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Figure 1: Overview of our approach to design space exploration for electronics design. The user designs their board at the system
architecture level of abstraction like represented in the top left, using a hardware description language (HDL) [13] supporting library blocks.
Some of these blocks are ambiguous (e.g., microcontroller and voltage regulator) with alternatives defined in the library. The user can then
select these degrees of freedom to explore, and additionally plot objective functions like current draw and component board area to aid in
making a choice using both 2-axis scatterplots (top right) and n-axis parallel coordinate plots (bottom right).

ABSTRACT
While recent work explores novel tools to make electronics and
device design easier and more accessible, these tend to be either
highly automated (great for novices, but limiting for more advanced
users) or highly manual (suitable for experts, but imposes a higher
skill barrier to entry). In this work, we examine a middle ground:
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user-guided design space exploration to bridge an intuitive-but-
ambiguous high-level representation to a fully-specified, fabrication-
ready circuit. Our system helps users understand and make design
choices by sweeping the design space of alternatives for electronics
parts (e.g., choice of microcontroller), marking invalid options, and
plotting points to visualize trade-offs (e.g., for power and size). We
discuss the overall system and its structure, report on the results of
a small but in-depth user study with participants from a wide range
of electronics backgrounds, and draw insights on future directions
for improving electronics design for everyone.
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1 INTRODUCTION
Electronics are integral to many modern devices, but designing the
custom electronics to enable these custom devices is a non-trivial
process. Although prototyping is a well-supported process given
the availability of (relatively) easy to use development boards and
much recent work on tools for novices, the capability ceiling is
low and non-trivial devices must be built on custom printed circuit
boards (PCBs) [11].

While recent work has examined better ways to support PCB
design, most fall under either highly automated approaches (e.g.,
circuit synthesis) geared towards novices, or library-based but still
manual approaches (e.g., block-basedmodular design) offeringmore
control. Yet, the strength of each approach is also the drawback of
the other: highly automated tools may not offer enough control
for experts who may have specialized requirements, while more
manual tools rely on user expertise to resolve design choices - even
if the very-low-level electrical engineering details are encapsulated
by libraries. An example for both cases is the choice of microcon-
troller: an expert may have specialized requirements outside the
understanding of the tool and need to select a specific part, while a
novice may not have the context to make a valid choice on their
own. Ideally, we could have PCB tool for a wide range of use cases,
towards the “low floors, high ceilings” ideal for creativity support
tools [32] with the resulting benefits of a common platform like a
wide base of community libraries.

One possible hybrid solution is design space exploration (DSE),
where instead of the tool or user being solely responsible for de-
cisions, the tool helps the user understand the design space and
choices. A rare instance of this approach in board-level electron-
ics is Trigger-Action-Circuits [3], a breadboard circuit synthesis
tool for novices. Its alternatives explorer allows the user to choose
between multiple satisfying designs, ultimately enabling a finer
degree of control. While this feature was very basic and not the pri-
mary focus, its user study suggested that future work could further
help users compare choices.

In this work, we focus in on DSE for PCBs and built a prototype
tool leveraging our prior work on a type system of electronics parts
that implicitly defines a design space [13]. The user starts by creat-
ing a high-level design using abstract parts like “microcontroller”
and “voltage regulator”. Each possible choice (e.g., part number for
a microcontroller) is a design point, and the system sweeps over the
design space, testing each point. The resulting points can be plotted
visually, both indicating validity (e.g., can this microcontroller work
in this design) and objective functions (e.g., the price or area if this

microcontroller is used), and ultimately helping the user make an
informed choice.

Our hope is that this can be a good solution for a broad audience
of electronics designers: easily interpreted context to help novices
make a valid choice, but the flexibility for experts who have design
considerations beyond the system’s model. As such, we take a
middle-out approach for the target audience: focusing on those
with some level of electronics expertise (loosely, makers), but still
being degrees of useful for novices and experts. This prototype
tool then allows us to conduct a user study to understand how this
concept works in practice and build ideas for future work.

Overall, we seek to answer:
• How DSE can be useful for electronics design, especially
as a technique for a wide audience from levels of novice to
degrees of expert.

• How users of different skill levels can make use of this capa-
bility, and what are the strengths and shortcomings.

And we contribute:
• A prototype DSE tool for PCB design1, using visualization
and computed objective functions to help users understand
the design space and resolve design details.

• A preliminary user study of how a range of PCB designers
(from novices to professionals) use this tool, in a fairly re-
alistic setup where participants bought their own projects.
We found that participants were able to use DSE to find vi-
able (and even optimized) designs among alternatives, while
interview feedback suggests directions for future work on
electronics design tools in general and improving usability
specifically.

In the rest of this paper, we go over related work, introduce our
system, describe our user study and results, and conclude with a
discussion on insights from the study and ideas for future work.

2 RELATEDWORK
We build upon prior work in electronics design and both founda-
tional work on design space exploration and its application to other
domains.

2.1 Electronics Design
In electronics in general, there is a large amount of work on support-
ing novices, especially around breadboard prototyping [6, 12, 41].
While our work focuses on PCB design, some of this prototyp-
ing work has aspects of mixed-initiative interactions and design
space exploration. AutoFritz [18] extends the Fritzing [12] mixed
schematic / breadboard view with an autocomplete function, sug-
gesting circuit additions but ultimately keeping the user in control.
Trigger-Action-Circuits [3] produces a breadboarding diagram, but
synthesizes a circuit from a behavioral specification (e.g., button-
press, measure brightness, light-up). Beyond returning just one
result, it presents users with the design space of multiple generated
circuits in a spreadsheet view – though its user study indicates that
users were unsure how to use these results. Our work expands on
this idea with a dedicated DSE tool that helps the user understand

1Open source at https://github.com/BerkeleyHCI/edg-ide, archival version also in-
cluded in supplementary materials.
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the design space to make choices, and in the more intermediate
context of PCB design.

For PCB design specifically, there have been a few observational
studies of current practices. One study [21] observed novices over
a six-week workshop in which they learned to prototype and ulti-
mately design a custom PCB. While most participants got to func-
tional hardware, they also noted challenges with selecting suitable
components and subcircuit blocks. The other [16] was an interview
study with a wide range of PCB designers on current design prac-
tices. One finding was that design choices were made throughout
the design process, commonly outside PCB design tools. Our work
here attempts to integrate many of those choices into a unified tool
with a sweepable design space.

2.1.1 PCB Design Tools. In the larger picture, PCB design tools fall
into a larger space of creativity support tools [31–33]. One useful
framing, which we will reference in the rest of this paper, is the
idea of low floor (easy to get started for novices), high ceiling (useful
for experts), and wide walls (wide range of functionality) [32].

There has been some work on automated synthesis of circuit
designs for PCBs. Both Embedded Device Generation [27] and
Echidna [22, 23] have users specify a partial design with parts like
sensors and motors. The system then completes the rest of the
design through interface-driven synthesis, such as by adding infras-
tructural components like voltage translators and microcontrollers.
Appliancizer [8] does a similar operation, but with the input as a
web page, where HTML elements like buttons are mapped to hard-
ware like physical switches. Outside academic work, circuito.io [4]
and EDASolver [7] similarly complete a design from a list of pe-
ripherals specified by the user. All of these have low floors, but also
a low ceiling and narrow walls given the lack of fine-grained user
control and extensibility.

On the other end of the spectrum for recent PCB design work are
subcircuit library-based tools. Unlike synthesis tools, these leave
the part choices up to the user, but they can still make design easier
and faster through the use of higher-level blocks (e.g., ATMega328P
microcontroller subcircuit, instead of a discrete chip and supporting
passives) from a library of parts. Sparkfun À La Carte [35] and
Upverter Modular Design [39] (previously Gumstix Geppetto) are
two commercial examples. However, these have a higher floor than
circuit synthesis as the user must understand the high-level system
architecture and parts selection.

The other thread of work in this category has been our open-
source hardware description language (HDL) for PCB design [13, 14]
and associated mixed textual / graphical block diagram IDE [17]. In
particular, the HDL approach allows users to build custom libraries
with subcircuit generators – code defining how to implement the
lower-level subcircuit details from higher-level user parameters
(e.g., size a resistive divider given a ratio). A type system over parts
also supports abstract, or generic, components (e.g., the abstract mi-
crocontroller specifies an interface that any microcontroller can be
substituted in to) and implicitly defines a design space, though users
must still manually specify choices. The support for user-defined
libraries provides a higher ceiling and wider walls, though like the
commercial library-based tools the user still must understand the
system architecture and parts selection.

We build on top of this work with a tool to sweep through, visu-
alize, and meaningfully compare alternatives across this implicitly
defined design space. We hope that this can lower the floor (without
lowering the ceiling) by helping novices through parts selection,
while also widening the walls for everyone as generally useful
functionality.

Table 1 summarizes prior work in electronics design tools.

2.1.2 Chip Design. Although chip design is a form of electronics
design, it is significantly different from board design in terms of
design practices. Overall, chip design tends to be a tradeoff be-
tween speed, energy, and cost using highly automated methods
like genetic algorithms [26] – though some work does examine
human-in-the-loop design space visualization [37]. As chip simula-
tion models are computationally expensive, much work focuses on
optimizations such as with simplified models [10, 28]. In contrast,
our work is based on rougher static models (e.g., maximum current
draw) found in component datasheets, which are computationally
inexpensive to work with.

2.2 Design Space Exploration
We also draw upon a significant body of work on design space
exploration – though our focus is on its application to electronics.

2.2.1 Interfaces. Prior work has explored visualization approaches
to supporting users in design space exploration. A thread of work
examines design space exploration as design-by-shopping, where
choices are framed as comparison shopping, including applications
to car selection [2] and spacecraft design [1]. As both found parallel
coordinates plots (a plot type supporting simultaneous visualization
of arbitrary number of axes) to be useful, we implemented support
for it.

For high-dimensional spaces (exploring many variables), dimen-
sionality reduction techniques [40] can help produce a usable vi-
sualization by transforming the data. Philosophically, we choose
to focus on more direct and straightforward visualizations, though
future work can examine synthetic visualizations.

The single-state document model [38], where design tools require
the design to be in one state at any time, is not suited for nonlin-
ear creative processes with exploration of alternatives. Proposed
alternatives have included improved preview support for alterna-
tives [38], parallel creation and control over alternatives [19], and
git-inspired branching and merging of versions [44]. While our
underlying HDL is constrained to the single-state document model,
abstract superclasses allow the single document to simultaneously
represent all alternatives, while the design space exploration tool
allows users to down-select to a concrete design point.

2.2.2 Application Domains. While design space exploration has
been applied to many domains, the characteristics of current board
design practices make direct applications of prior work challenging
– like for chip design discussed above.

Much work exists on design space exploration for mechanical
design, such as on visualization to compare design points [20]
and even direct manipulation in virtual reality (VR) [9]. On the
algorithms side, a thread of work examines interpolating between
points [30] and calculating an approximate Pareto frontier [29]
(roughly, the best designs possible without making trade-offs).
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Work Design abstraction Automation Availability User Libraries
Trigger-Action-Circuits [3] Behavioral Synthesis Yes a

Echidna [22] Partial design Synthesis
Appliancizer [8] Peripherals list b Synthesis
Embedded Device Generation [27] Peripherals list Synthesis Open-source
circuito.io [4] Peripherals list Synthesis Web app
EDASolver [7] Peripherals list Synthesis Web app Yes c

AutoFritz [18] Breadboard Autocomplete
Sparkfun À La Carte [35] System architecture High-level design Web app d

Upverter Modular Design [39] System architecture High-level design Web app Yes
Polymorphic Blocks [13] System architecture e High-level design Open-source Yes f

This work System architecture DSE Open-source Yes f
a Components defined in XML
b As a webpage, with elements mapped to hardware
c Components library is source-available on GitHub
d Requires purchase of fabrication service to get board design files
e As HDL, supporting generators for user-defined design automation in library construction
f All library blocks defined in user-facing HDL and open-source
Table 1: Summary of recent work on electronics design tools. In terms of the creativity support tools literature [32], we classify the
behavioral abstraction as very-low floor, partial design and peripherals list as low floor, breadboard with autocomplete as low-medium floor,
system architecture as medium floor, and system architecture with DSE as low-medium floor. We classify synthesis tools as having a low
ceiling because of the lack of fine-grained user control, all the other tools can be high ceiling with either sufficient libraries or support for
user-defined libraries.

While impressive, these algorithms mostly rely on a continuous
parameter space (e.g., length of a part, which is a real number),
compared to the mostly discrete design spaces (e.g., between part
numbers) for PCBs. Additionally, we note that mechanical design
has a few well-known and straightforward-to-calculate objective
functions (e.g., minimize mass), whereas we seek to understand the
important objective functions for electronics.

For cyber-physical systems, often a complex composition of elec-
trical, mechanical, and controls domains, OpenMETA [36] attempts
to integrate these domains as a meta-modeling platform. Like our
work, it has a block diagram model and supports a design space
sweep with results visualization [25, 36], though unlike our work
the design space is user-defined on a per-block basis instead of
embedded in the library as part of a component type hierarchy.
We additionally explore how this idea work in practice and for
electronics design through a user study.

3 EXAMPLE SYSTEMWALKTHROUGH
In this section, we introduce our system by walking through how a
user might use design space exploration to design an example de-
vice: a USB-powered, microcontroller-controlled LED circuit. This
provides a coherent overview of the system and its intended us-
age as a whole, while a more complete description of the system’s
capabilities and architecture follows in the next section.

3.1 High-level Design
As design space exploration requires a design space to search over,
we build our system on top of prior work on an open-source HDL
for electronics design [13] that supports high-level design with
library blocks like “voltage regulator” and “microcontroller”. These
blocks are abstract (themselves having no implementation), and

the concrete choices of each block (e.g., the microcontroller could
either be a STM32 chip or ESP32 module) forms the design space.

The user starts by writing this high-level design HDL, optionally
using schematic-like graphical actions which generate code [17].
Although HDL is required by the underlying design system and is
part of the user interface, the DSE system operates mostly indepen-
dently from it and the rest of this paper focuses on the conceptual
block diagram model.

This example design consists of a USB connector, voltage regu-
lator to drop the USB voltage, and microcontroller, as illustrated in
Figure 1 top-left. Connected to the microcontroller would be a LED
(not shown, connected to the microcontroller GPIO).

Compiling this design produces a block diagram like in Figure 2
top-left. As both microcontroller and voltage regulator are abstract
parts, ideal models (e.g., a voltage regulator that hits its voltage
specification exactly, or a microcontroller with infinite pins) are
automatically substituted in with errors generated to require a
choice from the user. A parameter browser panel (as in Figure 2
bottom-left) also enables the user to explore calculated values like
current draw.

3.2 Searching Voltage Regulators
In this first scenario, where the user has already chosen a micro-
controller, only the choice of the voltage regulator remains.

The user can start by defining the design space by right-clicking
on the voltage regulator on the block diagram visualizer, and se-
lecting “search subclasses” (as in Figure 2 top-left). The user can
similarly define objective functions of interest, such as area and
current draw, with the latter through the parameter browser (as
in Figure 2 bottom-left). A design space configuration view (as in
Figure 2 bottom-center) lists the selected search space and objective
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Figure 2: Example workflow for a design space search across voltage regulators. The user starts by (1) adding objectives like
component area and current draw, and defining the design space like concrete subtypes for the voltage regulator, then (2) running the sweep.
With results from the sweep, the user can then (3) configure the scatterplot visualization by setting the axes with objective functions like
current draw and area. Each design is plotted on the scatterplot (4), color coded by validity. Black points represent valid designs, like the
selected AP3418 converter. Brown points represent ideal components which provide a visual representation of a best-achievable case for
a class of choices, like the ideal voltage regulator having zero area and perfect efficiency current draw. Red points (not shown) represent
invalid designs, like a high-precision but low-current voltage regulator that cannot supply the needed power.

functions. Here, the space includes all subclasses of voltage regula-
tors, including linear regulators (low-efficiency voltage step-down),
buck converters (high-efficiency but complex voltage step-down),
and boost converters (voltage step-up – not useful here).

With the search space defined, the user can run the design space
sweep, which compiles all points in the design space and completes
in about 10 seconds. These compiled design points are presented
as both a table (not shown) and a scatterplot (as in Figure 2 bottom-
right) which the user can configure the axes for (as in Figure 2
center-right). Plotting current draw vs. area, the plot shows the
trade-off between size and efficiency: while the buck converter
(bottom point) has low current draw, it takes up larger board area
compared to some linear regulators (top points).

Once the user makes a choice, they can right-click the point (as
in Figure 2 bottom-right) to insert the choice as a refinement in their
HDL. With a complete design specified, the user can also generate
the netlist file of components and connections to import into a
mainstream PCB layout tool for physical design and ultimately
fabrication.

3.3 Searching Voltage Regulators and
Microcontrollers

In this second scenario, the user also adds the microcontroller to the
search space, to search across all possible combinations (Cartesian
product) ofmicrocontrollers and voltage regulators. This new sweep
covers some 200 points, and finishes in about a minute. Similar to

the voltage regulator-only case, results are listed in the table view
and can also be displayed on the scatter plot.

For these higher dimensional spaces, we also provide a parallel
coordinates plot, detailed in Figure 3. While scatter plots are limited
to two axes, parallel coordinate plots can support an arbitrary num-
ber of axes, displayed side-by-side and parallel to each other. Each
design point has (at most) one point on each axis corresponding to
its value for that axis, and a polyline through all those points allows
visually correlating adjacent axes. Here, the user can simultane-
ously plot the microcontroller choice, current draw, component
area, and voltage regulator choice.

Larger design spaces can produce a complex plot with many
overlapping points and lines as in Figure 3 top, though insights may
still be readily available. More practically, the user can select points
to dim out the rest, for example clicking the ESP32 on the micro-
controller axis to arrive at Figure 3 middle. Navigation features like
zooming allows nearby points to be disambiguated, for example
spreading out the current draw to get to Figure 3 bottom. Similar to
the scatterplot case, once a single design point is selected, the refine-
ment HDL can be inserted, here both the choice of microcontroller
and voltage regulator.

4 SYSTEM DESCRIPTION
Our system consists of the user-defined design space and objective
functions, the results table and plots, and the design space sweep
process. Overall, the guiding philosophy is to support user-guided
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Figure 3: Example workflow for the parallel coordinates plot,
for a search across all combinations of voltage regulators and
microcontrollers. After configuring the search space and running
as in Figure 2 (1) and (2), the designs can be visualized on a parallel
coordinates plot. After selecting the axes (not shown), the plot
shows the entire design space in (1). Even here, a few trends can be
inferred: the boost converters (middle on the rightmost axis) are all
invalid, and some microcontrollers (leftmost axis) draw much more
current. Clicking a point, such as the ESP32 on the microcontroller
axis in (1) selects only designs going through that point, dimming
out everything else as in (2). Individual axes can be zoomed in (and
out) to disambiguate close points, such as expanding the current
draw axis as in (3) to select the lowest current draw design.

DSE, emphasizing predictability and control over more magical
automation. This is implemented on top of the open-source IDE
plugin [17] for the HDL.

4.1 Design Space Definition
The overall design space for any sweep operation is a user-specified
list of choices for some variables. From this, the system generates
the full design space using the Cartesian product of variable choices.
Users can also choose to sequentially search over different parts,
avoiding the exponential computational cost of a combinational
search if combinational interactions are not important.

These variables are available for design space definition:
• Subclass: as shown in the example, the user can sweep all
subclasses of an abstract block.

• Parameters: the user can specify choices for using free text
entry. Parameters are variables in the underlying HDL and
are often used to define the specification for some block, e.g.,
the resistance of a resistor. Parameter choices can apply on
a per-instance or per-block-class basis, the latter allowing,
for instance, to test the effects of minimum package size for
SmdStandardPackage2 devices on a board-wide level.

20402, 0603, etc. series

Figure 4: Example tested status for the USB-C receptacle. The
green 5 under the Proven column indicates that there have been 5
tested-working instances of this block since the last major change.
The tooltip provides a more detailed listing of the designs this
block has been used in, including the 5 tested-working instances,
the broken one prior that has since been fixed (orange), and one
untested instance (grey).

• Parts: while complex parts are represented in the type hi-
erarchy (e.g., the Ap3418 buck converter in the example),
more generic parts are automatically selected by matching
parameters (e.g., resistor based on resistance) from a parts
table. Often, many parts satisfy the user’s specification and
one is chosen arbitrarily, but this allows sweeping the entire
space of compatible parts.

4.2 Objective Functions
The user can also specify values of interest to be displayed on the
results table or plotted graphically:

• Parameters: as general variables in the underlying HDL, pa-
rameters include calculated outputs like a voltage regulator’s
current draw in the context of the system3.

• Component area: the total area4 of all components in a
block, as a rough gauge of board size.

• Component count: the number of components in a block
as a rough gauge of complexity.

• Price: the total cost5 of components in a design.
• Unproven: the number of blocks that haven’t been tested
in hardware before as a rough gauge of design risk. See
Section 4.3 for details.

4.3 Proven Data
As prior work [13, 16] found that users had concerns about the
correctness of libraries they didn’t write, we wanted to capture
some notion of this risk in our objective functions by identifying
which blocks have been built and tested6. We categorized blocks
into working, fixed, broken, and untested, where both broken and
untested contribute to the unproven count objective function.

3There currently isn’t a distinction between input and output parameters, so it is up to
the user to understand the meaning of each parameter – though this could be improved
in future work or through documentation.
4Specifically, the footprint’s courtyard area.
5Based on the April 2022 JLCPCB parts table with some supplemental rows.
6Based on a database of prior example designs we built.
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Additionally, the proven statuses for each prior design are view-
able as a popup on the block itself, as a more detailed breakdown
of design risk.

4.4 Results and Plots
The results table and plots are mostly as described in the example:
the results table shows a list of all the design points with a column
for each objective, while the scatter plot and parallel coordinate
plot allow the user to select their axes from both the design space
and the objective functions. Plots are initially scaled to the range
of the data and zero, but the user can pan and zoom.

Designs with ideal components are shown in brown and can
be used to show a theoretical maximum objective, e.g., the best-
case power for the voltage regulators in Figure 2. Designs with
errors (where the electronics model failed to validate, e.g., exceeding
voltage limits) are shown in red and may be a prompt for the user to
explore further, perhaps seeing if some constraints can be relaxed to
achieve better outcomes. Some errors may prevent the design from
compiling (e.g., using a boost converter to step down the voltage,
which exceptions out) and are not shown as there is no data.

While numerical objectives are relatively straightforward for
plotting, non-numeric types can also be plotted, rendered as evenly-
spaced strings. Subclasses are plotted as strings, with related classes
grouped together7. Range-valued data (intervals, used extensively
throughout the HDL libraries to model tolerances and allowable
ranges) requires the user to select the minimum, center, maximum,
or tolerance.

4.5 Design Space Sweep
The design space sweep process is conceptually straightforward,
testing all choices one-by-one and live-updating the results table
and plot after each design point.

We optimize the sweep by saving and re-using a partially com-
piled design, instead of compiling every design from scratch. Since
the design space defines which variables are being swept over, the
design is first compiled with all of those variables blocked. For
parameters, this means that the parameters and dependencies on it
remain uncompiled8. For subclasses, this means compilation does
not progress into that block, leaving it, its parameters, and any
internal blocks uncompiled. Then, for each design point, the com-
piler state is copied, and the variables are unblocked and assigned a
value from the design point. Only work that depends on the choice
being tested needs to be performed on a per-design-point basis.

In practice, the speedup of this technique is heavily dependent
on the design. For example, for the LED design and sweeping over
both the voltage regulator and microcontroller (198 designs), with
pre-compilation it takes 74.7s9, andwithout pre-compilation it takes
125.9s. On the other hand, for a more complex multimeter example
described in prior work [14] and sweeping over the microcontroller
(11 designs), with pre-compilation it takes 37.0s, and without pre-
compilation it takes 88.5s.

7Specifically, ordered by the depth-first traversal of the class hierarchy.
8While the original HDL paper [13] mentioned a constraint system, work afterwards
has simplified the parameter system to use only directed assignments, e.g. a <= b + c.
9All results on a Ryzen 1700X, 48GB RAM, average of three runs.

5 USER STUDY METHODOLOGY
Because there is limited prior work in DSE for board-level elec-
tronics design, we ran a user study both to gauge the usefulness
of this kind of user-in-the-loop DSE for electronics design and as
a kind of design probe to better understand user needs to drive
future work. Towards understanding needs, our study focuses on
realism (ecological validity) with participants working on a project
of their choice, though this is balanced with completing the project
within a reasonable amount of time and the libraries available. As
more initial work, we focused on gathering rich, in-depth data that
could serve as a springboard for future work, though at the cost of
a smaller participant pool.

5.1 Participants
We recruited six (3F) participants through a mix of personal re-
ferrals and recruitment messages with an electronics-focused stu-
dent group. Overall, we wanted to sample for range across prior
PCB design experience levels, with a center-mass around low-
intermediates (beginning makers) who we believe these tools could
be most useful for. Experts and advanced users round out the data.

Participants were required to have some familiarity with Python
and PCBs (to avoid needing to spend excessive time on fundamental
concepts), but did not actually need to have designed a board prior.
Participants were compensated with gift cards at $30 an hour and
the option to get their board made if they also completed the board
layout (on their own time).

5.2 Structure
The study was conducted with as a mix of videoconference and
in-person meetings, at the participant’s choice. In both cases, par-
ticipants accessed a fresh virtual machine (with the software pre-
installed) through the remote desktop software X2Go. In the remote
case, we asked participants to share their remote desktop window
so we could watch their progress.

We started by working with participants to determine a project
of reasonable scope given available libraries and containing some
element suitable for design space exploration. The study itself be-
gins with a written tutorial, introducing the HDL and walking
through the design space exploration example in Section 3. After
the tutorial, participants continued on to their project, optionally
starting from the tutorial HDL as a base. While we did not record
these sessions, the software logged some actions (including plot
configuration changes and design space sweeps) and we took notes.

As wewere more interested in participants’ feedback on the high-
level concepts and learning about their needs, we would answer any
questions and offer suggestions. This allowed us to run a study with
a realistic project on a design tool with a non-trivial learning curve
and lacking the polished interface, documentation, and community
resources (e.g., Stack Overflow) of more mainstream tools.

Afterwards, we concluded with a semi-structured interview. Top-
ics included general free-form feedback and specific questions on
design space exploration including comparisons to their current
flows, what they wanted to explore (whether supported in our sys-
tem or not), performance issues, and speculative comparisons to
mainstream and synthesis tools. The overall framing was getting
constructive feedback and learning about participants’ workflows,
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which was both consistent with our goals and helps limit acquies-
cence bias. These were audio-recorded (with participants’ consent)
and transcribed. Analysis was done with an open coding pass and
iterative grouping of codes into related topics [42]. We then focused
on issues that were most interesting in terms of implications for de-
sign for DSE tools – both how our tools were used, and limitations
that future work could explore in more depth.

5.3 Libraries and Design Space
The design spaces that participants could explore were limited to
the libraries we provided. The abstract subclasses (where a choice
is required) are mainly the microcontrollers and voltage regulators
described in the example in Section 3. Microcontrollers include
discrete ICs like the STM32F103, radiofrequency modules like those
based on the nRF52 and the ESP32, and development boards like
the ESP32 with an onboard camera. Voltage regulators include
several options for linear regulators, and buck and boost switching
converters. While not a huge design space, this does cover many
commonly used parts.

Where a default is automatically selected from a parts table (such
as for generic components like resistors, capacitors, and FETs), users
could also choose to search through alternative compatible parts.

6 USER STUDY RESULTS
Overall, our six participants had experience levels ranging from
novices to professionals and worked on a variety of projects, all
summarized in Table 2. On average, participants completed the
tutorial in 1h 18m and spent 2h 43m on their projects. Interviews
averaged 1h 48m.

6.1 Individual Observations
All participants completed their designs to a point where the HDL
and its electronics model checks were error-free and we believed
that the design would be functional if made. Projects are described
below, with simplified block diagrams for all in Figure 5.

6.1.1 P01: High Voltage Sensor. P01 designed a high voltage sensor,
with a microcontroller, opamp buffer, and high voltage resistive
divider (requiring multiple resistors in series to limit the voltage
across each resistor, unlike the classic two-resistor divider). The
implementation of the divider was the main focus of the search
process: choose resistor values that produce some target voltage
division ratio, while loosely optimizing for full scale output range
(output voltage as close to 3.3 volts as possible) and balancing power
consumption and signal integrity (which are inversely correlated).
P01 specified resistor values10 for the DSE tool to search, while
the system created the full cartesian product and the resistive di-
vider library calculated the objective values and validated design
correctness (e.g., for output voltage and resistor voltage ratings).

Uniquely, P01 also wrote a quick script to generate the search
space for resistance. In mainstream flows, P01 would sometimes
write scripts to search the design space, sometimes using Monte
Carlo probabilistic methods for intractably large spaces.

10Roughly the E6 series of preferred values

6.1.2 P02: LCRMeter. P02 designed a LCR (inductance-capacitance-
resistance) meter, based off an existing open-source design11 using
a single-chip analog frontend12. The DSE tool was used to select
infrastructural components like the microcontroller and voltage
regulator and used to search through some of the analog frontend
parts. While P02 was able to select the most precise (tightest tol-
erance) resistor using the DSE tool and visualization, the parts
libraries lacked the more detailed modeling for other parts like
diode leakage current and noise immunity so those parts were cho-
sen with existing parts tables and datasheets. However, on the user
interface side, P02 noted that the electrical parameters were buried
in lists of other data and difficult to find, and suggested instead a
list of only objective functions sorted by most commonly used.

6.1.3 P03: Greenhouse Sensor. P03 designed a greenhouse sensor,
a wireless device that could measure temperature, humidity, and
light spectrum. P03 started from the tutorial HDL, but cleared the
refinements before adding the application-specific blocks like sen-
sors. Uniquely, the AS7341 spectral sensor also needs a 1.8v supply,
which generated an error and required another voltage regulator.

Workflow-wise, P03 added and connected all the application
blocks, leaving the ideal blocks in place and ignoring the corre-
sponding compiler errors. Only after the design was done did P03
use DSE to select the choice of voltage regulators and microcon-
troller. P03 compared this design flow to traditional schematics:

I need an MCU on this board, but not having to kind
of commit yourself to one and then put all the other
components on and then realize, oh, that’s not the
one I want, and then having to like rearrange every-
thing afterwards is a definite time saver in terms of
prototyping

6.1.4 P04: Sleep Tracker. P04 designed a sleep tracker, roughly
architected off a class project report13 which has a heart rate sensor,
breath sensor (a variable resistance 710kOhm elastic cord), and
accelerometer. P04’s overall process was to insert blocks from the
library, compile to see the errors, incrementally fix them, and repeat
until no errors remained.

Notably, the sensor for the elastic cord (a resistive divider, with
the fixed resistor defaulting to 47kOhm) flagged an error because
the high output resistance of the sensor could cause signal integrity
issues. While P04 started by (perhaps unrealistically) perturbing
the sensor resistance range, a bit of prompting from us to reflect on
the circuit being built led P04 to use the DSE tool to try different
values for the fixed resistor and to look at the automatically calcu-
lated output voltage range. From here, P04 scanned a combination
of sensor resistance ranges and fixed resistor values (1kOhm to
50kOhm in about 10 steps) and picked the highest span non-error
design point from the plot which had a 6.1kOhm fixed resistor.

During the interview, P04 compared our workflow to choosing
parts in a mainstream board tool’s parts library. In particular, P04
noted the importance of not being overwhelmed with choices, es-
pecially when those choices aren’t meaningfully different from
11https://github.com/jankae/LCR
12Defined using schematic import [15] instead of in HDL, but parts like resistors and
capacitors map down to HDL parts with the parts-table-based design space
13http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/f2017/nas256_
jbc262/nas256_jbc262/website/index.html

https://github.com/jankae/LCR
http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/f2017/nas256_jbc262/nas256_jbc262/website/index.html
http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/f2017/nas256_jbc262/nas256_jbc262/website/index.html
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Project Design Space Explored PCB Experience
P01 High voltage sensor Voltage regulator, resistive divider parts 11 years (industry)
P02 LCR meter Voltage regulators, LCR frontend parts 4 years (student)
P03 Greenhouse Sensor Microcontroller, voltage regulators 1.5 years (student)
P04 Sleep Tracker Resistive divider parts < 1 year (student)
P05 Mechanical Keyboard Microcontroller, switch matrix diodes minimal (student)
P06 Game Controller Microcontroller, voltage regulator minimal (student)

* Experience defined as total years, not years in current role
Table 2: Summary of study participants.
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Figure 5: Simplified block diagrams of participant designs. Design choices selected using DSE indicated in blue, manually-selected
subclass choices or choices carried over from the tutorial indicated in grey. Some components not related to DSE omitted for brevity.

the substantial list of parts in mainstream tools. While part of the
simplicity of our tool came from the limited parts library, another
part was the use of parameterized abstract parts (e.g., resistor) and
the use of reasonable defaults to avoid requiring the user to make
excessive choices.

6.1.5 P05: Mechanical Keyboard. P05 designed a mechanical key-
board, making use of the standard library’s parameterized (by num-
ber of rows and columns) switch matrix generator. Although P05
had not built a PCB before, P05 was a keyboard enthusiast and

understood the major parts of a keyboard PCB to put together the
high-level design HDL with a little help. Starting from the tutorial,
P05 added a 5x15 switch matrix, which exceeded the available mi-
crocontroller pins and caused an error. While P05 initially tried
manually reducing the switch matrix size until it stopped giving
errors, we suggested trying alternative microcontrollers. P05 used
the DSE tool to list the compatible microcontrollers and by area and
component count, then (partially on our advice) cross-referenced
QMK’s (open-source keyboard firmware) supportedmicrocontroller
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list to narrow it down to two choices. Further examining the smaller
(by area) RP2040-based design, P05 found it had a red proven indi-
cator and finally selected the last, STM32F103-based design.

We also suggested searching the diode options by prompting P05
to compare the diode size against the boards P05 had. P05 added
price and area objective functions, and while initially struggling
with setting up and interpreting the scatterplot, eventually chose
the cheapest and smallest diode.

6.1.6 P06: Game Controller. P06’s project idea started with a game
controller, though the scope expanded after browsing the library
to also include an I2S (digital) speaker driver and more. P06 started
with an empty design, though quickly re-created the basic USB
connector, voltage regulator, and microcontroller design from the
tutorial. P06 then inserted application-specific blocks from the li-
brary like switches and displays, then connected ports until the
compiler errors went away.

With a completed design, P06 then used DSE to resolve the volt-
age regulator and microcontroller choice. For the voltage regulator,
while P06 initially considered a switching converter given its higher
efficiency, we discussed the associated layout challenges of a high-
frequency switching circuit for their first board, prompting P06 to
instead choose the simpler linear regulator.

6.2 Trends and Patterns
We noticed several trends across participants’ use of DSE. This
section focuses on observations, while takeaways and ideas are in
the discussion in Section 7.

6.2.1 Validity. Overall, participants relied on the validity indicator
to avoid choices that wouldn’t work, e.g., microcontrollers without
requested number of GPIOs. P05 in particular noted that this was
helpful for beginners to push out a working board with minimal
knowledge:

Clean slate, like I don’t know anything. So if I was to
say, I want to design a PCB. I feel like I can utilize this
program and its features and tools and it will push
something out.

The other more novice participants also mentioned the useful-
ness of the validity indicator, including the level of integration of
component data into a usable interface.

6.2.2 Objective Functions. Of the objective functions provided, par-
ticipants generally used the cost, component count, area, and cur-
rent draw to select between feasible points. As these points were
all introduced in the tutorial, it is unclear if these are the most
common optimization criteria for PCB design in general, or merely
what was simplest for participants.

Outside the modeling of our system, programming considera-
tions for microcontrollers were also important. For instance, P05
looked for a microcontroller with QMK firmware support, and P06
checked to make sure that the selected microcontroller was compat-
ible with Arduino. P02 noted the potentially significant downstream
impacts of microcontroller choice:

Generally I find the software side a lot more frustrat-
ing, it takes me longer especially if there’s some weird
quirk, and there’s not much documentation [...] I think

I spent a whole day on how to get the DAC on the
STM32 chip to work.

Participants also mentioned other considerations, for example
P03 noted the general reputation of nRF52 microcontrollers being
more power efficient than ESP32microcontrollers and P02 discussed
the difficulty of soldering smaller parts.

6.2.3 Search Limitations. Not all search operations that partici-
pants wanted were supported by the system. Some of these search
operations would be conceptually straightforward if the libraries
were expanded, like detent count for encoders. Others might be
intuitively reasonable but not possible given the compatible compo-
nents definition which requires identical electrical interfaces, like
LCDs which have diverse interfaces.

6.2.4 Proven Data. While participants didn’t plot the proven ob-
jective function outside the tutorial, some made use of the proven
counts in the parts library. P04 noted similarities to a popularity
indicator in a mainstream tool’s library, potentially useful as a
tiebreaker to prefer the part with a more active community. Simi-
larly, when confronted with a list of several displays, P06 picked
the only one marked as being built prior.

More broadly, P01 discussed a preference for familiar parts:
At some point I have to pick it the first time, which is
to say, I like this MCU [microcontroller], let me try it
out. Oh, after using it, this is very good MCU. Let me
use it for the rest of my life or something like that.

Furthermore, P01 discussedmultiple levels of preferred components:
whether an they’ve used the part, whether the organization they’re
part of has used it, and if lots of people in general use the part.

6.2.5 Performance. As participants swept through wildly different
design spaces of different complexities, each had different expe-
riences with the system performance: simpler sweeps over a few
resistor combinations take seconds, while sweeping over all of
almost 400 diodes takes about three minutes. Participants’ back-
grounds also factored into what they felt was normal, for example,
P05 was used to 10-minute Excel scripts.

Overall, most participants found performance to be acceptable
for interactive design space exploration, though some also expanded
on it further. For example, P01 commented on the trade-offs of fast
results over complete results:

I don’t think I want 10,000 parts in five minutes. I
think I want like 200 parts in 20 seconds. And then,
and then I can be like, okay, which one of these points
has whatever number of designs, and then go from
there.

P02 also suggested a pre-filtering interface (like the parametric
part selection tools from major component distributors like Digi-
Key and Mouser) instead of testing everything in what may be a
substantial list of matching parts:

I think a lot of times you have a general idea of what
value you want, so it wouldn’t make sense to go
through all of them.

Uniquely, P03 had a design space of two voltage regulators and
a microcontroller, and was setting up the combinational search



Design Space Exploration for Board-level Circuits: Exploring Alternatives in Component-based Design CHI ’24, May 11–16, 2024, Honolulu, HI, USA

(thousands of points) when we told them that it would be compu-
tationally prohibitive. P03 then ran the sweeps sequentially. P06
also remarked that the benefits of sequential searches may not be
obvious:

I think normal people will try to use a combined,
because it’s more trivial, right? [...] I wasn’t really
thinking, oh, I can run them separately to get a better
timing.

6.2.6 Plots and Tables. While all participants made use of the scat-
terplot, only P01 and P06 used the parallel coordinates plots outside
the guided tutorial. Part of the reason may be that most only op-
timized for one or two objectives, while P01 was interested in a
combination of output voltage range, signal strength, and price. P06
noted the data density benefits:

I can see more data in one screen.
Both P01 and P04 also noted the usefulness of the table view

and its high-precision numeric format, especially when points may
be close together on the plots. P05 noted a personal preference for
tables instead of graphs.

6.2.7 Novices vs. Experts. While the more expert participants P01
and P02 looked into optimizing parts (including overriding a default
selection that wasn’t causing errors) and exploring the design space
on their own initiative, the more novice participants P03, P04, P05,
P06 ran searches to resolve errors. However, with a little explanation
of the underlying circuit and design considerations from us, all
participants were able to use the DSE tool to find a working solution
even where they may not have sufficiently understood things to
come up with a solution independently of the tool.

By sheer luck, both P01’s and P04’s design space exploration
focused on a resistive divider circuit and makes for an interesting
comparison case across skill levels. The more experienced P01 im-
mediately knew to optimize for output range and signal strength
and defined a search space of some E6 resistor values, as would be
best practice. With a few promising results on a coarse grid, P01
then refined the search space with a finer grid. On the other hand,
the more novice P04 only started design space exploration when
prompted by an error on the divider and largely used the DSE tool
to effectively guess-and-check solutions by scanning around the
default resistance in arbitrary 5kOhm increments. P04 also needed
prompting to think about the effect of signal range as an important
factor and optimization objective and ultimately settled on the best
signal range result with the coarse 5kOhm search grid instead of
looking to optimize further.

7 DISCUSSION AND FUTUREWORK
Our observations and the user feedback suggest both design consid-
erations for future tools and potential areas for future investigation.

7.1 Main Takeaways
Overall, our takeaway from the user study is that this method of
user-guided design space exploration broadly works and helps a
wide range of users achieve their goals. For novices, DSE helps
them resolve lower-level technical details to get to a valid design,
especially taking into account the requirements of their particular
application (e.g., IOs needed on a microcontroller, output voltage

on a regulator) instead of generalized advice. For more advanced
users, DSE can help users assess trade-offs and choose not just a
valid design, but an optimized design. Compared to other recent
work in Table 1, we believe this provides a unique combination of
lower floor and accessibility to novices while maintaining a high
ceiling and usefulness for experts.

Crucially, over automated approaches, DSE also allows the user
to bring their own expertise to the table and provides an escape
hatch of sorts to take into account requirements outside the mod-
elling of the system. We observed this during the user study across
both expert and novice users, such as the various factors driving
the choice of microcontroller, or the preference for popular parts.

Furthermore, as some participants primarily started searches
when prompted by an error or by us, DSE may be an effective
technique for error recovery. Future work could look at interfaces
and techniques to go from an error to DSE seamlessly.

7.2 Towards Practical Usage
Our hope is that the techniques and systems we develop could
be part of the next generation of board design tools. Yet, more is
needed beyond what is feasible from an academic proof-of-concept.

Likemany electronics tools presented in recent work, ours, too, is
library-based and requires a library of parts with detailed modeling
– including electrical limitations and well beyond the simple pin,
symbol, and footprint used in mainstream schematic tools. While
these libraries encapsulate substantial knowledge and can be shared
and re-used, they also have a higher upfront construction cost – in
our experience, from tens of minutes for simpler chips like op-amps,
to an hour or more for more complex devices like microcontrollers.
Datasheet parsing [43] may allow libraries to scale for simpler chips,
but often the datasheet must be understood holistically and more
magical automation may bring trust issues [16].

More practically, as an open-source system, a community may
contribute libraries. However, there may be a chicken-and-egg
problem: we expect that a sufficient set of libraries is necessary
for adoption (as for programming languages in general [24]), yet
adoption is necessary for a community to start contributing. Com-
ponent manufacturers may also provide libraries for their parts -
effectively providing an easy-to-use, machine-executable datasheet
that directly integrates into a board design tool - but we expect that
this too will depend on adoption.

In practice, though, the existing libraries were mostly sufficient
for thewide set of examples in the user study. So, one larger question
may be, how much is good enough?

7.3 Scaling and Performance
Performance-wise, a full design space sweep optimized with partial
compilation seemed acceptable to participants for interactive DSE.
While our design space is tiny compared to the space of all electron-
ics parts, it does cover meaningful choices and allowed participants
to complete their designs. Furthermore, curated libraries of common
components do exist [34] with roughly similar numbers of micro-
controllers and voltage regulators as our libraries. It may be that
smaller, focused libraries for specific purposes are ultimately better,
both psychologically helping avoid choice overload (as mentioned
by participants), and in reducing performance impact.
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Where a large design space is needed, pre-filtering may be useful,
such as the user-driven interface P02 suggested based on the para-
metric search interface of component distributors. Alternatively,
heuristics to filter out highly-suboptimal areas of the search space
could be baked into the search tool itself. Probabilistic filters (where
some, but not all, expected unproductive choices are removed) may
also be a reasonable compromise that still helps users understand
the larger design space but waste less time.

Ultimately, as the user guides the DSE process, they are respon-
sible for keeping the search space reasonable, such as through
decomposing a complex design into several, independent search
operations. Future work may explore proactively providing auto-
mated guidance (especially for novices), such as identifying where
the design space can be decoupled.

7.4 Discoverability
Understanding the degrees of freedom and objective functions was
a stumbling block for all participants. This mostly relates to the
parameters within the electronics model (e.g., current draw on a
pin), which the underlying HDL only understands as a variable
and our tool does not provide any specialized graphical affordances
for (in contrast to e.g., the LTSPICE circuit simulator [5], where
mousing over a pin prompts the user to view the current into the
pin and mousing over a wire prompts the user to view the voltage
on the wire).

Some of the above may be addressable with better interfaces,
such as indicators of which parameters are inputs or outputs, po-
tentially also using static analysis techniques to tell the user the
impacts of sweeping some variable. Methods to highlight common
design parameters and objective functions may also help, perhaps
aided by keyword search and some intelligent ranking of results.
Alternatively, perhaps the simple (but boring) answer is just better
documentation.

In general, this may be an under-explored area for DSE tools.
Prior work in mechanical DSE has a few well-known and intuitive
objective functions like mass [30], while more advanced tools like
OpenMETA [36] are geared towards experts with less of an empha-
sis on the learning curve. In our case, we had a tool structured like
OpenMETA (general parameter system), with an included electron-
ics framework and library, and aiming to be useful to novices and
experts – the tension of maintaining a low floor while enabling a
high ceiling and wide walls.

7.5 Better Supporting Novices
While DSE helped all our participants get to a board, they still
needed to know enough about electronics to design the system
architecture – though not a problem for our participants, this may
not be true for even more novice users. An even higher-level design
abstraction, like the functional model in Trigger-Action-Circuits [3],
might help. Higher-level design models may also expand the search
beyond mere electrical compatibility and towards functionality,
potentially allowing searches over the aforementioned LCDs that
do not have identical electrical interfaces.

However, this starts getting into synthesis territory and raises
issues of less interpretable interfaces, compared to our relatively
straightforward “all satisfyingmicrocontrollers”. Future workmight

examine hybrid solutions like synthesis or even mixed-initiative
circuit autocomplete [18] to get to a system architecture followed
by optional DSE to refine the part selections.

Additionally, when working with lower level subcircuits like
resistive dividers, participants also need to know enough about
its underlying physics to set up the search space, as P04 initially
struggled with. Some default choices were also easy to overlook,
like for P05’s excessively large keyboard matrix diodes. For these,
more domain knowledge might be encoded in the libraries to either
provide a better default or help set up a search space.

7.6 Study Limitations
As for our user study, we frame our work as more initial and ex-
ploratory, focusing on generating ideas for future work and examin-
ing the limitations of our prior understanding. We believe we have
obtained in-depth data in the realistic setting of participant-defined
projects - for example, our results on the wide variety of factors
in part choice can emphasize the need for flexibility in tools. How-
ever, we have traded off sample size and standardized procedures,
both of which limit generalizability. Future work could run larger
and more controlled studies, trading off realism for being able to
quantitatively measure the effectiveness of DSE compared to either
mainstream schematic capture or high-level design.

8 CONCLUSION
Although much recent work on electronics focuses on either novice-
friendly but limiting fully automated design or higher-learning-
curve but flexible manual design, here we explore a middle point
of user-guided design space exploration in a library-based system
where the tool helps users understand and choose between parts
in the context of their particular design. Feedback from a realistic
and in-depth user study where participants of wide skill levels com-
pleted their projects in our system suggests that this is a promising
approach with a wide variety of applications including optimization
and error recovery, along with raising ideas for future work.

In the larger picture, we hope the ideas here can apply beyond
electronics to other fields of design and is another step towards
powerful design tools for everyone.
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