation among the actual population of
fridges and similar gains from adapting other energy loads to
be source-following forebears the potential for a substantial
substitution of renewable energy in place of portfolio energy.

IV. CONCLUSION

As the fraction of the energy supply from renewable but
unfortunately non-dispatchable sources like solar and wind
increase in the coming decade, at least one of three things must
happen to deal with the ensuing supply volatility: miraculous
new energy storage technologies must be developed, renewable
sources must be over-provisioned, or loads must adapt auto-
matically to the waxing and waning of power. Recognizing
that the first option requires some luck and the second option
devalues renewable energy, we focus on third – adaptive loads.

In this work, we present a strategy for deep demand re-
sponse of loads given a signal of energy availability. We have
identified two broad classes of dispatchable appliances and
constructed models that can be used to alter their control strate-
gies. With these models, we create source-following loads that
alter power consumption based on an actual wind energy trace.
Our results show that not only can a significant proportion of
energy be saved, but also that renewable energy consumption
can be favored over other grid energy. Additionally, scaling
to a larger population of source-following loads, an even
larger proportion of the necessary energy can be provided
by renewable sources. Considering the increasing velocityof
the deployment of these non-dispatchable renewable energy
sources as well as their high variability of generation, we
believe that the type of deep demand response described in this
work will be necessary to encourage the widespread growth
of renewable energy sources while maintaining the balance
between generators and loads required of the electricity grid.
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